Abstract
Turbulent motions of liquid metal in Earth’s outer core generate the geomagnetic field. Magnetic field observations from low-Earth-orbit satellites, together with advanced numerical simulations, indicate that present-day core motions are dominated by a planetary-scale gyre, a jet in the northern polar region and waves involving the magnetic field. In this Review, we explore the dynamics of core gyres, jets and waves and discuss their impact on the magnetism and rotation of the Earth. The planetary gyre is anticyclonic, offset from the rotation axis towards low latitudes under the Atlantic hemisphere and involves flow speeds of 15–50 km yr−1 that are fastest in a focused westward jet under the Bering Strait. A quasi-geostrophic, Magnetic–Archimedes–Coriolis force balance is thought to control the dynamics of the planetary gyre and high latitude jet. Waves in the core flow with periods ~7 years have been detected at low latitudes, that are consistent with an interplay among magnetic, Coriolis and inertial effects. The arrival of wave energy at the core surface accounts for many of the characteristics of interannual geomagnetic field variations. Fluctuations in outer core flow patterns, including the planetary gyre, account for decadal changes in Earth’s length of day, while interannual changes are well explained by wave processes. Systematic investigations of core–mantle coupling mechanisms in models that include wave dynamics promise new insights on poorly constrained physical properties, including deep mantle conductivity. Long-term satellite monitoring of changes in the Earth’s magnetic field is essential if further progress is to be made in understanding core dynamics, as the high-resolution magnetic record remains short compared with the timescales of waves and convection in the core.
Key points
-
Since 1999, satellite observations have provided a reliable global picture of how Earth’s magnetic field is changing on interannual-to-decadal timescales. The most intense changes are found at mid-to-low latitudes under the Atlantic hemisphere and under Alaska and Siberia at high northern latitudes.
-
Global knowledge of geomagnetic field changes, together with an understanding of the motional induction process in the core, enables the general circulation of liquid metal in the outer core to be inferred.
-
Key features of the core flow include a planetary-scale, eccentric, anticyclonic gyre with an intense jet-like concentration under the Bering Strait and waves at low latitudes.
-
Numerical simulations of core dynamics are now approaching conditions relevant to Earth. These demonstrate that a combination of core convection and hydromagnetic waves can account for the observed field variations.
-
Recorded changes in the length of day on interannual and decadal periods over the past century are well explained by changes in the axisymmetric part of the core flow inferred from geomagnetic observations.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





Data availability
Swarm satellite magnetic field data are available from https://earth.esa.int/web/guest/swarm/data-access and https://vires.services/. Ground observatory magnetic data are available from ftp://ftp.nerc-murchison.ac.uk/geomag/Swarm/AUX_OBS/hour/.
Code availability
The CHAOS-7 field model and its updates are at http://www.spacecenter.dk/files/magnetic-models/CHAOS-7/.A Python package for using the CHAOS model is available at https://pypi.org/project/chaosmagpy/. The flow models presented here, and the Python codes used to calculate them, are available from https://geodyn.univ-grenoble-alpes.fr/. The numerical code and simulation data for the core dynamics simulations presented here are available from Julien Aubert (aubert@ipgp.fr) upon reasonable request. Data and additional video files from the simulation presented are also available at https://4d-earth-swarm.univ-grenoble-alpes.fr/dataand https://www.ipgp.fr/~aubert/4dearth.
References
Bloxham, J. & Jackson, A. Fluid flow near the surface of Earth’s outer core. Rev. Geophys. 29, 97–120 (1991).
Holme, R. 8.04 — Large-scale flow in the core. in Treatise on Geophysics 2nd edn (ed. Schubert, G.) 91–113 (Elsevier, 2015).
Pais, M. A. & Jault, D. Quasi-geostrophic flows responsible for the secular variation of the Earth’s magnetic field. Geophys. J. Int. 173, 421–443 (2008).
Livermore, P. W., Hollerbach, R. & Finlay, C. C. An accelerating high-latitude jet in Earth’s core. Nat. Geosci. 10, 62–68 (2017).
Gillet, N. et al. Satellite magnetic data reveal interannual waves in Earth’s core. Proc. Natl Acad. Sci. USA 119, e2115258119 (2022).
Glassmeier, K.-H. & Vogt, J. Magnetic polarity transitions and biospheric effects. Space Sci. Rev. 155, 387–410 (2010).
Channell, J. E. T. & Vigliotti, L. The role of geomagnetic field intensity in late quaternary evolution of humans and large mammals. Rev. Geophys. 57, 709–738 (2019).
Masarik, J. & Beer, J. Simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere. J. Geophys. Res. Atmos. 104, 12099–12111 (1999).
Dasari, S., Paris, G., Charreau, J. & Savarino, J. Sulfur-isotope anomalies recorded in Antarctic ice cores as a potential proxy for tracing past ozone layer depletion events. PNAS Nexus 1 (2022).
Usoskin, I. G., Korte, M. & Kovaltsov, G. A. Role of centennial geomagnetic changes in local atmospheric ionization. Geophys. Res. Lett. 35, L05811 (2008).
Winkler, H. et al. Modeling impacts of geomagnetic field variations on middle atmospheric ozone responses to solar proton events on long timescales. J. Geophys. Res. Atmos. 113, D02302 (2008).
Gong, F. et al. Simulating the solar wind–magnetosphere interaction during the Matuyama–Brunhes paleomagnetic reversal. Geophys. Res. Lett. 49, e2021GL097340 (2022).
Aubert, J. Geomagnetic forecasts driven by thermal wind dynamics in the Earth’s core. Geophys. J. Int. 203, 1738–1751 (2015).
Fournier, A., Aubert, J., Lesur, V. & Ropp, G. A secular variation candidate model for IGRF-13 based on Swarm data and ensemble inverse geodynamo modelling. Earth Planets Space 73, 43 (2021).
Aubert, J., Livermore, P. W., Finlay, C. C., Fournier, A. & Gillet, N. A taxonomy of simulated geomagnetic jerks. Geophys. J. Int. 231, 650–671 (2022).
Torsvik, T. H., Smethurst, M. A., Burke, K. & Steinberger, B. Large igneous provinces generated from the margins of the large low-velocity provinces in the deep mantle. Geophys. J. Int. 167, 1447–1460 (2006).
Lay, T. & Garnero, E. J. Deep mantle seismic modeling and imaging. Annu. Rev. Earth Planet. Sci. 39, 91–123 (2011).
Lay, T. 1.22 — Deep earth structure: lower mantle and D”. in Treatise on Geophysics 2nd edn (ed. Schubert, G.) 683–723 (Elsevier, 2015).
Gubbins, D., Willis, A. P. & Sreenivasan, B. Correlation of Earth’s magnetic field with lower mantle thermal and seismic structure. Phys. Earth Planet. Int. 162, 256–260 (2007).
Mound, J. E. & Davies, C. J. Heat transfer in rapidly rotating convection with heterogeneous thermal boundary conditions. J. Fluid Mech. 828, 601–629 (2017).
Holme, R. Electromagnetic core–mantle coupling — I. Explaining decadal changes in the length of day. Geophys. J. Int. 132, 167–180 (1998).
Kuang, W. & Chao, B. F. Topographic core–mantle coupling in geodynamo modeling. Geophys. Res. Lett. 28, 1871–1874 (2001).
Buffett, B. A. Gravitational oscillations in the length of day. Geophys. Res. Lett. 23, 2279–2282 (1996).
Hide, R. The hydrodynamics of the Earth’s core. Phys. Chem. Earth 1, 94–137 (1956).
Gillet, N., Schaeffer, N. & Jault, D. Rationale and geophysical evidence for quasi-geostrophic rapid dynamics within the Earth’s outer core. Phys. Earth Planet. Int. 187, 380–390 (2011).
Jones, C. 8.05 — Thermal and compositional convection in the outer core. in Treatise on Geophysics 2nd edn (ed. Schubert, G.) 115–159 (Elsevier, 2015).
Schwaiger, T., Gastine, T. & Aubert, J. Force balance in numerical geodynamo simulations: a systematic study. Geophys. J. Int. 219, S101–S114 (2019).
Busse, F. H. Thermal instabilities in rapidly rotating systems. J. Fluid. Mech. 44, 441–460 (1970).
Jault, D. Axial invariance of rapidly varying diffusionless motions in the Earth’s core interior. Phys. Earth Planet. Int. 166, 67–76 (2008).
Davidson, P. A. Turbulence in Rotating, Stratified and Electrically Conducting Fluids (Cambridge Univ. Press, 2013).
Zhang, K. & Liao, X. Theory and Modeling of Rotating Fluids. (Cambridge Univ. Press, 2017).
Kageyama, A., Miyagoshi, T. & Sato, T. Formation of current coils in geodynamo simulations. Nature 454, 1106–1109 (2008).
Schaeffer, N., Jault, D., Nataf, H.-C. & Fournier, A. Turbulent geodynamo simulations: a leap towards Earth’s core. Geophys. J. Int. 211, 1–29 (2017).
Sheyko, A., Finlay, C., Favre, J. & Jackson, A. Scale separated low viscosity dynamos and dissipation within the Earth’s core. Sci. Rep. 8, 12566 (2018).
Livermore, P. W. & Hollerbach, R. Successive elimination of shear layers by a hierarchy of constraints in inviscid spherical-shell flows. J. Math. Phys. 53, 073104 (2012).
Elsasser, W. M. The Earth’s interior and geomagnetism. Rev. Mod. Phys. 22, 1–35 (1950).
Aubert, J., Finlay, C. C. & Fournier, A. Bottom-up control of geomagnetic secular variation by the Earth’s inner core. Nature 502, 219–223 (2013).
Christensen, U. & Wicht, J. 8.10 — Numerical dynamo simulations. in Treatise on Geophysics 2nd edn (ed. Schubert, G.) 245–277 (Elsevier, 2015).
Roberts, P. H. & King, E. M. On the genesis of the Earth’s magnetism. Rep. Prog. Phys. 76, 096801 (2013).
Jones, C. A. Planetary magnetic fields and fluid dynamos. Annu. Rev. Fluid Mech. 43, 583–614 (2011).
Moffatt, K. & Dormy, E. Self-exciting Fluid Dynamos (Cambridge Univ. Press, 2019).
Landeau, M., Fournier, A., Nataf, H.-C., Cébron, D. & Schaeffer, N. Sustaining Earth’s magnetic dynamo. Nat. Rev. Earth Environ. 3, 255–269 (2022).
Lehnert, B. Magnetohydrodynamic waves under the action of the Coriolis force. Astrophys. J. 119, 647–654 (1954).
Acheson, D. J. & Hide, R. Hydromagnetics of rotating fluids. Rep. Prog. Phys. 36, 159–221 (1973).
Braginsky, S. I. Short-period geomagnetic secular variation. Geophys. Astrophys. Fluid Dyn. 30, 1–78 (1984).
Braginsky, S. I. Magnetohydrodynamics of the Earth’s core. Geomagn. Aeron. 7, 698–712 (1964).
Hide, R. Free hydromagnetic oscillations of the Earth’s core and the theory of geomagnetic secular variation. Phil. Trans. R. Soc. Lond. A 259, 615–647 (1966).
Gillet, N., Jault, D., Canet, E. & Fournier, A. Fast torsional waves and strong magnetic field within the Earth’s core. Nature 465, 74–77 (2010).
Bardsley, O. P. & Davidson, P. A. Inertial-Alfvén waves as columnar helices in planetary cores. J. Fluid Mech. 805, R2, (2016).
Gerick, F., Jault, D. & Noir, J. Fast quasi-geostrophic Magneto–Coriolis modes in the Earth’s core. Geophys. Res. Lett. 48, e2020GL090803 (2021).
Kahle, A. B., Vestine, E. H. & Ball, R. H. Estimated surface motions of the Earth’s core. J. Geophys. Res. 72, 1095–1108 (1967).
Backus, G. Kinematics of geomagnetic secular variation in a perfectly conducting core. Phil. Trans. R. Soc. Lond. A 263, 239–266 (1968).
Le Mouël, J., Gire, C. & Madden, T. Motions at core surface in the geostrophic approximation. Phys. Earth Planet. Int. 39, 270–287 (1985).
Bloxham, J., Gubbins, D. & Jackson, A. Geomagnetic secular variation. Phil. Trans. R. Soc. Lond. A 329, 415–502 (1989).
Gillet, N., Huder, L. & Aubert, J. A reduced stochastic model of core surface dynamics based on geodynamo simulations. Geophys. J. Int. 219, 522–539 (2019).
Nimmo, F. 8.02 — Energetics of the core. in Treatise on Geophysics 2nd edn (ed. Schubert, G.) 27–55 (Elsevier, 2015).
Le Bars, M. et al. Fluid dynamics experiments for planetary interiors. Surv. Geophys. 43, 229–261 (2022).
Nataf, H.-C. & Schaeffer, N. 8.06 — Turbulence in the core. in Treatise on Geophysics 161–181 (Elsevier, 2015).
Ferraro, V. C. A. The non-uniform rotation of the sun and its magnetic field. Month. Not. Roy. Astr. Soc. 97, 458 (1937).
Aubert, J. Steady zonal flows in spherical shell dynamos. J. Fluid. Mech. 542, 53–67 (2005).
Aubert, J. Approaching Earth’s core conditions in high-resolution geodynamo simulations. Geophys. J. Int. 219, S137–S151 (2019).
Christensen, U. & Tilgner, A. Power requirement of the geodynamo from Ohmic losses in numerical and laboratory dynamos. Nature 429, 169–171 (2004).
Mound, J. E. & Davies, C. J. Longitudinal structure of Earth’s magnetic field controlled by lower mantle heat flow. Nat. Geosci. 12, 380–385 (2023).
Aurnou, J., Andreadis, S., Zhu, L. & Olson, P. Experiments on convection in Earth’s core tangent cylinder. Earth Planet. Sci. Lett. 212, 119–134 (2003).
Teed, R. J., Jones, C. A. & Tobias, S. M. Torsional waves driven by convection and jets in Earth’s liquid core. Geophys. J. Int. 216, 123–129 (2018).
Gubbins, D., Thomson, C. & Whaler, K. Stable regions in the earth’s liquid core. Geophys. J. R. Astron. Soc. 68, 241–251 (1982).
Buffett, B. A. Geomagnetic fluctuations reveal stable stratification at the top of the Earth’s core. Nature 507, 484–487 (2014).
Gastine, T., Aubert, J. & Fournier, A. Dynamo-based limit to the extent of a stable layer atop Earth’s core. Geophys. J. Int. 222, 1433–1448 (2020).
Jault, D. Electromagnetic and topographic coupling, and LOD variations. in The Fluid Mechanics of Astrophysics and Geophysics (eds Jones, C., Soward, A. & Zhang, K.) Ch. 3, 56–76 (2003).
Roberts, P. H. & Aurnou, J. M. On the theory of core–mantle coupling. Geophys. Astrophys. Fluid Dyn. 106, 157–230 (2012).
Calkins, M. A., Noir, J., Eldredge, J. D. & Aurnou, J. M. The effects of boundary topography on convection in Earth’s core. Geophys. J. Int. 189, 799–814 (2012).
Gerick, F., Jault, D., Noir, J. & Vidal, J. Pressure torque of torsional Alfvén modes acting on an ellipsoidal mantle. Geophys. J. Int. 222, 338–351 (2020).
Olsen, N. & Stolle, C. Satellite geomagnetism. Annu. Rev. Earth Planet. Sci. 40, 441–465 (2012).
Hulot, G., Sabaka, T. J., Olsen, N. & Fournier, A. 5.02 — The present and future geomagnetic field. in Treatise on Geophysics 2nd edn, Vol. 5 — Geomagnetism, 33–78 (Elsevier, 2015).
Lesur, V., Gillet, N., Hammer, M. & Mandea, M. Rapid variations of Earth’s core magnetic field. Surv. Geophys. 43, 41–69 (2022).
Olsen, N. et al. CHAOS — a model of the Earth’s magnetic field derived from CHAMP, Ørsted, and SAC-C magnetic satellite data. Geophys. J. Int. 166, 67–75 (2006).
Lesur, V., Wardinski, I., Rother, M. & Mandea, M. GRIMM: the GFZ reference internal magnetic model based on vector satellite and observatory data. Geophys. J. Int. 173, 382–394 (2008).
Holme, R. & Olsen, N. Core surface flow modelling from high-resolution secular variation. Geophys. J. Int. 166, 518–528 (2006).
Ropp, G. & Lesur, V. Mid-latitude and equatorial core surface flow variations derived from observatory and satellite magnetic data. Geophys. J. Int., 234, 1191–1204 (2023).
Istas, M., Gillet, N., Finlay, C., Hammer, M. & Huder, L. Transient core surface dynamics from ground and satellite geomagnetic data. Geophys. J. Int. 233, 1890–1915 (2023).
Gubbins, D. & Roberts, P. H. Magnetohydrodynamics of the Earth’s core. Geomagnetism 2, 1–183 (1987).
Schwaiger, T., Jault, D., Gillet, N., Schaeffer, N. & Mandea, M. Local estimation of quasi-geostrophic flows in Earth’s core. Geophys. J. Int., 234, 494–511 (2023).
Aubert, J., Gastine, T. & Fournier, A. Spherical convective dynamos in the rapidly rotating asymptotic regime. J. Fluid. Mech. 813, 558–593 (2017).
Aubert, J. & Gillet, N. The interplay of fast waves and slow convection in geodynamo simulations nearing Earth’s core conditions. Geophys. J. Int. 225, 1854–1873 (2021).
Lister, J. R. & Buffett, B. A. Stratification of the outer core at the core–mantle boundary. Phys. Earth Planet. Inter. 105, 5–19 (1998).
Takehiro, S. & Lister, J. R. Penetration of columnar convection into an outer stably stratified layer in rapidly rotating spherical fluid shells. Earth Planet. Sci. Lett. 187, 357–366 (2001).
Buffett, B. A., Knezek, N. & Holme, R. Evidence for MAC waves at the top of Earth’s core and implications for variations in length of day. Geophys. J. Int. 204, 1789–1800 (2016).
Buffett, B. & Matsui, H. Equatorially trapped waves in Earth’s core. Geophys. J. Int. 218, 1210–1225 (2019).
Friis-Christensen, E., Lühr, H. & Hulot, G. Swarm: a constellation to study the Earth’s magnetic field. Earth Planets Space 58, 351–358 (2006).
Olsen, N. & Floberghagen, R. Exploring geospace from space: the Swarm Satellite Constellation Mission. Space Res. Today 203, 61–71 (2018).
Sabaka, T. J., Tøffner-Clausen, L., Olsen, N. & Finlay, C. C. CM6: a comprehensive geomagnetic field model derived from both CHAMP and Swarm satellite observations. Earth Planets Space 72, 80 (2020).
Ropp, G., Lesur, V., Baerenzung, J. & Holschneider, M. Sequential modelling of the Earth’s core magnetic field. Earth Planets Space 72, 153 (2020).
Finlay, C. C., Kloss, C., Olsen, N., Hammer, M. D. & Tøffner-Clausen, L. The CHAOS-7 geomagnetic field model and observed changes in the South Atlantic Anomaly. Earth Planets Space 72, 156 (2020).
Baerenzung, J., Holschneider, M., Saynish-Wagner, J. & Thomas, M. Kalmag: a high spatio-temporal model of the geomagnetic field. Earth Planets Space 74, 139 (2022).
Lowes, F. J. Spatial power spectrum of the main geomagnetic field, and extrapolation to the core. Geophys. J. R. Astr. Soc. 36, 717–730 (1974).
Risbo, T. Jordens magnetfelt, et uløst hydrodynamisk problem. Gamma Tidsskrift Fysik 50, 21–40 (1982).
Benton, E. R. & Whaler, K. A. Rapid diffusion of poloidal geomagnetic field through the weakly conducting mantle: a perturbation solution. Geophys. J. R. Astr. Soc. 75, 77–100 (1983).
Shure, L., Parker, R. L. & Langel, R. A. A preliminary harmonic spline model from MAGSAT data. J. Geophys. Res. 90, 11505–11512 (1985).
Gubbins, D. & Bloxham, J. Geomagnetic field analysis — III. Magnetic fields on the core–mantle boundary. Geophys. J. R. Astr. Soc. 80, 695–713 (1985).
Jackson, A. Intense equatorial flux spots on the surface of Earth’s core. Nature 424, 760–763 (2003).
Bloxham, J. & Gubbins, D. The secular variation of Earth’s magnetic field. Nature 317, 777–781 (1985).
Gubbins, D. & Bloxham, J. Morphology of the geomagnetic field and implications for the geodynamo. Nature 325, 509–511 (1987).
Langel, R. A. & Estes, R. H. A geomagnetic field spectrum. Geophys. Res. Lett. 9, 250–253 (1982).
Holme, R., Olsen, N. & Bairstow, F. Mapping geomagnetic secular variation at the core–mantle boundary. Geophys. J. Int. 186, 521–528 (2011).
Aubert, J. Recent geomagnetic variations and the force balance in Earth’s core. Geophys. J. Int. 221, 378–393 (2020).
Olsen, N., Mandea, M., Sabaka, T. J. & Tøffner-Clausen, L. CHAOS-2 – a geomagnetic field model derived from one decade of continuous satellite data. Geophys. J. Int. 179, 1477–1487 (2009).
Finlay, C. C., Olsen, N., Kotsiaros, S., Gillet, N. & Tøffner-Clausen, L. Recent geomagnetic secular variation from Swarm and ground observatories as estimated in the CHAOS-6 geomagnetic field model. Earth Planets Space 68 (2016).
Olsen, N. et al. The CHAOS-4 geomagnetic field model. Geophys. J. Int. 197, 815–827 (2014).
Roberts, P. H. & Scott, S. On the analysis of the secular variation — 1 : a hydromagnetic constraint. J. Geomagn. Geoelectr. 17, 137–151 (1965).
Alboussiére, T. Fundamentals of MHD. in Dynamos Vol. 88 of Les Houches (eds Cardin, P. & Cugliandolo, L.) 1–44 (Elsevier, 2008).
Gillet, N., Jault, D. & Finlay, C. C. Planetary gyre, time-dependent eddies, torsional waves, and equatorial jets at the Earth’s core surface. J. Geophys. Res. Solid Earth 120, 3991–4013 (2015).
Pais, M. A., Morozova, A. L. & Schaeffer, N. Variability modes in core flows inverted from geomagnetic field models. Geophys. J. Int. 200, 402–420 (2014).
Halley, E. A theory of the variation of the magnetic compass. Phil. Trans. R. Soc. Lond. 13, 208–221 (1683).
Jackson, A., Jonkers, A. R. T. & Walker, M. R. Four centuries of geomagnetic secular variation from historical records. Phil. Trans. R. Soc. Lond. A 358, 957–990 (2000).
Lloyd, D. & Gubbins, D. Toroidal fluid motion at the top of the Earth’s core. Geophys. J. Int. 100, 455–467 (1990).
Backus, G. E. & Mouël, J.-L. L. The region on the core–mantle boundary where a geostrophic velocity field can be determined from frozen-flux magnetic data. Geophys. J. Int. 85, 617–628 (1986).
Aubert, J. Earth’s core internal dynamics 1840–2010 imaged by inverse geodynamo modelling. Geophys. J. Int. 197, 1321–1334 (2014).
Amit, H. & Christensen, U. R. Accounting for magnetic diffusion in core flow inversions from geomagnetic secular variation. Geophys. J. Int. 175, 913–924 (2008).
Barrois, O., Hammer, M. D., Finlay, C. C., Martin, Y. & Gillet, N. Assimilation of ground and satellite magnetic measurements: inference of core surface magnetic and velocity field changes. Geophys. J. Int. 215, 695–712 (2018).
Barrois, O. et al. Erratum: ‘Contributions to the geomagnetic secular variation from a reanalysis of core surface dynamics’ and ‘Assimilation of ground and satellite magnetic measurements: inference of core surface magnetic and velocity field changes’. Geophys. J. Int. 216, 2106–2113 (2018).
Hulot, G., Le Mouël, J.-L. & Wahr, J. Taking into account truncation problems and geomagnetic model accuracy in assessing computed flows at the core–mantle boundary. Geophys. J. Int. 108, 224–246 (1992).
Rau, S., Christensen, U., Jackson, A. & Wicht, J. Core flow inversion tested with numerical dynamo models. Geophys. J. Int. 141, 485–497 (2000).
Eymin, C. & Hulot, G. On core surface flows inferred from satellite magnetic data. Phys. Earth Planet. Inter. 152, 200–220 (2005).
Bloxham, J. The determination of fluid flow at the core surface from geomagnetic observations. in Mathematical Geophysics, A Survey of Recent Developments in Seismology and Geodynamics (eds Vlaar, N. J., Nolet, G., Wortel, M. J. R. & Cloetingh, S. A. P. L.) 189–208 (Reidel, 1988).
Whaler, K. A., Olsen, N. & Finlay, C. C. Decadal variability in core surface flows deduced from geomagnetic observatory monthly means. Geophys. J. Int. 207, 228–243 (2016).
Bärenzung, J., Holschneider, M., Wicht, J., Sanchez, S. & Lesur, V. Modeling and predicting the short-term evolution of the geomagnetic field. J. Geophys. Res. Solid Earth 123, 4539–4560 (2018).
Kloss, C. & Finlay, C. C. Time-dependent low-latitude core flow and geomagnetic field acceleration pulses. Geophys. J. Int. 217, 140–168 (2019).
Whaler, K. A., Hammer, M. D., Finlay, C. & Olsen, N. Core surface flow changes associated with the 2017 Pacific geomagnetic jerk. Geophys. Res. Lett. 49, e2022GL098616 (2022).
Braginsky, S. I. Dynamics of the stably stratified ocean at the top of the core. Phys. Earth Planet. Int. 111, 21–34 (1999).
Davidson, P. A. Scaling laws for planetary dynamos. Geophys. J. Int. 195, 67–74 (2013).
Dumberry, M. & More, C. Weak magnetic field changes over the Pacific due to high conductance in lowermost mantle. Nat. Geosci. 13, 516–520 (2020).
Hori, K., Tobias, S. M. & Jones, C. A. Solitary magnetostrophic Rossby waves in spherical shells. J. Fluid Mech. 904, R3 (2020).
Livermore, P. W., Finlay, C. C. & Bayliff, M. Recent north magnetic pole acceleration towards Siberia caused by flux lobe elongation. Nat. Geosci. 13, 387–391 (2020).
Alfvén, H. Existence of EM-hydrodynamic waves. Nature 150, 405–406 (1942).
Davidson, P. A. An Introduction to Magnetohydrodynamics (Cambridge Univ. Press, 2010).
Finlay, C. C. Waves in the presence of magnetic fields, rotation and convection. in Lecture Notes on Les Houches Summer School: Dynamos, Vol. 88 (eds Cardin, P. & Cugliandolo, L. F.) Ch. 8, 403–450 (Elsevier, 2008).
Chulliat, A. & Maus, S. Geomagnetic secular acceleration, jerks, and a localized standing wave at the core surface from 2000 to 2010. J. Geophys. Res. 119, 1531–1543 (2014).
Finlay, C. C., Olsen, N. & Toffner-Clausen, L. DTU candidate field models for IGRF-12 and the CHAOS-5 geomagnetic field model. Earth Planets Space 67, 114 (2015).
Chi-Durán, R., Avery, M. S., Knezek, N. & Buffett, B. A. Decomposition of geomagnetic secular acceleration into traveling waves using complex empirical orthogonal functions. Geophys. Res. Lett. 47, e2020GL087940 (2020).
Gillet, N., Gerick, F., Angappan, R. & Jault, D. A dynamical prospective on interannual geomagnetic field changes. Surv. Geophys. 43, 71–105 (2021).
Chulliat, A., Thébault, E. & Hulot, G. Core field acceleration pulse as a common cause of the 2003 and 2007 geomagnetic jerks. Geophys. Res. Lett. 37, L07301 (2010).
Macmillan, S. & Olsen, N. Observatory data and the Swarm mission. Earth Planets Space 65, 1355–1362 (2013).
Olsen, N., Albini, G., Bouffard, J., Parrinello, T. & Tøffner-Clausen, L. Magnetic observations from CryoSat-2: calibration and processing of satellite platform magnetometer data. Earth Planets Space 72, 48, (2020).
Hammer, M. D., Finlay, C. C. & Olsen, N. Applications for CryoSat-2 satellite magnetic data in studies of Earth’s core field variations. Earth Planets Space 73, 73 (2021).
Chulliat, A., Alken, P. & Maus, S. Fast equatorial waves propagating at the top of the Earth’s core. Geophys. Res. Lett. 42, 3321–3329 (2015).
Aubert, J. & Finlay, C. C. Geomagnetic jerks and rapid hydromagnetic waves focusing at Earth’s core surface. Nat. Geosci. 12, 393–398 (2019).
Gillet, N. Spatial and temporal changes of the geomagnetic field: insights from forward and inverse core field models. in Geomagnetism, Aeronomy and Space Weather: A Journey from the Earth’s Core to the Sun (eds Mandea, M., Korte, M., Petrovsky, E. & Yau, A.) Ch. 9 (International Association of Geomagnetism and Aeronomy, 2019).
Kloss, C. Geomagnetic Field Modelling and Polar Ionospheric Currents. PhD thesis, Technical Univ. Denmark (2021).
Braginsky, S. I. Torsional magnetohydrodynamic vibrations in the Earth’s core and variations in day length. Geomagn. Aeron. 10, 1–8 (1970).
Jault, D. & Finlay, C. C. 8.09 — Waves in the core and mechanical core–mantle interactions. in Treatise on Geophysics 2nd edn (ed. Schubert, G.) 225–244 (Elsevier, 2015).
Gillet, N., Jault, D. & Canet, E. Excitation of travelling torsional normal modes in an Earth’s core model. Geophys. J. Int. 210, 1503–1516 (2017).
Zatman, S. & Bloxham, J. Torsional oscillations and the magnetic field within the Earth’s core. Nature 388, 760–763 (1997).
Aubert, J. Geomagnetic acceleration and rapid hydromagnetic wave dynamics in advanced numerical simulations of the geodynamo. Geophys. J. Int. 214, 531–547 (2018).
Luo, J., Marti, P. & Jackson, A. Waves in the Earth’s core. II. Magneto–Coriolis modes. Proc. R. Soc. A Math. Phys. Eng. Sci. 478, 20220108 (2022).
Wicht, J. & Christensen, U. R. Torsional oscillations in dynamo simulations. Geophys. J. Int. 181, 1367–1380 (2010).
Teed, R. J., Jones, C. A. & Tobias, S. M. The dynamics and excitation of torsional waves in geodynamo simulations. Geophys. J. Int. 196, 724–735 (2014).
Hori, K., Teed, R. & Jones, C. The dynamics of magnetic Rossby waves in spherical dynamo simulations: a signature of strong-field dynamos? Phys. Earth Planet. Inter. 276, 68–85 (2018).
Jault, D., Gire, C. & Le Mouël, J. L. Westward drift, core motions and exchanges of angular momentum between core and mantle. Nature 333, 353–356 (1988).
Jackson, A., Bloxham, J. & Gubbins, D. Time-dependent flow at the core surface and conservation of angular momentum in the coupled core–mantle system. Dyn. Earths Deep Interior Earth Rotation 72, 97–107 (1993).
Triana, S. et al. Core eigenmodes and their impact on the earth’s rotation. Surv. Geophys. 43, 107–148 (2022).
Finlay, C. C. et al. Challenges handling magnetospheric and ionospheric signals in internal geomagnetic field modelling. Space Sci. Rev. 206, 157 (2017).
Duan, P. & Huang, C. Intradecadal variations in length of day and their correspondence with geomagnetic jerks. Nat. Commun. 11, 2273 (2020).
Ding, H., An, Y. & Shen, W. New evidence for the fluctuation characteristics of intradecadal periodic signals in length-of-day variation. J. Geophys. Res. Solid Earth 126, e2020JB020990 (2021).
Taylor, J. The magneto-hydrodynamics of a rotating fluid and the Earth’s dynamo problem. Proc. R. Soc. A Math. Phys. Eng. Sci. 274, 274–283 (1963).
Labbé, F., Jault, D. & Gillet, N. On magnetostrophic inertia-less waves in quasi-geostrophic models of planetary cores. Geophys. Astrophys. Fluid Dyn. 109, 587–610 (2015).
Canet, E., Fournier, A. & Jault, D. Forward and adjoint quasi-geostrophic models of the geomagnetic secular variation. J. Geophys. Res. Solid Earth 114, B11101 (2009).
Licht, A., Hulot, G., Gallet, Y. & Thébault, E. Ensembles of low degree archeomagnetic field models for the past three millennia. Phys. Earth Planet. Inter. 224, 38–67 (2013).
Dormy, E. & Mandea, M. Tracking geomagnetic impulses at the core–mantle boundary. Earth Planet. Sci. Lett. 237, 300–309 (2005).
Hori, K., Jones, C. A. & Teed, R. J. Slow magnetic Rossby waves in the Earth’s core. Geophys. Res. Lett. 42, 6622–6629 (2015).
Fournier, A. et al. An introduction to data assimilation and predictability in geomagnetism. Space. Sci. Rev. 155, 247–291 (2010).
Sanchez, S., Wicht, J. & Bärenzung, J. Predictions of the geomagnetic secular variation based on the ensemble sequential assimilation of geomagnetic field models by dynamo simulations. Earth Planets Space 72, 157 (2020).
Mound, J. E., Davies, C. J., Rost, S. & Aurnou, J. Regional stratification at the top of Earth’s core due to core–mantle boundary heat flux variations. Nat. Geosci. 12, 575–580 (2019).
Hulot, G. et al. Nanosatellite high-precision magnetic missions enabled by advances in a stand-alone scalar/vector absolute magnetometer. IGARSS 2018 — 2018 IEEE International Geoscience and Remote Sensing Symposium, 6320–6323 (2018).
Zhang, K. A novel geomagnetic satellite constellation: science and applications. Earth Planet. Phys. 7, 4–21 (2023).
Alken, P. et al. International geomagnetic reference field: the thirteenth generation. Earth Planets Space 73, 49 (2021).
Bizouard, C. & Gambis, D. The combined solution c04 for Earth orientation parameters consistent with international terrestrial reference frame 2005. In Geodetic Reference Frames, 265–270 (Springer, 2009).
Dobslaw, H., Dill, R., Grötzsch, A., Brzeziński, A. & Thomas, M. Seasonal polar m7otion excitation from numerical models of atmosphere, ocean, and continental hydrosphere. J. Geophys. Res. Solid Earth 115 (2010).
Langel, R. A., Estes, R. H. & Mead, G. D. Some new methods in geomagnetic field modelling applied to the 1960–1980 epoch. J. Geomagn. Geoelectr. 34, 327–349 (1982).
Olsen, N. et al. Ørsted initial field model. Geophys. Res. Lett. 27, 3607–3610 (2000).
Reigber, C., Lühr, H. & Schwintzer, P. CHAMP mission status. Adv. Space Res. 30, 129–134 (2002).
Tøffner-Clausen, L., Lesur, V., Olsen, N. & Finlay, C. C. In-flight scalar calibration and characterisation of the swarm magnetometry package. Earth Planets Space 68, 129 (2016).
Pozzo, M., Davies, C. J., Gubbins, D. & Alfè, D. Thermal and electrical conductivity of iron at Earth’s core conditions. Nature 485, 355–358 (2012).
Konôpková, Z., McWilliams, R. S., Gómez-Pérez, N. & Goncharov, A. F. Direct measurement of thermal conductivity in solid iron at planetary core conditions. Nature 534, 99–101 (2016).
Acknowledgements
The authors thank the European Space Agency (ESA) for the prompt availability of Swarm L1b data. The staff of the geomagnetic observatories and INTERMAGNET are thanked for supplying high-quality observatory data. This work was supported by the ESA under the framework of EO Science for Society, through contract 4000127193/19/NL/IA (Swarm+4D Deep Earth: Core). This work has also been partially supported by the French Spatial Agency (CNES) in the context of the Swarm mission of the ESA. The authors also thank the Isaac Newton Institute for Mathematical Sciences, Cambridge, for support and hospitality during the programme DYT2, during which final work on this paper was carried out, supported by the EPSRC grant no. EP/R014604/1.
Author information
Authors and Affiliations
Contributions
All authors contributed to and reviewed the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Earth & Environment thanks Richard Holme (Frederik Madsen), Céline Guervilly and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Alfvén waves
-
Waves arising in an electrically conducting fluid owing to fluid inertia and magnetic (Lorentz) forces.
- Frozen-flux approximation
-
Under this approximation, changes in the magnetic field are produced by advection and stretching of a moving conductor and magnetic diffusion effects are neglected.
- High latitude jet
-
A localized region of high fluid velocity located under Alaska and Siberia that is associated with a distinctive pattern of magnetic field change at high northern latitudes.
- Hydromagnetic waves
-
Waves that can occur in electrically conducting fluids in the presence of a strong magnetic field with properties dependent on the force balance in the system; examples include Alfvén waves, Magneto–Coriolis and Magneto–Archimedes–Coriolis waves.
- Inner core tangent cylinder
-
An imaginary cylinder parallel to the rotation axis of the Earth and just touching the inner core in the equatorial plane that acts as a natural dynamical barrier to flows.
- Magneto–Archimedes–Coriolis
-
(MAC). A dynamical balance between magnetic (Lorentz), Archimedes (buoyancy) and Coriolis forces that is thought to be important in the core on decade and longer timescales.
- Magneto–Coriolis (MC) waves
-
Waves in rapidly rotating, electrically conducting fluids where the force balance is between magnetic and Coriolis effects, with inertia having a negligible role; also sometimes called magnetostrophic waves.
- Magnetohydrodynamic
-
Combination of hydrodynamics, as described by the Navier–Stokes equation, and electrodynamics under the quasi-static approximation as described by the magnetic induction equation; also sometimes called hydromagnetics.
- Planetary gyre
-
The basic anticyclonic (westward) circulation of the liquid metal in the outer core that is of planetary scale, offset from the rotation axis towards low latitudes under the Atlantic hemisphere and largely equatorially symmetric albeit with some localized departures.
- Quasi-geostrophic
-
(QG). An approximate leading order balance in the Navier–Stokes equation between the Coriolis force and the pressure gradient that occurs in rapidly rotating fluids and leads to approximately columnar flow structures.
- Swarm satellite mission
-
Trio of low-Earth-orbit satellites launched by the European Space Agency in 2013 to survey the magnetic field of the Earth.
- Torsional waves
-
Special Alfvén waves that can occur in rapidly rotating fluids that are axisymmetric and equatorially symmetric and propagate in the cylindrical radial direction.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Finlay, C.C., Gillet, N., Aubert, J. et al. Gyres, jets and waves in the Earth’s core. Nat Rev Earth Environ 4, 377–392 (2023). https://doi.org/10.1038/s43017-023-00425-w
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s43017-023-00425-w