Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sustainable remediation and redevelopment of brownfield sites

Abstract

Widespread pollution from industrial activities has driven land degradation with detrimental human health effects, especially in urban areas. Remediation and redevelopment of the estimated 5 million brownfield sites globally is needed to support the sustainable transition and increase urban ecosystem services, but many traditional strategies are often environmentally harmful. In this Review, we outline sustainable remediation strategies for the clean-up of contaminated soil and groundwater at brownfield sites. Conventional remediation strategies, such as dig and haul, or pump and treat, ignore secondary environmental burdens and socioeconomic impacts; over their life cycle, some strategies are more detrimental than taking no action. Sustainable remediation technologies, such as sustainable immobilization, low-impact bioremediation, new forms of in-situ chemical treatment and innovative passive barriers, can substantially reduce the environmental footprint of remediation and maximize overall net benefits. Compared with traditional methods, they can typically reduce the life-cycle greenhouse gas emissions by ~50–80%. Integrating remediation with redevelopment through nature-based solutions and sustainable energy systems could further increase the socioeconomic benefit, while providing carbon sequestration or green energy. The long-term resilience of these systems still needs to be understood, and ethics and equality must be quantified, to ensure that these systems are robust and just.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global distribution of brownfield sites.
Fig. 2: Socioeconomic impacts of brownfields and their remediation.
Fig. 3: Brownfield remediation and redevelopment strategies.
Fig. 4: Life-cycle environmental impact of sustainable and traditional remediation technologies.
Fig. 5: Resilience of sustainable remediation approaches under changing social and geophysical conditions.

Similar content being viewed by others

References

  1. World Urbanization Prospects, The 2018 Revision, ST/ESA/SER.A/420 (UN Department of Economic and Social Affairs, 2019).

  2. Adams, D., De Sousa, C. & Tiesdell, S. Brownfield development: a comparison of North American and British approaches. Urban. Stud. 47, 75–104 (2010).

    Article  Google Scholar 

  3. Overview of EPA’s Brownfields Program. USEPA https://www.epa.gov/brownfields/overview-epas-brownfields-program (2022).

  4. Remediation Management of Complex Sites (Interstate Technology and Regulatory Council, 2017).

  5. McHugh, T., Loll, P. & Eklund, B. Recent advances in vapor intrusion site investigations. J. Environ. Manage. 204, 783–792 (2017).

    Article  Google Scholar 

  6. Lemming, G., Hauschild, M. Z. & Bjerg, P. L. Life cycle assessment of soil and groundwater remediation technologies: literature review. Int. J. Life Cycle Assess. 15, 115–127 (2010).

    Article  Google Scholar 

  7. Haninger, K., Ma, L. & Timmins, C. The value of brownfield remediation. J. Assoc. Environ. Resour. Econ. 4, 197–241 (2017).

    Google Scholar 

  8. Pasetto, R., Mattioli, B. & Marsili, D. Environmental justice in industrially contaminated sites. A review of scientific evidence in the WHO European Region. Int. J. Environ. Res. Public Health 16, 998 (2019).

    Article  Google Scholar 

  9. Downey, L. & Hawkins, B. Race, income, and environmental inequality in the United States. Sociol. Perspect. 51, 759–781 (2008).

    Article  Google Scholar 

  10. Assessing Global Land Use: Balancing Consumption with Sustainable Supply. A Report of the Working Group on Land and Soils of the International Resource Panel (UNEP, 2014).

  11. Roadmap to a Resource Efficient Europe, COM(2011) 571 final (European Commission, 2011).

  12. Bartke, S. & Schwarze, R. No perfect tools: trade-offs of sustainability principles and user requirements in designing support tools for land-use decisions between greenfields and brownfields. J. Environ. Manage. 153, 11–24 (2015).

    Article  Google Scholar 

  13. Hou, D. & Al-Tabbaa, A. Sustainability: a new imperative in contaminated land remediation. Environ. Sci. Policy 39, 25–34 (2014).

    Article  Google Scholar 

  14. Smith, J. W. Debunking myths about sustainable remediation. Remediation 29, 7–15 (2019).

    Article  Google Scholar 

  15. Green and Sustainable Remediation: State of the Science and Practice (Interstate Technology and Regulatory Council, 2011).

  16. Superfund Remedy Report, 16th edition (USEPA, 2020).

  17. Ellis, D. E. & Hadley, P. W. Sustainable remediation white paper — integrating sustainable principles, practices, and metrics into remediation projects. Remediation 19, 5–114 (2009).

    Article  Google Scholar 

  18. Hou, D., Al-Tabbaa, A., Guthrie, P. & Hellings, J. Using a hybrid LCA method to evaluate the sustainability of sediment remediation at the London Olympic Park. J. Clean. Prod. 83, 87–95 (2014).

    Article  Google Scholar 

  19. O’Connor, D. & Hou, D. in Sustainable Remediation of Contaminated Soil and Groundwater: Materials, Processes, and Assessment (ed. Hou, D.) 43–73 (Butterworth-Heinemann/Elsevier, 2020).

  20. Beames, A., Broekx, S., Lookman, R., Touchant, K. & Seuntjens, P. Sustainability appraisal tools for soil and groundwater remediation: How is the choice of remediation alternative influenced by different sets of sustainability indicators and tool structures? Sci. Total Environ. 470, 954–966 (2014).

    Article  Google Scholar 

  21. Hou, D. et al. Climate change mitigation potential of contaminated land redevelopment: a city-level assessment method. J. Clean. Prod. 171, 1396–1406 (2018).

    Article  Google Scholar 

  22. Nagengast, A., Hendrickson, C. & Lange, D. Commuting from US brownfield and greenfield residential development neighborhoods. J. Urban. Plan. Dev. 137, 298–304 (2011).

    Article  Google Scholar 

  23. Green Remediation: Incorporating Sustainable Environmental Practices into Remediation of Contaminated Sites (USEPA, 2008).

  24. Surf-UK: A Framework for Assessing the Sustainability of Soil and Groundwater Remediation (Contaminated Land: Applications in Real Environments (CL:AIRE), 2010).

  25. Harclerode, M. et al. Integrating the social dimension in remediation decision‐making: state of the practice and way forward. Remediation 26, 11–42 (2015).

    Article  Google Scholar 

  26. Dillon, L. Race, waste, and space: brownfield redevelopment and environmental justice at the Hunters Point shipyard. Antipode 46, 1205–1221 (2014).

    Article  Google Scholar 

  27. Wu, Z. Investigating Changzhou Toxic site for schooling: improper construction practice and delayed soil remediation Project. CNR News (2016).

  28. Cappuyns, V. Inclusion of social indicators in decision support tools for the selection of sustainable site remediation options. J. Environ. Manage. 184, 45–56 (2016).

    Article  Google Scholar 

  29. Huysegoms, L. & Cappuyns, V. Critical review of decision support tools for sustainability assessment of site remediation options. J. Environ. Manage. 196, 278–296 (2017).

    Article  Google Scholar 

  30. Bardos, P., Lazar, A. & Willenbrock, N. A Review of Published Sustainability Indicator Sets: How Applicable Are They to Contaminated Land Remediation Indicator-Set Development? (Contaminated Land: Applications in Real Environments (CL:AIRE), 2009).

  31. Pizzol, L. et al. Timbre Brownfield Prioritization Tool to support effective brownfield regeneration. J. Environ. Manage. 166, 178–192 (2016).

    Article  Google Scholar 

  32. Bardos, R. P. et al. Optimising value from the soft re-use of brownfield sites. Sci. Total Environ. 563, 769–782 (2016).

    Article  Google Scholar 

  33. A Guide to Developing and Documenting Cost Estimates During the Feasibility Study (USEPA, 2000).

  34. Squires, G. & Hutchison, N. Barriers to affordable housing on brownfield sites. Land Use Policy 102, 105276 (2021).

    Article  Google Scholar 

  35. Bartke, S. et al. Targeted selection of brownfields from portfolios for sustainable regeneration: user experiences from five cases testing the Timbre Brownfield Prioritization Tool. J. Environ. Manage. 184, 94–107 (2016).

    Article  Google Scholar 

  36. Thornton, G., Franz, M., Edwards, D., Pahlen, G. & Nathanail, P. The challenge of sustainability: incentives for brownfield regeneration in Europe. Environ. Sci. Policy 10, 116–134 (2007).

    Article  Google Scholar 

  37. Carroll, D. A. & Eger, R. J. III Brownfields, crime, and tax increment financing. Am. Rev. Public Adm. 36, 455–477 (2006).

    Article  Google Scholar 

  38. Damigos, D. & Kaliampakos, D. Assessing the benefits of reclaiming urban quarries: a CVM analysis. Landsc. Urban Plann. 64, 249–258 (2003).

    Article  Google Scholar 

  39. Gamper-Rabindran, S. & Timmins, C. Does cleanup of hazardous waste sites raise housing values? Evidence of spatially localized benefits. J. Environ. Econ. Manage. 65, 345–360 (2013).

    Article  Google Scholar 

  40. Office of Land and Emergency Management (OLEM) Program Benefits. USEPA https://www.epa.gov/aboutepa/office-land-and-emergency-management-olem-program-benefits (2022).

  41. Redevelopment Economics at Superfund Sites. USEPA https://www.epa.gov/superfund-redevelopment/redevelopment-economics-superfund-sites (2022).

  42. Söderqvist, T. et al. Cost-benefit analysis as a part of sustainability assessment of remediation alternatives for contaminated land. J. Environ. Manage. 157, 267–278 (2015).

    Article  Google Scholar 

  43. Glumac, B., Han, Q. & Schaefer, W. F. Actors’ preferences in the redevelopment of brownfield: latent class model. J. Urban. Plan. Dev. 141, 04014017 (2015).

    Article  Google Scholar 

  44. Ameller, J., Rinaudo, J.-D. & Merly, C. The contribution of economic science to brownfield redevelopment: a review. Integr. Environ. Assess. Manag. 16, 184–196 (2020).

    Article  Google Scholar 

  45. Li, X. et al. Using a conceptual site model for assessing the sustainability of brownfield regeneration for a soft reuse: a case study of Port Sunlight River Park (UK). Sci. Total Environ. 652, 810–821 (2019).

    Article  Google Scholar 

  46. A Citizen’s Guide to Solidification and Stabilization, EPA 542-F-12-019 (USEPA, 2012).

  47. Andrew, R. M. Global CO2 emissions from cement production. Earth Syst. Sci. Data 10, 195–217 (2018).

    Article  Google Scholar 

  48. Wang, L. et al. Green remediation of As and Pb contaminated soil using cement-free clay-based stabilization/solidification. Environ. Int. 126, 336–345 (2019).

    Article  Google Scholar 

  49. Abdalqader, A. F., Jin, F. & Al-Tabbaa, A. Development of greener alkali-activated cement: utilisation of sodium carbonate for activating slag and fly ash mixtures. J. Clean. Prod. 113, 66–75 (2016).

    Article  Google Scholar 

  50. McLellan, B. C., Williams, R. P., Lay, J., Van Riessen, A. & Corder, G. D. Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. J. Clean. Prod. 19, 1080–1090 (2011).

    Article  Google Scholar 

  51. Hou, D., Al-Tabbaa, A. & Hellings, J. Sustainable site clean-up from megaprojects: lessons from London 2012. In Proceedings of the Institution of Civil Engineers-Engineering Sustainability, 61–70 (Thomas Telford, 2022).

  52. Capobianco, O., Costa, G. & Baciocchi, R. Assessment of the environmental sustainability of a treatment aimed at soil reuse in a brownfield regeneration context. J. Ind. Ecol. 22, 1027–1038 (2018).

    Article  Google Scholar 

  53. Palansooriya, K. N. et al. Soil amendments for immobilization of potentially toxic elements in contaminated soils: a critical review. Environ. Int. 134, 105046 (2020).

    Article  Google Scholar 

  54. Haynes, R. J. & Naidu, R. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutr. Cycl. Agroecosyst. 51, 123–137 (1998).

    Article  Google Scholar 

  55. Chan, K. Y. & Heenan, D. P. Lime-induced loss of soil organic carbon and effect on aggregate stability. Soil. Sci. Soc. Am. J. 63, 1841–1844 (1999).

    Article  Google Scholar 

  56. Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).

    Article  Google Scholar 

  57. Kong, X. et al. Super-stable mineralization of cadmium by calcium-aluminum layered double hydroxide and its large-scale application in agriculture soil remediation. Chem. Eng. J. 407, 127178 (2021).

    Article  Google Scholar 

  58. Wang, L. et al. Biochar composites: emerging trends, field successes, and sustainability implications. Soil. Use Manag. 38, 14–38 (2022).

    Article  Google Scholar 

  59. Tang, J., Zhu, W., Kookana, R. & Katayama, A. Characteristics of biochar and its application in remediation of contaminated soil. J. Biosci. Bioeng. 116, 653–659 (2013).

    Article  Google Scholar 

  60. Wang, L. et al. Role of biochar toward carbon neutrality. Carbon Res. 2, 2 (2023).

    Article  Google Scholar 

  61. He, M. et al. A critical review on performance indicators for evaluating soil biota and soil health of biochar-amended soils. J. Hazard. Mater. 414, 125378 (2021).

    Article  Google Scholar 

  62. Blanco-Canqui, H. Does biochar improve all soil ecosystem services? GCB Bioenergy 13, 291–304 (2021).

    Article  Google Scholar 

  63. Yaashikaa, P. R., Kumar, P. S., Varjani, S. & Saravanan, A. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnol. Rep. 28, e00570 (2020).

    Article  Google Scholar 

  64. Hou, D. Sustainable remediation in China: elimination, immobilization, or dilution. Environ. Sci. Technol. 55, 15572–15574 (2021).

    Article  Google Scholar 

  65. Wang, L. et al. Field trials of phytomining and phytoremediation: a critical review of influencing factors and effects of additives. Crit. Rev. Environ. Sci. Technol. 50, 2724–2774 (2020).

    Article  Google Scholar 

  66. Pilon-Smits, E. Phytoremediation. Annu. Rev. Plant. Biol. 56, 15–39 (2005).

    Article  Google Scholar 

  67. Batty, L. C. & Dolan, C. The potential use of phytoremediation for sites with mixed organic and inorganic contamination. Crit. Rev. Environ. Sci. Technol. 43, 217–259 (2013).

    Article  Google Scholar 

  68. Hou, D. et al. Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nat. Rev. Earth Environ. 1, 366–381 (2020).

    Article  Google Scholar 

  69. Vocciante, M. et al. Enhancements in phytoremediation technology: environmental assessment including different options of biomass disposal and comparison with a consolidated approach. J. Environ. Manage. 237, 560–568 (2019).

    Article  Google Scholar 

  70. Contreras, Á. et al. A poplar short-chain dehydrogenase reductase plays a potential key role in biphenyl detoxification. Proc. Natl Acad. Sci. USA 118, e2103378118 (2021).

    Article  Google Scholar 

  71. Cary, T. J. et al. Field trial demonstrating phytoremediation of the military explosive RDX by XplA/XplB-expressing switchgrass. Nat. Biotechnol. 39, 1216–1219 (2021).

    Article  Google Scholar 

  72. Song, Y. et al. Nature based solutions for contaminated land remediation and brownfield redevelopment in cities: a review. Sci. Total Environ. 663, 568–579 (2019).

    Article  Google Scholar 

  73. Bolan, N. S., Park, J. H., Robinson, B., Naidu, R. & Huh, K. Y. Phytostabilization. A green approach to contaminant containment. Adv. Agron. 112, 145–204 (2011).

    Article  Google Scholar 

  74. Stroo, H. & Ward, C. H. In Situ Remediation of Chlorinated Solvent Plumes (Springer, 2010).

  75. Minjune, Y., D, A. M. & W, J. J. Back diffusion from thin low permeability zones. Environ. Sci. Technol. 49, 415–422 (2015).

    Article  Google Scholar 

  76. Barros, F., Fernàndez‐Garcia, D., Bolster, D. & Sanchez‐Vila, X. A risk‐based probabilistic framework to estimate the endpoint of remediation: concentration rebound by rate‐limited mass transfer. Water Resour. Res. 49, 1929–1942 (2013).

    Article  Google Scholar 

  77. Crofts, T. S. et al. Shared strategies for β-lactam catabolism in the soil microbiome. Nat. Chem. Biol. 14, 556–564 (2018).

    Article  Google Scholar 

  78. Huang, S. & Jaffé, P. R. Defluorination of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) by Acidimicrobium sp. strain A6. Environ. Sci. Technol. 53, 11410–11419 (2019).

    Article  Google Scholar 

  79. Rogers, J. D., Ferrer, I., Tummings, S. S., Bielefeldt, A. R. & Ryan, J. N. Inhibition of biodegradation of hydraulic fracturing compounds by glutaraldehyde: groundwater column and microcosm experiments. Environ. Sci. Technol. 51, 10251–10261 (2017).

    Article  Google Scholar 

  80. Introduction to In-situ Bioremediation of Groundwater, 542-R-13-018 (USEPA, 2013).

  81. Ottosen, C. B. et al. Assessment of chlorinated ethenes degradation after field scale injection of activated carbon and bioamendments: application of isotopic and microbial analyses. J. Contam. Hydrol. 240, 103794 (2021).

    Article  Google Scholar 

  82. Sinha, R. K., Valani, D., Sinha, S., Singh, S. & Herat, S. in Solid Waste Management and Environmental Remediation (eds Faerber, T. & Herzog, J.) (Nova Science, 2009).

  83. Prior, J. Factors influencing residents’ acceptance (support) of remediation technologies. Sci. Total Environ. 624, 1369–1386 (2018).

    Article  Google Scholar 

  84. Lemming, G. et al. Environmental impacts of remediation of a trichloroethene-contaminated site: life cycle assessment of remediation alternatives. Environ. Sci. Technol. 44, 9163–9169 (2010).

    Article  Google Scholar 

  85. Vigil, M., Marey-Pérez, M. F., Huerta, G. M. & Cabal, V. Á. Is phytoremediation without biomass valorization sustainable? Comparative LCA of landfilling vs. anaerobic co-digestion. Sci. Total Environ. 505, 844–850 (2015).

    Article  Google Scholar 

  86. Espada, J. J., Rodriguez, R., Gari, V., Salcedo-Abraira, P. & Bautista, L. F. Coupling phytoremediation of Pb-contaminated soil and biomass energy production: a comparative life cycle assessment. Sci. Total Environ. 840, 156675 (2022).

    Article  Google Scholar 

  87. Jiang, S. J. et al. Emerging disposal technologies of harmful phytoextraction biomass (HPB) containing heavy metals: a review. Chemosphere 290, 133266 (2022).

    Article  Google Scholar 

  88. Toth, C. R. et al. Anaerobic benzene biodegradation linked to the growth of highly specific bacterial clades. Environ. Sci. Technol. 55, 7970–7980 (2021).

    Article  Google Scholar 

  89. Cadotte, M., Deschênes, L. & Samson, R. Selection of a remediation scenario for a diesel-contaminated site using LCA. Int. J. Life Cycle Assess. 12, 239–251 (2007).

    Article  Google Scholar 

  90. Sondergaard, G. L., Binning, P. J., Bondgaard, M. & Bjerg, P. L. Multi-criteria assessment tool for sustainability appraisal of remediation alternatives for a contaminated site. J. Soils Sed. 18, 3334–3348 (2018).

    Article  Google Scholar 

  91. Technical and Regulatory Guidance for In Situ Chemical Oxidation of Contaminated Soil and Groundwater, 2nd edition (Interstate Technology and Regulatory Council, 2005).

  92. Hou, D., Al-Tabbaa, A. & Luo, J. Assessing effects of site characteristics on remediation secondary life cycle impact with a generalized framework. J. Environ. Plan. Manage. 57, 1083–1100 (2014).

    Article  Google Scholar 

  93. O’Carroll, D., Sleep, B., Krol, M., Boparai, H. & Kocur, C. Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv. Water Resour. 51, 104–122 (2013).

    Article  Google Scholar 

  94. Pak, T. et al. Pore-scale investigation of the use of reactive nanoparticles for in situ remediation of contaminated groundwater source. Proc. Natl Acad. Sci. USA 117, 13366–13373 (2020).

    Article  Google Scholar 

  95. Cao, Z. et al. Unveiling the role of sulfur in rapid defluorination of florfenicol by sulfidized nanoscale zero-valent iron in water under ambient conditions. Environ. Sci. Technol. 55, 2628–2638 (2021).

    Article  Google Scholar 

  96. Han, Y. & Yan, W. Reductive dechlorination of trichloroethene by zero-valent iron nanoparticles: reactivity enhancement through sulfidation treatment. Environ. Sci. Technol. 50, 12992–13001 (2016).

    Article  Google Scholar 

  97. O’Connor, D., Hou, D., Liu, Q., Palmer, M. R. & Varma, R. S. Nature-inspired and sustainable synthesis of sulfur-bearing Fe-rich nanoparticles. ACS Sustain. Chem. Eng. 8, 15791–15808 (2020).

    Article  Google Scholar 

  98. Hong, J., Wang, L., Lu, X. & Deng, D. Peroxide stabilizers remarkably increase the longevity of thermally activated peroxydisulfate for enhanced ISCO remediation. Water Res. 224, 119046 (2022).

    Article  Google Scholar 

  99. O’Connor, D. et al. Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials: a review. J. Control. Rel. 283, 200–213 (2018).

    Article  Google Scholar 

  100. Garcia, A. N. et al. Sulfidated nano zerovalent iron (S-nZVI) for in situ treatment of chlorinated solvents: a field study. Water Res. 174, 115594 (2020).

    Article  Google Scholar 

  101. Wang, Y. et al. Green synthesis of nanoparticles for the remediation of contaminated waters and soils: constituents, synthesizing methods, and influencing factors. J. Clean. Prod. 226, 540–549 (2019).

    Article  Google Scholar 

  102. Mondal, P., Anweshan, A. & Purkait, M. K. Green synthesis and environmental application of iron-based nanomaterials and nanocomposite: a review. Chemosphere 259, 127509 (2020).

    Article  Google Scholar 

  103. O’Connor, D. et al. Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials. Sci. Total Environ. 619, 815–826 (2018).

    Article  Google Scholar 

  104. Permeable Reactive Barriers: Lessons Learned/New Directions (Interstate Technology and Regulatory Council, 2005).

  105. Bayer, P. & Finkel, M. Life cycle assessment of active and passive groundwater remediation technologies. J. Contam. Hydrol. 83, 171–199 (2006).

    Article  Google Scholar 

  106. Higgins, M. R. & Olson, T. M. Life-cycle case study comparison of permeable reactive barrier versus pump-and-treat remediation. Environ. Sci. Technol. 43, 9432–9438 (2009).

    Article  Google Scholar 

  107. Wilkin, R. T. et al. Geochemical and isotope study of trichloroethene degradation in a zero-valent iron permeable reactive barrier: a twenty-two-year performance evaluation. Environ. Sci. Technol. 53, 296–306 (2018).

    Article  Google Scholar 

  108. Mak, M. S. H. & Lo, I. M. C. Environmental life cycle assessment of permeable reactive barriers: effects of construction methods, reactive materials and groundwater constituents. Environ. Sci. Technol. 45, 10148–10154 (2011).

    Article  Google Scholar 

  109. Li, J. et al. Sustainable environmental remediation via biomimetic multifunctional lignocellulosic nano-framework. Nat. Commun. 13, 1–13 (2022).

    Google Scholar 

  110. Laramay, F. & Crimi, M. A sustainability assessment of an in situ ultrasonic reactor for remediation of PFAS-contaminated groundwater. Remediation 31, 59–72 (2020).

    Article  Google Scholar 

  111. Dixon, L. A. M. In the bleak mid-winter: the value of brownfield sites for birds during the winter. Urban. For. Urban Green. 75, 127690 (2022).

    Article  Google Scholar 

  112. Macgregor, C. J. et al. Brownfield sites promote biodiversity at a landscape scale. Sci. Total Environ. 804, 150162 (2022).

    Article  Google Scholar 

  113. Harrison, C. & Davies, G. Conserving biodiversity that matters: practitioners’ perspectives on brownfield development and urban nature conservation in London. J. Environ. Manage. 65, 95–108 (2002).

    Article  Google Scholar 

  114. Nature-Based Solutions to Address Global Societal Challenges (IUCN, 2016).

  115. Castellar, J. A. C. et al. Nature-based solutions in the urban context: terminology, classification and scoring for urban challenges and ecosystem services. Sci. Total Environ. 779, 146237 (2021).

    Article  Google Scholar 

  116. Keesstra, S. et al. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 610–611, 997–1009 (2018).

    Article  Google Scholar 

  117. Li, H. Enhancing the stability and sustainability of ecosystem. People’s Daily (2022).

  118. Séré, G. et al. Soil construction: a step for ecological reclamation of derelict lands. J. Soils Sed. 8, 130–136 (2008).

    Article  Google Scholar 

  119. Rokia, S. et al. Modelling agronomic properties of technosols constructed with urban wastes. Waste Manage. 34, 2155–2162 (2014).

    Article  Google Scholar 

  120. Rees, F. et al. Storage of carbon in constructed technosols: in situ monitoring over a decade. Geoderma 337, 641–648 (2019).

    Article  Google Scholar 

  121. Rodrigues, J. et al. Life cycle impacts of soil construction, an innovative approach to reclaim brownfields and produce nonedible biomass. J. Clean. Prod. 211, 36–43 (2019).

    Article  Google Scholar 

  122. Nissim, W. G. & Labrecque, M. Reclamation of urban brownfields through phytoremediation: implications for building sustainable and resilient towns. Urban For. Urban Green. 65, 127364 (2021).

    Article  Google Scholar 

  123. O’Connor, D. et al. Phytoremediation: climate change resilience and sustainability assessment at a coastal brownfield redevelopment. Environ. Int. 130, 104945 (2019).

    Article  Google Scholar 

  124. Hale, S. E. et al. From landfills to landscapes-Nature-based solutions for water management taking into account legacy contamination. Integr. Environ. Assess. Manag. 18, 99–107 (2022).

    Article  Google Scholar 

  125. Greenway, M. Stormwater wetlands for the enhancement of environmental ecosystem services: case studies for two retrofit wetlands in Brisbane, Australia. J. Clean. Prod. 163, S91–S100 (2017).

    Article  Google Scholar 

  126. Smetana, S. M. & Crittenden, J. C. Sustainable plants in urban parks: a life cycle analysis of traditional and alternative lawns in Georgia, USA. Landsc. Urban. Plann. 122, 140–151 (2014).

    Article  Google Scholar 

  127. Navratil, J. et al. Brownfields do not ‘only live twice’: the possibilities for heritage preservation and the enlargement of leisure time activities in Brno, the Czech Republic. Cities 74, 52–63 (2018).

    Article  Google Scholar 

  128. Hu, K. & Pollard, M. Q. Inspired or dystopian, Beijing’s Big Air venue sparks social media debate. Reuters (2022).

  129. Maco, B. et al. Resilient remediation: addressing extreme weather and climate change, creating community value. Remediation 29, 7–18 (2018).

    Article  Google Scholar 

  130. Wang, F. et al. Technologies and perspectives for achieving carbon neutrality. Innovation 2, 100180 (2021).

    Google Scholar 

  131. Niblick, B. & Landis, A. E. Assessing renewable energy potential on United States marginal and contaminated sites. Renew. Sust. Energ. Rev. 60, 489–497 (2016).

    Article  Google Scholar 

  132. Adelaja, S., Shaw, J., Beyea, W. & McKeown, J. C. Renewable energy potential on brownfield sites: a case study of Michigan. Energy Policy 38, 7021–7030 (2010).

    Article  Google Scholar 

  133. What is RE-Powering. USEPA https://www.epa.gov/re-powering/what-re-powering (2022).

  134. Development of Wind Power Facility Helps Revitalize Rust Belt City (USEPA, 2012).

  135. An Old New England Town Lights the Way with Solar (USEPA, 2014).

  136. Pandey, V. C., Bajpai, O. & Singh, N. Energy crops in sustainable phytoremediation. Renew. Sust. Energ. Rev. 54, 58–73 (2016).

    Article  Google Scholar 

  137. Tripathi, V., Edrisi, S. A. & Abhilash, P. Towards the coupling of phytoremediation with bioenergy production. Renew. Sust. Energ. Rev. 57, 1386–1389 (2016).

    Article  Google Scholar 

  138. Pulighe, G. et al. Ongoing and emerging issues for sustainable bioenergy production on marginal lands in the Mediterranean regions. Renew. Sust. Energ. Rev. 103, 58–70 (2019).

    Article  Google Scholar 

  139. Saxena, G., Purchase, D., Mulla, S. I., Saratale, G. D. & Bharagava, R. N. Phytoremediation of heavy metal-contaminated sites: eco-environmental concerns, field studies, sustainability issues, and future prospects. Rev. Environ. Contam. Toxicol. 249, 71–131 (2019).

    Google Scholar 

  140. Ni, Z. et al. Comparative life-cycle assessment of aquifer thermal energy storage integrated with in situ bioremediation of chlorinated volatile organic compounds. Environ. Sci. Technol. 54, 3039–3049 (2020).

    Article  Google Scholar 

  141. Ni, Z., van Gaans, P., Smit, M., Rijnaarts, H. & Grotenhuis, T. Combination of aquifer thermal energy storage and enhanced bioremediation: resilience of reductive dechlorination to redox changes. Appl. Microbiol. Biotechnol. 100, 3767–3780 (2016).

    Article  Google Scholar 

  142. Libera, A. et al. Climate change impact on residual contaminants under sustainable remediation. J. Contam. Hydrol. 226, 103518 (2019).

    Article  Google Scholar 

  143. Wild, T., Dempsey, N. & Broadhead, A. Volunteered information on nature-based solutions — dredging for data on deculverting. Urban. For. Urban Green. 40, 254–263 (2019).

    Article  Google Scholar 

  144. Erdem, M. & Nassauer, J. I. Design of brownfield landscapes under different contaminant remediation policies in Europe and the United States. Landsc. J. 32, 277–292 (2013).

    Article  Google Scholar 

  145. Curran, W. & Hamilton, T. Just green enough: contesting environmental gentrification in Greenpoint, Brooklyn. Local. Env. 17, 1027–1042 (2012).

    Article  Google Scholar 

  146. Kabisch, N. et al. Nature-based solutions to climate change mitigation and adaptation in urban areas: perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecol. Soc. 21, 39 (2016).

    Article  Google Scholar 

  147. Norrman, J. et al. Integration of the subsurface and the surface sectors for a more holistic approach for sustainable redevelopment of urban brownfields. Sci. Total Environ. 563, 879–889 (2016).

    Article  Google Scholar 

  148. Loures, L. & Vaz, E. Exploring expert perception towards brownfield redevelopment benefits according to their typology. Habitat. Int. 72, 66–76 (2018).

    Article  Google Scholar 

  149. Hou, D. & O’Connor, D. in Sustainable Remediation of Contaminated Soil and Groundwater: Materials, Processes, and Assessment (ed. Hou, D.) 1–17 (Butterworth-Heinemann/Elsevier, 2020).

  150. Witters, N. et al. Phytoremediation, a sustainable remediation technology? II: Economic assessment of CO2 abatement through the use of phytoremediation crops for renewable energy production. Biomass Bioenergy 39, 470–477 (2012).

    Article  Google Scholar 

  151. Rist, L., Lee, J. S. H. & Koh, L. P. Biofuels: social benefits. Science 326, 1344–1344 (2009).

    Article  Google Scholar 

  152. Schüppler, S., Fleuchaus, P. & Blum, P. Techno-economic and environmental analysis of an aquifer thermal energy storage (ATES) in Germany. Geotherm. Energy 7, 1–24 (2019).

    Article  Google Scholar 

  153. Lu, H., Tian, P. & He, L. Evaluating the global potential of aquifer thermal energy storage and determining the potential worldwide hotspots driven by socio-economic, geo-hydrologic and climatic conditions. Renew. Sust. Energ. Rev. 112, 788–796 (2019).

    Article  Google Scholar 

  154. Barns, D. G., Taylor, P. G., Bale, C. S. & Owen, A. Important social and technical factors shaping the prospects for thermal energy storage. J. Energy Storage 41, 102877 (2021).

    Article  Google Scholar 

  155. Hoek, G. et al. A review of exposure assessment methods for epidemiological studies of health effects related to industrially contaminated sites. Epidemiol. Prev. 42, 21–36 (2018).

    Google Scholar 

  156. Swartjes, F. Human health risk assessment related to contaminated land: state of the art. Environ. Geochem. Health 37, 651–673 (2015).

    Article  Google Scholar 

  157. Lodge, E. K. et al. The association between residential proximity to brownfield sites and high-traffic areas and measures of immunity. J. Expo. Sci. Environ. Epidemiol. 30, 824–834 (2020).

    Article  Google Scholar 

  158. Litt, J. S., Tran, N. L. & Burke, T. A. Examining urban brownfields through the public health ‘macroscope’. Environ. Health Perspect. 110, 183–193 (2002).

    Article  Google Scholar 

  159. Technology Screening Matrix. Federal Remediation Technologies Roundtable (FRTR) https://frtr.gov/matrix/default.cfm (2022).

  160. Laprise, M., Lufkin, S. & Rey, E. An indicator system for the assessment of sustainability integrated into the project dynamics of regeneration of disused urban areas. Build. Environ. 86, 29–38 (2015).

    Article  Google Scholar 

  161. Brown, B. B., Perkins, D. D. & Brown, G. Crime, new housing, and housing incivilities in a first‐ring suburb: multilevel relationships across time. Hous. Policy Debate 15, 301–345 (2004).

    Article  Google Scholar 

  162. Gallagher, P. M., Spatari, S. & Cucura, J. Hybrid life cycle assessment comparison of colloidal silica and cement grouted soil barrier remediation technologies. J. Hazard. Mater. 250–251, 421–430 (2013).

    Article  Google Scholar 

  163. Papageorgiou, A., Azzi, E. S., Enell, A. & Sundberg, C. Biochar produced from wood waste for soil remediation in Sweden: carbon sequestration and other environmental impacts. Sci. Total Environ. 776, 145953 (2021).

    Article  Google Scholar 

  164. Pranjic, A. M. et al. Comparative life cycle assessment of possible methods for the treatment of contaminated soil at an environmentally degraded site. J. Environ. Manage. 218, 497–508 (2018).

    Article  Google Scholar 

  165. Sakaguchi, I. et al. Assessment of soil remediation technologies by comparing health risk reduction and potential impacts using unified index, disability-adjusted life years. Clean. Technol. Environ. Policy 17, 1663–1670 (2015).

    Article  Google Scholar 

  166. Sanscartier, D., Margni, M., Reimer, K. & Zeeb, B. Comparison of the secondary environmental impacts of three remediation alternatives for a diesel-contaminated site in Northern Canada. Soil. Sediment. Contam. 19, 338–355 (2010).

    Article  Google Scholar 

  167. Green Remediation: Best Management Practices for Excavation and Surface Restoration (USEPA, 2019).

  168. Suer, P. & Andersson-Skold, Y. Biofuel or excavation? Life cycle assessment (LCA) of soil remediation options. Biomass Bioenergy 35, 969–981 (2011).

    Article  Google Scholar 

  169. Pump-and-Treat Ground-Water Remediation. A Guide for Decision Makers and Practitioners (USEPA, 1996).

  170. Groundwater Pump and Treat. FRTR https://frtr.gov/matrix/Groundwater-Pump-and-Treat/ (2022).

  171. Desorption and Incineration. FRTR https://frtr.gov/matrix/Desorption-Incineration/ (2022).

  172. Community Guide to Thermal Desorption (USEPA, 2021).

  173. Community Guide to In Situ Chemical Reduction (USEPA, 2021).

  174. Stabilization and Solidification of Contaminated Soil and Waste: A Manual of Practice (USEPA, 2015).

  175. Handbook for Stabilization/Solidification of Hazardous Wastes (USEPA, 2015).

  176. Jin, Y. et al. Integrated life cycle assessment for sustainable remediation of contaminated agricultural soil in China. Environ. Sci. Technol. 55, 12032–12042 (2021).

    Article  Google Scholar 

  177. Owsianiak, M., Lemming, G., Hauschild, M. Z. & Bjerg, P. L. Assessing environmental sustainability of remediation technologies in a life cycle perspective is not so easy. Environ. Sci. Technol. 47, 1182–1183 (2013).

    Article  Google Scholar 

  178. ISO/PRF 18504 Soil Quality — Guidance on Sustainable Remediation. ISO https://www.iso.org/standard/62688.html (2017).

  179. Lesage, P., Ekvall, T., Deschenes, L. & Samson, R. Environmental assessment of brownfield rehabilitation using two different life cycle inventory models. Part 1: methodological approach. Int. J. Life Cycle Assess. 12, 391–398 (2007).

    Google Scholar 

  180. Earles, J. M. & Halog, A. Consequential life cycle assessment: a review. Int. J. Life Cycle Assess. 16, 445–453 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (grant no. 2020YFC1808000) and National Natural Science Foundation of China (grant no. 42225703).

Author information

Authors and Affiliations

Authors

Contributions

D.H. led the conceptualization, data analysis and writing of the Review. L.W. contributed to data collection. A.A.-T., D.O’C., Q.H., Y.Z., L.W., N.K., Y.S.O., D.C.W.T., N.S.B. and J.R. reviewed and edited the article.

Corresponding author

Correspondence to Deyi Hou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks P. L. Bjerg, G. Mackinnon, M.-O. Simonnot and W. G. Nissim for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Back diffusion

The contamination of a high permeability zone of groundwater aquifer by the diffusive transport of contaminants out of an adjacent low permeability zone.

Bioaugmentation

The addition of microorganisms to groundwater for contaminant degradation.

Biochar

A solid material obtained from thermochemical conversion of biomass in an oxygen-limited environment.

Biostimulation

The addition of rate-limiting nutrients to groundwater to stimulate contaminant degradation by native microorganisms.

Brownfield

Former developed sites that are derelict or underused because of potential or perceived contamination of soil and groundwater by hazardous substances.

Dig and haul

The excavation and off-site disposal process of contaminated soil, which can require pretreatment to meet land disposal restrictions.

Greenfield

An area of land that has not previously been developed.

Hydraulic control

A technique used to control the movement of contaminated groundwater.

Layered double hydroxides

A class of synthetic clay minerals with brucite-like cationic layers containing anions in the hydrated interlayer for charge balance.

Nature-based solution

Remediation strategies that are inspired and supported by nature, simultaneously providing human well-being and biodiversity benefits.

Permeable reactive barrier

A passive system for in-situ groundwater remediation, where contaminated water passes through an active material with high permeability, and contaminants are sorbed or degraded.

Phytoremediation

The use of plants to extract (phytoextraction), stabilize (phytostabilization), degrade (phytodegradation and rhizoremediation) or volatilize (phytovolatilization) contaminants either from the unsaturated soil (vadose zone) or groundwater.

Pump and treat

An ex-situ remediation system where contaminated groundwater is pumped from the subsurface, treated aboveground and discharged.

Solidification and stabilization

A remediation technology where contaminated soil is physically bound and enclosed within a solidified matrix, or chemically reacted and immobilized by the stabilizing agent.

Sustainable remediation

Remediation strategies and technologies that maximize the net environmental, social and economic benefits.

Thermal desorption

A physical process designed to remove volatile contaminants from soil via heating.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, D., Al-Tabbaa, A., O’Connor, D. et al. Sustainable remediation and redevelopment of brownfield sites. Nat Rev Earth Environ 4, 271–286 (2023). https://doi.org/10.1038/s43017-023-00404-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00404-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing