Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Irrigation in the Earth system

An Author Correction to this article was published on 18 October 2023

This article has been updated

Abstract

Irrigation accounts for ~70% of global freshwater withdrawals and ~90% of consumptive water use, driving myriad Earth system impacts. In this Review, we summarize how irrigation currently impacts key components of the Earth system. Estimates suggest that more than 3.6 million km2 of currently irrigated land, with hot spots in the intensively cultivated US High Plains, California Central Valley, Indo-Gangetic Basin and northern China. Process-based models estimate that ~2,700 ± 540 km3 irrigation water is withdrawn globally each year, broadly consistent with country-reported values despite these estimates embedding substantial uncertainties. Expansive irrigation has modified surface energy balance and biogeochemical cycling. A shift from sensible to latent heat fluxes, and resulting land–atmosphere feedbacks, generally reduce regional growing season surface temperatures by ~1–3 °C. Irrigation can ameliorate temperature extremes in some regions, but conversely exacerbates moist heat stress. Modelled precipitation responses are more varied, with some intensive cropping regions exhibiting suppressed local precipitation but enhanced precipitation downstream owing to atmospheric circulation interactions. Additionally, irrigation could enhance cropland carbon uptake; however, it can also contribute to elevated methane fluxes in rice systems and mobilize nitrogen loading to groundwater. Cross-disciplinary, integrative research efforts can help advance understanding of these irrigation–Earth system interactions, and identify and reduce uncertainties, biases and limitations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global irrigated areas.
Fig. 2: Global irrigation water withdrawals and consumption estimates.
Fig. 3: Irrigation–Earth system interactions.
Fig. 4: Irrigation–climate impacts over North America.
Fig. 5: Projected changes in irrigated area.
Fig. 6: Potential for sustainable irrigation.

Similar content being viewed by others

Change history

References

  1. Qin, Y. et al. Flexibility and intensity of global water use. Nat. Sustain 2, 515–523 (2019).

    Article  Google Scholar 

  2. Brauman, K. A., Richter, B. D., Postel, S., Malsy, M. & Flörke, M. Water depletion: an improved metric for incorporating seasonal and dry-year water scarcity into water risk assessments. Elementa 4, 1–12 (2016).

    Google Scholar 

  3. Campbell, B. M. et al. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecol. Soc. 22, art8 (2017).

    Article  Google Scholar 

  4. Siebert, S. & Döll, P. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J. Hydrol. 384, 198–217 (2010).

    Article  Google Scholar 

  5. WWAP. Leaving No One Behind: The United Nations World Water Development Report 2019 (Unesco, 2019); https://unesdoc.unesco.org/ark:/48223/pf0000367306.

  6. Jägermeyr, J. Agriculture’s historic twin-challenge toward sustainable water use and food supply for all. Front. Sustain. Food. Syst. 4, 35 (2020).

    Article  Google Scholar 

  7. Erb, K. H. et al. Land management: data availability and process understanding for global change studies. Glob. Chang. Biol. 23, 512–533 (2017).

    Article  Google Scholar 

  8. Pongratz, J. et al. Models meet data: challenges and opportunities in implementing land management in Earth system models. Glob. Chang. Biol. https://doi.org/10.1111/gcb.13988 (2017).

    Article  Google Scholar 

  9. Thomas, B. F. & Famiglietti, J. S. Identifying climate-induced groundwater depletion in GRACE observations. Sci. Rep. 9, 4124 (2019).

    Article  Google Scholar 

  10. Kniffin, M., Bradbury, K. R., Fienen, M. & Genskow, K. Groundwater model simulations of stakeholder-identified scenarios in a high-conflict irrigated area. Groundwater 58, 973–986 (2020).

    Article  Google Scholar 

  11. Pokhrel, Y. N., Hanasaki, N., Wada, Y. & Kim, H. Recent progresses in incorporating human land–water management into global land surface models toward their integration into Earth system models. WIREs Water 3, 548–574 (2016).

    Article  Google Scholar 

  12. Vanderkelen, I. et al. Simulating the impact of global reservoir expansion on the present-day climate. J. Geophys. Res. Atmos. 126, 1–18 (2021).

    Article  Google Scholar 

  13. Rappin, E. D., Mahmood, R., Nair, U. S. & Pielke, R. A. Land–atmosphere interactions during GRAINEX: planetary boundary layer evolution in the presence of irrigation. J. Hydrometeorol. 23, 1401–1417 (2022).

    Article  Google Scholar 

  14. Cook, B. I., Shukla, S. P., Puma, M. J. & Nazarenko, L. S. Irrigation as an historical climate forcing. Clim. Dyn. 44, 1715–1730 (2015).

    Article  Google Scholar 

  15. Pei, L. et al. Effects of irrigation on summer precipitation over the United States. J. Clim. 29, 3541–3558 (2016).

    Article  Google Scholar 

  16. Guo, Q., Zhou, X., Satoh, Y. & Oki, T. Irrigated cropland expansion exacerbates the urban moist heat stress in northern India. Environ. Res. Lett. 17, 054013 (2022).

    Article  Google Scholar 

  17. Yang, S. et al. How does irrigation alter the water, carbon, and nitrogen budgets in a large endorheic river basin? J. Hydrol. 613, 128317 (2022).

    Article  Google Scholar 

  18. Wada, Y. et al. Modeling global water use for the 21st century: the water futures and solutions (WFaS) initiative and its approaches. Geosci. Model Dev. 9, 175–222 (2016).

    Article  Google Scholar 

  19. Rosa, L., Chiarelli, D. D., Rulli, M. C., Dell’Angelo, J. & D’Odorico, P. Global agricultural economic water scarcity. Sci. Adv. 6, 1–11 (2020).

    Article  Google Scholar 

  20. Hanasaki, N. et al. A global water scarcity assessment under shared socio-economic pathways — Part 1: Water use. Hydrol. Earth Syst. Sci. 17, 2393–2413 (2013).

    Article  Google Scholar 

  21. Hanasaki, N. et al. A global water scarcity assessment under shared socio-economic pathways — Part 2: Water availability and scarcity. Hydrol. Earth Syst. Sci. 17, 2375–2391 (2013).

    Article  Google Scholar 

  22. Mehran, A. et al. Compounding impacts of human-induced water stress and climate change on water availability. Sci. Rep. 7, 1–9 (2017).

    Article  Google Scholar 

  23. Siebert, S. et al. A global data set of the extent of irrigated land from 1900 to 2005. Hydrol. Earth Syst. Sci. 19, 1521–1545 (2015).

    Article  Google Scholar 

  24. Dieter, C. A. et al. Water Availability and Use Science Program Estimated Use of Water in the United States in 2015 (Gelogical Survey, 2018).

  25. Sun, S. et al. Domestic groundwater depletion supports China’s full supply chains. Water Resour. Res. 58, 1–16 (2022).

    Article  Google Scholar 

  26. Chen, Y. et al. Detecting irrigation extent, frequency, and timing in a heterogeneous arid agricultural region using MODIS time series, Landsat imagery, and ancillary data. Remote Sens. Environ. 204, 197–211 (2018).

    Article  Google Scholar 

  27. Dari, J. et al. Exploiting high-resolution remote sensing soil moisture to estimate irrigation water amounts over a Mediterranean region. Remote Sens. 12, 1–22 (2020).

    Article  Google Scholar 

  28. Dari, J. et al. Double-scale analysis on the detectability of irrigation signals from remote sensing soil moisture over an area with complex topography in central Italy. Adv. Water Resour. 161, 104130 (2022).

    Article  Google Scholar 

  29. Brombacher, J., Silva, I. R., de, O., Degen, J. & Pelgrum, H. A novel evapotranspiration based irrigation quantification method using the hydrological similar pixels algorithm. Agric. Water Manag. 267, 107602 (2022).

    Article  Google Scholar 

  30. Zappa, L. et al. Detection and quantification of irrigation water amounts at 500 m using sentinel-1 surface soil moisture. Remote Sens. 13, 1727 (2021).

    Article  Google Scholar 

  31. Massari, C. et al. A review of irrigation information retrievals from space and their utility for users. Remote Sens. 13, 4112 (2021).

    Article  Google Scholar 

  32. Jalilvand, E., Abolafia-Rosenzweig, R., Tajrishy, M. & Das, N. Evaluation of SMAP/Sentinel 1 high-resolution soil moisture data to detect irrigation over agricultural domain. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14, 10733–10747 (2021).

    Article  Google Scholar 

  33. Deines, J. M. et al. Mapping three decades of annual irrigation across the US High Plains Aquifer using Landsat and Google Earth Engine. Remote Sens. Environ. 233, 1–18 (2019).

    Article  Google Scholar 

  34. Ambika, A. K., Wardlow, B. & Mishra, V. Remotely sensed high resolution irrigated area mapping in India for 2000 to 2015. Sci. Data 3, 1–14 (2016).

    Article  Google Scholar 

  35. Zappa, L. et al. How accurately can we retrieve irrigation timing and water amounts from (satellite) soil moisture? Int. J. Appl. Earth Obs. Geoinf. 113, 102979 (2022).

    Google Scholar 

  36. Le Page, M. et al. Potential for the detection of irrigation events on maize plots using Sentinel-1 soil moisture products. Remote Sens. 12, 1621 (2020).

    Article  Google Scholar 

  37. Coleman, R. W., Stavros, N., Hulley, G. & Parazoo, N. Comparison of thermal infrared-derived maps of irrigated and non-irrigated vegetation in urban and non-urban areas of southern California. Remote Sens. 12, 1–19 (2020).

    Article  Google Scholar 

  38. Lawston, P. M., Santanello, J. A., Franz, T. E. & Rodell, M. Assessment of irrigation physics in a land surface modeling framework using non-traditional and human-practice datasets. Hydrol. Earth Syst. Sci. 21, 2953–2966 (2017).

    Article  Google Scholar 

  39. Brocca, L. et al. How much water is used for irrigation? A new approach exploiting coarse resolution satellite soil moisture products. Int. J. Appl. Earth Obs. Geoinf. 73, 752–766 (2018).

    Google Scholar 

  40. Modanesi, S. et al. Challenges and benefits of quantifying irrigation through the assimilation of Sentinel-1 backscatter observations into Noah-MP. Hydrol. Earth Syst. Sci. 26, 4685–4706 (2022).

    Article  Google Scholar 

  41. Girotto, M. et al. Benefits and pitfalls of GRACE data assimilation: a case study of terrestrial water storage depletion in India. Geophys. Res. Lett. 44, 4107–4115 (2017).

    Article  Google Scholar 

  42. Meier, J., Zabel, F. & Mauser, W. A global approach to estimate irrigated areas — a comparison between different data and statistics. Hydrol. Earth Syst. Sci. 22, 1119–1133 (2018).

    Article  Google Scholar 

  43. Jha, R., Mondal, A., Devanand, A., Roxy, M. K. & Ghosh, S. Limited influence of irrigation on pre-monsoon heat stress in the Indo-Gangetic Plain. Nat. Commun. 13, 1–10 (2022).

    Article  Google Scholar 

  44. McCarthy, B. et al. Trends in water use, energy consumption, and carbon emissions from irrigation: role of shifting technologies and energy sources. Environ. Sci. Technol. 54, 15329–15337 (2020).

    Article  Google Scholar 

  45. McDermid, S. S., Mearns, L. O. & Ruane, A. C. Representing agriculture in Earth system models: approaches and priorities for development. J. Adv. Model Earth Syst. 9, 2230–2265 (2017).

    Article  Google Scholar 

  46. Yao, Y. et al. Implementation and evaluation of irrigation techniques in the community land model. J. Adv. Model Earth Syst. https://doi.org/10.1029/2022MS003074 (2022).

    Article  Google Scholar 

  47. Jägermeyr, J. et al. Water savings potentials of irrigation systems: global simulation of processes and linkages. Hydrol. Earth Syst. Sci. 19, 3073–3091 (2015).

    Article  Google Scholar 

  48. Alexandratos, N. & Bruinsma, J. World agriculture towards 2030/2050: the 2012 revision. Food and Agricultural Organization of the United Nations www.fao.org/economic/esa (FAO, 2012).

  49. Felfelani, F., Pokhrel, Y., Guan, K. & Lawrence, D. M. Utilizing SMAP soil moisture data to constrain irrigation in the community land model. Geophys. Res. Lett. 45, 12,892–12,902 (2018).

    Article  Google Scholar 

  50. Zhou, T. et al. Global irrigation characteristics and effects simulated by fully coupled land surface, river, and water management models in E3SM. J. Adv. Model Earth Syst. 12, 1–18 (2020).

    Article  Google Scholar 

  51. Vahmani, P. & Hogue, T. S. Incorporating an urban irrigation module into the Noah land surface model coupled with an urban canopy model. J. Hydrometeorol. 15, 1440–1456 (2014).

    Article  Google Scholar 

  52. Müller Schmied, H. et al. The global water resources and use model WaterGAP v2.2d: model description and evaluation. Geosci. Model. Dev. 14, 1037–1079 (2021).

    Article  Google Scholar 

  53. Leng, G., Leung, L. R. & Huang, M. Significant impacts of irrigation water sources and methods on modeling irrigation effects in the ACME land model. J. Adv. Model Earth Syst. 9, 1665–1683 (2017).

    Article  Google Scholar 

  54. Jägermeyr, J., Pastor, A., Biemans, H. & Gerten, D. Reconciling irrigated food production with environmental flows for sustainable development goals implementation. Nat. Commun. 8, 1–9 (2017).

    Article  Google Scholar 

  55. Pokhrel, Y. N. et al. Incorporation of groundwater pumping in a global land surface model with the representation of human impacts. Water Resour. Res. 51, 78–96 (2015).

    Article  Google Scholar 

  56. Gleeson, T. et al. The water planetary boundary: interrogation and revision. One Earth 2, 223–234 (2020).

    Article  Google Scholar 

  57. Grogan, D. S., Wisser, D., Prusevich, A., Lammers, R. B. & Frolking, S. The use and re-use of unsustainable groundwater for irrigation: a global budget. Environ.Res. Lett. 12, 1–11 (2017).

    Article  Google Scholar 

  58. de Graaf, I. E. M., Gleeson, T., (Rens) van Beek, L. P. H., Sutanudjaja, E. H. & Bierkens, M. F. P. Environmental flow limits to global groundwater pumping. Nature 574, 90–94 (2019).

    Article  Google Scholar 

  59. Peng, B. et al. Improving maize growth processes in the community land model: implementation and evaluation. Agric. For. Meteorol. 250–251, 64–89 (2018).

    Article  Google Scholar 

  60. Nazemi, A. & Wheater, H. S. On inclusion of water resource management in Earth system models — part 2: representation of water supply and allocation and opportunities for improved modeling. Hydrol. Earth Syst. Sci. 19, 63–90 (2015).

    Article  Google Scholar 

  61. Nazemi, A. & Wheater, H. S. On inclusion of water resource management in Earth system models — part 1: problem definition and representation of water demand. Hydrol. Earth Syst. Sci. 19, 33–61 (2015).

    Article  Google Scholar 

  62. Toreti, A. et al. Narrowing uncertainties in the effects of elevated CO2 on crops. Nat. Food 1, 775–782 (2020).

    Article  Google Scholar 

  63. Elliott, J. et al. The Global Gridded Crop Model Intercomparison: data and modeling protocols for phase 1 (v1.0). Geosci. Model Dev. 8, 261–277 (2015).

    Article  Google Scholar 

  64. Thiery, W. et al. Present-day irrigation mitigates heat extremes. J. Geophys. Res. Atmos. 122, 1403–1422 (2017).

    Article  Google Scholar 

  65. van Oldenborgh, G. J. et al. Pathways and pitfalls in extreme event attribution. Clim. Change 166, 1–27 (2021).

    Google Scholar 

  66. Wang, F., Polcher, J., Peylin, P. & Bastrikov, V. Assimilation of river discharge in a land surface model to improve estimates of the continental water cycles. Hydrol. Earth Syst. Sci. 22, 3863–3882 (2018).

    Article  Google Scholar 

  67. Druel, A., Munier, S., Mucia, A., Albergel, C. & Calvet, J.C. Implementation of a new crop phenology and irrigation scheme in the ISBA land surface model using SURFEX_v8. 1. Geosci. Model Dev. 15, 8453–8471 (2022).

    Article  Google Scholar 

  68. Seneviratne, S. I. et al. Investigating soil moisture-climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).

    Article  Google Scholar 

  69. Chen, X. & Jeong, S. J. Irrigation enhances local warming with greater nocturnal warming effects than daytime cooling effects. Environ. Res. Lett. 13, 24005 (2018).

    Article  Google Scholar 

  70. Li, H., Lo, M.-H., Ryu, D., Peel, M. & Zhang, Y. Possible increase of air temperature by irrigation. Geophys. Res. Lett. 49, e2022GL100427 (2022).

    Article  Google Scholar 

  71. Koster, R. D. et al. Regions of strong coupling between soil moisture and precipitation. Science 305, 1138–1140 (2004).

    Article  Google Scholar 

  72. Yang, Z. et al. Impact of irrigation over the California Central Valley on regional climate. J. Hydrometeorol. 18, 1341–1357 (2017).

    Article  Google Scholar 

  73. van der Ent, R. J. & Savenije, H. H. G. Length and time scales of atmospheric moisture recycling. Atmos. Chem. Phys. 11, 1853–1863 (2011).

    Article  Google Scholar 

  74. Chou, C., Ryu, D., Lo, M.-H., Wey, H.-W. & Malano, H. M. Irrigation-induced land–atmosphere feedbacks and their impacts on Indian summer monsoon. J Clim 31, 8785–8801 (2018).

    Article  Google Scholar 

  75. Singh, D. et al. Distinct influences of land cover and land management on seasonal climate. J. Geophys. Res. Atmos. 123, 12,017–12,039 (2018).

    Article  Google Scholar 

  76. de Vrese, P., Hagemann, S. & Claussen, M. Asian irrigation, african rain: remote impacts of irrigation. Geophys. Res. Lett. 43, 1–9 (2016).

    Article  Google Scholar 

  77. Wada, Y. et al. Fate of water pumped from underground and contributions to sea-level rise. Nat. Clim. Change 6, 777–780 (2016).

    Article  Google Scholar 

  78. Wang, X. et al. Global irrigation contribution to wheat and maize yield. Nat. Commun. 12, 1–8 (2021).

    Google Scholar 

  79. Mueller, N. D. et al. Cooling of US Midwest summer temperature extremes from cropland intensification. Nat. Clim. Chang. 6, 317–322 (2016).

    Article  Google Scholar 

  80. Yang, Y., Tilman, D., Lehman, C. & Trost, J. J. Sustainable intensification of high-diversity biomass production for optimal biofuel benefits. Nat. Sustain. 1, 686–692 (2018).

    Article  Google Scholar 

  81. Yuan, S. et al. Sustainable intensification for a larger global rice bowl. Nat. Commun. 12, 1–11 (2021).

    Article  Google Scholar 

  82. Mathewson, P. D., Evans, S., Byrnes, T., Joos, A. & Naidenko, O. V. Health and economic impact of nitrate pollution in drinking water: a Wisconsin case study. Environ. Monit. Assess. 192, 1–18 (2020).

    Article  Google Scholar 

  83. McDermid, S.S., Mahmood, R., Hayes, M. J., Bell, J. E. & Lieberman, Z. Minimizing trade-offs for sustainable irrigation. Nat. Geosci. 14, 706–709 (2021).

    Article  Google Scholar 

  84. Harter, T., Castaldo, G., Visser, A. & Fogg, G. E. Effect of groundwater age and recharge source on nitrate concentrations in domestic wells in the San Joaquin valley. Environ. Sci. Technol. 55, 2265–2275 (2021).

    Article  Google Scholar 

  85. Levy, Z. F. et al. Critical aquifer overdraft accelerates degradation of groundwater quality in California’s Central Valley during drought. Geophys. Res. Lett. 48, e2021GL094398 (2021).

    Article  Google Scholar 

  86. Chen, L. & Dirmeyer, P. A. Global observed and modelled impacts of irrigation on surface temperature. Int. J. Climatol. 39, 2587–2600 (2019).

    Article  Google Scholar 

  87. Ambika, A. K. & Mishra, V. Observational evidence of irrigation influence on vegetation health and land surface temperature in India. Geophys. Res. Lett. 46, 13441–13451 (2019).

    Article  Google Scholar 

  88. Rappin, E. et al. The Great Plains Irrigation Experiment (GRAINEX). Bull. Am. Meteorol. Soc. 102, E1756–E1785 (2021).

    Article  Google Scholar 

  89. Phillips, C. E., Nair, U. S., Mahmood, R., Rappin, E. & Pielke, R. A. Influence of irrigation on diurnal mesoscale circulations: results from GRAINEX. Geophys. Res. Lett. 49, e2021GL096822 (2022).

    Article  Google Scholar 

  90. Nocco, M. A., Smail, R. A. & Kucharik, C. J. Observation of irrigation‐induced climate change in the Midwest United States. Glob. Chang. Biol. 25, 3472–3484 (2019).

    Article  Google Scholar 

  91. Mueller, N. D. et al. Global relationships between cropland intensification and summer temperature extremes over the last 50 years. J. Clim. 30, 7505–7528 (2017).

    Article  Google Scholar 

  92. Lawrence, D. M. et al. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design. Geosci. Model Dev. 9, 2973–2998 (2016).

    Article  Google Scholar 

  93. Al-Yaari, A., Ducharne, A., Thiery, W., Cheruy, F. & Lawrence, D. The role of irrigation expansion on historical climate change: insights from CMIP6. Earths Future 10, e2022EF002859 (2022).

    Article  Google Scholar 

  94. Vahmani, P. & Ban-Weiss, G. Climatic consequences of adopting drought-tolerant vegetation over Los Angeles as a response to California drought. Geophys. Res. Lett. 43, 8240–8249 (2016).

    Article  Google Scholar 

  95. Mueller, N. D. et al. Global relationships between cropland intensification and summer temperature extremes over the last 50 years. https://doi.org/10.1175/JCLI-D-17-0096.1 (2017).

  96. Thiery, W. et al. Warming of hot extremes alleviated by expanding irrigation. Nat. Commun. 11, 1–7 (2020).

    Article  Google Scholar 

  97. Lawston, P. M., Santanello, J. A., Hanson, B. & Arsensault, K. Impacts of irrigation on summertime temperatures in the Pacific Northwest. Earth Interact. 24, 1–26 (2020).

    Article  Google Scholar 

  98. Lu, Y. & Kueppers, L. Increased heat waves with loss of irrigation in the United States. Environ. Res. Lett. 10, 064010 (2015).

    Article  Google Scholar 

  99. Gormley-Gallagher, A. M. et al. Agricultural management effects on mean and extreme temperature trends. Earth Syst. Dyn. 13, 419–438 (2022).

    Article  Google Scholar 

  100. Hauser, M., Thiery, W. & Seneviratne, S. I. Potential of global land water recycling to mitigate local temperature extremes. Earth Syst. Dyn. 10, 157–169 (2019).

    Article  Google Scholar 

  101. Mishra, V. et al. Moist heat stress extremes in India enhanced by irrigation. Nat. Geosci. 13, 722–728 (2020).

    Article  Google Scholar 

  102. Krakauer, N. Y., Cook, B. I. & Puma, M. J. Effect of irrigation on humid heat extremes. Environ. Res. Lett. 15, 1–12 (2020).

    Article  Google Scholar 

  103. Szilagyi, J. Anthropogenic hydrological cycle disturbance at a regional scale: state-wide evapotranspiration trends (1979–2015) across Nebraska, USA. J. Hydrol. 557, 600–612 (2018).

    Article  Google Scholar 

  104. Zhang, T., Mahmood, R., Lin, X. & Pielke, R. A. Irrigation impacts on minimum and maximum surface moist enthalpy in the Central Great Plains of the USA. Weather Clim. Extrem. 23, 100197 (2019).

    Article  Google Scholar 

  105. Im, E. S., Pal, J. S. & Eltahir, E. A. B. Deadly heat waves projected in the densely populated agricultural regions of South Asia. Sci. Adv. 3, 1–7 (2017).

    Article  Google Scholar 

  106. Wu, L., Feng, J. & Miao, W. Simulating the impacts of irrigation and dynamic vegetation over the North China plain on regional climate. J. Geophys. Res. Atmos. 123, 8017–8034 (2018).

    Article  Google Scholar 

  107. Hirsch, A. L., Wilhelm, M., Davin, E. L., Thiery, W. & Seneviratne, S. I. Can climate-effective land management reduce regional warming? J. Geophys. Res. Atmos. 122, 2269–2288 (2017).

    Article  Google Scholar 

  108. Alter, R. E. et al. Observational evidence that great plains irrigation has enhanced summer precipitation intensity and totals in the Midwestern United States. J. Hydrometeorol. 16, 1717–1735 (2015).

    Article  Google Scholar 

  109. Szilagyi, J. & Franz, T. E. Anthropogenic hydrometeorological changes at a regional scale: observed irrigation–precipitation feedback (1979–2015) in Nebraska, USA. Sustain. Water Resour. Manag. 6, 1–10 (2020).

    Article  Google Scholar 

  110. Kustu, M. D., Fan, Y. & Robock, A. Large-scale water cycle perturbation due to irrigation pumping in the US High Plains: a synthesis of observed streamflow changes. J. Hydrol. 390, 222–244 (2010).

    Article  Google Scholar 

  111. Kustu, M. D., Fan, Y. & Rodell, M. Possible link between irrigation in the U.S. High Plains and increased summer streamflow in the Midwest. Water Resour. Res. 47, 1–21 (2011).

    Article  Google Scholar 

  112. Lo, M. H. et al. Intense agricultural irrigation induced contrasting precipitation changes in Saudi Arabia. Environ. Res. Lett. 16, 064049 (2021).

    Article  Google Scholar 

  113. Alter, R. E., Im, E. S. & Eltahir, E. A. B. Rainfall consistently enhanced around the Gezira Scheme in East Africa due to irrigation. Nat. Geosci. 8, 763–767 (2015).

    Article  Google Scholar 

  114. Shah, H. L., Zhou, T., Huang, M. & Mishra, V. Strong influence of irrigation on water budget and land surface temperature in Indian subcontinental river basins. J. Geophys. Res. Atmos. 124, 1449–1462 (2019).

    Article  Google Scholar 

  115. Mathur, R. & AchutaRao, K. A modelling exploration of the sensitivity of the India’s climate to irrigation. Clim. Dyn. 54, 1851–1872 (2019).

    Article  Google Scholar 

  116. Devanand, A., Huang, M., Ashfaq, M., Barik, B. & Ghosh, S. Choice of irrigation water management practice affects Indian summer monsoon rainfall and its extremes. Geophys. Res. Lett. 46, 9126–9135 (2019).

    Article  Google Scholar 

  117. Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).

    Article  Google Scholar 

  118. Houlton, B. Z. et al. A world of cobenefits: solving the global nitrogen challenge. Earths Future 7, 865–872 (2019).

    Article  Google Scholar 

  119. Ryan, J., Ibrikci, H., Sommer, R. & McNeill, A. Chapter 2 Nitrogen in rainfed and irrigated cropping systems in the Mediterranean region. Adv. Agronomy 104, 53–136 (2009).

    Article  Google Scholar 

  120. Zhu, B. et al. Effects of irrigation on water, carbon, and nitrogen budgets in a semiarid watershed in the Pacific Northwest: a modeling study. J. Adv. Model Earth Syst. 12, 1–20 (2020).

    Article  Google Scholar 

  121. Li, Z. et al. Optimizing wheat yield, water, and nitrogen use efficiency with water and nitrogen inputs in China: a synthesis and life cycle assessment. Front. Plant Sci. 13, 1982 (2022).

    Google Scholar 

  122. Sorando, R., Comín, F. A., Jiménez, J. J., Sánchez-Pérez, J. M. & Sauvage, S. Water resources and nitrate discharges in relation to agricultural land uses in an intensively irrigated watershed. Sci. Total Environ. 659, 1293–1306 (2019).

    Article  Google Scholar 

  123. Tomich, T. P., Brodt, S. B., Dahlgren, R. A. & Scow, K. M. The California nitrogen assessment: challenges and solutions for people, agriculture, and the environment. JSTOR http://www.jstor.org/stable/10.1525/j.ctv1xxz7x (2016).

  124. Harter, T. et al. Addressing Nitrate in California’s Drinking Water with a Focus on Tulare Lake Basin and Salinas Valley Groundwater (Center for Watershed Sciences, 2017); https://ucanr.edu/sites/groundwaternitrate/files/138956.pdf.

  125. Hopmans, J. W. Transdisciplinary soil hydrology. Vadose Zone J. 19, 1–8 (2020).

    Article  Google Scholar 

  126. Tautges, N. E. et al. Deep soil inventories reveal that impacts of cover crops and compost on soil carbon sequestration differ in surface and subsurface soils. Glob. Chang. Biol. 25, 3753–3766 (2019).

    Article  Google Scholar 

  127. McGill, B. M., Hamilton, S. K., Millar, N. & Robertson, G. P. The greenhouse gas cost of agricultural intensification with groundwater irrigation in a Midwest U.S. row cropping system. Glob. Chang. Biol. 24, 5948–5960 (2018).

    Article  Google Scholar 

  128. Carrijo, D. R., Lundy, M. E. & Linquist, B. A. Rice yields and water use under alternate wetting and drying irrigation: a meta-analysis. Field Crops Res. 203, 173–180 (2017).

    Article  Google Scholar 

  129. Sapkota, A., Haghverdi, A., Avila, C. C. E. & Ying, S. C. Irrigation and greenhouse gas emissions: a review of field-based studies. Soil Syst. 4, 1–21 (2020).

    Article  Google Scholar 

  130. Kumar, A., Nayak, A. K., Mohanty, S. & Das, B. S. Greenhouse gas emission from direct seeded paddy fields under different soil water potentials in eastern India. Agric. Ecosyst. Environ. 228, 111–123 (2016).

    Article  Google Scholar 

  131. Berger, S., Jang, I., Seo, J., Kang, H. & Gebauer, G. A record of N2O and CH4 emissions and underlying soil processes of Korean rice paddies as affected by different water management practices. Biogeochemistry 115, 317–332 (2013).

    Article  Google Scholar 

  132. Tan, Z., Leung, L. R., Li, H. Y. & Cohen, S. Representing global soil erosion and sediment flux in earth system models. J. Adv. Model Earth Syst. 14, e2021MS002756 (2022).

    Article  Google Scholar 

  133. Bhattacharyya, R. et al. Soil degradation in India: challenges and potential solutions. Sustainability 7, 3528–3570 (2015).

    Article  Google Scholar 

  134. Maris, S. C., Teira-Esmatges, M. R. & Català, M. M. Influence of irrigation frequency on greenhouse gases emission from a paddy soil. Paddy Water Environ. 14, 199–210 (2016).

    Article  Google Scholar 

  135. Fangueiro, D. et al. Effect of tillage and water management on GHG emissions from Mediterranean rice growing ecosystems. Atmos. Environ. 150, 303–312 (2017).

    Article  Google Scholar 

  136. Schmidt, J. E., Peterson, C., Wang, D., Scow, K. M. & Gaudin, A. C. M. Agroecosystem tradeoffs associated with conversion to subsurface drip irrigation in organic systems. Agric. Water Manag. 202, 1–8 (2018).

    Article  Google Scholar 

  137. Sojka, R. E., Bjorneberg, D. L. & Strelkoff, T. S. in Irrigation of Agricultural Crops Vol. 30 (eds Lascano, R. J. & Sojka, R. E.) Ch. 8237–8275 (Wiley, 2015).

  138. Cerdà, A. et al. Long-term monitoring of soil bulk density and erosion rates in two Prunus Persica (L) plantations under flood irrigation and glyphosate herbicide treatment in La Ribera district, Spain. J. Environ. Manage. 282, 1–10 (2021).

    Article  Google Scholar 

  139. Roderick, M. L., Greve, P. & Farquhar, G. D. On the assessment of aridity with changes in atmospheric CO2. Water Resour. Res. 51, 5450–5463 (2015).

    Article  Google Scholar 

  140. Milly, P. C. D. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Chang. 6, 946–949 (2016).

    Article  Google Scholar 

  141. Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R. & Donohue, R. J. Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nat. Clim. Chang. 9, 44–48 (2019).

    Article  Google Scholar 

  142. Jägermeyr, J. et al. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat. Food 2, 873–885 (2021).

    Article  Google Scholar 

  143. Gray, S. B. et al. Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nat. Plants 2016 2:9 2, 1–8 (2016).

    Google Scholar 

  144. Singh, A., Kumar, S., Akula, S., Lawrence, D. M. & Lombardozzi, D. L. Plant growth nullifies the effect of increased water-use efficiency on streamflow under elevated CO2 in the Southeastern United States. Geophys. Res. Lett. 47, e2019GL086940 (2020).

    Article  Google Scholar 

  145. Vahmani, P., Jones, A. D. & Li, D. Will anthropogenic warming increase evapotranspiration? Examining irrigation water demand implications of climate change in California. Earths Future 10, e2021EF002221 (2022).

    Article  Google Scholar 

  146. DeLucia, E. H. et al. Are we approaching a water ceiling to maize yields in the United States? Ecosphere 10, e02773 (2019).

    Article  Google Scholar 

  147. Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, 1–12 (2019).

    Article  Google Scholar 

  148. Swann, A. L. S. Plants and drought in a changing climate. Curr. Clim. Change Rep. 4, 192–201 (2018).

    Article  Google Scholar 

  149. Krinner, G. et al. Long-term climate change: projections, commitments and irreversibility. in Climate Change 2013 — The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al) (Cambridge University Press, 2013); https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter12_FINAL.pdf.

  150. Pokhrel, Y. et al. Global terrestrial water storage and drought severity under climate change. Nat. Clim. Chang. 11, 226–233 (2021).

    Article  Google Scholar 

  151. Lutz, A. F. et al. South Asian agriculture increasingly dependent on meltwater and groundwater. Nat. Clim. Chang. 12, 566–573 (2022).

    Article  Google Scholar 

  152. Qin, Y. et al. Snowmelt risk telecouplings for irrigated agriculture. Nat. Clim. Chang. 12, 1007–1015 (2022).

    Article  Google Scholar 

  153. Cook, B. I. et al. Divergent regional climate consequences of maintaining current irrigation rates in the 21st century. J. Geophys. Res. Atmos. 125, e2019JD031814 (2020).

    Article  Google Scholar 

  154. Gudmundsson, L. et al. Globally observed trends in mean and extreme river flow attributed to climate change. Science 371, 1159–1162 (2021).

    Article  Google Scholar 

  155. Wu, W. Y. et al. Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers. Nat. Commun. 11, 1–9 (2020).

    Google Scholar 

  156. Leng, G., Huang, M., Tang, Q. & Leung, L. R. A modeling study of irrigation effects on global surface water and groundwater resources under a changing climate. J. Adv. Model Earth Syst. 7, 1285–1304 (2015).

    Article  Google Scholar 

  157. Puy, A., Lo Piano, S. & Saltelli, A. Current models underestimate future irrigated areas. Geophys. Res. Lett. 47, 1–10 (2020).

    Article  Google Scholar 

  158. Calvin, K. & Bond-Lamberty, B. Integrated human-earth system modeling — state of the science and future directions. Environ. Res. Lett. 13, 1–15 (2018).

    Article  Google Scholar 

  159. Yokohata, T. et al. MIROC-INTEG1: a global bio-geochemical land surface model with human water management, crop growth, and land-use change. Geosci. Model Dev. Discussions https://doi.org/10.5194/gmd-2019-184 (2019).

    Article  Google Scholar 

  160. Bhattarai, N. et al. The impact of groundwater depletion on agricultural production in India. Environ. Res. Lett. 16, 085003 (2021).

    Article  Google Scholar 

  161. Wada, Y. & Bierkens, M. F. P. Sustainability of global water use: past reconstruction and future projections. Enviro. Res. Lett. 9, 1–18 (2014).

    Google Scholar 

  162. Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Global Environ. Change 42, 153–168 (2017).

    Article  Google Scholar 

  163. H.-O. Pörtner et al. Climate Change 2022: Impacts, Adaptation and Vulnerability Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_FullReport.pdf (2022).

  164. Masson-Delmotte, V. et al. IPCC, 2021: Summary for Policymakers in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2021).

  165. Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117–161 (2011).

    Article  Google Scholar 

  166. Hejazi, M. I. et al. 21st century United States emissions mitigation could increase water stress more than the climate change it is mitigating. Proc. Natl Acad. Sci. USA 112, 10635–10640 (2015).

    Article  Google Scholar 

  167. Stenzel, F. et al. Irrigation of biomass plantations may globally increase water stress more than climate change. Nat. Commun. 12, 1–9 (2021).

    Article  Google Scholar 

  168. Ai, Z., Hanasaki, N., Heck, V., Hasegawa, T. & Fujimori, S. Global bioenergy with carbon capture and storage potential is largely constrained by sustainable irrigation. Nat. Sustain. 4, 884–891 (2021).

    Article  Google Scholar 

  169. Stenzel, F., Gerten, D. & Hanasaki, N. Global scenarios of irrigation water use for bioenergy production: a systematic review. Hydrol. Earth Syst. Sci. 25, 1711–1726 (2020).

    Article  Google Scholar 

  170. Dangar, S., Asoka, A. & Mishra, V. Causes and implications of groundwater depletion in India: a review. J. Hydrol. 596, 126103 (2021).

    Article  Google Scholar 

  171. Jain, M. et al. Groundwater depletion will reduce cropping intensity in India. Sci. Adv. 7, 1–9 (2021).

    Article  Google Scholar 

  172. Nie, W. et al. Groundwater withdrawals under drought: reconciling GRACE and land surface models in the United States High Plains Aquifer. Water Resour. Res. 54, 5282–5299 (2018).

    Article  Google Scholar 

  173. Mrad, A. et al. Peak grain forecasts for the US High Plains amid withering waters. Proc. Natl Acad. Sci. USA 117, 26145–26150 (2020).

    Article  Google Scholar 

  174. Elliott, J. et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl Acad. Sci. USA 111, 3239–3244 (2014).

    Article  Google Scholar 

  175. Rosa, L. et al. Potential for sustainable irrigation expansion in a 3 °C warmer climate. Proc. Natl Acad. Sci. USA 117, 29526–29534 (2020).

    Article  Google Scholar 

  176. Jägermeyr, J. et al. Integrated crop water management might sustainably halve the global food gap. Environ. Res. Lett. 11, 025002 (2016).

    Article  Google Scholar 

  177. Fishman, R., Gine, X. & Jacoby, H. G. Efficient Irrigation and Water Conservation (World Bank, 2021); https://openknowledge.worldbank.org/server/api/core/bitstreams/212e6512-5070-53d2-b620-3623778a4f83/content.

  178. Grafton, R. Q. et al. The paradox of irrigation efficiency. Science 361, 748–750 (2018).

    Article  Google Scholar 

  179. Lankford, B. et al. A scale-based framework to understand the promises, pitfalls and paradoxes of irrigation efficiency to meet major water challenges. Global Environ. Change 65, 1–24 (2020).

    Article  Google Scholar 

  180. Kuil, L., Evans, T., McCord, P. F., Salinas, J. L. & Blöschl, G. Exploring the influence of smallholders’ perceptions regarding water availability on crop choice and water allocation through socio-hydrological modeling. Water Resour. Res. 54, 2580–2604 (2018).

    Article  Google Scholar 

  181. Thapa, B. & Rahman, T. Multi-level determinants of crop choice to water stress in smallholder irrigation system of Central Nepal. Clim. Dev. 13, 1–13 (2020).

    Google Scholar 

  182. Crase, L., Pagan, P. & Dollery, B. Water markets as a vehicle for reforming water resource allocation in the Murray-Darling Basin of Australia. Water Resour. Res. 40, 8–13 (2004).

    Article  Google Scholar 

  183. Al-Rubaye, S. Agricultural irrigation pricing: review of theories and practices. Irrig. Drainage 68, 129–139 (2019).

    Article  Google Scholar 

  184. Marston, L. & Cai, X. An overview of water reallocation and the barriers to its implementation. Wiley Interdiscipl. Rev. Water 3, 658–677 (2016).

    Article  Google Scholar 

  185. Hogue, T. S. & Pincetl, S. Are you watering your lawn? Science 348, 1319–1320 (2015).

    Article  Google Scholar 

  186. Puy, A. et al. The delusive accuracy of global irrigation water withdrawal estimates. Nat. Commun. 13, 1–4 (2022).

    Article  Google Scholar 

  187. Saltelli, A. et al. Five ways to ensure that models serve society: a manifesto. Nature 582, 482–484 (2020).

    Article  Google Scholar 

  188. Azzini, I., Listorti, G., Mara, T. A. & Rosati, R. Uncertainty and sensitivity analysis for policy decision making An introductory guide (European Commission, 2020); https://doi.org/10.2760/922129.

  189. Dagon, K., Sanderson, B. M., Fisher, R. A. & Lawrence, D. M. A machine learning approach to emulation and biophysical parameter estimation with the Community Land Model, version 5. Adv. Stat. Climatol. Meteorol. Oceanogr. 6, 223–244 (2020).

    Article  Google Scholar 

  190. Fisher, R. A. & Koven, C. D. Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems. J. Adv. Model. Earth Syst. https://doi.org/10.1029/2018MS001453 (2020).

    Article  Google Scholar 

  191. Addor, N. & Melsen, L. A. Legacy, rather than adequacy, drives the selection of hydrological models. Water Resour Res 55, 378–390 (2019).

    Article  Google Scholar 

  192. Guillaumot, L. et al. Coupling a large-scale hydrological model (CWatM v1.1) with a high-resolution groundwater flow model (MODFLOW 6) to assess the impact of irrigation at regional scale. Geosci. Model Dev. 15, 7099–7120 (2022).

    Article  Google Scholar 

  193. Hanasaki, N. et al. Toward hyper-resolution global hydrological models including human activities: application to Kyushu island, Japan. Hydrol. Earth Syst. Sci. 26, 1953–1975 (2022).

    Article  Google Scholar 

  194. Huang, M. et al. Representing surface heterogeneity in land–atmosphere coupling in E3SMv1 single-column model over ARM SGP during summertime. Geosci. Model Dev. 15, 6371–6384 (2022).

    Article  Google Scholar 

  195. Sadki, M., Munier, S., Boone, A. & Ricci, S. Implementation and sensitivity analysis of the Dam-Reservoir OPeration model (DROP v1.0) over Spain. Geosci. Model Dev. 16, 427–448 (2023).

    Article  Google Scholar 

  196. Chen, C., Wang, L., Myneni, R. B. & Li, D. Attribution of land-use/land-cover change induced surface temperature anomaly: how accurate is the first-order Taylor Series expansion? J. Geophys. Res. Biogeosci. 125, e2020JG005787 (2020).

    Article  Google Scholar 

  197. Swain, D. L., Singh, D., Touma, D. & Diffenbaugh, N. S. Attributing extreme events to climate change: a new frontier in a warming world. One Earth 2, 522–527 (2020).

    Article  Google Scholar 

  198. Boone, A. et al. Updates on the International Land Surface Interactions with the Atmosphere over the Iberian Semi-Arid Environment (LIAISE) Field Campaign (CW3E, 2021); https://hal.science/hal-03842003/document.

  199. Fisher, J. B. et al. ECOSTRESS: NASA’s next generation mission to measure evapotranspiration from the International Space Station. Water Resour. Res. 56, 1–20 (2020).

    Article  Google Scholar 

  200. Santanello, J. A. et al. Land–atmosphere interactions: the LoCo perspective. Bull. Am. Meteorol. Soc. 99, 1253–1272 (2018).

    Article  Google Scholar 

  201. Siebert, S. et al. Development and validation of the global map of irrigation areas. Hydrol. Earth Syst. Sci. 9, 535–547 (2005).

    Article  Google Scholar 

  202. Sutanudjaja, E. H. et al. PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model. Geosci. Model Dev. 11, 2429–2453 (2018).

    Article  Google Scholar 

  203. Wada, Y., Wisser, D. & Bierkens, M. F. P. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst. Dyn. 5, 15–40 (2014).

    Article  Google Scholar 

  204. Döll, P. et al. Impact of water withdrawals from groundwater and surface water on continental water storage variations. J. Geodyn. 59–60, 143–156 (2012).

    Article  Google Scholar 

  205. Wisser, D. et al. Global irrigation water demand: variability and uncertainties arising from agricultural and climate data sets. Geophys. Res. Lett. 35, 1–5 (2008).

    Article  Google Scholar 

  206. Wisser, D., Fekete, B. M., Vörösmarty, C. J. & Schumann, A. H. Reconstructing 20th century global hydrography: a contribution to the Global Terrestrial Network — Hydrology (GTN-H). Hydrol. Earth Syst. Sci. 14, 1–24 (2010).

    Article  Google Scholar 

  207. Sulser, T. B. et al. Green and blue water accounting in the Ganges and Nile basins: implications for food and agricultural policy. J. Hydrol. 384, 276–291 (2010).

    Article  Google Scholar 

  208. Hanasaki, N., Yoshikawa, S., Pokhrel, Y. & Kanae, S. A global hydrological simulation to specify the sources of water used by humans. Hydrol. Earth Syst. Sci. 22, 789–817 (2018).

    Article  Google Scholar 

  209. Hurtt, G. C. et al. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425–5464 (2020).

    Article  Google Scholar 

  210. Zhang, Z. et al. Joint modeling of crop and irrigation in the central united states using the Noah-MP land surface model. J. Adv. Model Earth Syst. 12, 1–19 (2020).

    Article  Google Scholar 

  211. Beven, K. Towards a methodology for testing models as hypotheses in the inexact sciences. Proc. R. Soc. A Math. Phys. Eng. Sci. 475, 1–19 (2019).

    Google Scholar 

  212. Xu, T., Deines, J., Kendall, A., Basso, B. & Hyndman, D. Addressing challenges for mapping irrigated fields in subhumid temperate regions by integrating remote sensing and hydroclimatic data. Remote Sens. 11, 370 (2019).

    Article  Google Scholar 

  213. Felfelani, F., Lawrence, D. M. & Pokhrel, Y. Representing intercell lateral groundwater flow and aquifer pumping in the community land model. Water Resour. Res. 57, e2020WR027531 (2021).

    Article  Google Scholar 

  214. Mueller, C. et al. Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications. Geosci. Model Dev. 10, 1403–1422 (2017).

    Article  Google Scholar 

  215. Jägermeyr, J. & Frieler, K. Spatial variations in crop growing seasons pivotal to reproduce global fluctuations in maize and wheat yields. Sci. Adv. 4, 1–10 (2018).

    Article  Google Scholar 

  216. Puy, A., Lankford, B., Meier, J., van der Kooij, S. & Saltelli, A. Large variations in global irrigation withdrawals caused by uncertain irrigation efficiencies. Environ. Res. Lett. 17, 044014 (2022).

    Article  Google Scholar 

  217. Fernández, J. E., Alcon, F., Diaz-Espejo, A., Hernandez-Santana, V. & Cuevas, M. V. Water use indicators and economic analysis for on-farm irrigation decision: a case study of a super high density olive tree orchard. Agric. Water Manag. 237, 106074 (2020).

    Article  Google Scholar 

  218. Jain, M., Naeem, S., Orlove, B., Modi, V. & DeFries, R. S. Understanding the causes and consequences of differential decision-making in adaptation research: adapting to a delayed monsoon onset in Gujarat, India. Global Environ. Change 31, 98–109 (2015).

    Article  Google Scholar 

  219. Basharat, M. Water management in the Indus Basin in Pakistan: challenges and opportunities. Indus River Basin Water Secur. Sustain. https://doi.org/10.1016/B978-0-12-812782-7.00017-5 (2019).

    Article  Google Scholar 

  220. Bell, A. R., Ward, P. S. & Shah, M. A. A. Increased water charges improve efficiency and equity in an irrigation system. Ecol. Soc. 21, 1–41 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Aspen Global Change Institute and D. Lawrence for their support in this topic and our discussions. H.K. acknowledges the National Research Foundation of Korea (NRF) grant Funded by the Korea Government (MSIT) (2021H1D3A2A03097768) and Japan Science and Technology Agency (JST) as a part of the Belmont Forum under the grant number JPMJBF2101. Y.P. acknowledges support from the National Science Foundation (Awards #: 1752729 and 2127643). L.B., C.M., W.D., and L.Z., acknowledge support from the European Space Agency projects IRRIGATION+ (contract number 4000129870/20/I-NB) and 4DMED-Hydrology (4000136272/21/I-EF). P.V. and A.D.J. acknowledge support from the U.S. Department of Energy, Office of Science, as part of research in the MultiSector Dynamics, Earth and Environmental System Modeling Program. W.T. acknowledges the DLR/BMBF (DE, grant no. 01LS1905A), NWO (NL), the Belgian Science Policy Office (BELSPO) and the European Union for supporting the project ‘LAnd MAnagement for CLImate Mitigation and Adaptation’ (LAMACLIMA) (grant agreement no. 300478), which is part of ERA4CS, an ERA-NET initiated by JPI Climate. N.D.M. and L.S. acknowledge support from the Foundation for Food and Agriculture Research (FF-NIA19-0000000003). M.H.L acknowledges support from NSTC Grant 110-2628-M-002-004-MY4 and 111-2111-M-002-019. R. M. acknowledges support from an NSF Grant AGS-1853390. T.Y. is supported by MEXT-Program for the advanced studies of climate change projection (SENTAN) Grant Number JPMXD0722681344. J.J. was supported by the NASA GISS Climate Impacts Group and the Open Philanthropy Project.

Author information

Authors and Affiliations

Authors

Contributions

M.N., P.L.-P., J.K., Y.P., M.J., J.J., L.C., N.D.M. and S.Mc.D. researched data for the article. M.N., P.L.-P., J.K., Y.P., M.J., J.J., L.B., C.M., A.J., P.V., W.T., A.B., W.D., S.J., M.-H.L., R.M., V.M., N.D.M., D.N., S.S.R., L.S., Y.W., F.C., B.I.C., H.K., D.L., J.P., D.R., J.S., S.S., D.S., T.Y. and S.Mc.D. contributed substantially to discussion of the content. M.N., P.L.-P., J.K., Y.P., M.J., J.J., L.B., C.M., A.J., P.V., W.T., Y.Y., A.B., W.D., N.H., M.-H.L., N.D.M., L.S., L.Z. and S.Mc.D. wrote the article. M.N., P.L.-P., J.K., Y.P., M.J., J.J., A.J., P.V., W.T., Y.Y., L.C., W.D., S.J., R.M., V.M., D.N., S.S.R., Y.W., L.Z., J.P., D.R., J.S., Y.S. and S.Mc.D. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Sonali McDermid.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Stefan Siebert, Ruby Leung, Wanxue Zhu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Central Ground Water Board: http://cgwb.gov.in/

Directorate of Economics And Statistics: https://eands.dacnet.nic.in/

FAOSTAT: http://www.fao.org/faostat/en/#home

Long-term agricultural research sites: https://ltar.ars.usda.gov/data/data-dashboards/

Pakistan Bureau of Statistics: https://www.pbs.gov.pk/

UN FAO: https://www.fao.org/3/y3918e/y3918e00.htm#TopOfPage

USDA: https://www.nass.usda.gov/AgCensus/

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McDermid, S., Nocco, M., Lawston-Parker, P. et al. Irrigation in the Earth system. Nat Rev Earth Environ 4, 435–453 (2023). https://doi.org/10.1038/s43017-023-00438-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00438-5

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene