Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Life-cycle assessment to guide solutions for the triple planetary crisis

Abstract

Climate change, biodiversity loss and pollution — the triple planetary crisis — increasingly threaten the Earth system, necessitating tools such as life-cycle assessment (LCA) that can evaluate the effectiveness of different prevention and mitigation strategies. LCA systematically quantifies the environmental impacts over the whole life cycle of products, processes or policy scenarios. LCA is frequently applied to uncover environmental hotspots and prioritize actions and is increasingly used to assess the environmental impacts of strategy implementation scenarios. In this Review, we discuss the role of LCA in evaluating and shaping strategies on the decarbonization of energy systems, circular economy, sustainable consumption and sustainable finance. We explore how emerging LCA-based approaches make use of the planetary boundaries framework and other environmental assessment tools to support decisions. Cross-comparisons between LCA applications for various mitigation strategies reveal differences in maturity level, methodological choices and the way that environmental assessment tools have been combined with LCA. Economy-wide LCAs on the decarbonization of energy systems and sustainable consumption are already common, whereas economy-wide applications to circular economy and prospective LCAs for sustainable finance are still in their infancy. Future research should develop systematic classification of decision-support problems, harmonized data and comprehensive guidance to improve robustness and credibility of prospective economy-wide LCA.

Key points

  • Life-cycle assessment (LCA) is a method used to quantify the environmental impacts of human activities with a systems perspective, from resource extraction and processing, to production, the use phase, disposal and transport processes. LCA assesses all three dimensions of the triple planetary crisis, including climate change, biodiversity loss and pollution-related health impacts.

  • LCAs are widely used to support decisions for transformative strategies — decarbonization of energy systems, circular economy, sustainable consumption and increasingly also sustainable finance — to combat the triple planetary crisis. The field is expanding from traditional product-level assessments to economy-wide assessments that identify levers of change and overall success of strategies.

  • Simple process-based LCAs of energy systems have, by and large, been superseded by whole-economy scenarios that include feedback effects and consideration of other technological changes. Furthermore, LCA is increasingly being applied in prospective or ex ante assessments.

  • In the field of circular economy, waste-prevention LCAs show that limited consumer acceptance, perceived lower quality of reused or refurbished products, and rebound effects often offset much of the intended benefit. Human consumption levels need to decrease rapidly, moving towards green lifestyles that focus on the satisfaction of human needs, rather than wants.

  • Combinations of LCA with other environmental assessment tools have allowed more comprehensive analyses, considering, for example, upper limits of material circularity or more realistic scenario predictions using economic models. Further standardization is needed to provide guidance on good practice and make prospective multi-indicator studies more robust and comparable to each other.

  • LCA can assess pathways towards a sustainable future and help to prioritize measures for implementation. More robust and detailed supply-chain information on materials, information on future technologies, and regionalized impact assessment models are required for reliable decision support on regional- to global-scale assessments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The four phases of LCA illustrated with hygienic face masks.
Fig. 2: Simplified life-cycle assessment impact pathways and planetary boundaries situated in the drivers–pressure–state–impact–response framework.
Fig. 3: Technology choice in scenario assessment is affected by consideration of life-cycle impacts.
Fig. 4: Assessment of circular-economy systems.
Fig. 5: Interlinkages between a selection of environmental assessment tools with life-cycle analysis.

Similar content being viewed by others

References

  1. Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    Article  Google Scholar 

  2. Emissions Gap Report 2021: The Heat Is On — A World of Climate Promises Not Yet Delivered (UNEP, 2021); https://www.unep.org/resources/emissions-gap-report-2021.

  3. Liu, Z., Deng, Z., Davis, S. & Ciais, P. Monitoring global carbon emissions in 2022. Nat. Rev. Earth Environ. 4, 205–206 (2023).

    Article  Google Scholar 

  4. IPCC. Summary for Policymakers. In Climate Change 2022: Mitigation of Climate Change (eds. Shukla, P. R. et al.) (Cambridge Univ. Press, 2022); https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR_WGIII_SummaryForPolicymakers.pdf.

  5. Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

    Article  Google Scholar 

  6. Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).

    Article  Google Scholar 

  7. Living Planet Report 2022 — Building a Nature-Positive Society (eds Almond, R. E. A. et al.) (WWF, 2022).

  8. Global Resources Outlook 2019: Natural Resources for the Future We Want (International Resources Panel, 2019).

  9. Andersen, I. et al. Defining ‘science-based targets’. Natl Sci. Rev. 8, nwaa186 (2021).

    Article  Google Scholar 

  10. Hellweg, S. & Milà i Canals, L. Emerging approaches, challenges and opportunities in life cycle assessment. Science 344, 1109–1113 (2014).

    Article  Google Scholar 

  11. Schrijvers, D. L., Loubet, P. & Sonnemann, G. Developing a systematic framework for consistent allocation in LCA. Int. J. Life Cycle Assess. 21, 976–993 (2016).

    Article  Google Scholar 

  12. McAuliffe, G. A., Takahashi, T. & Lee, M. R. F. Applications of nutritional functional units in commodity-level life cycle assessment (LCA) of agri-food systems. Int. J. Life Cycle Assess. 25, 208–221 (2020).

    Article  Google Scholar 

  13. Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2019 (GBD 2019) Reference Life Table (Institute for Health Metrics and Evaluation, 2021); https://ghdx.healthdata.org/record/ihme-data/global-burden-disease-study-2019-gbd-2019-reference-life-table.

  14. Chaudhary, A., Verones, F., De Baan, L. & Hellweg, S. Quantifying land use impacts on biodiversity: combining species-area models and vulnerability indicators. Environ. Sci. Technol. 49, 9987–9995 (2015).

    Article  Google Scholar 

  15. Kuipers, K. J. J., May, R. & Verones, F. Considering habitat conversion and fragmentation in characterisation factors for land-use impacts on vertebrate species richness. Sci. Total Environ. 801, 149737 (2021).

    Article  Google Scholar 

  16. Ryberg, M. W., Andersen, M. M., Owsianiak, M. & Hauschild, M. Z. Downscaling the planetary boundaries in absolute environmental sustainability assessments — a review. J. Clean. Prod. 276, 123287 (2020).

    Article  Google Scholar 

  17. Rockstrom, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    Article  Google Scholar 

  18. Persson, L. et al. Outside the safe operating space of the planetary boundary for novel entities. Environ. Sci. Technol. 56, 1510–1521 (2022).

    Article  Google Scholar 

  19. Smeets, E. & Weterings, R. Environmental indicators: typology and overview. European Environment Agency. https://www.eea.europa.eu/publications/TEC25 (1999).

  20. Verones, F. et al. LCIA framework and cross-cutting issues guidance within the UNEP-SETAC Life Cycle Initiative. J. Clean. Prod. 161, 957–967 (2017).

    Article  Google Scholar 

  21. Levasseur, A. in Lfe Cycle Impact Assessment (eds Hauschild, M. Z. & Huijbregts, M. A. J.) Ch. 3 (Springer, 2015).

  22. Hauschild, M. Z. & Huijbregts, M. A. J. in Life Cycle Impact Assessment (eds Hauschild, M. Z. & Huijbregts, M. A. J.) Ch. 1 (Springer, 2015).

  23. Liu, J. et al. Water scarcity assessments in the past, present, and future. Earths Futur. 5, 545–559 (2017).

    Article  Google Scholar 

  24. Frischknecht, R. & Jolliet, O. Global Guidance for Life Cycle Impact Assessment Indicators Vol. 2. UNEP Life Cycle Initiative. https://www.lifecycleinitiative.org/training-resources/global-guidance-for-life-cycle-impact-assessment-indicators-volume-2/ (2019).

  25. Frischknecht, R. & Jolliet O. Global Guidance on Environmental Life Cycle Impact Assessment Indicators Vol. 1. UNEP Life Cycle Initiative. https://www.lifecycleinitiative.org/training-resources/global-guidance-lcia-indicators-v-1/ (2017).

  26. Oberschelp, C., Pfister, S. & Hellweg, S. Global site-specific health impacts of fossil energy, steel mills, oil refineries and cement plants. Res. Sq. https://doi.org/10.21203/rs.3.rs-2025915/v1 (2022).

    Article  Google Scholar 

  27. Lozhkina, O. V. & Lozhkin, V. N. Estimation of nitrogen oxides emissions from petrol and diesel passenger cars by means of on-board monitoring: Effect of vehicle speed, vehicle technology, engine type on emission rates. Transp. Res. Part D 47, 251–264 (2016).

    Article  Google Scholar 

  28. Yang, Y. Toward a more accurate regionalized life cycle inventory. J. Clean. Prod. 112, 308–315 (2016).

    Article  Google Scholar 

  29. Mutel, C. et al. Overview and recommendations for regionalized life cycle impact assessment. Int. J. Life Cycle Assess. 24, 856–865 (2019).

    Article  Google Scholar 

  30. Scherer, L., Gürdal, İ. & van Bodegom, P. M. Characterization factors for ocean acidification impacts on marine biodiversity. J. Ind. Ecol. 26, 2069–2079 (2022).

    Article  Google Scholar 

  31. Corella-Puertas, E., Guieu, P., Aufoujal, A., Bulle, C. & Boulay, A.-M. Development of simplified characterization factors for the assessment of expanded polystyrene and tire wear microplastic emissions applied in a food container life cycle assessment. J. Ind. Ecol. 26, 1882–1894 (2022).

    Article  Google Scholar 

  32. Woods, J. S., Verones, F., Jolliet, O., Vázquez-Rowe, I. & Boulay, A.-M. A framework for the assessment of marine litter impacts in life cycle impact assessment. Ecol. Indic. 129, 107918 (2021).

    Article  Google Scholar 

  33. Kuipers, K. J. J. et al. Habitat fragmentation amplifies threats from habitat loss to mammal diversity across the world’s terrestrial ecoregions. One Earth 4, 1505–1513 (2021).

    Article  Google Scholar 

  34. Piao, Z. et al. Environmental trade-offs for using low-noise pavements: life cycle assessment with noise considerations. Sci. Total. Environ. 842, 156846 (2022).

    Article  Google Scholar 

  35. Meyer, R., Benetto, E., Mauny, F. & Lavandier, C. Characterization of damages from road traffic noise in life cycle impact assessment: a method based on emission and propagation models. J. Clean. Prod. 231, 121–131 (2019).

    Article  Google Scholar 

  36. Elliot, T. et al. An expanded framing of ecosystem services is needed for a sustainable urban future. Renew. Sustain. Energy Rev. 162, 112418 (2022).

    Article  Google Scholar 

  37. Rugani, B. et al. Towards integrating the ecosystem services cascade framework within the life cycle assessment (LCA) cause–effect methodology. Sci. Total Environ. 690, 1284–1298 (2019).

    Article  Google Scholar 

  38. Sala, S. in Partnerships for the Goals (eds. Leal Filho, W. et al.) 709–721 (Springer, 2019); https://doi.org/10.1007/978-3-319-71067-9_33-1.

  39. Sanyé‐Mengual, E. & Sala, S. Life cycle assessment support to environmental ambitions of EU policies and the Sustainable Development Goals. Integr. Environ. Assess. Manag. 18, 1221–1232 (2022).

    Article  Google Scholar 

  40. Vera, I. et al. Land use for bioenergy: synergies and trade-offs between Sustainable Development Goals. Renew. Sustain. Energy Rev. 161, 112409 (2022).

    Article  Google Scholar 

  41. Sala, S. & Castellani, V. The consumer footprint: monitoring Sustainable Development Goal 12 with process-based life cycle assessment. J. Clean. Prod. 240, 118050 (2019).

    Article  Google Scholar 

  42. Dorber, M., Arvesen, A., Gernaat, D. & Verones, F. Controlling biodiversity impacts of future global hydropower reservoirs by strategic site selection. Sci. Rep. 10, 21777 (2020).

    Article  Google Scholar 

  43. Frischknecht, R. Ökoinventare von Energiesystemen Vol. 3. https://www.psi.ch/sites/default/files/import/ta/PublicationTab/Frischknecht_1996.pdf (1996).

  44. Wernet, G. et al. The ecoinvent database version 3 (part I): overview and methodology. Int. J. Life Cycle Assess. 21, 1218–1230 (2016).

    Article  Google Scholar 

  45. Oyekale, J. & Emagbetere, E. A review of conventional and exergetic life cycle assessments of organic Rankine cycle plants exploiting various low-temperature energy resources. Heliyon 8, e09833 (2022).

    Article  Google Scholar 

  46. Jungbluth, N., Bauer, C., Dones, R. & Frischknecht, R. Life cycle assessment for emerging technologies: case studies for photovoltaic and wind power. Int. J. Life Cycle Assess. 10, 24–34 (2005).

    Article  Google Scholar 

  47. Gençer, E., Torkamani, S., Miller, I., Wu, T. W. & O’Sullivan, F. Sustainable energy system analysis modeling environment: analyzing life cycle emissions of the energy transition. Appl. Energy 277, 115550 (2020).

    Article  Google Scholar 

  48. Brockway, P. E., Owen, A., Brand-Correa, L. I. & Hardt, L. Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources. Nat. Energy 4, 612–621 (2019).

    Article  Google Scholar 

  49. Pehl, M. et al. Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling. Nat. Energy 2, 939–945 (2017).

    Article  Google Scholar 

  50. Almeida, R. M. et al. Reducing greenhouse gas emissions of Amazon hydropower with strategic dam planning. Nat. Commun. 10, 4281 (2019).

    Article  Google Scholar 

  51. Oberschelp, C., Pfister, S., Raptis, C. E. & Hellweg, S. Global emission hotspots of coal power generation. Nat. Sustain. 2, 113–121 (2019).

    Article  Google Scholar 

  52. Bosmans, J. H. C., Dammeier, L. C. & Huijbregts, M. A. J. Greenhouse gas footprints of utility-scale photovoltaic facilities at the global scale. Environ. Res. Lett. 16, 094056 (2021).

    Article  Google Scholar 

  53. Hertwich, E. G. et al. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. Proc. Natl Acad. Sci. USA. 112, 6277–6282 (2015).

    Article  Google Scholar 

  54. Alonso, E. et al. Evaluating rare earth element availability: a case with revolutionary demand from clean technologies. Environ. Sci. Technol. 46, 3406–3414 (2012).

    Article  Google Scholar 

  55. de Koning, A. et al. Metal supply constraints for a low-carbon economy? Resour. Conserv. Recycl. 129, 202–208 (2018).

    Article  Google Scholar 

  56. van der Meide, M., Harpprecht, C., Northey, S., Yang, Y. & Steubing, B. Effects of the energy transition on environmental impacts of cobalt supply: a prospective life cycle assessment study on future supply of cobalt. J. Ind. Ecol. 26, 1631–1645 (2022).

    Article  Google Scholar 

  57. Calvo, G. & Valero, A. Strategic mineral resources: availability and future estimations for the renewable energy sector. Environ. Dev. 41, 100640 (2022).

    Article  Google Scholar 

  58. Ali, S. H. et al. Mineral supply for sustainable development requires resource governance. Nature 543, 367–372 (2017).

    Article  Google Scholar 

  59. Gibon, T., Hertwich, E. G., Arvesen, A., Singh, B. & Verones, F. Health benefits, ecological threats of low-carbon electricity. Environ. Res. Lett. 12, 034023 (2017).

    Article  Google Scholar 

  60. Luderer, G. et al. Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies. Nat. Commun. 10, 5229 (2019).

    Article  Google Scholar 

  61. Harpprecht, C., van Oers, L., Northey, S. A., Yang, Y. & Steubing, B. Environmental impacts of key metals’ supply and low-carbon technologies are likely to decrease in the future. J. Ind. Ecol. 25, 1543–1559 (2021).

    Article  Google Scholar 

  62. Cherubini, F. et al. Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendations. Resour. Conserv. Recycl. 53, 434–447 (2009).

    Article  Google Scholar 

  63. Dorber, M., May, R. & Verones, F. Modeling net land occupation of hydropower reservoirs in Norway for use in life cycle assessment. Environ. Sci. Technol. 52, 2375–2384 (2018).

    Article  Google Scholar 

  64. Schomberg, A. C., Bringezu, S., Flörke, M. & Biederbick, H. Spatially explicit life cycle assessments reveal hotspots of environmental impacts from renewable electricity generation. Commun. Earth Environ. 3, 197 (2022).

    Article  Google Scholar 

  65. Jordaan, S. M., Combs, C. & Guenther, E. Life cycle assessment of electricity generation: a systematic review of spatiotemporal methods. Adv. Appl. Energy 3, 100058 (2021).

    Article  Google Scholar 

  66. May, R., Middel, H., Stokke, B. G., Jackson, C. & Verones, F. Global life-cycle impacts of onshore wind-power plants on bird richness. Environ. Sustain. Indic. 8, 100080 (2020).

    Article  Google Scholar 

  67. Bernardino, J. et al. Bird collisions with power lines: state of the art and priority areas for research. Biol. Conserv. 222, 1–13 (2018).

    Article  Google Scholar 

  68. Richardson, M. L. et al. A review of the impact of pipelines and power lines on biodiversity and strategies for mitigation. Biodivers. Conserv. 26, 1801–1815 (2017).

    Article  Google Scholar 

  69. Daioglou, V., Doelman, J. C., Wicke, B., Faaij, A. & van Vuuren, D. P. Integrated assessment of biomass supply and demand in climate change mitigation scenarios. Glob. Environ. Chang. 54, 88–101 (2019).

    Article  Google Scholar 

  70. Fulvio, F. D., Forsell, N., Korosuo, A., Obersteiner, M. & Hellweg, S. Spatially explicit LCA analysis of biodiversity losses due to different bioenergy policies in the European Union. Sci. Total Environ. 651, 1505–1516 (2019).

    Article  Google Scholar 

  71. Immerzeel, D. J., Verweij, P. A., van der Hilst, F. & Faaij, A. P. C. Biodiversity impacts of bioenergy crop production: a state-of-the-art review. Glob. Change Biol. Bioenergy 6, 183–209 (2014).

    Article  Google Scholar 

  72. Gibon, T. et al. A methodology for integrated, multiregional life cycle assessment scenarios under large-scale technological change. Environ. Sci. Technol. 49, 11218–11226 (2015).

    Article  Google Scholar 

  73. Mendoza Beltran, A. et al. When the background matters: using scenarios from integrated assessment models in prospective life cycle assessment. J. Ind. Ecol. 24, 64–79 (2020).

    Article  Google Scholar 

  74. Bergerson, J. A. et al. Life cycle assessment of emerging technologies: evaluation techniques at different stages of market and technical maturity. J. Ind. Ecol. 24, 11–25 (2020).

    Article  Google Scholar 

  75. van der Giesen, C., Cucurachi, S., Guinée, J., Kramer, G. J. & Tukker, A. A critical view on the current application of LCA for new technologies and recommendations for improved practice. J. Clean. Prod. 259, 120904 (2020).

    Article  Google Scholar 

  76. Hung, C. R., Ellingsen, L. A. W. & Majeau-Bettez, G. LiSET: a framework for early-stage life cycle screening of emerging technologies. J. Ind. Ecol. 24, 26–37 (2020).

    Article  Google Scholar 

  77. Wender, B. A. et al. Illustrating anticipatory life cycle assessment for emerging photovoltaic technologies. Environ. Sci. Technol. 48, 10531–10538 (2014).

    Article  Google Scholar 

  78. Blanco, H. et al. Life cycle assessment integration into energy system models: an application for Power-to-Methane in the EU. Appl. Energy 259, 114160 (2020).

    Article  Google Scholar 

  79. Sacchi, R. et al. Prospective Environmental Impact Assement (PREMISE): a streamlined approach to producing databases for prospective life cycle assessment using integrated assessment models. Renew. Sustain. Energy Rev. 160, 112311 (2022).

    Article  Google Scholar 

  80. Arvesen, A., Luderer, G., Pehl, M., Bodirsky, B. L. & Hertwich, E. G. Deriving life cycle assessment coefficients for application in integrated assessment modelling. Environ. Model. Softw. 99, 111–125 (2018).

    Article  Google Scholar 

  81. Kermeli, K. et al. Improving material projections in integrated assessment models: the use of a stock-based versus a flow-based approach for the iron and steel industry. Energy 239, 122434 (2022).

    Article  Google Scholar 

  82. Lueddeckens, S., Saling, P. & Guenther, E. Temporal issues in life cycle assessment — a systematic review. Int. J. Life Cycle Assess. 25, 1385–1401 (2020).

    Article  Google Scholar 

  83. Semere, T. & Slater, F. M. Ground flora, small mammal and bird species diversity in miscanthus (Miscanthus×giganteus) and reed canary-grass (Phalaris arundinacea) fields. Biomass Bioenergy 31, 20–29 (2007).

    Article  Google Scholar 

  84. Semere, T. & Slater, F. M. Invertebrate populations in miscanthus (Miscanthus×giganteus) and reed canary-grass (Phalaris arundinacea) fields. Biomass Bioenergy 31, 30–39 (2007).

    Article  Google Scholar 

  85. Gasparatos, A., Doll, C. N. H., Esteban, M., Ahmed, A. & Olang, T. A. Renewable energy and biodiversity: implications for transitioning to a green economy. Renew. Sustain. Energy Rev. 70, 161–184 (2017).

    Article  Google Scholar 

  86. Cabernard, L. & Pfister, S. Hotspots of mining-related biodiversity loss in global supply chains and the potential for reduction through renewable electricity. Environ. Sci. Technol. 56, 16357–16368 (2022).

    Article  Google Scholar 

  87. Kirchherr, J., Reike, D. & Hekkert, M. Conceptualizing the circular economy: an analysis of 114 definitions. Resour. Conserv. Recycl. 127, 221–232 (2017).

    Article  Google Scholar 

  88. Blum, N. U., Haupt, M. & Bening, C. R. Why ‘circular’ doesn’t always mean ‘sustainable’. Resour. Conserv. Recycl. 162, 105042 (2020).

    Article  Google Scholar 

  89. Harris, S., Martin, M. & Diener, D. Circularity for circularity’s sake? Scoping review of assessment methods for environmental performance in the circular economy. Sustain. Prod. Consum. 26, 172–186 (2021).

    Article  Google Scholar 

  90. Brunner, P. H. & Rechberger, H. Practical handbook of material flow analysis. Int. J. Life Cycle Assess. 9, 337–338 (2004).

    Article  Google Scholar 

  91. Graedel, T. E. & Allenby, B. R. Industrial Ecology (Prentice Hall, 2003).

  92. Wiprächtiger, M., Rapp, M., Hellweg, S., Shinde, R. & Haupt, M. Turning trash into treasure: an approach to the environmental assessment of waste prevention and its application to clothing and furniture in Switzerland. J. Ind. Ecol. 26, 1389–1405 (2022).

    Article  Google Scholar 

  93. Schaubroeck, T., Gibon, T., Igos, E. & Benetto, E. Sustainability assessment of circular economy over time: modelling of finite and variable loops & impact distribution among related products. Resour. Conserv. Recycl. 168, 105319 (2021).

    Article  Google Scholar 

  94. Potting, J., Hekkert, M., Worrell, E. & Hanemaaijer, A. Circular Economy: Measuring Innovation in the Product Chain — Policy Report. https://www.pbl.nl/sites/default/files/downloads/pbl-2016-circular-economy-measuring-innovation-in-product-chains-2544.pdf (2017).

  95. Bocken, N. M. P., de Pauw, I., Bakker, C. & van der Grinten, B. Product design and business model strategies for a circular economy. J. Ind. Prod. Eng. 33, 308–320 (2016).

    Google Scholar 

  96. Brändström, J. & Saidani, M. Comparison between circularity metrics and LCA: a case study on circular economy strategies. J. Clean. Prod. 371, 133537 (2022).

    Article  Google Scholar 

  97. Haupt, M. & Hellweg, S. Measuring the environmental sustainability of a circular economy. Environ. Sustain. Indic. 1–2, 100005 (2019).

    Article  Google Scholar 

  98. Nessi, S., Rigamonti, L. & Grosso, M. Discussion on methods to include prevention activities in waste management LCA. Int. J. Life Cycle Assess. 18, 1358–1373 (2013).

    Article  Google Scholar 

  99. Lessard, J. M., Habert, G., Tagnit-Hamou, A. & Amor, B. Tracking the environmental consequences of circular economy over space and time: the case of close- and open-loop recovery of postconsumer glass. Environ. Sci. Technol. 55, 11521–11532 (2021).

    Article  Google Scholar 

  100. Böckin, D., Willskytt, S., André, H., Tillman, A. M. & Ljunggren Söderman, M. How product characteristics can guide measures for resource efficiency — A synthesis of assessment studies. Resour. Conserv. Recycl. 154, 104582 (2020).

    Article  Google Scholar 

  101. van Stijn, A., Malabi Eberhardt, L. C., Wouterszoon Jansen, B. & Meijer, A. A circular economy life cycle assessment (CE-LCA) model for building components. Resour. Conserv. Recycl. 174, 105683 (2021).

    Article  Google Scholar 

  102. Bjørnbet, M. M. & Vildåsen, S. S. Life cycle assessment to ensure sustainability of circular business models in manufacturing. Sustain. 13, 11014 (2021).

    Article  Google Scholar 

  103. Froemelt, A., Buffat, R. & Hellweg, S. Machine learning based modeling of households: a regionalized bottom‐up approach to investigate consumption‐induced environmental impacts. J. Ind. Ecol. 24, 639–652 (2020).

    Article  Google Scholar 

  104. Zink, T. & Geyer, R. Circular economy rebound. J. Ind. Ecol. 21, 593–602 (2017).

    Article  Google Scholar 

  105. Proske, M. How to address obsolescence in LCA studies — perspectives on product use-time for a smartphone case study. J. Clean. Prod. 376, 134283 (2022).

    Article  Google Scholar 

  106. Modaresi, R., Pauliuk, S., Løvik, A. N. & Müller, D. B. Global carbon benefits of material substitution in passenger cars until 2050 and the impact on the steel and aluminum industries. Environ. Sci. Technol. 48, 10776–10784 (2014).

    Article  Google Scholar 

  107. Laurent, A. et al. Review of LCA studies of solid waste management systems — Part I: Lessons learned and perspectives. Waste Manag. 34, 573–588 (2014).

    Article  Google Scholar 

  108. Diener, D. L. & Tillman, A.-M. Component end-of-life management: exploring opportunities and related benefits of remanufacturing and functional recycling. Resour. Conserv. Recycl. 102, 80–93 (2015).

    Article  Google Scholar 

  109. Tanguay, X., Essoua Essoua, G. G. & Amor, B. Attributional and consequential life cycle assessments in a circular economy with integration of a quality indicator: a case study of cascading wood products. J. Ind. Ecol. 25, 1462–1473 (2021).

    Article  Google Scholar 

  110. Klotz, M., Haupt, M. & Hellweg, S. Limited utilization options for secondary plastics may restrict their circularity. Waste Manag. 141, 251–270 (2022).

    Article  Google Scholar 

  111. Pivnenko, K., Eriksson, E. & Astrup, T. F. Waste paper for recycling: overview and identification of potentially critical substances. Waste Manag. 45, 134–142 (2015).

    Article  Google Scholar 

  112. Pivnenko, K., Laner, D. & Astrup, T. F. Material cycles and chemicals: dynamic material flow analysis of contaminants in paper recycling. Environ. Sci. Technol. 50, 12302–12311 (2016).

    Article  Google Scholar 

  113. Jolliet, O., Ernstoff, A. S., Csiszar, S. A. & Fantke, P. Defining product intake fraction to quantify and compare exposure to consumer products. Environ. Sci. Technol. 49, 8924–8931 (2015).

    Article  Google Scholar 

  114. Caldeira, C. et al. Safe and Sustainable by Design Chemicals and Materials: Framework for the Definition of Criteria and Evaluation Procedure for Chemicals and Materials. https://publications.jrc.ec.europa.eu/repository/handle/JRC128591 (Publications Office of the European Union, 2022).

  115. Wang, Z. & Hellweg, S. First steps toward sustainable circular uses of chemicals: advancing the assessment and management paradigm. ACS Sustain. Chem. Eng. 9, 6939–6951 (2021).

    Article  Google Scholar 

  116. Guinée, J. B., Heijungs, R., Vijver, M. G., Peijnenburg, W. J. G. M. & Villalba Mendez, G. The meaning of life … cycles: lessons from and for safe by design studies. Green Chem. 24, 7787–7800 (2022).

    Article  Google Scholar 

  117. Fantke, P., Huang, L., Overcash, M., Griffing, E. & Jolliet, O. Life cycle based alternatives assessment (LCAA) for chemical substitution. Green Chem. 22, 6008–6024 (2020).

    Article  Google Scholar 

  118. Stegmann, P., Daioglou, V., Londo, M. & Junginger, M. The plastics integrated assessment model (PLAIA): assessing emission mitigation pathways and circular economy strategies for the plastics sector. MethodsX 9, 101666 (2022).

    Article  Google Scholar 

  119. Zheng, J. & Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Chang. 9, 374–378 (2019).

    Article  Google Scholar 

  120. Bachmann, M. et al. Towards circular plastics within planetary boundaries. Nat. Sustain. https://doi.org/10.1038/s41893-022-01054-9 (2023).

    Article  Google Scholar 

  121. Stegmann, P., Daioglou, V., Londo, M., van Vuuren, D. P. & Junginger, M. Plastic futures and their CO2 emissions. Nature 612, 272–276 (2022).

    Article  Google Scholar 

  122. Beretta, C., Stucki, M. & Hellweg, S. Environmental impacts and hotspots of food losses: value chain analysis of Swiss food consumption. Environ. Sci. Technol. 51, 11165–11173 (2017).

    Article  Google Scholar 

  123. Höglmeier, K., Steubing, B., Weber-Blaschke, G. & Richter, K. LCA-based optimization of wood utilization under special consideration of a cascading use of wood. J. Environ. Manage. 152, 158–170 (2015).

    Article  Google Scholar 

  124. Suter, F., Steubing, B. & Hellweg, S. Life cycle impacts and benefits of wood along the value chain: the case of Switzerland. J. Ind. Ecol. 21, 874–886 (2017).

    Article  Google Scholar 

  125. Wiprächtiger, M. et al. Combining industrial ecology tools to assess potential greenhouse gas reductions of a circular economy: method development and application to Switzerland. J. Ind. Ecol. 27, 254–271 (2023).

    Article  Google Scholar 

  126. Ofstad, S., Westly, L. & Bratelli, T. Symposium: Sustainable Consumption (Ministry of the Environment Norway, 1994).

  127. Max-Neef, M. A., Elizalde, A. & Hopenhayn, M. Human Scale Development: Conception, Application and Further Reflections (Apex, 1991).

  128. Vita, G., Hertwich, E. G., Stadler, K. & Wood, R. Connecting global emissions to fundamental human needs and their satisfaction. Environ. Res. Lett. 14, 014002 (2019).

    Article  Google Scholar 

  129. Hoekstra, A. Y. & Wiedmann, T. O. Humanity’s unsustainable environmental footprint. Science 344, 1114–1117 (2014).

    Article  Google Scholar 

  130. O’Neill, D. W., Fanning, A. L., Lamb, W. F. & Steinberger, J. K. A good life for all within planetary boundaries. Nat. Sustain. 1, 88–95 (2018).

    Article  Google Scholar 

  131. Wiedmann, T., Lenzen, M., Keyßer, L. T. & Steinberger, J. K. Scientists’ warning on affluence. Nat. Commun. 11, 3107 (2020).

    Article  Google Scholar 

  132. Otto, I. M., Kim, K. M., Dubrovsky, N. & Lucht, W. Shift the focus from the super-poor to the super-rich. Nat. Clim. Chang. 9, 82–84 (2019).

    Article  Google Scholar 

  133. Bruckner, B., Hubacek, K., Shan, Y., Zhong, H. & Feng, K. Impacts of poverty alleviation on national and global carbon emissions. Nat. Sustain. 5, 311–320 (2022).

    Article  Google Scholar 

  134. Schaubroeck, T. & Rugani, B. A revision of what life cycle sustainability assessment should entail: towards modeling the net impact on human well-being. J. Ind. Ecol. 21, 1464–1477 (2017).

    Article  Google Scholar 

  135. Hertwich, E. G. Life cycle approaches to sustainable consumption: a critical review. Environ. Sci. Technol. 39, 4673–4684 (2005).

    Article  Google Scholar 

  136. Schanes, K., Giljum, S. & Hertwich, E. Low carbon lifestyles: a framework to structure consumption strategies and options to reduce carbon footprints. J. Clean. Prod. 139, 1033–1043 (2016).

    Article  Google Scholar 

  137. Tukker, A. & Jansen, B. Environmental impacts of products: a detailed review of studies. J. Ind. Ecol. 10, 159–182 (2006).

    Article  Google Scholar 

  138. Ivanova, D. et al. Environmental impact assessment of household consumption. J. Ind. Ecol. 20, 526–536 (2016).

    Article  Google Scholar 

  139. Tukker, A., Cohen, M. J., Hubacek, K. & Mont, O. The impacts of household consumption and options for change. J. Ind. Ecol. 14, 13–30 (2010).

    Article  Google Scholar 

  140. Iraldo, F., Griesshammer, R. & Kahlenborn, W. The future of ecolabels. Int. J. Life Cycle Assess. 25, 833–839 (2020).

    Article  Google Scholar 

  141. Sala, S., Amadei, A. M., Beylot, A. & Ardente, F. The evolution of life cycle assessment in European policies over three decades. Int. J. Life Cycle Assess. 26, 2295–2314 (2021).

    Article  Google Scholar 

  142. Polizzi di Sorrentino, E., Woelbert, E. & Sala, S. Consumers and their behavior: state of the art in behavioral science supporting use phase modeling in LCA and ecodesign. Int. J. Life Cycle Assess. 21, 237–251 (2016).

    Article  Google Scholar 

  143. Pohl, J., Frick, V., Finkbeiner, M. & Santarius, T. Assessing the environmental performance of ICT-based services: does user behaviour make all the difference? Sustain. Prod. Consum. 31, 828–838 (2022).

    Article  Google Scholar 

  144. Shahmohammadi, S., Steinmann, Z., King, H., Hendrickx, H. & Huijbregts, M. A. J. The influence of consumer behavior on energy, greenhouse gas, and water footprints of showering. J. Ind. Ecol. 23, 1186–1195 (2019).

    Article  Google Scholar 

  145. Walzberg, J., Dandres, T., Merveille, N., Cheriet, M. & Samson, R. Assessing behavioural change with agent-based life cycle assessment: application to smart homes. Renew. Sustain. Energy Rev. 111, 365–376 (2019).

    Article  Google Scholar 

  146. Querini, F. & Benetto, E. Combining agent-based modeling and life cycle assessment for the evaluation of mobility policies. Environ. Sci. Technol. 51, 1939–1939 (2017).

    Article  Google Scholar 

  147. Girod, B., van Vuuren, D. P. & Hertwich, E. G. Climate policy through changing consumption choices: options and obstacles for reducing greenhouse gas emissions. Glob. Environ. Chang. 25, 5–15 (2014).

    Article  Google Scholar 

  148. Ivanova, D. et al. Quantifying the potential for climate change mitigation of consumption options. Environ. Res. Lett. 15, 093001 (2020).

    Article  Google Scholar 

  149. Song, L., Cai, H. & Zhu, T. Large-scale microanalysis of U.S. household food carbon footprints and reduction potentials. Environ. Sci. Technol. 55, 15323–15332 (2021).

    Article  Google Scholar 

  150. Walker, C., Gibney, E. R. & Hellweg, S. Comparison of environmental impact and nutritional quality among a european sample population — findings from the Food4Me study. Sci. Rep. 8, 2330 (2018).

    Article  Google Scholar 

  151. Walker, C., Pfister, S. & Hellweg, S. Methodology and optimization tool for a personalized low environmental impact and healthful diet specific to country and season. J. Ind. Ecol. 25, 1147–1160 (2021).

    Article  Google Scholar 

  152. Druckman, A., Chitnis, M., Sorrell, S. & Jackson, T. Missing carbon reductions? Exploring rebound and backfire effects in UK households. Energy Policy 39, 3572–3581 (2011).

    Article  Google Scholar 

  153. Girod, B., de Haan, P. & Scholz, R. W. Consumption-as-usual instead of ceteris paribus assumption for demand. Int. J. Life Cycle Assess. 16, 3–11 (2011).

    Article  Google Scholar 

  154. Chitnis, M., Sorrell, S., Druckman, A., Firth, S. K. & Jackson, T. Who rebounds most? Estimating direct and indirect rebound effects for different UK socioeconomic groups. Ecol. Econ. 106, 12–32 (2014).

    Article  Google Scholar 

  155. Sorrell, S., Gatersleben, B. & Druckman, A. The limits of energy sufficiency: a review of the evidence for rebound effects and negative spillovers from behavioural change. Energy Res. Soc. Sci. 64, 101439 (2020).

    Article  Google Scholar 

  156. Baiocchi, G., Feng, K., Hubacek, K. & Walters, C. Carbon footprint of American lifestyles: a geodemographic segmentation approach. Environ. Res. Lett. 17, 064018 (2022).

    Article  Google Scholar 

  157. Walker, C., Gibney, E. R., Mathers, J. C. & Hellweg, S. Comparing environmental and personal health impacts of individual food choices. Sci. Total Environ. 685, 609–620 (2019).

    Article  Google Scholar 

  158. Stylianou, K. S., Fulgoni, V. L. & Jolliet, O. Small targeted dietary changes can yield substantial gains for human health and the environment. Nat. Food 2, 616–627 (2021).

    Article  Google Scholar 

  159. Vita, G. et al. Happier with less? Members of European environmental grassroots initiatives reconcile lower carbon footprints with higher life satisfaction and income increases. Energy Res. Soc. Sci. 60, 101329 (2020).

    Article  Google Scholar 

  160. Fanning, A. L., O’Neill, D. W., Hickel, J. & Roux, N. The social shortfall and ecological overshoot of nations. Nat. Sustain. 5, 26–36 (2021).

    Article  Google Scholar 

  161. Popescu, I. S., Hitaj, C. & Benetto, E. Measuring the sustainability of investment funds: a critical review of methods and frameworks in sustainable finance. J. Clean. Prod. 314, 128016 (2021).

    Article  Google Scholar 

  162. Hertwich, E. G. & Wood, R. The growing importance of scope 3 greenhouse gas emissions from industry. Environ. Res. Lett. 13, 104013 (2018).

    Article  Google Scholar 

  163. Zhang, Z. et al. Embodied carbon emissions in the supply chains of multinational enterprises. Nat. Clim. Chang. 10, 1096–1101 (2020).

    Article  Google Scholar 

  164. Popescu, I.-S., Gibon, T., Hitaj, C., Rubin, M. & Benetto, E. Are SRI funds financing carbon emissions? An input-output life cycle assessment of investment funds. SSRN Electron. J. https://doi.org/10.2139/ssrn.4047292 (2022).

    Article  Google Scholar 

  165. Gibon, T., Popescu, I. Ş., Hitaj, C., Petucco, C. & Benetto, E. Shades of green: life cycle assessment of renewable energy projects financed through green bonds. Environ. Res. Lett. 15, 104045 (2020).

    Article  Google Scholar 

  166. Koellner, T., Suh, S., Weber, O., Moser, C. & Scholz, R. W. Environmental impacts of conventional and sustainable investment funds compared using input–output life-cycle assessment. J. Ind. Ecol. 11, 41–60 (2007).

    Article  Google Scholar 

  167. Ritchie, J. & Dowlatabadi, H. Understanding the shadow impacts of investment and divestment decisions: adapting economic input–output models to calculate biophysical factors of financial returns. Ecol. Econ. 106, 132–140 (2014).

    Article  Google Scholar 

  168. Hickel, J. et al. Degrowth can work — here’s how science can help. Nature 612, 400–403 (2022).

    Article  Google Scholar 

  169. Marquardt, S. G. et al. Identifying regional drivers of future land-based biodiversity footprints. Glob. Environ. Chang. 69, 102304 (2021).

    Article  Google Scholar 

  170. Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).

    Article  Google Scholar 

  171. Millward-Hopkins, J., Steinberger, J. K., Rao, N. D. & Oswald, Y. Providing decent living with minimum energy: a global scenario. Glob. Environ. Chang. 65, 102168 (2020).

    Article  Google Scholar 

  172. Pauliuk, S. Critical appraisal of the circular economy standard BS 8001:2017 and a dashboard of quantitative system indicators for its implementation in organizations. Resour. Conserv. Recycl. 129, 81–92 (2018).

    Article  Google Scholar 

  173. Klotz, M., Haupt, M. & Hellweg, S. Potentials and limits of mechanical plastic recycling. J. Ind. Ecol. https://doi.org/10.1111/jiec.13393 (2023).

    Article  Google Scholar 

  174. Steinmann, Z. J. N., Schipper, A. M., Hauck, M. & Huijbregts, M. A. J. How many environmental impact indicators are needed in the evaluation of product life cycles? Environ. Sci. Technol. 50, 3913–3919 (2016).

    Article  Google Scholar 

  175. Cabernard, L. & Pfister, S. A highly resolved MRIO database for analyzing environmental footprints and green economy progress. Sci. Total Environ. 755, 142587 (2021).

    Article  Google Scholar 

  176. Lee, A. W. L. et al. Life cycle assessment of single-use surgical and embedded filtration layer (EFL) reusable face mask. Resour. Conserv. Recycl. 170, 105580 (2021).

    Article  Google Scholar 

  177. de Oliveira, C. T., Dantas, T. E. T. & Soares, S. R. Nano and micro level circular economy indicators: assisting decision-makers in circularity assessments. Sustain. Prod. Consum. 26, 455–468 (2021).

    Article  Google Scholar 

  178. Froemelt, A., Dürrenmatt, D. J. & Hellweg, S. Using data mining to assess environmental impacts of household consumption behaviors. Environ. Sci. Technol. 52, 8467–8478 (2018).

    Article  Google Scholar 

  179. Guinée, J. B. et al. Life cycle assessment: past, present, and future. Environ. Sci. Technol. 45, 90–96 (2011).

    Article  Google Scholar 

  180. Heijungs, R. & Suh, S. The Computational Structure of Life Cycle Assessment (Springer, 2002).

  181. Guinée, J. B., Cucurachi, S., Henriksson, P. J. G. & Heijungs, R. Digesting the alphabet soup of LCA. Int. J. Life Cycle Assess. 23, 1507–1511 (2018).

    Article  Google Scholar 

  182. Brander, M., Burritt, R. L. & Christ, K. L. Coupling attributional and consequential life cycle assessment: a matter of social responsibility. J. Clean. Prod. 215, 514–521 (2019).

    Article  Google Scholar 

  183. Weidema, B. P., Pizzol, M., Schmidt, J. & Thoma, G. Attributional or consequential life cycle assessment: a matter of social responsibility. J. Clean. Prod. 174, 305–314 (2018).

    Article  Google Scholar 

  184. Sonnemann, G., Vigon, B., Valdivia, S. & Rack, M. Global Guidance Principles for Life Cycle Assessment Databases (UNEP/SETAC Life Cycle Initiative, 2011).

  185. Schaubroeck, T. et al. Attributional & consequential life cycle assessment: definitions, conceptual characteristics and modelling restrictions. Sustain 13, 7386 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

F.V. received funding from the European Union’s Horizon Europe research and innovation programme under grant agreement no. 101059379. R.W. received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 821124 and the Czech Science Foundation Grant no. 23-07984X. The authors thank B. Dold for her support in managing the references and S. Anderson for English proofreading.

Author information

Authors and Affiliations

Authors

Contributions

S.H. had the initial idea and framed the topic. All authors reviewed the literature and contributed to the discussion of content, writing and editing of the manuscript.

Corresponding author

Correspondence to Stefanie Hellweg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Stig Olsen, who co-reviewed with Valentina Pusateri, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

CIESIN Center for International Earth Science Information Network (2018): https://sedac.ciesin.columbia.edu/data/set/gpw-v4-admin-unit-center-points-population-estimates-rev11

Ellen MacArthur Foundation (2022): https://ellenmacarthurfoundation.org/topics/circular-economy-introduction/overview

European Commission (2022): https://knowledge4policy.ec.europa.eu/bioeconomy/bioeconomy-circular-economy_en

S&P Global (2019): https://www.spglobal.com/marketintelligence/en/documents/the-trucost-of-climate-investing.pdf

UNFCC Triple Planetary Crisis (2022): https://unfccc.int/blog/what-is-the-triple-planetary-crisis

WHO (2014): https://www.who.int/news/item/25-03-2014-7-million-premature-deaths-annually-linked-to-air-pollution

Glossary

Agent-based models

Computational models used for simulating (inter)actions of independent agents, for example to model consumer behaviour.

Background system

Represents technologies in the upstream or downstream chain of the technology or product system assessed.

Bioeconomy

Covers all sectors and systems that rely on biological resources, their functions and principles, and related products and services.

Circular bioeconomy

Aims at an increased use of biological resources, including organic waste, and the recycling of biological resources.

Circular economy

Targets resource efficiency by keeping materials in multiple loops, for example by reusing and recycling.

Drivers–pressure–state–impact–response framework

(DPSIR). Chain of causal links starting with drivers (human activities) through pressures (emissions) to states (physical, chemical and biological) and impacts on ecosystems and human health, to political responses.

Endpoints

Endpoint indicators are set at the end of an impact pathway. They have units that are comparable across impact categories within each area of protection, such as loss of global species richness for ecosystems.

Impact category

Class representing environmental issues of concern that are assessed in LCA.

Industrial ecology

The study of technological organisms, their use of resources, their potential environmental impacts, and the ways in which their interactions with the natural world could be restructured to enable sustainability.

Industrial symbiosis

Industrial symbiosis studies the exchange of waste materials and energy between industries to substitute conventional resources (materials, energy, water).

Integrated assessment models

(IAMs). Models (mostly long-term scenario models) that integrate models of the biophysical environment (in particular concerning climate impacts) with that of the economy and society to explore questions of policy.

Material flow analysis

(MFA). The analysis of material flows and stocks within a system. The term material includes specific substances, materials, and goods.

Midpoint indicators

These are set at intermediary steps along an impact pathway and are different for each impact category. They are only comparable within one impact category.

Multiregional input–output analysis

MRIO tables describe the monetary flows between economic sectors and regions, and they can be coupled with LCIA indicators to quantify environmental impacts of the global economy, supply chains and trade.

Planetary boundaries

Thresholds for biophysical processes considered crucial for the stability of Earth.

Process-based LCA

Process-based LCAs collect inventory data (material and energy inputs and outputs as well as emissions and resource consumptions) for each single process bottom-up (in contrast to MRIO).

Prospective LCA

LCA of a future system or scenario, whereby technology development (scaling and learning) and changes in the background production system are considered.

Rebound effect

Part of the success of a measure is offset by induced consumption (for example cost savings due to reduced consumption of products are spent on other goods and services with environmental impacts).

Risk assessment

Method to understand the magnitude of adverse health or environmental effect of a chemical.

Scope 3 emissions

All indirect emissions (except for indirect emissions from purchased energy, which are scope 2) that occur in the value chain of a company, including both upstream and downstream.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hellweg, S., Benetto, E., Huijbregts, M.A.J. et al. Life-cycle assessment to guide solutions for the triple planetary crisis. Nat Rev Earth Environ 4, 471–486 (2023). https://doi.org/10.1038/s43017-023-00449-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00449-2

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene