Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms to generate ultrahigh-temperature metamorphism

Abstract

Ultrahigh-temperature (UHT; Tmax ≥ 900 °C) metamorphism requires unusually high heat in continental crust at depths of 15–55 km, but how such extreme thermal conditions are achieved is enigmatic. In this Review, we investigate UHT metamorphism, based on advances in metamorphic petrology and numerical modelling, to identify the tectonic settings where UHT metamorphism occurs. UHT rocks are spatially related to convergent plate margins and spatially correlate with the assembly of supercontinents, such as the formation of Rodinia (1,350–850  Ma). Commonly, UHT occurrences are linked to arc–backarc systems, thinned lithosphere or orogenic plateaus. Elevated mantle heat in younger arc and backarc systems is related to slab rollback, whereas thinned lithosphere in ancient orogens is related to lithospheric peeling or shallow slab breakoff. By contrast, UHT metamorphism in orogenic plateaus is a result of radiogenic heating during thickening, sometimes with elevated mantle heat during orogenic collapse. Geophysical mapping of Moho temperature and depth beneath present-day orogens reveals the locations where UHT metamorphism is occurring, such as in the Tibetan Plateau and the North American Cordillera. Future research should include improved geodynamic modelling of UHT metamorphism and the respective tectonic settings to establish quantitative correlations between a viable heat source and the spatial extent of UHT metamorphism.

Key points

  • Occurrences of ultrahigh-temperature (UHT) metamorphism are widespread in the geological record since about 3,100 Ma. After the Archaean, since about 2,200 Ma, the mechanisms of UHT metamorphism are closely related to the supercontinent cycle and tectonic processes at convergent plate margins.

  • The most likely tectonic settings to generate UHT metamorphism are at depth in arc–backarc systems, in continental collisional belts, and in thinned orogens associated with lithospheric extension or delamination.

  • In arc–backarc settings and/or thinned orogens, UHT metamorphism is characterized by isobaric or decompression heating and then cooling-dominated pressure–temperature (PT) paths, and short durations of heating (≤30 Myr). Heating is dominated by elevated mantle heat flux beneath thinned lithosphere, probably due to slab rollback in Phanerozoic orogens, and due to lithospheric peeling or shallow slab breakoff in Precambrian orogens.

  • In continental collisional belts, eclogite- or HP granulite-facies metamorphism is commonly followed by UHT metamorphism generated by heating during decompression; thus, the event is characterized by a clockwise PT path. Such UHT metamorphism is most likely caused by a combination of radiogenic heating in thickened crust and then elevated mantle heat flux during orogenic collapse.

  • Alternatively, UHT metamorphism can be generated in continental crust that has unusually high radiogenic heat production — although radiogenic heating alone is unlikely to be the sole cause of UHT metamorphism. In these rare cases, the duration of heating is generally longer (≥30 Myr), and the retrograde PT paths are commonly decompression dominated.

  • Secular variation in the T/P ratios and durations of UHT metamorphism correlate with cooling rate, with the highest T/P ratios, longest durations and lowest cooling rates occurring in the mid-Proterozoic (1,350–850 Ma) during the assembly of Rodinia. Orogenic style in the mid-Proterozoic favoured the formation of large-scale, long-lived UHT metamorphic terranes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: P–T conditions and possible tectonic settings of UHT and other high-grade metamorphism.
Fig. 2: Spatiotemporal distribution of UHT metamorphism and correlation with the supercontinent cycle.
Fig. 3: Representative metamorphic features of UHT metapelitic granulites.
Fig. 4: UHT metamorphism at thickened continental orogens.
Fig. 5: UHT metamorphism at subduction-related and collisional orogens.
Fig. 6: Thermal regime at the Moho beneath central–eastern Tibet and the western United States.

Similar content being viewed by others

Data availability

The data for Figs. 1 and 2 are available in the online Supplementary Data file.

References

  1. Harley, S. L. in Geology Society Special Publications Vol. 138 (eds Treloar, P. J. & O’Brien, P. J.) 81–107 (Geological Society of London, 1998). This article defined UHT metamorphism and recognized two types of post-peak pressure–temperature (P–T) path, which are close to isobaric cooling and close to isothermal decompression.

  2. Brown, M. Metamorphic conditions in orogenic belts: a record of secular change. Int. Geol. Rev. 49, 193–234 (2007). This was one of the first articles to document the secular change of metamorphism through Earth history, argue that the occurrence of UHT metamorphism is closely related to the supercontinent cycle and propose the generation of UHT metamorphism in backarc settings.

    Article  Google Scholar 

  3. Harley, S. L. Refining the P–T records of UHT crustal metamorphism. J. Metamorph. Geol. 26, 125–154 (2008).

    Article  Google Scholar 

  4. Kelsey, D. E. & Hand, M. On ultrahigh temperature crustal metamorphism: phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings. Geosci. Front. 6, 311–356 (2015). This paper provided a systematic review of UHT metamorphism, summarizing major advances including the quantification of UHT conditions by phase equilibrium modelling and trace element thermometry, linking metamorphic ages with P–T points/paths by using HREE partitioning, and providing insight into the heat sources and tectonic settings.

    Article  Google Scholar 

  5. White, R. W. & Powell, R. Melt loss and the preservation of granulite facies mineral assemblages. J. Metamorph. Geol. 20, 621–632 (2002).

    Google Scholar 

  6. Brown, M. & Johnson, T. Secular change in metamorphism and the onset of global plate tectonics. Am. Miner. 103, 181–196 (2018). This work established the relationship between changes in thermal gradients evident in the metamorphic rock record and the evolution of geodynamic regimes, and proposed that the emergence of plate tectonics began during the late Mesoarchaean, based on the widespread record of metamorphism since that time.

    Article  Google Scholar 

  7. Harley, S. L. in Encyclopedia of Geology 2nd edition (eds Alderton, D. & Elias, S. A.) 522–552 (Elsevier, 2021). A comprehensive guidebook to the study of UHT metamorphism, especially for students and beginners.

  8. Kelsey, D. E. On ultrahigh-temperature crustal metamorphism. Gondwana Res. 13, 1–29 (2008).

    Article  Google Scholar 

  9. Lei, H. C. & Xu, H. J. A review of ultrahigh temperature metamorphism. J. Earth Sci. 29, 1167–1180 (2018).

    Article  Google Scholar 

  10. Sengupta, P. et al. Petro-tectonic imprints in the sapphirine granulites from Anantagiri, Eastern Ghats Mobile Belt, India. J. Petrol. 31, 971–996 (1990).

    Article  Google Scholar 

  11. Brown, M. & Johnson, T. Time’s arrow, time’s cycle: granulite metamorphism and geodynamics. Miner. Mag. 83, 323–338 (2019).

    Article  Google Scholar 

  12. Beaumont, C., Jamieson, R. A., Nguyen, M. H. & Medvedev, S. Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan–Tibetan orogen. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2003jb002809 (2004).

    Article  Google Scholar 

  13. Jamieson, R. A., Beaumont, C., Medvedev, S. & Nguyen, M. H. Crustal channel flows: 2. Numerical models with implications for metamorphism in the Himalayan–Tibetan orogen. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2003jb002811 (2004). This was one of the first articles to report results of modelling the formation of a Himalaya-type large hot orogen and to document channel flow in the mid-crust underneath the Tibetan Plateau.

    Article  Google Scholar 

  14. Jamieson, R. A. & Beaumont, C. Coeval thrusting and extension during lower crustal ductile flow — implications for exhumation of high-grade metamorphic rocks. J. Metamorph. Geol. 29, 33–51 (2011).

    Article  Google Scholar 

  15. Currie, C. A. & Hyndman, R. D. The thermal structure of subduction zone back arcs. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2005jb004024 (2006).

    Article  Google Scholar 

  16. Hyndman, R. D. Mountain building orogeny in precollision hot backarcs: North American Cordillera, India-Tibet, and Grenville Province. J. Geophys. Res. Solid Earth 124, 2057–2079 (2019).

    Article  Google Scholar 

  17. Collins, W. J. Hot orogens, tectonic switching, and creation of continental crust. Geology 30, 535–538 (2002).

    Article  Google Scholar 

  18. Iwamori, H. Thermal effects of ridge subduction and its implications for the origin of granitic batholith and paired metamorphic belts. Earth Planet. Sci. Lett. 181, 131–144 (2000).

    Article  Google Scholar 

  19. Sizova, E., Gerya, T. & Brown, M. Contrasting styles of Phanerozoic and Precambrian continental collision. Gondwana Res. 25, 522–545 (2014). This paper highlighted the difference between the styles of Phanerozoic and Precambrian continental collision due to secular mantle cooling, and proposed that shallow slab breakoff during the Precambrian precluded the formation of deeply subducted rocks.

    Article  Google Scholar 

  20. Gorczyk, W., Smithies, H., Korhonen, F., Howard, H. & De Gromard, R. Q. Ultra-hot Mesoproterozoic evolution of intracontinental central Australia. Geosci. Front. 6, 23–37 (2015).

    Article  Google Scholar 

  21. Chowdhury, P., Chakraborty, S. & Gerya, T. V. Time will tell: secular change in metamorphic timescales and the tectonic implications. Gondwana Res. 93, 291–310 (2021). This paper discussed a valid model (lithospheric peeling underneath a thinned orogen) to explain Archaean UHT metamorphism and juvenile magmatism when the mantle was warmer than today.

    Article  Google Scholar 

  22. Chowdhury, P., Chakraborty, S., Gerya, T. V., Cawood, P. A. & Capitanio, F. A. Peel-back controlled lithospheric convergence explains the secular transitions in Archean metamorphism and magmatism. Earth Planet Sci. Lett. https://doi.org/10.1016/j.epsl.2020.116224 (2020).

    Article  Google Scholar 

  23. Kroll, H., Evangelakakis, C. & Voll, G. Two-feldspar geothermometry — a review and revision for slowly cooled rocks. Contrib. Mineral. Petrol. 114, 510–518 (1993).

    Article  Google Scholar 

  24. Benisek, A., Kroll, H. & Cemic, L. New developments in two-feldspar thermometry. Am. Mineral. 89, 1496–1504 (2004).

    Article  Google Scholar 

  25. Zack, T., Moraes, R. & Kronz, A. Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer. Contrib. Mineral. Petrol. 148, 471–488 (2004).

    Article  Google Scholar 

  26. Watson, E. B., Wark, D. A. & Thomas, J. B. Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol. 151, 413–433 (2006).

    Article  Google Scholar 

  27. Ferry, J. M. & Watson, E. B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Mineral. Petrol. 154, 429–437 (2007).

    Article  Google Scholar 

  28. Tomkins, H. S., Powell, R. & Ellis, D. J. The pressure dependence of the zirconium-in-rutile thermometer. J. Metamorph. Geol. 25, 703–713 (2007).

    Article  Google Scholar 

  29. Holland, T. J. B. & Powell, R. An internally consistent thermodynamic data set for phases of petrological interest. J. Metamorph. Geol. 16, 309–343 (1998).

    Article  Google Scholar 

  30. Kelsey, D. E., White, R. W., Holland, T. J. B. & Powell, R. Calculated phase equilibria in K2O-FeO-MgO-Al2O3-SiO2-H2O for sapphirine-quartz-bearing mineral assemblages. J. Metamorph. Geol. 22, 559–578 (2004).

    Article  Google Scholar 

  31. Powell, R. & Holland, T. J. B. On thermobarometry. J. Metamorph. Geol. 26, 155–179 (2008).

    Article  Google Scholar 

  32. Powell, R., White, R. W., Green, E. C. R., Holland, T. J. B. & Diener, J. F. A. On parameterizing thermodynamic descriptions of minerals for petrological calculations. J. Metamorph. Geol. 32, 245–260 (2014).

    Article  Google Scholar 

  33. Rubatto, D. Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chem. Geol. 184, 123–138 (2002).

    Article  Google Scholar 

  34. Whitehouse, M. J. & Platt, J. P. Dating high-grade metamorphism — constraints from rare-earth elements in zircon and garnet. Contrib. Mineral. Petrol. 145, 61–74 (2003).

    Article  Google Scholar 

  35. Kohn, M. J. & Malloy, M. A. Formation of monazite via prograde metamorphic reactions among common silicates: implications for age determinations. Geochim. Cosmochim. Acta 68, 101–113 (2004).

    Article  Google Scholar 

  36. Kelly, N. M. & Harley, S. L. An integrated microtextural and chemical approach to zircon geochronology: refining the Archaean history of the Napier Complex, East Antarctica. Contrib. Mineral. Petrol. 149, 57–84 (2005).

    Article  Google Scholar 

  37. Kelly, N. M., Clarke, G. L. & Harley, S. L. Monazite behaviour and age significance in poly-metamorphic high-grade terrains: a case study from the western Musgrave Block, central Australia. Lithos 88, 100–134 (2006).

    Article  Google Scholar 

  38. Guevara, V. E. et al. Polyphase zircon growth during slow cooling from ultrahigh temperature: an example from the Archean Pikwitonei granulite domain. J. Petrol. https://doi.org/10.1093/petrology/egaa021 (2020).

    Article  Google Scholar 

  39. Jiao, S. et al. Texturally-controlled U–Th–Pb monazite geochronology reveals Paleoproterozoic UHT metamorphic evolution in the Khondalite Belt, North China craton. J. Petrol. https://doi.org/10.1093/petrology/egaa023 (2020).

    Article  Google Scholar 

  40. Jiao, S. J. et al. The timing and duration of high-temperature to ultrahigh-temperature metamorphism constrained by zircon U–Pb–Hf and trace element signatures in the Khondalite Belt, North China craton. Contrib. Mineral. Petrol. https://doi.org/10.1007/s00410-020-01706-z (2020).

    Article  Google Scholar 

  41. Durgalakshmi et al. The timing, duration and conditions of UHT metamorphism in remnants of the former eastern Gondwana. J. Petrol. https://doi.org/10.1093/petrology/egab068 (2021).

    Article  Google Scholar 

  42. Cipar, J. H., Garber, J. M., Kylander-Clark, A. R. C. & Smye, A. J. Active crustal differentiation beneath the Rio Grande Rift. Nat. Geosci. 13, 758–763 (2020). This work documented the mechanism of crustal differentiation and UHT metamorphism by combining petrological investigation with geophysical mapping and numerical modelling.

    Article  Google Scholar 

  43. Wyatt, D. C., Smye, A. J., Garber, J. M. & Hacker, B. R. Assembly and tectonic evolution of continental lower crust: monazite petrochronology of the Ivrea-Verbano zone (Val Strona di Omegna). Tectonics 41, e2021TC006841 (2022).

    Article  Google Scholar 

  44. Cenki, B., Rey, P. F., Arcay, D. & Giordani, J. Timing of partial melting and granulite formation during the genesis of high to ultra‐high temperature terranes: insight from numerical experiments. Terra Nova 34, 193–200 (2022).

    Article  Google Scholar 

  45. Li, L., Zhang, X. Z., Liao, J., Liang, Y. L. & Dong, S. X. Geophysical constraints on the nature of lithosphere in central and eastern Tibetan plateau. Tectonophysics https://doi.org/10.1016/j.tecto.2021.228722 (2021).

    Article  Google Scholar 

  46. Schutt, D. L., Lowry, A. R. & Buehler, J. S. Moho temperature and mobility of lower crust in the western United States. Geology 46, 219–222 (2018).

    Article  Google Scholar 

  47. Harley, S. L. A matter of time: the importance of the duration of UHT metamorphism. J. Min. Pet. Sci. 111, 50–72 (2016). This paper highlighted the importance of metamorphic duration, distinguished short-lived from long-lived UHT metamorphism and proposed different mechanisms accordingly.

    Article  Google Scholar 

  48. Liu, Y. B., Mitchell, R. N., Brown, M., Johnson, T. E. & Pisarevsky, S. Linking metamorphism and plate boundaries over the past 2 billion years. Geology 50, 631–635 (2022). An important demonstration of the spatiotemporal correlation between different types of metamorphism and convergent plate boundaries as a function of distance from the trench, with high T/P metamorphism generally occurring in the orogenic hinterland.

    Article  Google Scholar 

  49. Hacker, B. R. et al. Hot and dry deep crustal xenoliths from Tibet. Science 287, 2463–2466 (2000).

    Article  Google Scholar 

  50. Hacker, B. R., Ritzwoller, M. H. & Xie, J. Partially melted, mica-bearing crust in Central Tibet. Tectonics 33, 1408–1424 (2014).

    Article  Google Scholar 

  51. Palin, R. M., Weller, O. M., Waters, D. J. & Dyck, B. Quantifying geological uncertainty in metamorphic phase equilibria modelling; a Monte Carlo assessment and implications for tectonic interpretations. Geosci. Front. 7, 591–607 (2016).

    Article  Google Scholar 

  52. Walsh, A. K. et al. P-T-t evolution of a large, long-lived, ultrahigh-temperature Grenvillian belt in central Australia. Gondwana Res. 28, 531–564 (2015).

    Article  Google Scholar 

  53. Wan, B. et al. Seismological evidence for the earliest global subduction network at 2 Ga ago. Sci. Adv. 6, eabc5491 (2020).

    Article  Google Scholar 

  54. Mitchell, R. N. et al. The supercontinent cycle. Nat. Rev. Earth Environ. 2, 358–374 (2021).

    Article  Google Scholar 

  55. Bleeker, W. The late Archean record: a puzzle in ca. 35 pieces. Lithos 71, 99–134 (2003).

    Article  Google Scholar 

  56. Liu, Y. et al. Archean geodynamics: ephemeral supercontinents or long-lived supercratons. Geology 49, 794–798 (2021).

    Article  Google Scholar 

  57. Dhuime, B., Hawkesworth, C. J., Cawood, P. A. & Storey, C. D. A change in the geodynamics of continental growth 3 billion years ago. Science 335, 1334–1336 (2012).

    Article  Google Scholar 

  58. Tang, M., Chen, K. & Rudnick, R. L. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science 351, 372–375 (2016).

    Article  Google Scholar 

  59. Cawood, P. A. et al. Geological archive of the onset of plate tectonics. Phil. Trans. R. Soc. A 376, 20170405 (2018).

    Article  Google Scholar 

  60. Holder, R. M., Viete, D. R., Brown, M. & Johnson, T. E. Metamorphism and the evolution of plate tectonics. Nature 572, 378–381 (2019). This paper established the temporal correlation of the appearance of bimodal metamorphism and the global emergence of plate tectonics since the Neoarchaean.

    Article  Google Scholar 

  61. Dien, G. E., Doucet, L. S., Li, Z.-X., Cox, G. & Mitchell, R. Global geochemical fingerprinting of plume intensity suggests coupling with the supercontinent cycle. Nat. Commun. 10, 5270 (2019).

    Article  Google Scholar 

  62. Hawkesworth, C. J., Cawood, P. A. & Dhuime, B. The evolution of the continental crust and the onset of plate tectonics. Front. Earth Sci. https://doi.org/10.3389/feart.2020.00326 (2020).

    Article  Google Scholar 

  63. Brown, M., Johnson, T. & Gardiner, N. J. Plate tectonics and the Archean Earth. Annu. Rev. Earth Planet. Sci. 48, 291–320 (2020).

    Article  Google Scholar 

  64. Chowdhury, P., Gerya, T. & Chakraborty, S. Emergence of silicic continents as the lower crust peels off on a hot plate-tectonic Earth. Nat. Geosci. 10, 698–703 (2017).

    Article  Google Scholar 

  65. Bédard, J. H. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochim. Cosmochim. Acta 70, 1188–1214 (2006).

    Article  Google Scholar 

  66. Johnson, T. E., Brown, M., Kaus, B. J. P. & VanTongeren, J. A. Delamination and recycling of Archaean crust caused by gravitational instabilities. Nat. Geosci. 7, 47–52 (2014).

    Article  Google Scholar 

  67. Gerya, T. Precambrian geodynamics: concepts and models. Gondwana Res. 25, 442–463 (2014).

    Article  Google Scholar 

  68. Rozel, A. B., Golabek, G. J., Jain, C., Tackley, P. J. & Gerya, T. Continental crust formation on early Earth controlled by intrusive magmatism. Nature 545, 332–335 (2017).

    Article  Google Scholar 

  69. Hokada, T. Feldspar thermometry in ultrahigh-temperature metamorphic rocks: evidence of crustal metamorphism attaining ~1100 °C in the Archean Napier Complex, East Antarctica. Am. Miner. 86, 932–938 (2001).

    Article  Google Scholar 

  70. Jiao, S. J. & Guo, J. H. Application of the two-feldspar geothermometer to ultrahigh-temperature (UHT) rocks in the Khondalite belt, North China craton and its implications. Am. Mineral. 96, 250–260 (2011).

    Article  Google Scholar 

  71. Benbatta, A. et al. Ternary feldspar thermometry of Paleoproterozoic granulites from In-Ouzzal terrane (Western Hoggar, southern Algeria). J. Afr. Earth Sci. 127, 51–61 (2017).

    Article  Google Scholar 

  72. Korhonen, F. J., Brown, M., Clark, C. & Bhattacharya, S. Osumilite-melt interactions in ultrahigh temperature granulites: phase equilibria modelling and implications for the P–T–t evolution of the Eastern Ghats Province, India. J. Metamorph. Geol. 31, 881–907 (2013).

    Article  Google Scholar 

  73. Holder, R. M., Hacker, B. R., Horton, F. & Rakotondrazafy, A. F. M. Ultrahigh-temperature osumilite gneisses in southern Madagascar record combined heat advection and high rates of radiogenic heat production in a long-lived high-T orogen. J. Metamorph. Geol. 36, 855–880 (2018).

    Article  Google Scholar 

  74. Ouzegane, K., Guiraud, M. & Kienast, J. R. Prograde and retrograde evolution in high-temperature corundum granulites (FMAS and KFMASH systems) from In Ouzzal terrane (NW Hoggar, Algeria). J. Petrol. 44, 517–545 (2003).

    Article  Google Scholar 

  75. Osanai, Y. et al. Permo-Triassic ultrahigh-temperature metamorphism in the Kontum massif, central Vietnam. J. Mineral. Petrol. Sci. 99, 225–241 (2004).

    Article  Google Scholar 

  76. Sajeev, K., Osanai, Y. & Santosh, M. Ultrahigh-temperature metamorphism followed by two-stage decompression of garnet-orthopyroxene-sillimanite granulites from Ganguvarpatti, Madurai Block, southern India. Contrib. Minerol. Petrol. 148, 29–46 (2004).

    Article  Google Scholar 

  77. Pownall, J. M., Hall, R., Armstrong, R. A. & Forster, M. A. Earth’s youngest known ultrahigh-temperature granulites discovered on Seram, eastern Indonesia. Geology 42, 279–282 (2014).

    Article  Google Scholar 

  78. Jons, N., Schenk, V., Appel, P. & Razakamanana, T. Two-stage metamorphic evolution of the Bemarivo Belt of northern Madagascar: constraints from reaction textures and in situ monazite dating. J. Metamorph. Geol. 24, 329–347 (2006).

    Article  Google Scholar 

  79. Tsunogae, T. & Van Reenen, D. D. High-pressure and ultrahigh-temperature granulite-facies metamorphism of Precambiran high-grade terranes: case study of the Limpopo Complex. Geol. Soc. Am. Mem. 207, 107–124 (2011).

    Google Scholar 

  80. Dharmapriya, P. L. et al. Hybrid phase equilibria modelling with conventional and trace element thermobarometry to assess the P–T evolution of UHT granulites: an example from the Highland Complex, Sri Lanka. J. Metamorph. Geol. 39, 209–246 (2021).

    Article  Google Scholar 

  81. Holdaway, M. J. Recalibration of the GASP geobarometer in light of recent garnet and plagioclase activity models and versions of the garnet-biotite geothermometer. Am. Mineral. 86, 1117–1129 (2001).

    Article  Google Scholar 

  82. Wu, C. M. Original calibration of a garnet geobarometer in metapelite. Minerals https://doi.org/10.3390/Min9090540 (2019).

    Article  Google Scholar 

  83. Jiao, S. J., Guo, J. H., Harley, S. L. & Peng, P. Geochronology and trace element geochemistry of zircon, monazite and garnet from the garnetite and/or associated other high-grade rocks: Implications for Palaeoproterozoic tectonothermal evolution of the Khondalite Belt, North China craton. Precambrian Res. 237, 78–100 (2013).

    Article  Google Scholar 

  84. Kohn, M. J., Corrie, S. L. & Markley, C. The fall and rise of metamorphic zircon. Am. Mineral. 100, 897–908 (2015).

    Article  Google Scholar 

  85. Jiao, S. et al. Establishing the PT path of UHT granulites by geochemically distinguishing peritectic from retrograde garnet. Am. Mineral. J. Earth Planet. Mater. 106, 1640–1653 (2021).

    Article  Google Scholar 

  86. Otamendi, J. E., de la Rosa, J. D., Patiño Douce, A. E. & Castro, A. Rayleigh fractionation of heavy rare earths and yttrium during metamorphic garnet growth. Geology 30, 159–162 (2002).

    Article  Google Scholar 

  87. Jiao, S. J. et al. Establishing the P–T path of UHT granulites by geochemically distinguishing peritectic from retrograde garnet. Am. Mineral. 106, 1640–1653 (2021).

    Article  Google Scholar 

  88. Kihle, J., Harlov, D. E., Frigaard, O. & Jamtveit, B. Epitaxial quartz inclusions in corundum from a sapphirine-garnet boudin, Bamble Sector, SE Norway: SiO2-Al2O3 miscibility at high P-T dry granulite facies conditions. J. Metamorph. Geol. 28, 769–784 (2010).

    Google Scholar 

  89. Liu, T. & Wei, C. Metamorphic P–T paths and zircon U–Pb ages of Archean ultra-high temperature paragneisses from the Qian’an gneiss dome, East Hebei terrane, North China craton. J. Metamorph. Geol. 38, 329–356 (2020).

    Article  Google Scholar 

  90. Horton, F., Holder, R. M. & Swindle, C. R. An extensive record of orogenesis recorded in a Madagascar granulite. J. Metamorph. Geol. 40, 287–305 (2022).

    Article  Google Scholar 

  91. Mitchell, R. J. et al. Neoproterozoic evolution and Cambrian reworking of ultrahigh temperature granulites in the Eastern Ghats Province, India. J. Metamorph. Geol. 37, 977–1006 (2019).

    Article  Google Scholar 

  92. Halpin, J. A., Clarke, G. L., White, R. W. & Kelsey, D. E. Contrasting P–T–t paths for Neoproterozoic metamorphism in MacRobertson and Kemp Lands, east Antarctica. J. Metamorph. Geol. 25, 683–701 (2007).

    Article  Google Scholar 

  93. Harley, S. L., Kelly, N. M. & Moller, A. Zircon behaviour and the thermal histories of mountain chains. Elements 3, 25–30 (2007).

    Article  Google Scholar 

  94. Yakymchuk, C. & Brown, M. Behaviour of zircon and monazite during crustal melting. J. Geol. Soc. 171, 465–479 (2014).

    Article  Google Scholar 

  95. Kohn, M. J. & Kelly, N. M. in Petrology and Geochronology of Metamorphic Zircon, 35–62 (Wiley, 2018).

  96. Kelsey, D. E., Clark, C. & Hand, M. Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: examples using model metapelitic and metapsammitic granulites. J. Metamorph. Geol. 26, 199–212 (2008).

    Article  Google Scholar 

  97. Spear, F. S. & Pyle, J. M. Theoretical modeling of monazite growth in a low-Ca metapelite. Chem. Geol. 273, 111–119 (2010).

    Article  Google Scholar 

  98. Vorhies, S. H., Ague, J. J. & Schmitt, A. K. Zircon growth and recrystallization during progressive metamorphism, Barrovian zones, Scotland. Am. Mineral. 98, 219–230 (2013).

    Article  Google Scholar 

  99. Korhonen, F. J., Clark, C., Brown, M., Bhattacharya, S. & Taylor, R. How long-lived is ultrahigh temperature (UHT) metamorphism? Constraints from zircon and monazite geochronology in the Eastern Ghats orogenic belt, India. Precambrian Res. 234, 322–350 (2013).

    Article  Google Scholar 

  100. Taylor, R. J. M. et al. Interpreting granulite facies events through rare earth element partitioning arrays. J. Metamorph. Geol. 35, 759–775 (2017).

    Article  Google Scholar 

  101. Taylor, R. J. M. et al. Experimental determination of REE partition coefficients between zircon, garnet and melt: a key to understanding high-T crustal processes. J. Metamorph. Geol. 33, 231–248 (2015).

    Article  Google Scholar 

  102. Rubatto, D. & Hermann, J. Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chem. Geol. 241, 38–61 (2007).

    Article  Google Scholar 

  103. Clark, C., Taylor, R. J. M., Kylander-Clark, A. R. C. & Hacker, B. R. Prolonged (>100 Ma) ultrahigh temperature metamorphism in the Napier Complex, East Antarctica: a petrochronological investigation of Earth’s hottest crust. J. Metamorph. Geol. 36, 1117–1139 (2018).

    Article  Google Scholar 

  104. Kusiak, M. A. et al. Changes in zircon chemistry during Archean UHT metamorphism in the Napier Complex, Antarctica. Am. J. Sci. 313, 933–966 (2013).

    Article  Google Scholar 

  105. Kusiak, M. A., Whitehouse, M. J., Wilde, S. A., Nemchin, A. A. & Clark, C. Mobilization of radiogenic Pb in zircon revealed by ion imaging: implications for early Earth geochronology. Geology 41, 291–294 (2013).

    Article  Google Scholar 

  106. Kunz, B. E., Regis, D. & Engi, M. Zircon ages in granulite facies rocks: decoupling from geochemistry above 850 °C? Contrib. Mineral. Petrol. 173, 26 (2018).

    Article  Google Scholar 

  107. Kusiak, M. A. et al. Metallic lead nanospheres discovered in ancient zircons. Proc. Natl Acad. Sci. USA 112, 4958–4963 (2015).

    Article  Google Scholar 

  108. Brown, M., Johnson, T. E. & Spencer, C. J. Secular changes in metamorphism and metamorphic cooling rates track the evolving plate tectonic regime on Earth. J. Geol. Soc. https://doi.org/10.1144/jgs2022-050 (2022).

    Article  Google Scholar 

  109. Tang, M., Chu, X., Hao, J. & Shen, B. Orogenic quiescence in Earth’s middle age. Science 371, 728–731 (2021).

    Article  Google Scholar 

  110. Spencer, C. J., Mitchell, R. N. & Brown, M. Enigmatic Mid-proterozoic orogens: hot, thin, and low. Geophys. Res. Lett. 48, e2021GL093312 (2021).

    Article  Google Scholar 

  111. Ashwal, L. D. & Bybee, G. M. Crustal evolution and the temporality of anorthosites. Earth Sci. Rev. 173, 307–330 (2017).

    Article  Google Scholar 

  112. Bradley, D. C. Passive margins through Earth history. Earth Sci. Rev. 91, 1–26 (2008).

    Article  Google Scholar 

  113. O’Neill, C., Brown, M., Schaefer, B. & Gazi, J. A. Earth’s anomalous middle-age magmatism driven by plate slowdown. Sci. Rep. 12, 10460 (2022).

    Article  Google Scholar 

  114. Stern, R. J. The Mesoproterozoic single-lid tectonic episode: prelude to modern plate tectonics. GSA Today 30, 4–10 (2020).

    Article  Google Scholar 

  115. Roberts, N. M. et al. On the enigmatic mid-proterozoic: single-lid versus plate tectonics. Earth Planet. Sci. Lett. 594, 117749 (2022).

    Article  Google Scholar 

  116. Spear, F. S. in Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths, 25–71 (Mineralogical Society of America, 1993).

  117. Jaupart, C., Mareschal, J.-C. & Iarotsky, L. Radiogenic heat production in the continental crust. Lithos 262, 398–427 (2016).

    Article  Google Scholar 

  118. Rudnick, R. L. & Gao, S. in Treatise on Geochemistry (eds Holland, H. D. & Turekian, K. K.) 1–64 (Pergamon, 2003).

  119. Bea, F. The sources of energy for crustal melting and the geochemistry of heat-producing elements. Lithos 153, 278–291 (2012).

    Article  Google Scholar 

  120. Alessio, K. L. et al. Conservation of deep crustal heat production. Geology 46, 335–338 (2018).

    Article  Google Scholar 

  121. Williams, M. A., Kelsey, D. E. & Rubatto, D. Thorium zoning in monazite: a case study from the Ivrea–Verbano zone, NW Italy. J. Metamorph. Geol. https://doi.org/10.1111/jmg.12656 (2022).

    Article  Google Scholar 

  122. Gard, M., Hasterok, D., Hand, M. & Cox, G. Variations in continental heat production from 4 Ga to the present: evidence from geochemical data. Lithos 342, 391–406 (2019).

    Article  Google Scholar 

  123. Chamberlain, C. P. & Sonder, L. J. Heat-producing elements and the thermal and baric patterns of metamorphic belts. Science 250, 763–769 (1990).

    Article  Google Scholar 

  124. Huerta, A. D., Royden, L. H. & Hodges, K. V. The thermal structure of collisional orogens as a response to accretion, erosion, and radiogenic heating. J. Geophys. Res. Solid Earth 103, 15287–15302 (1998).

    Article  Google Scholar 

  125. Goffé, B., Bousquet, R., Henry, P. & Le Pichon, X. Effect of the chemical composition of the crust on the metamorphic evolution of orogenic wedges. J. Metamorph. Geol. 21, 123–141 (2003).

    Article  Google Scholar 

  126. Copley, A. & Weller, O. The controls on the thermal evolution of continental mountain ranges. J. Metamorph. Geol. https://doi.org/10.1111/jmg.12664 (2022).

    Article  Google Scholar 

  127. McKenzie, D. & Priestley, K. The influence of lithospheric thickness variations on continental evolution. Lithos 102, 1–11 (2008).

    Article  Google Scholar 

  128. Clark, C., Fitzsimons, I. C. W., Healy, D. & Harley, S. L. How does the continental crust get really hot? Elements 7, 235–240 (2011). This work highlighted that a long-lived mountain plateau with high radiogenic heat production and low erosion rate can lead to protracted UHT metamorphism.

    Article  Google Scholar 

  129. Clark, C. et al. Hot orogens and supercontinent amalgamation: a Gondwanan example from southern India. Gondwana Res. 28, 1310–1328 (2015).

    Article  Google Scholar 

  130. Jamieson, R. A., Beaumont, C., Warren, C. J. & Nguyen, M. H. The Grenville orogen explained? Applications and limitations of integrating numerical models with geological and geophysical data. Can. J. Earth Sci. 47, 517–539 (2010).

    Article  Google Scholar 

  131. Stüwe, K. in Geodynamics of the Lithosphere 337–367 (Springer, 2007).

  132. Andreoli, M. A., Hart, R. J., Ashwal, L. D. & Coetzee, H. Correlations between U, Th content and metamorphic grade in the western Namaqualand Belt, South Africa, with implications for radioactive heating of the crust. J. Petrol. 47, 1095–1118 (2006).

    Article  Google Scholar 

  133. Alessio, K. L. et al. Thermal modelling of very long-lived (>140 Myr) high thermal gradient metamorphism as a result of radiogenic heating in the Reynolds Range, central Australia. Lithos 352, 105280 (2020).

    Article  Google Scholar 

  134. Nandakumar, V. & Harley, S. L. Geochemical signatures of mid-crustal melting processes and heat production in a hot orogen: the Kerala Khondalite Belt, Southern India. Lithos 324, 479–500 (2019).

    Article  Google Scholar 

  135. Huang, G., Guo, J., Jiao, S. & Palin, R. What drives the continental crust to be extremely hot so quickly? J. Geophys. Res. Solid Earth 124, 11218–11231 (2019).

    Article  Google Scholar 

  136. Horton, F., Hacker, B., Kylander-Clark, A., Holder, R. & Jöns, N. Focused radiogenic heating of middle crust caused ultrahigh temperatures in southern Madagascar. Tectonics 35, 293–314 (2016).

    Article  Google Scholar 

  137. England, P. C. & Thompson, A. B. Pressure–temperature–time paths of regional metamorphism. 1. Heat-transfer during the evolution of regions of thickened continental-crust. J. Petrol. 25, 894–928 (1984).

    Article  Google Scholar 

  138. Lux, D. R., Deyoreo, J. J., Guldotti, C. V. & Decker, E. R. Role of plutonism in low-pressure metamorphic belt formation. Nature 323, 794–797 (1986).

    Article  Google Scholar 

  139. Hanson, R. B. & Barton, M. D. Thermal development of low-pressure metamorphic belts — results from two-dimensional numerical models. J. Geophys. Res. Solid Earth Planets 94, 10363–10377 (1989).

    Article  Google Scholar 

  140. Mitchell, R. K., Indares, A. & Ryan, B. High to ultrahigh temperature contact metamorphism and dry partial melting of the Tasiuyak paragneiss, Northern Labrador. J. Metamorph. Geol. 32, 535–555 (2014).

    Article  Google Scholar 

  141. Laurent, A. T., Duchene, S., Bingen, B., Bosse, V. & Seydoux-Guillaume, A. M. Two successive phases of ultrahigh temperature metamorphism in Rogaland, S. Norway: evidence from Y-in-monazite thermometry. J. Metamorph. Geol. 36, 1009–1037 (2018).

    Article  Google Scholar 

  142. Hyndman, R. D. Lower-crustal flow and detachment in the North American Cordillera: a consequence of Cordillera-wide high temperatures. Geophys. J. Int. 209, 1779–1799 (2017).

    Article  Google Scholar 

  143. Thompson, A. B., Schulmann, K., Jezek, J. & Tolar, V. Thermally softened continental extensional zones (arcs and rifts) as precursors to thickened orogenic belts. Tectonophysics 332, 115–141 (2001).

    Article  Google Scholar 

  144. Nakakuki, T. & Mura, E. Dynamics of slab rollback and induced back-arc basin formation. Earth Planet. Sci. Lett. 361, 287–297 (2013).

    Article  Google Scholar 

  145. Chen, Z. H., Schellart, W. P., Strak, V. & Duarte, J. C. Does subduction-induced mantle flow drive backarc extension? Earth Planet. Sci. Lett. 441, 200–210 (2016).

    Article  Google Scholar 

  146. Pownall, J. M. et al. Miocene UHT granulites from Seram, eastern Indonesia: a geochronological–REE study of zircon, monazite and garnet. Geol. Soc. Lond. Spec. Publ. https://doi.org/10.1144/sp478.8 (2018).

    Article  Google Scholar 

  147. Jacob, J. B., Scott, J. M., Turnbull, R. E., Tarling, M. S. & Sagar, M. W. High- to ultrahigh-temperature metamorphism in the lower crust: an example resulting from Hikurangi Plateau collision and slab rollback in New Zealand. J. Metamorph. Geol. 35, 831–853 (2017).

    Article  Google Scholar 

  148. Sizova, E., Hauzenberger, C., Fritz, H., Faryad, S. W. & Gerya, T. Late orogenic heating of (ultra)high pressure rocks: slab rollback vs. slab breakoff. Geosciences 9, 499 (2019).

    Article  Google Scholar 

  149. van Hunen, J. & Miller, M. S. Collisional processes and links to episodic changes in subduction zones. Elements 11, 119–124 (2015).

    Article  Google Scholar 

  150. Davies, J. H. & von Blanckenburg, F. Slab breakoff: a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet. Sci. Lett. 129, 85–102 (1995).

    Article  Google Scholar 

  151. van Hunen, J. & Allen, M. B. Continental collision and slab break-off: a comparison of 3-D numerical models with observations. Earth Planet. Sci. Lett. 302, 27–37 (2011).

    Article  Google Scholar 

  152. van de Zedde, D. M. A. & Wortel, M. J. R. Shallow slab detachment as a transient source of heat at midlithospheric depths. Tectonics 20, 868–882 (2001).

    Article  Google Scholar 

  153. Magni, V., Faccenna, C., van Hunen, J. & Funiciello, F. Delamination vs. break-off: the fate of continental collision. Geophys. Res. Lett. 40, 285–289 (2013).

    Article  Google Scholar 

  154. Freeburn, R., Bouilhol, P., Maunder, B., Magni, V. & van Hunen, J. Numerical models of the magmatic processes induced by slab breakoff. Earth Planet. Sci. Lett. 478, 203–213 (2017).

    Article  Google Scholar 

  155. Herzberg, C., Condie, K. & Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010).

    Article  Google Scholar 

  156. van Hunen, J. & van den Berg, A. P. Plate tectonics on the early Earth: limitations imposed by strength and buoyancy of subducted lithosphere. Lithos 103, 217–235 (2008).

    Article  Google Scholar 

  157. Gou, L. L. et al. Ultrahigh-temperature metamorphism in the Helanshan complex of the Khondalite Belt, North China craton: petrology and phase equilibria of spinel-bearing pelitic granulites. J. Metamorph. Geol. 36, 1199–1220 (2018).

    Article  Google Scholar 

  158. Beunk, F. F., de Roever, E. W. F., Yi, K. & Brouwer, F. M. Structural and tectonothermal evolution of the ultrahigh-temperature Bakhuis Granulite Belt, Guiana Shield, Surinam: Palaeoproterozoic to recent. Geosci. Front. 12, 677–692 (2021).

    Article  Google Scholar 

  159. Houseman, G. A., Mckenzie, D. P. & Molnar, P. Convective instability of a thickened boundary-layer and its relevance for the thermal evolution of continental convergent belts. J. Geophys. Res. Solid Earth 86, 6115–6132 (1981).

    Article  Google Scholar 

  160. Houseman, G. A. & Molnar, P. Gravitational (Rayleigh–Taylor) instability of a layer with non-linear viscosity and convective thinning of continental lithosphere. Geophys. J. Int. 128, 125–150 (1997).

    Article  Google Scholar 

  161. Göğüş, O. H. & Pysklywec, R. N. Near-surface diagnostics of dripping or delaminating lithosphere. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2007jb005123 (2008).

    Article  Google Scholar 

  162. Bird, P. Continental delamination and the Colorado Plateau. J. Geophys. Res. Solid Earth 84, 7561–7571 (1979).

    Article  Google Scholar 

  163. Göğüş, O. H. & Ueda, K. Peeling back the lithosphere: controlling parameters, surface expressions and the future directions in delamination modeling. J. Geodyn. 117, 21–40 (2018).

    Article  Google Scholar 

  164. Chardon, D., Gapais, D. & Cagnard, F. Flow of ultra-hot orogens: a view from the Precambrian, clues for the Phanerozoic. Tectonophysics 477, 105–118 (2009).

    Article  Google Scholar 

  165. Perchuk, A. L. et al. Precambrian ultra-hot orogenic factory: making and reworking of continental crust. Tectonophysics 746, 572–586 (2018).

    Article  Google Scholar 

  166. Smithies, R. H. et al. The Mesoproterozoic thermal evolution of the Musgrave Province in central Australia — plume vs. the geological record. Gondwana Res. 27, 1419–1429 (2015).

    Article  Google Scholar 

  167. Smithies, R. H. et al. High-temperature granite magmatism, crust–mantle interaction and the Mesoproterozoic intracontinental evolution of the Musgrave Province, Central Australia. J. Pet. 52, 931–958 (2011).

    Article  Google Scholar 

  168. Uyeda, S. & MiyashiroI, A. Plate tectonics and the Japanese islands: a synthesis. GSA Bull. 85, 1159–1170 (1974).

    Article  Google Scholar 

  169. Dickinson, W. R. & Snyder, W. S. Geometry of subducted slabs related to San-Andreas transform. J. Geol. 87, 609–627 (1979).

    Article  Google Scholar 

  170. Thorkelson, D. J. & Taylor, R. P. Cordilleran slab windows. Geology 17, 833–836 (1989).

    Article  Google Scholar 

  171. Thorkelson, D. J. Subduction of diverging plates and the principles of slab window formation. Tectonophysics 255, 47–63 (1996).

    Article  Google Scholar 

  172. DeLong, S. E., Schwarz, W. M. & Anderson, R. N. Thermal effects of ridge subduction. Earth Planet. Sci. Lett. 44, 239–246 (1979).

    Article  Google Scholar 

  173. Santosh, M. & Kusky, T. Origin of paired high pressure-ultrahigh-temperature orogens: a ridge subduction and slab window model. Terra Nova 22, 35–42 (2010).

    Article  Google Scholar 

  174. Peng, P., Guo, J. H., Windley, B. F. & Li, X. H. Halaqin volcano-sedimentary succession in the central-northern margin of the North China craton: products of Late Paleoproterozoic ridge subduction. Precambrian Res. 187, 165–180 (2011).

    Article  Google Scholar 

  175. Uehara, S. I. & Aoya, M. Thermal model for approach of a spreading ridge to subduction zones and its implications for high-P/high-T metamorphism: importance of subduction versus ridge approach ratio. Tectonics https://doi.org/10.1029/2004TC001715 (2005).

    Article  Google Scholar 

  176. Gasser, D., Rubatto, D., Bruand, E. & Stuwe, K. Large-scale, short-lived metamorphism, deformation, and magmatism in the Chugach metamorphic complex, southern Alaska: a SHRIMP U–Pb study of zircons. Geol. Soc. Am. Bull. 124, 886–905 (2012).

    Article  Google Scholar 

  177. Hill, R. I., Campbell, I. H., Davies, G. F. & Griffiths, R. W. Mantle plumes and continental tectonics. Science 256, 186–193 (1992).

    Article  Google Scholar 

  178. Sleep, N. H. Mantle plumes from top to bottom. Earth Sci. Rev. 77, 231–271 (2006).

    Article  Google Scholar 

  179. Herzberg, C. Understanding the Paleoproterozoic Circum-Superior Large Igneous Province constrains the thermal properties of Earth’s mantle through time. Precambrian Res. 375, 106671 (2022).

    Article  Google Scholar 

  180. Dawson, J. B., Harley, S. L., Rudnick, R. L. & Irel, T. R. Equilibration and reaction in Archaean quartz-sapphirine granulite xenoliths from the Lace kimberlite pipe, South Africa. J. Metamorph. Geol. 15, 253–266 (1997).

    Article  Google Scholar 

  181. Schmitz, M. D. & Bowring, S. A. Ultrahigh-temperature metamorphism in the lower crust during Neoarchean Ventersdorp rifting and magmatism, Kaapvaal craton, southern Africa. Geol. Soc. Am. Bull. 115, 533–548 (2003).

    Article  Google Scholar 

  182. Harrison, T. M., Copeland, P., Kidd, W. S. F. & Yin, A. Raising Tibet. Science 255, 1663–1670 (1992).

    Article  Google Scholar 

  183. Ding, L. et al. Timing and mechanisms of Tibetan Plateau uplift. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-022-00318-4 (2022).

    Article  Google Scholar 

  184. Turner, S. et al. Timing of Tibetan uplift constrained by analysis of volcanic-rocks. Nature 364, 50–54 (1993).

    Article  Google Scholar 

  185. Liu, C. Z., Wu, F. Y., Chung, S. L. & Zhao, Z. D. Fragments of hot and metasomatized mantle lithosphere in Middle Miocene ultrapotassic lavas, southern Tibet. Geology 39, 923–926 (2011).

    Article  Google Scholar 

  186. Ji, W. Q., Wu, F. Y., Chung, S. L. & Liu, C. Z. The Gangdese magmatic constraints on a latest Cretaceous lithospheric delamination of the Lhasa terrane, southern Tibet. Lithos 210, 168–180 (2014).

    Article  Google Scholar 

  187. Klemperer, S. L. et al. Limited underthrusting of India below Tibet: 3He/4He analysis of thermal springs locates the mantle suture in continental collision. Proc. Natl Acad. Sci. USA 119, e2113877119 (2022).

    Article  Google Scholar 

  188. Ren, Y. & Shen, Y. Finite frequency tomography in southeastern Tibet: evidence for the causal relationship between mantle lithosphere delamination and the north–south trending rifts. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2008jb005615 (2008).

    Article  Google Scholar 

  189. Chen, L. et al. Seismically constrained thermo-rheological structure of the eastern Tibetan margin: implication for lithospheric delamination. Tectonophysics 627, 122–134 (2014).

    Article  Google Scholar 

  190. Chen, M. et al. Lithospheric foundering and underthrusting imaged beneath Tibet. Nat. Commun. 8, 15659 (2017).

    Article  Google Scholar 

  191. Bao, X. & Shen, Y. Early-stage lithospheric foundering beneath the eastern Tibetan Plateau revealed by full-wave Pn tomography. Geo. Res. Lett. https://doi.org/10.1029/2019gl086469 (2020).

    Article  Google Scholar 

  192. Wu, Y. K., Bao, X. W., Zhang, B. F., Xu, Y. X. & Yang, W. C. Seismic evidence for stepwise lithospheric delamination beneath the Tibetan Plateau. Geophys. Res. Lett. 49, e2022GL098528 (2022).

    Google Scholar 

  193. Jiménez-Munt, I. & Platt, J. P. Influence of mantle dynamics on the topographic evolution of the Tibetan Plateau: Results from numerical modeling. Tectonics https://doi.org/10.1029/2006tc001963 (2006).

    Article  Google Scholar 

  194. Huangfu, P. et al. Multi-terrane structure controls the contrasting lithospheric evolution beneath the western and central-eastern Tibetan Plateau. Nat. Commun. 9, 3780 (2018).

    Article  Google Scholar 

  195. Hearn, T. M., Ni, J. F., Wang, H., Sandvol, E. A. & Chen, Y. J. Depth-dependent Pn velocities and configuration of Indian and Asian lithosphere beneath the Tibetan Plateau. Geophys. J. Int. 217, 179–189 (2019).

    Article  Google Scholar 

  196. Li, C., Van der Hilst, R. D., Meltzer, A. S. & Engdahl, E. R. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth Planet. Sc. Lett. 274, 157–168 (2008).

    Article  Google Scholar 

  197. Lei, J. S., Zhao, D. P. & Su, Y. J. Insight into the origin of the Tengchong intraplate volcano and seismotectonics in southwest China from local and teleseismic data. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2008jb005881 (2009).

    Article  Google Scholar 

  198. Huang, Z. C. et al. P and S wave tomography beneath the SE Tibetan Plateau: evidence for lithospheric delamination. J. Geophys. Res. Solid Earth 124, 10292–10308 (2019).

    Article  Google Scholar 

  199. Feng, J., Yao, H., Chen, L. & Wang, W. Massive lithospheric delamination in southeastern Tibet facilitating continental extrusion. Natl Sci. Rev. 9, nwab174 (2022).

    Article  Google Scholar 

  200. Wang, J. M. et al. First evidence of eclogites overprinted by ultrahigh temperature metamorphism in Everest East, Himalaya: implications for collisional tectonics on early Earth. Earth Planet. Sci Lett. https://doi.org/10.1016/j.epsl.2021.116760 (2021).

    Article  Google Scholar 

  201. Wu, C. G. et al. Tectonothermal transition from continental collision to post-collision: insights from eclogites overprinted in the ultrahigh-temperature granulite facies (Yadong region, central Himalaya). J. Metamorph. Geol. 40, 955–981 (2022).

    Article  Google Scholar 

  202. Dong, X., Zhang, Z., Tian, Z., Niu, Y. & Zhang, L. Protoliths and metamorphism of the central Himalayan eclogites: zircon/titanite U–Pb geochronology, Hf isotope and geochemistry. Gondwana Res. 104, 39–53 (2022).

    Article  Google Scholar 

  203. Chen, L., Song, X., Gerya, T. V., Xu, T. & Chen, Y. Crustal melting beneath orogenic plateaus: insights from 3-D thermo-mechanical modeling. Tectonophysics 761, 1–15 (2019).

    Article  Google Scholar 

  204. Zhang, X.-Z. et al. Tibetan Plateau insights into >1100°C crustal melting in the Quaternary. Geology 50, 1432–1437 (2022).

    Article  Google Scholar 

  205. Chen, S. et al. Cenozoic ultrahigh-temperature metamorphism in pelitic granulites from the Mogok metamorphic belt, Myanmar. Sci. China Earth Sci. 64, 1873–1892 (2021).

    Article  Google Scholar 

  206. Searle, M. P. et al. Tectonic evolution of the Mogok metamorphic belt, Burma (Myanmar) constrained by U–Th–Pb dating of metamorphic and magmatic rocks. Tectonics https://doi.org/10.1029/2006tc002083 (2007).

    Article  Google Scholar 

  207. Wang, Y., Zhang, X., Jiang, C., Wei, H. & Wan, J. Tectonic controls on the late Miocene-Holocene volcanic eruptions of the Tengchong volcanic field along the southeastern margin of the Tibetan Plateau. J. Asian Earth Sci. 30, 375–389 (2007).

    Article  Google Scholar 

  208. Karlstrom, K. E. et al. Tectonics of the Colorado Plateau and its margins. Annu. Rev. Earth Planet. Sci. 50, 295–322 (2022).

    Article  Google Scholar 

  209. Schmandt, B., Dueker, K., Humphreys, E. & Hansen, S. Hot mantle upwelling across the 660 beneath Yellowstone. Earth Planet. Sc. Lett. 331, 224–236 (2012).

    Article  Google Scholar 

  210. Nelson, P. L. & Grand, S. P. Lower-mantle plume beneath the Yellowstone hotspot revealed by core waves. Nat. Geosci. 11, 280–284 (2018).

    Article  Google Scholar 

  211. James, D. E., Fouch, M. J., Carlson, R. W. & Roth, J. B. Slab fragmentation, edge flow and the origin of the Yellowstone hotspot track. Earth Planet. Sci. Lett. 311, 124–135 (2011).

    Article  Google Scholar 

  212. Leonard, T. & Liu, L. J. The role of a mantle plume in the formation of Yellowstone volcanism. Geophys. Res. Lett. 43, 1132–1139 (2016).

    Article  Google Scholar 

  213. Zhou, Q., Liu, L. & Hu, J. Western US volcanism due to intruding oceanic mantle driven by ancient Farallon slabs. Nat. Geosci. 11, 70–76 (2017).

    Article  Google Scholar 

  214. Zhou, Y. Anomalous mantle transition zone beneath the Yellowstone hotspot track. Nat. Geosci. 11, 449–453 (2018).

    Article  Google Scholar 

  215. Hawley, W. B. & Allen, R. M. The fragmented death of the Farallon Plate. Geophys. Res. Lett. 46, 7386–7394 (2019).

    Article  Google Scholar 

  216. Hayob, J. L., Essene, E. J., Ruiz, J., Ortega-Gutiérrez, F. & Aranda-Gómez, J. J. Young high-temperature granulites from the base of the crust in central Mexico. Nature 342, 265 (1989).

    Article  Google Scholar 

  217. Solari, L. A., Aranda-Gómez, J. J., Moreno-Arredondo, A. & Maldonado, R. U–Pb age of a late Cenozoic ultra-high temperature metamorphic event under Central Mexico, as inferred from granulite xenoliths from Cerro El Toro, Mexico. Int. Geol. Rev. 65, 1–22 (2022).

    Google Scholar 

  218. Ghent, E. D., Edwards, B. R., Russell, J. K. & Mortensen, J. Granulite facies xenoliths from Prindle volcano, Alaska: implications for the northern Cordilleran crustal lithosphere. Lithos 101, 344–358 (2008).

    Article  Google Scholar 

  219. Campbell, I. H., Griffiths, R. W. & Hill, R. I. Melting in an Archaean mantle plume: heads it’s basalts, tails it’s komatiites. Nature 339, 697–699 (1989).

    Article  Google Scholar 

  220. Brown, M. The contribution of metamorphic petrology to understanding lithosphere evolution and geodynamics. Geosci. Front. 5, 553–569 (2014).

    Article  Google Scholar 

  221. Patiño Douce, A. E. & Harris, N. Experimental constraints on Himalayan anatexis. J. Petrol. 39, 689–710 (1998).

    Article  Google Scholar 

  222. Weller, O. M. et al. The metamorphic and magmatic record of collisional orogens. Nat. Rev. Earth Environ. 2, 781–799 (2021).

    Article  Google Scholar 

  223. Wang, C., Mitchell, R. N., Murphy, J. B., Peng, P. & Spencer, C. J. The role of megacontinents in the supercontinent cycle. Geology 49, 402–406 (2021).

    Article  Google Scholar 

  224. Korhonen, F. J., Clark, C., Brown, M. & Taylor, R. J. M. Taking the temperature of Earth’s hottest crust. Earth Planet. Sci. Lett. 408, 341–354 (2014).

    Article  Google Scholar 

  225. Kondou, N., Tsunogae, T., Santosh, M. & Shimizu, H. Sapphirine plus quartz assemblage from Ganguvarpatti: diagnostic evidence for ultrahigh-temperature metamorphism in central Madurai Block, southern India. J. Mineral. Petrol. Sci. 104, 285–289 (2009).

    Article  Google Scholar 

  226. Jiao, S. J. & Guo, J. H. Paleoproterozoic UHT metamorphism with isobaric cooling (IBC) followed by decompression-heating in the Khondalite Belt (North China craton): new evidence from two sapphirine formation processes. J. Metamorph. Geol. 38, 357–378 (2020).

    Article  Google Scholar 

  227. Whitney, D. L. & Evans, B. W. Abbreviations for names of rock-forming minerals. Am. Mineral. 95, 185–187 (2010).

    Article  Google Scholar 

  228. Kohn, M. J., Engi, M. & Lanari, P. (eds) Petrochronology: Methods and Applications. Reviews in Mineralogy and Geochemistry Vol. 83 (Mineralogical Society of America, 2017).

  229. Chakraborty, S. Diffusion in solid silicates: a tool to track timescales of processes comes of age. Annu. Rev. Earth Planet. Sci. 36, 153–190 (2008).

    Article  Google Scholar 

  230. Chowdhury, P. & Chakraborty, S. Slow cooling at higher temperatures recorded within high-P mafic granulites from the Southern Granulite Terrain, India: implications for the presence and style of plate tectonics near the Archean–Proterozoic boundary. J. Petrol. 60, 441–486 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank X. H. Li, Ling Chen and X. F. Liang for their comments on an initial draft, Y. B. Liu for help with Fig. 2be and X. F. Liang for help with Fig. 6c and f. S.J., G.Y.H. and J.H.G. were funded by grant 41890832 from the National Natural Science Foundation of China (NSFC). S.J. was funded by grant 42122018 from NSFC.

Author information

Authors and Affiliations

Authors

Contributions

S.J. and Y.C. conceived the idea. S.J. drafted the manuscript. S.J. drafted the figures with contributions from C.C. and L.C. M.B. contributed substantially to the manuscript preparation, interpretation, discussion, writing and editing of the manuscript. R.N.M., P.C. and C.C. contributed to the discussion of contents, interpretation and editing. All authors reviewed the manuscript before submission.

Corresponding author

Correspondence to Shujuan Jiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks S. Harley, F. Horton and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Accretionary region

A region at the convergent plate margin between a subducting ocean plate and overriding continental plate, generally including forearc, magmatic arc and backarc components.

Channel flow

Protracted flow of a weak, viscous crustal layer between relatively rigid yet deformable bounding crustal layers.

Closure temperature

During cooling, the temperature at which there is no longer any substantial diffusion of the parent or daughter isotopes out of the system; this temperature is dependent on cooling rate and grain size.

Geothermal gradient

The rate of temperature change with respect to increasing depth in the Earth’s interior.

Incompatible

Incompatible elements are those that prefer to be in the liquid phase rather than the solid phase during melting.

Laramide orogeny

Mountain building in western North America, starting at 70–80 Ma and ending at 35–55 Ma.

Lithospheric delamination

Detachment of the continental mantle lithosphere and/or a portion of the lowermost continental crust.

Lithospheric foundering

A type of delamination in which a cold and dense mantle lithosphere root founders into the hot mantle beneath.

Lithospheric peeling

A type of delamination in which the dense lithospheric mantle and/or portions of the lower continental crust peel off from the mid-to-upper continental crust along a plane that runs parallel to the Moho.

Mantle convection

The movement of the mantle as it transfers heat from the interior to Earth’s surface.

Mantle plumes

A mechanism of convection within the Earth’s mantle; hypothesized to explain anomalous volcanism.

Mantle potential temperature

The temperature the mantle would have at Earth’s surface if extrapolated along an adiabat without melting.

Petrochronology

The discipline that links geochronology with petrology.

Phase equilibrium modelling

The forward modelling of phase equilibria involving solid solutions in complex systems either by direct minimization of Gibbs energy or by solution of simultaneous nonlinear equations.

Prograde heating stage

The period during which temperature generally increases with time; in the case of UHT metamorphism, the duration is measured from ~700 °C to the peak temperature.

Radiogenic heating

The generation of heat via radioactive decay during the production of radiogenic nuclides.

Retrograde reaction

A metamorphic reaction that occurs after the metamorphic peak during the decrease of temperature with time.

Ridge subduction

The subduction of a mid-ocean ridge beneath the trench at a convergent boundary.

Slab breakoff

A process whereby the oceanic lithosphere detaches from the continental lithosphere as subduction locks up during continental collision.

Slab rollback

The trench migrates in the direction opposite to the plate motion of the subducting slab, also known as trench retreat.

Slab windows

Gaps that form in a subducting ocean plate when a mid-ocean ridge is subducted.

Stable continental shields

The large stable areas of low relief in the Earth’s continents that are composed of Precambrian crystalline igneous and high-grade metamorphic rocks.

Steady-state

A condition in which the variables that define the behaviour of the system or the process do not change over time.

Supercontinent

A single large landmass that includes all or most of the existing continents on the Earth.

Supercratons

Large late Archaean landmasses before the supercontinent cycle since about 2,200 Ma.

Terrane

A fault-bounded block containing a group of related rocks that have a distinct geological history compared with contiguous blocks.

Ultrahigh-temperature (UHT) metamorphism

An extreme subset of granulite-facies metamorphism that occurs at temperatures above the breakdown of biotite in metapelitic rocks, with peak temperatures that exceed 900 °C in the sillimanite stability field.

Viscous dissipation

The irreversible process by means of which the work done by deformation is transformed into heat.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, S., Brown, M., Mitchell, R.N. et al. Mechanisms to generate ultrahigh-temperature metamorphism. Nat Rev Earth Environ 4, 298–318 (2023). https://doi.org/10.1038/s43017-023-00403-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00403-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing