Abstract
The evolving mosaic of tectonic plates across the surface of the Earth sets boundary conditions for the evolution of biotic and abiotic processes and helps shape the dynamics of its interior. Reconstructing plate tectonics back through time allows scientists from a range of disciplines (such as palaeobiology, palaeoclimate, geodynamics and seismology) to investigate Earth evolution through these spatiotemporal dimensions. However, the variety and complexity of plate reconstructions can lead to some of their limitations being overlooked. In this Technical Review, we discuss the domain-specific knowledge underpinning modern quantitative plate reconstructions and convey a set of principles on how to use (but not abuse) the software or results. Open-source plate tectonic reconstruction software, like GPlates, has led to a major shift in working practices, handing non-specialists the tools to develop and integrate reconstructions based on their own datasets and expertise. However, there is no ‘one-size-fits-all’ and users need to understand what data and underlying assumptions go into making different, sometimes competing reconstruction models. It is therefore essential to consider the many ways reconstructions simplify reality when interpreting them to avoid circular reasoning. Although many aspects of deep-time reconstructions remain unresolved, future work on intercomparisons between models and uncertainty quantification is an essential pathway towards next-generation plate reconstructions.
Key points
-
Plate tectonic reconstructions have evolved from simple, rigid reconstructions to ones that incorporate the time-dependent evolution of plates and their boundaries, deformation and/or the history of subduction from seismic tomography.
-
Reconstructions can be powerfully predictive for a wide range of disciplines beyond tectonics, including palaeobiology, palaeoclimate, geodynamics and seismology.
-
With the advent of community-driven, open-source software and tools, plate models have become accessible and practicable to the wider geosciences community.
-
With this accessibility comes a responsibility for specialists and non-specialists alike to understand how these plate models are built, their weaknesses and pitfalls and how they can be used effectively to ensure correct inferences are made.
-
When reconstructing the tectonic plates of the Earth, there is no ‘one-size-fits-all’. Different data types and techniques are more applicable for different time periods, resolutions and purposes, for example, palaeomagnetics for pre-Pangea time periods.
-
Important areas of ongoing research include the quantification of uncertainty, incorporation of machine learning techniques and linking reconstructions to physics-based deep Earth models and surface (and/or biogeochemical) models.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$79.00 per year
only $6.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout






Data availability
GPlates is open-source software and can be downloaded at https://www.gplates.org/. All data and plate models shown in the figures are publicly available and can be found in the publications quoted in the text. Python workflows to create the figures can be found at https://zenodo.org/record/7634068.
References
Le Pichon, X. Fifty years of plate tectonics: afterthoughts of a witness. Tectonics 38, 2919–2933 (2019).
Le Pichon, X. Sea-floor spreading and continental drift. J. Geophys. Res. 73, 3661–3697 (1968).
Morgan, W. J. Rises, trenches, great faults, and crustal blocks. J. Geophys. Res. 73, 1959–1982 (1968).
McKenzie, D. P. & Parker, R. L. The North Pacific: an example of tectonics on a sphere. Nature 216, 1276–1280 (1967).
Scotese, C. R., Gahagan, L. M. & Larson, R. L. Plate tectonic reconstructions of the Cretaceous and Cenozoic ocean basins. Tectonophysics 155, 27–48 (1988).
Schettino, A. & Scotese, C. R. Apparent polar wander paths for the major continents (200 Ma to the present day): a palaeomagnetic reference frame for global plate tectonic reconstructions. Geophys. J. Int. 163, 727–759 (2005).
Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. Earth-Sci. Rev. 113, 212–270 (2012).
Li, Z.-X. et al. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Res. 160, 179–210 (2008).
Torsvik, T. H., Müller, R. D., Van der Voo, R., Steinberger, B. & Gaina, C. Global plate motion frames: toward a unified model. Rev. Geophys. https://doi.org/10.1029/2007RG000227 (2008). Reviews palaeomagnetic and mantle reference frames and the construction of hybrid models combining different types of observations.
Müller, R. D. et al. A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics 38, 1884–1907 (2019). The first global deforming plate model within a continuously closing plate topology network.
Schettino, A. Computer-aided paleogeographic reconstructions. Comput. Geosci. 24, 259–267 (1998).
Torsvik, T. H. & Smethurst, M. A. Plate tectonic modelling: virtual reality with GMAP. Comput. Geosci. 25, 395–402 (1999).
Cogné, J. PaleoMac: a MacintoshTM application for treating paleomagnetic data and making plate reconstructions. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2001GC000227 (2003).
Boyden, J. A. et al. Next-generation plate-tectonic reconstructions using GPlates. in Geoinformatics 95–114 (Cambridge Univ. Press, 2011).
Müller, R. D. et al. GPlates: building a virtual Earth through deep time. Geochem. Geophys. Geosyst. 19, 2243–2261 (2018).
Torsvik, T. H. et al. Deep mantle structure as a reference frame for movements in and on the Earth. Proc. Natl Acad. Sci. USA 111, 8735–8740 (2014).
Flament, N., Bodur, Ö. F., Williams, S. E. & Merdith, A. S. Assembly of the basal mantle structure beneath Africa. Nature 603, 846–851 (2022).
Mao, W. & Zhong, S. Slab stagnation due to a reduced viscosity layer beneath the mantle transition zone. Nat. Geosci. 11, 876–881 (2018).
McNamara, A. K. & Zhong, S. Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437, 1136–1139 (2005).
Conrad, C. P. & Lithgow-Bertelloni, C. How mantle slabs drive plate tectonics. Science 298, 207–209 (2002).
Dannberg, J. & Gassmöller, R. Chemical trends in ocean islands explained by plume–slab interaction. Proc. Natl Acad. Sci. USA 115, 4351–4356 (2018).
Loyd, S. J., Becker, T. W., Conrad, C. P., Lithgow-Bertelloni, C. & Corsetti, F. A. Time variability in Cenozoic reconstructions of mantle heat flow: plate tectonic cycles and implications for Earth’s thermal evolution. Proc. Natl Acad. Sci. USA 104, 14266–14271 (2007).
Goddéris, Y. et al. Onset and ending of the late Palaeozoic ice age triggered by tectonically paced rock weathering. Nat. Geosci. 10, 382–386 (2017).
Mills, B. J. W., Donnadieu, Y. & Goddéris, Y. Spatial continuous integration of Phanerozoic global biogeochemistry and climate. Gondwana Res. 100, 73–86 (2021). Setting the framework for next-generation models of biogeochemistry and climate.
Leprieur, F. et al. Plate tectonics drive tropical reef biodiversity dynamics. Nat. Commun. 7, 11461 (2016).
Cermeño, P. et al. Post-extinction recovery of the Phanerozoic oceans and biodiversity hotspots. Nature 607, 507–511 (2022).
Rojas, A., Calatayud, J., Kowalewski, M., Neuman, M. & Rosvall, M. A multiscale view of the Phanerozoic fossil record reveals the three major biotic transitions. Commun. Biol. 4, 309 (2021).
Lawley, C. J. et al. Data-driven prospectivity modelling of sediment-hosted Zn–Pb mineral systems and their critical raw materials. Ore Geol. Rev. 141, 104635 (2022).
Pehrsson, S. J., Eglington, B. M., Evans, D. A., Huston, D. & Reddy, S. M. Metallogeny and its link to orogenic style during the Nuna supercontinent cycle. Geol. Soc. Lond. Spec. Publ. 424, 83–94 (2016).
Diaz-Rodriguez, J., Müller, R. D. & Chandra, R. Predicting the emplacement of Cordilleran porphyry copper systems using a spatio-temporal machine learning model. Ore Geol. Rev. 137, 104300 (2021).
Liu, H., Gurnis, M., Leng, W., Jia, Z. & Zhan, Z. Tonga slab morphology and stress variations controlled by a Relic slab: implications for deep earthquakes in the Tonga-Fiji region. Geophys. Res. Lett. 48, e2020GL091331 (2021).
Cooper, G. F. et al. Variable water input controls evolution of the Lesser Antilles volcanic arc. Nature 582, 525–529 (2020).
Schoenbohm, L. M. & McMillan, M. Worldbuilding from tectonic first principles: integrating and challenging undergraduate knowledge through a course project. J. Geosci. Educ. 70, 56–72 (2022).
Scotese, C. R. & Baker, D. W. Continental drift reconstructions and animation. J. Geol. Educ. 23, 167–171 (1975).
Wegener, A. Die Entstehung der Kontinente und Ozeane [The Origin of Continents and Oceans] (Vieweg Braunschweig, 1915).
Swanson-Hysell, N. L., Maloof, A. C., Weiss, B. P. & Evans, D. A. No asymmetry in geomagnetic reversals recorded by 1.1-billion-year-old Keweenawan basalts. Nat. Geosci. 2, 713–717 (2009).
Evans, D. A. Proterozoic low orbital obliquity and axial-dipolar geomagnetic field from evaporite palaeolatitudes. Nature 444, 51–55 (2006).
Pisarevsky, S. A., Li, Z. X., Tetley, M. G., Liu, Y. & Beardmore, J. P. An updated internet-based Global Paleomagnetic Database. Earth-Sci. Rev. https://doi.org/10.1016/j.earscirev.2022.104258 (2022).
Torsvik, T. H. et al. Phanerozoic polar wander, palaeogeography and dynamics. Earth-Sci. Rev. 114, 325–368 (2012).
Evans, D. A. et al. An expanding list of reliable paleomagnetic poles for Precambrian tectonic reconstructions. in Ancient Supercontinents and the Paleogeography of Earth 605–639 (Elsevier, 2021).
Vine, F. J. & Matthews, D. H. Magnetic anomalies over oceanic ridges. Nature 199, 947–949 (1963).
Wilson, J. T. A new class of faults and their bearing on continental drift. Nature 207, 343–347 (1965).
Seton, M. et al. Community infrastructure and repository for marine magnetic identifications. Geochem. Geophys. Geosyst. 15, 1629–1641 (2014).
Matthews, K. J., Müller, R. D., Wessel, P. & Whittaker, J. M. The tectonic fabric of the ocean basins. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2011JB008413 (2011).
Sandwell, D. T., Müller, R. D., Smith, W. H., Garcia, E. & Francis, R. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346, 65–67 (2014).
Morgan, W. J. Convection plumes in the lower mantle. Nature 230, 42–43 (1971).
Wilson, J. T. A possible origin of the Hawaiian Islands. Can. J. Phys. 41, 863–870 (1963).
Davies, D. R., Rawlinson, N., Iaffaldano, G. & Campbell, I. H. Lithospheric controls on magma composition along Earth’s longest continental hotspot track. Nature 525, 511–514 (2015).
Kinney, S. T. et al. Zircon U-Pb geochronology constrains continental expression of great meteor hotspot magmatism. Geophys. Res. Lett. 48, e2020GL091390 (2021).
Konrad, K. et al. On the relative motions of long-lived Pacific mantle plumes. Nat. Commun. 9, 854 (2018).
Arnould, M., Ganne, J., Coltice, N. & Feng, X. Northward drift of the Azores plume in the Earth’s mantle. Nat. Commun. 10, 3235 (2019).
Koppers, A. A. P. et al. Mantle plumes and their role in Earth processes. Nat. Rev. Earth Environ. 2, 382–401 (2021).
Black, B. A., Karlstrom, L. & Mather, T. A. The life cycle of large igneous provinces. Nat. Rev. Earth Environ. 2, 840–857 (2021).
Burke, K. & Torsvik, T. H. Derivation of large igneous provinces of the past 200 million years from long-term heterogeneities in the deep mantle. Earth Planet. Sci. Lett. 227, 531–538 (2004).
Doubrovine, P. V., Steinberger, B. & Torsvik, T. H. A failure to reject: testing the correlation between large igneous provinces and deep mantle structures with EDF statistics. Geochem. Geophys. Geosyst. 17, 1130–1163 (2016).
Ernst, R. & Bleeker, W. Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2.5 Ga to the present. Can. J. Earth Sci. 47, 695–739 (2010).
Johansson, L., Zahirovic, S. & Müller, R. D. The interplay between the eruption and weathering of large igneous provinces and the deep-time carbon cycle. Geophys. Res. Lett. 45, 5380–5389 (2018).
Tappe, S., Smart, K., Torsvik, T., Massuyeau, M. & de Wit, M. Geodynamics of kimberlites on a cooling Earth: clues to plate tectonic evolution and deep volatile cycles. Earth Planet. Sci. Lett. 484, 1–14 (2018).
Ernst, R. E. & Youbi, N. How large igneous provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 478, 30–52 (2017).
Collins, A. S. & Robertson, A. H. Processes of Late Cretaceous to Late Miocene episodic thrust-sheet translation in the Lycian Taurides, SW Turkey. J. Geol. Soc. 155, 759–772 (1998).
van Hinsbergen, D. J. J. & Schouten, T. L. A. Deciphering paleogeography from orogenic architecture: constructing orogens in a future supercontinent as thought experiment. Am. J. Sci. 321, 955–1031 (2021).
Von Huene, R. & Culotta, R. Tectonic erosion at the front of the Japan Trench convergent margin. Tectonophysics 160, 75–90 (1989).
von Huene, R. & Ranero, C. R. Subduction erosion and basal friction along the sediment-starved convergent margin off Antofagasta, Chile. J. Geophys. Res. Solid. Earth https://doi.org/10.1029/2001JB001569 (2003).
Straub, S. M., Gómez-Tuena, A. & Vannucchi, P. Subduction erosion and arc volcanism. Nat. Rev. Earth Environ. 1, 574–589 (2020).
Aoki, K. et al. Tectonic erosion in a Pacific-type orogen: detrital zircon response to Cretaceous tectonics in Japan. Geology 40, 1087–1090 (2012).
Lloyd, J. C. et al. Neoproterozoic geochronology and provenance of the Adelaide Superbasin. Precambrian Res. 350, 105849 (2020).
Armistead, S. E. et al. Evolving marginal terranes during Neoproterozoic supercontinent reorganization: constraints from the Bemarivo Domain in northern Madagascar. Tectonics 38, 2019–2035 (2019).
Dhuime, B., Wuestefeld, A. & Hawkesworth, C. J. Emergence of modern continental crust about 3 billion years ago. Nat. Geosci. 8, 552–555 (2015).
Tang, M., Ji, W.-Q., Chu, X., Wu, A. & Chen, C. Reconstructing crustal thickness evolution from europium anomalies in detrital zircons. Geology 49, 76–80 (2021).
Tang, M., Lee, C.-T. A., Ji, W.-Q., Wang, R. & Costin, G. Crustal thickening and endogenic oxidation of magmatic sulfur. Sci. Adv. 6, eaba6342 (2020).
Ganade, C. E. et al. Magmatic flare-up causes crustal thickening at the transition from subduction to continental collision. Commun. Earth Environ. 2, 41 (2021).
Handley, H. K., Macpherson, C. G., Davidson, J. P., Berlo, K. & Lowry, D. Constraining fluid and sediment contributions to subduction-related magmatism in Indonesia: Ijen volcanic complex. J. Petrol. 48, 1155–1183 (2007).
Turner, S. & Foden, J. U, Th and Ra disequilibria, Sr, Nd and Pb isotope and trace element variations in Sunda arc lavas: predominance of a subducted sediment component. Contrib. Mineral. Petrol. 142, 43–57 (2001).
Brendan Murphy, J. & Damian Nance, R. Supercontinent model for the contrasting character of Late Proterozoic orogenic belts. Geology 19, 469 (1991).
Collins, W. J., Belousova, E. A., Kemp, A. I. S. & Murphy, J. B. Two contrasting Phanerozoic orogenic systems revealed by hafnium isotope data. Nat. Geosci. 4, 333–337 (2011).
Cao, W., Lee, C.-T. A. & Lackey, J. S. Episodic nature of continental arc activity since 750 Ma: a global compilation. Earth Planet. Sci. Lett. 461, 85–95 (2017).
Cao, W. et al. Palaeolatitudinal distribution of lithologic indicators of climate in a palaeogeographic framework. Geol. Mag. 156, 331–354 (2019).
Boucot, A. J., Xu, C., Scotese, C. R. & Morley, R. J. Phanerozoic Paleoclimate: An Atlas of Lithologic Indicators of Climate, Vol. 11 (SEPM (Society for Sedimentary Geology), 2013).
Gard, M., Hasterok, D. & Halpin, J. A. Global whole-rock geochemical database compilation. Earth Syst. Sci. Data 11, 1553–1566 (2019).
Lehnert, K., Su, Y., Langmuir, C. H., Sarbas, B. & Nohl, U. A global geochemical database structure for rocks. Geochem. Geophys. Geosyst. https://doi.org/10.1029/1999GC000026 (2000).
Brown, M. & Johnson, T. Secular change in metamorphism and the onset of global plate tectonics. Am. Mineral. 103, 181–196 (2018).
Puetz, S. J., Spencer, C. J. & Ganade, C. E. Analyses from a validated global UPb detrital zircon database: enhanced methods for filtering discordant UPb zircon analyses and optimizing crystallization age estimates. Earth-Sci. Rev. 220, 103745 (2021).
Hoggard, M. J. et al. Global distribution of sediment-hosted metals controlled by craton edge stability. Nat. Geosci. 13, 504–510 (2020).
Kreemer, C., Blewitt, G. & Klein, E. C. A geodetic plate motion and global strain rate model. Geochem. Geophys. Geosyst. 15, 3849–3889 (2014).
Hasterok, D. et al. New maps of global geologic provinces and tectonic plates. Earth-Sci. Rev. 231, 104069 (2022).
McQuarrie, N. & Wernicke, B. P. An animated tectonic reconstruction of southwestern North America since 36 Ma. Geosphere 1, 147–172 (2005).
Arriagada, C., Roperch, P., Mpodozis, C. & Cobbold, P. R. Paleogene building of the Bolivian Orocline: tectonic restoration of the central Andes in 2-D map view. Tectonics https://doi.org/10.1029/2008TC002269 (2008).
Liu, S., Gurnis, M., Ma, P. & Zhang, B. Reconstruction of northeast Asian deformation integrated with western Pacific plate subduction since 200 Ma. Earth-Sci. Rev. 175, 114–142 (2017).
Replumaz, A. & Tapponnier, P. Reconstruction of the deformed collision zone between India and Asia by backward motion of lithospheric blocks. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2001JB000661 (2003).
Brune, S., Williams, S. E., Butterworth, N. P. & Müller, R. D. Abrupt plate accelerations shape rifted continental margins. Nature 536, 201–204 (2016).
Sutra, E., Manatschal, G., Mohn, G. & Unternehr, P. Quantification and restoration of extensional deformation along the Western Iberia and Newfoundland rifted margins. Geochem. Geophys. Geosyst. 14, 2575–2597 (2013).
Le Breton, E., Cobbold, P. R., Dauteuil, O. & Lewis, G. Variations in amount and direction of seafloor spreading along the northeast Atlantic Ocean and resulting deformation of the continental margin of northwest Europe. Tectonics https://doi.org/10.1029/2011TC003087 (2012).
Granot, R., Cande, S. C., Stock, J. M. & Damaske, D. Revised Eocene–Oligocene kinematics for the West Antarctic rift system. Geophys. Res. Lett. 40, 279–284 (2013).
Williams, S. E., Whittaker, J. M., Halpin, J. A. & Müller, R. D. Australian–Antarctic breakup and seafloor spreading: balancing geological and geophysical constraints. Earth-Sci. Rev. 188, 41–58 (2019).
Hosseini, K. et al. SubMachine: web-based tools for exploring seismic tomography and other models of Earth’s deep interior. Geochem. Geophys. Geosyst. 19, 1464–1483 (2018).
Incorporated Research Institutions for Seismology. Data Services Products: EMC https://doi.org/10.17611/DP/EMC.1 (2011).
Woodhouse, J. H. & Dziewonski, A. M. Mapping the upper mantle: three-dimensional modeling of Earth structure by inversion of seismic waveforms. J. Geophys. Res. Solid Earth 89, 5953–5986 (1984).
Van der Voo, R., Spakman, W. & Bijwaard, H. Tethyan subducted slabs under India. Earth Planet. Sci. Lett. 171, 7–20 (1999).
Van der Meer, D. G., Van Hinsbergen, D. J. & Spakman, W. Atlas of the underworld: slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity. Tectonophysics 723, 309–448 (2018).
Hafkenscheid, E., Wortel, M. & Spakman, W. Subduction history of the Tethyan region derived from seismic tomography and tectonic reconstructions. J. Geophys. Res. Solid Earth 111, B08401 (2006).
Replumaz, A., Karason, H., van der Hilst, R. D., Besse, J. & Tapponnier, P. 4-D evolution of SE Asia’s mantle from geological reconstructions and seismic tomography. Earth Planet. Sci. Lett. 221, 103–115 (2004).
Schmid, C., Goes, S., Van der Lee, S. & Giardini, D. Fate of the Cenozoic Farallon slab from a comparison of kinematic thermal modeling with tomographic images. Earth Planet. Sci. Lett. 204, 17–32 (2002).
Van Der Meer, D. G., Spakman, W., Van Hinsbergen, D. J., Amaru, M. L. & Torsvik, T. H. Towards absolute plate motions constrained by lower-mantle slab remnants. Nat. Geosci. 3, 36–40 (2010).
Van Hinsbergen, D. J. et al. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia. Proc. Natl Acad. Sci. USA 109, 7659–7664 (2012).
Domeier, M. et al. Intraoceanic subduction spanned the Pacific in the Late Cretaceous–Paleocene. Sci. Adv. 3, eaao2303 (2017).
Shephard, G., Trønnes, R., Spakman, W., Panet, I. & Gaina, C. Evidence for slab material under Greenland and links to Cretaceous High Arctic magmatism. Geophys. Res. Lett. 43, 3717–3726 (2016).
Sigloch, K. & Mihalynuk, M. G. Intra-oceanic subduction shaped the assembly of Cordilleran North America. Nature 496, 50–56 (2013).
Sigloch, K. & Mihalynuk, M. G. Mantle and geological evidence for a Late Jurassic–Cretaceous suture spanning North America. GSA Bull. 129, 1489–1520 (2017).
Wu, J., Suppe, J., Lu, R. & Kanda, R. Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods. J. Geophys. Res. Solid. Earth 121, 4670–4741 (2016).
Chen, Y.-W., Wu, J. & Suppe, J. Southward propagation of Nazca subduction along the Andes. Nature 565, 441–447 (2019).
Zahirovic, S. et al. Tectonic evolution and deep mantle structure of the eastern Tethys since the latest Jurassic. Earth-Sci. Rev. 162, 293–337 (2016).
Braz, C., Seton, M., Flament, N. & Müller, R. D. Geodynamic reconstruction of an accreted Cretaceous back-arc basin in the Northern Andes. J. Geodyn. 121, 115–132 (2018).
Clennett, E. J. et al. A quantitative tomotectonic plate reconstruction of western North America and the eastern Pacific basin. Geochem. Geophys. Geosyst. 21, e2020GC009117 (2020).
Fuston, S. & Wu, J. Raising the resurrection plate from an unfolded-slab plate tectonic reconstruction of northwestern North America since early Cenozoic time. GSA Bull. 133, 1128–1140 (2021).
Tetley, M. G., Williams, S. E., Gurnis, M., Flament, N. & Müller, R. D. Constraining absolute plate motions since the Triassic. J. Geophys. Res. Solid. Earth 124, 7231–7258 (2019).
Doubrovine, P. V., Steinberger, B. & Torsvik, T. H. Absolute plate motions in a reference frame defined by moving hot spots in the Pacific, Atlantic, and Indian oceans. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2011JB009072 (2012).
O’Neill, C., Müller, D. & Steinberger, B. On the uncertainties in hot spot reconstructions and the significance of moving hot spot reference frames. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2004GC000784 (2005).
Steinberger, B. & Antretter, M. Conduit diameter and buoyant rising speed of mantle plumes: implications for the motion of hot spots and shape of plume conduits. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2006GC001409 (2006).
Merdith, A. S., Williams, S. E., Müller, R. D. & Collins, A. S. Kinematic constraints on the Rodinia to Gondwana transition. Precambrian Res. 299, 132–150 (2017).
Müller, R. D., Sdrolias, M., Gaina, C., Steinberger, B. & Heine, C. Long-term sea-level fluctuations driven by ocean basin dynamics. Science 319, 1357–1362 (2008).
Engebretson, D. C., Cox, A. & Gordon, R. G. Relative motions between oceanic and continental plates in the Pacific basin (GSA Special Papers, 1985). Ground-breaking study that considered plate boundaries and velocities in inferring past configurations of the Pacific basin.
Stampfli, G. M. & Borel, G. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet. Sci. Lett. 196, 17–33 (2002).
Zhang, N., Zhong, S., Leng, W. & Li, Z.-X. A model for the evolution of the Earth’s mantle structure since the Early Paleozoic. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2009JB006896 (2010).
Gurnis, M. et al. Plate tectonic reconstructions with continuously closing plates. Comput. Geosci. 38, 35–42 (2012). Introduced the concept of plate-focused reconstructions and paved the way for open-access models for geodynamics.
Domeier, M. A plate tectonic scenario for the Iapetus and Rheic oceans. Gondwana Res. 36, 275–295 (2016).
Domeier, M. & Torsvik, T. H. Plate tectonics in the Late Paleozoic. Geosci. Front. 5, 303–350 (2014).
Matthews, K. J. et al. Global plate boundary evolution and kinematics since the Late Paleozoic. Glob. Planet. Change 146, 226–250 (2016).
Merdith, A. S. et al. Extending full-plate tectonic models into deep time: linking the Neoproterozoic and the Phanerozoic. Earth-Sci. Rev. 214, 103477 (2021). The first billion year plate reconstruction model.
Boschman, L. M., van Hinsbergen, D. J., Torsvik, T. H., Spakman, W. & Pindell, J. L. Kinematic reconstruction of the Caribbean region since the early Jurassic. Earth-Sci. Rev. 138, 102–136 (2014).
Collins, A. S., Blades, M. L., Merdith, A. S. & Foden, J. D. Closure of the Proterozoic Mozambique Ocean was instigated by a late Tonian plate reorganization event. Commun. Earth Environ. 2, 1–7 (2021).
Montes, C. et al. Continental margin response to multiple arc-continent collisions: the northern Andes–Caribbean margin. Earth-Sci. Rev. 198, 102903 (2019).
Van Hinsbergen, D. J. et al. Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Res. 81, 79–229 (2020).
Müller, R. D. et al. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup. Annu. Rev. Earth Planet. Sci. 44, 107–138 (2016).
Thatcher, W. How the continents deform: the evidence from tectonic geodesy. Annu. Rev. Earth Planet. Sci. 37, 237–262 (2009).
Unternehr, P., Curie, D., Olivet, J., Goslin, J. & Beuzart, P. South Atlantic fits and intraplate boundaries in Africa and South America. Tectonophysics 155, 169–179 (1988).
Heine, C., Zoethout, J. & Müller, R. D. Kinematics of the South Atlantic rift. Solid Earth 4, 215–253 (2013).
Gurnis, M. et al. Global tectonic reconstructions with continuously deforming and evolving rigid plates. Comput. Geosci. 116, 32–41 (2018).
King, M. T., Welford, J. K., Cadenas, P. & Tugend, J. Investigating the plate kinematics of the Bay of Biscay using deformable plate tectonic models. Tectonics 40, e2020TC006467 (2021).
Steinberger, B., Torsvik, T. H. & Becker, T. W. Subduction to the lower mantle — a comparison between geodynamic and tomographic models. Solid Earth 3, 415–432 (2012).
Cerpa, N. G. et al. The effect of a weak asthenospheric layer on surface kinematics, subduction dynamics and slab morphology in the lower mantle. JGR Solid Earth 127, e2022JB024494 (2022).
Mohammadzaheri, A., Sigloch, K., Hosseini, K. & Mihalynuk, M. G. Subducted lithosphere under South America from multifrequency P wave tomography. J. Geophys. Res. Solid. Earth 126, e2020JB020704 (2021).
Domeier, M., Doubrovine, P. V., Torsvik, T. H., Spakman, W. & Bull, A. L. Global correlation of lower mantle structure and past subduction. Geophys. Res. Lett. 43, 4945–4953 (2016).
Hosseini, K. et al. Global mantle structure from multifrequency tomography using P, PP and P-diffracted waves. Geophys. J. Int. 220, 96–141 (2020).
van de Lagemaat, S. H. A., van Hinsbergen, D. J. J., Boschman, L. M., Kamp, P. J. J. & Spakman, W. Southwest Pacific Absolute plate kinematic reconstruction reveals major Cenozoic Tonga-Kermadec slab dragging. Tectonics 37, 2647–2674 (2018).
Parsons, A. J., Sigloch, K. & Hosseini, K. Australian plate subduction is responsible for Northward Motion of the India-Asia Collision Zone and ∼1,000 km lateral migration of the Indian Slab. Geophys. Res. Lett. 48, e2021GL094904 (2021).
Replumaz, A., Negredo, A. M., Guillot, S. & Villaseñor, A. Multiple episodes of continental subduction during India/Asia convergence: insight from seismic tomography and tectonic reconstruction. Tectonophysics 483, 125–134 (2010).
Qayyum, A. et al. Subduction and slab detachment under moving trenches during ongoing India-Asia Convergence. Geochem. Geophys. Geosyst. 23, e2022GC010336 (2022).
Molnar, P. & England, P. Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? Nature 346, 29–34 (1990).
Raymo, M. E., Ruddiman, W. F. & Froelich, P. N. Influence of Late Cenozoic mountain building on ocean geochemical cycles. Geology 16, 649–653 (1988).
Ramstein, G. et al. Some illustrations of large tectonically driven climate changes in earth history. Tectonics 38, 4454–4464 (2019).
Straume, E. O., Gaina, C., Medvedev, S. & Nisancioglu, K. H. Global Cenozoic paleobathymetry with a focus on the Northern Hemisphere Oceanic gateways. Gondwana Res. 86, 126–143 (2020).
Berner, R. A. A model for calcium, magnesium and sulfate in seawater over Phanerozoic time. Am. J. Sci. 304, 438–453 (2004).
Parrish, J. T. Climate of the supercontinent Pangea. J. Geol. 101, 215–233 (1993).
Scotese, C. R., Song, H., Mills, B. J. W. & van der Meer, D. G. Phanerozoic paleotemperatures: the Earth’s changing climate during the last 540 million years. Earth-Sci. Rev. 215, 103503 (2021).
Ziegler, A. et al. Tracing the tropics across land and sea: Permian to present. Lethaia 36, 227–254 (2003).
Tierney, J. E. et al. Past climates inform our future. Science 370, eaay3701 (2020).
Valentine, J. W. & Moores, E. M. Plate-tectonic regulation of faunal diversity and sea level: a model. Nature 228, 657–659 (1970).
Close, R. A., Benson, R. B. J., Saupe, E. E., Clapham, M. E. & Butler, R. J. The spatial structure of Phanerozoic marine animal diversity. Science 368, 420–424 (2020).
Zaffos, A., Finnegan, S. & Peters, S. E. Plate tectonic regulation of global marine animal diversity. Proc. Natl Acad. Sci. USA 114, 5653–5658 (2017).
Butterworth, N. et al. Tectonic environments of South American porphyry copper magmatism through time revealed by spatiotemporal data mining. Tectonics 35, 2847–2862 (2016).
Torsvik, T. H., Burke, K., Steinberger, B., Webb, S. J. & Ashwal, L. D. Diamonds sampled by plumes from the core–mantle boundary. Nature 466, 352–355 (2010).
Park, Y., Swanson-Hysell, N. L., Lisiecki, L. E. & Macdonald, F. A. Evaluating the relationship between the area and latitude of large igneous provinces and Earth’s long-term climate state. Large Igneous Prov. Driv. Glob. Environ. Biot. Chang. https://doi.org/10.1002/9781119507444.ch7 (2021).
Macdonald, F. A., Swanson-Hysell, N. L., Park, Y., Lisiecki, L. & Jagoutz, O. Arc-continent collisions in the tropics set Earth’s climate state. Science 364, 181–184 (2019).
Wright, N. M., Seton, M., Williams, S. E., Whittaker, J. M. & Müller, R. D. Sea level fluctuations driven by changes in global ocean basin volume following supercontinent break-up. Earth-Sci. Rev. 208, 103293 (2020).
Conrad, C. P. The solid Earth’s influence on sea level. GSA Bull. 125, 1027–1052 (2013).
Van Der Meer, D. G. et al. Plate tectonic controls on atmospheric CO2 levels since the Triassic. Proc. Natl Acad. Sci. USA 111, 4380–4385 (2014).
Brune, S., Williams, S. E. & Mueller, R. D. Potential links between continental rifting, CO2 degassing and climate change through time. Nat. Geosci. 10, 941–946 (2017).
Hounslow, M. W., Domeier, M. & Biggin, A. J. Subduction flux modulates the geomagnetic polarity reversal rate. Tectonophysics 742, 34–49 (2018).
Domeier, M., Magni, V., Hounslow, M. W. & Torsvik, T. H. Episodic zircon age spectra mimic fluctuations in subduction. Sci. Rep. 8, 1–9 (2018).
Jian, D., Williams, S. E., Yu, S. & Zhao, G. Quantifying the link between the detrital zircon record and tectonic settings. J. Geophys. Res. Solid. Earth 127, e2022JB024606 (2022).
Merdith, A. S. et al. Pulsated global hydrogen and methane flux at mid-ocean ridges driven by Pangea breakup. Geochem. Geophys. Geosyst. 21, e2019GC008869 (2020).
Gernon, T. M. et al. Global chemical weathering dominated by continental arcs since the mid-Palaeozoic. Nat. Geosci. 14, 690–696 (2021). Exploration of the links between plate tectonics and records of atmospheric and ocean chemical changes over the past 410 Ma using deep-time data mining.
Müller, R. D. et al. Evolution of Earth’s tectonic carbon conveyor belt. Nature 605, 629–639 (2022).
Lithgow-Bertelloni, C. & Richards, M. A. The dynamics of Cenozoic and Mesozoic plate motions. Rev. Geophys. 36, 27–78 (1998). Examined the links between surface plate motions, mantle dynamics, plate driving forces and seismic tomographic imaging of the deep Earth.
Torsvik, T. H., Steinberger, B., Gurnis, M. & Gaina, C. Plate tectonics and net lithosphere rotation over the past 150 My. Earth Planet. Sci. Lett. 291, 106–112 (2010).
Conrad, C. P., Steinberger, B. & Torsvik, T. H. Stability of active mantle upwelling revealed by net characteristics of plate tectonics. Nature 498, 479–482 (2013).
Williams, S., Flament, N., Dietmar Müller, R. & Butterworth, N. Absolute plate motions since 130 Ma constrained by subduction zone kinematics. Earth Planet. Sci. Lett. 418, 66–77 (2015).
Wolf, J. & Evans, D. A. Reconciling supercontinent cycle models with ancient subduction zones. Earth Planet. Sci. Lett. 578, 117293 (2022).
Karlsen, K. S., Conrad, C. P. & Magni, V. Deep water cycling and sea level change since the breakup of Pangea. Geochem. Geophys. Geosyst. 20, 2919–2935 (2019).
Coltice, N., Husson, L., Faccenna, C. & Arnould, M. What drives tectonic plates? Sci. Adv. 5, eaax4295 (2019).
Rolf, T. & Tackley, P. J. Focussing of stress by continents in 3D spherical mantle convection with self-consistent plate tectonics. Geophys. Res. Lett. https://doi.org/10.1029/2011GL048677 (2011).
Mallard, C., Coltice, N., Seton, M., Müller, R. D. & Tackley, P. J. Subduction controls the distribution and fragmentation of Earth’s tectonic plates. Nature 535, 140–143 (2016).
Ulvrova, M. M., Brune, S. & Williams, S. Breakup without borders: how continents speed up and slow down during rifting. Geophys. Res. Lett. 46, 1338–1347 (2019).
Ulvrova, M. M., Coltice, N., Williams, S. & Tackley, P. J. Where does subduction initiate and cease? A global scale perspective. Earth Planet. Sci. Lett. 528, 115836 (2019).
Bahadori, A. & Holt, W. E. Geodynamic evolution of southwestern North America since the Late Eocene. Nat. Commun. 10, 5213 (2019).
Steinberger, B., Sutherland, R. & O’Connell, R. J. Prediction of Emperor-Hawaii seamount locations from a revised model of global plate motion and mantle flow. Nature 430, 167–173 (2004).
Gurnis, M. et al. Creating 4-D Earth models using GPlates, CitcomS and the Geodynamic Framework. (earthbyte.org, 2019).
Colli, L., Bunge, H.-P. & Schuberth, B. S. On retrodictions of global mantle flow with assimilated surface velocities. Geophys. Res. Lett. 42, 8341–8348 (2015).
Hu, J., Gurnis, M., Rudi, J., Stadler, G. & Müller, R. D. Dynamics of the abrupt change in Pacific Plate motion around 50 million years ago. Nat. Geosci. 15, 74–78 (2022).
Seton, M. et al. Ridge subduction sparked reorganization of the Pacific plate–mantle system 60–50 million years ago. Geophys. Res. Lett. 42, 1732–1740 (2015).
Bull, A. L., Domeier, M. & Torsvik, T. H. The effect of plate motion history on the longevity of deep mantle heterogeneities. Earth Planet. Sci. Lett. 401, 172–182 (2014).
Heron, P. J., Murphy, J. B., Nance, R. D. & Pysklywec, R. N. Pannotia’s mantle signature: the quest for supercontinent identification. Geol. Soc. Lond. Spec. Publ. 503, 41–61 (2021).
Bredow, E., Steinberger, B., Gassmöller, R. & Dannberg, J. How plume–ridge interaction shapes the crustal thickness pattern of the Réunion hotspot track. Geochem. Geophys. Geosyst. 18, 2930–2948 (2017).
Hu, J., Liu, L. & Gurnis, M. Southward expanding plate coupling due to variation in sediment subduction as a cause of Andean growth. Nat. Commun. 12, 7271 (2021).
Braun, J. The many surface expressions of mantle dynamics. Nat. Geosci. 3, 825–833 (2010).
Shephard, G. E., Müller, R. D., Liu, L. & Gurnis, M. Miocene drainage reversal of the Amazon River driven by plate–mantle interaction. Nat. Geosci. 3, 870–875 (2010).
Faccenna, C. et al. Role of dynamic topography in sustaining the Nile River over 30 million years. Nat. Geosci. 12, 1012–1017 (2019).
Yang, A. & Yang, T. Controls on the present-day dynamic topography predicted from mantle flow models since 410 Ma. Geophys. J. Int. 225, 1637–1652 (2021).
Ghelichkhan, S., Bunge, H.-P. & Oeser, J. Global mantle flow retrodictions for the early Cenozoic using an adjoint method: evolving dynamic topographies, deep mantle structures, flow trajectories and sublithospheric stresses. Geophys. J. Int. 226, 1432–1460 (2021).
Austermann, J. et al. The impact of dynamic topography change on Antarctic ice sheet stability during the mid-Pliocene warm period. Geology 43, 927–930 (2015).
Sijp, W. P. & England, M. H. Effect of the drake passage throughflow on global climate. J. Phys. Oceanogr. 34, 1254–1266 (2004).
Hutchinson, D. K. et al. Arctic closure as a trigger for Atlantic overturning at the Eocene–Oligocene transition. Nat. Commun. 10, 3797 (2019).
Lunt, D. J., Valdes, P. J., Haywood, A. & Rutt, I. C. Closure of the Panama Seaway during the Pliocene: implications for climate and Northern Hemisphere glaciation. Clim. Dyn. 30, 1–18 (2008).
Ali, J. R. & Huber, M. Mammalian biodiversity on Madagascar controlled by ocean currents. Nature 463, 653–656 (2010).
Henehan, M. J. et al. Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact. Proc. Natl Acad. Sci. USA 116, 22500–22504 (2019).
Saupe, E. E. et al. Extinction intensity during Ordovician and Cenozoic glaciations explained by cooling and palaeogeography. Nat. Geosci. 13, 65–70 (2020).
Jones, L. A., Mannion, P. D., Farnsworth, A., Bragg, F. & Lunt, D. J. Climatic and tectonic drivers shaped the tropical distribution of coral reefs. Nat. Commun. 13, 3120 (2022).
Caballero, R. & Huber, M. State-dependent climate sensitivity in past warm climates and its implications for future climate projections. Proc. Natl Acad. Sci. USA 110, 14162–14167 (2013).
Donnadieu, Y., Pucéat, E., Moiroud, M., Guillocheau, F. & Deconinck, J.-F. A better-ventilated ocean triggered by Late Cretaceous changes in continental configuration. Nat. Commun. 7, 10316 (2016).
Valdes, P. J., Scotese, C. R. & Lunt, D. J. Deep ocean temperatures through time. Clim. Past 17, 1483–1506 (2021).
Zucker, A. A. & Light, D. Laptop programs for students. Science 323, 82–85 (2009).
Libarkin, J. C. & Brick, C. Research methodologies in science education: visualization and the geosciences. J. Geosci. Educ. 50, 449–455 (2002).
Müller, R. D. et al. The GPlates portal: cloud-based interactive 3D visualization of global geophysical and geological data in a web browser. PLoS ONE 11, e0150883 (2016).
van Hinsbergen, D. J. J. et al. A paleolatitude calculator for paleoclimate studies. PLoS ONE 10, e0126946 (2015).
DeMets, C., Gordon, R. G. & Argus, D. F. Geologically current plate motions. Geophys. J. Int. 181, 1–80 (2010).
Liu, L., Spasojević, S. & Gurnis, M. Reconstructing Farallon plate subduction beneath North America back to the Late Cretaceous. Science 322, 934–938 (2008).
Wong Hearing, T. W. et al. Quantitative comparison of geological data and model simulations constrains early Cambrian geography and climate. Nat. Commun. 12, 3868 (2021).
Brune, S., Williams, S. E. & Müller, R. D. Oblique rifting: the rule, not the exception. Solid Earth 9, 1187–1206 (2018).
Crameri, F. et al. A transdisciplinary and community-driven database to unravel subduction zone initiation. Nat. Commun. 11, 3750 (2020).
Zahirovic, S., Müller, R. D., Seton, M. & Flament, N. Tectonic speed limits from plate kinematic reconstructions. Earth Planet. Sci. Lett. 418, 40–52 (2015).
Iaffaldano, G., Bodin, T. & Sambridge, M. Reconstructing plate-motion changes in the presence of finite-rotations noise. Nat. Commun. 3, 1048 (2012).
Müller, R. D. et al. A tectonic-rules based mantle reference frame since 1 billion years ago — implications for supercontinent cycles and plate–mantle system evolution. Solid Earth Discuss https://doi.org/10.5194/se-2021-154 (2022).
Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M. Geologic Time Scale 2020 (Elsevier, 2020).
Seton, M., Gaina, C., Müller, R. D. & Heine, C. Mid-Cretaceous seafloor spreading pulse: fact or fiction? Geology 37, 687–690 (2009).
Wessel, P. & Müller, R. D. Plate tectonics. Treatise Geophys. 6, 49–98 (2007).
Van der Voo, R. The reliability of paleomagnetic data. Tectonophysics 184, 1–9 (1990).
Meert, J. G. et al. The magnificent seven: a proposal for modest revision of the Van der Voo (1990) quality index. Tectonophysics 790, 228549 (2020).
Scotese, C. R. A continental drift flipbook. J. Geol. 112, 729–741 (2004).
Sambridge, M., Beghein, C., Simons, F. J. & Snieder, R. How do we understand and visualize uncertainty? Lead. Edge 25, 542–546 (2006). Though focused on seismological applications, provides a useful overview of how to deal with the uncertainties inherent within complex geoscientific models.
Chamberlain, K. J., Lehnert, K. A., McIntosh, I. M., Morgan, D. J. & Wörner, G. Time to change the data culture in geochemistry. Nat. Rev. Earth Environ. 2, 737–739 (2021).
Seton, M. et al. A global data set of present‐day oceanic crustal age and seafloor spreading parameters. Geochem. Geophys. Geosyst. 21, e2020GC009214 (2020).
Wessel, P. et al. Semiautomatic fracture zone tracking. Geochem. Geophys. Geosyst. 16, 2462–2472 (2015).
Doucet, L. S. et al. Coupled supercontinent–mantle plume events evidenced by oceanic plume record. Geology 48, 159–163 (2019).
Bradley, D. C. Passive margins through earth history. Earth-Sci. Rev. 91, 1–26 (2008).
Condie, K. Changing tectonic settings through time: indiscriminate use of geochemical discriminant diagrams. Precambrian Res. 266, 587–591 (2015).
Dutkiewicz, A. et al. Predicting sediment thickness on vanished ocean crust since 200 Ma. Geochem. Geophys. Geosyst. 18, 4586–4603 (2017).
Li, X. et al. A high-resolution climate simulation dataset for the past 540 million years. Sci. Data 9, 371 (2022).
Pohl, A., Wong Hearing, T., Franc, A., Sepulchre, P. & Scotese, C. R. Dataset of Phanerozoic continental climate and Köppen–Geiger climate classes. Data Brief 43, 108424 (2022).
Kocsis, Á. T. & Scotese, C. R. Mapping paleocoastlines and continental flooding during the Phanerozoic. Earth-Sci. Rev. 213, 103463 (2021).
Torsvik, T. H. & Cocks, L. R. M. Earth History and Palaeogeography (Cambridge Univ. Press, 2016).
Lekic, V., Cottaar, S., Dziewonski, A. & Romanowicz, B. Cluster analysis of global lower mantle tomography: a new class of structure and implications for chemical heterogeneity. Earth Planet. Sci. Lett. 357–358, 68–77 (2012).
Acknowledgements
M.S., S.E.W. and A.S.C. acknowledge the support of the Australian Research Council (M.S., DP200100966 and FT130101564; S.E.W., DP200100966, DP180102280 and FT210100557; A.S.C., FT120100340 and LP200301457). S.E.W. acknowledges support from the National Natural Science Foundation of China grant 41972237. M.D. was supported by the Research Council of Norway through its Centres of Excellence funding scheme, project 223272 (CEED). K.S. was supported by the European Research Council under the European Union’s Horizon 2020 research and innovation programme, grant 639003 DEEP TIME. The authors also share their gratitude to the early pioneers of plate tectonics and those who championed the development of open-access plate tectonic models and tools as well as to their respective research groups for their contributions to plate model and workflow development. GPlates is supported by the AuScope National Collaborative Research Infrastructure System programme.
Author information
Authors and Affiliations
Contributions
M.S. conceived the work and led the writing of the manuscript. S.E.W. led the production of the figures. All authors contributed to the writing and reviewing of all components of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Earth & Environment thanks B. Steinberger, D. van Hinsbergen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
AuScope: https://www.auscope.org.au/
EarthCube: https://www.earthcube.org/
Global Paleomagnetic Database (GPMDB): http://gpmdb.net/
GPlates: https://www.gplates.org/
GSFML: https://gsfml.earthbyte.org/
IODP: https://www.iodp.org/
MagIC: https://www2.earthref.org/MagIC
Paleobiology Database: https://paleobiodb.org
Supplementary information
Glossary
- Alkalic magmatism
-
Magmas that are distinguished by a high alkali metal oxide composition relative to silica, reflecting low degrees of partial melting and commonly found in continental rifts.
- Continuously closing plate topologies
-
A method of creating a network of plate boundaries that combine to define a tectonic plate whose shape and size change through time.
- Diffuse deformation
-
Areas where internal plate deformation is distributed over wide lateral areas rather than narrowly localized at a rigid plate boundary.
- Earth System Models
-
(ESMs). Global models that integrate processes occurring in the biosphere, hydrosphere and lithosphere.
- Fracture zones
-
Linear feature on the present-day sea floor which traces the direction of sea-floor spreading at palaeo-mid-ocean ridges.
- Geocentric axial dipole
-
(GAD). On timescales of 105–106 years, the magnetic field of the Earth can be approximated by a magnetic dipole that is centred at the centre of the Earth and aligned parallel to the planetary spin axis.
- Geomagnetic polarity timescale
-
Geological timescale linking the sequence of reversals of the geomagnetic field to geochronology and stratigraphy.
- Hotspot
-
Volcanism (commonly intraplate) with distinct geochemical signatures, thought to be caused by a mantle plume, but with a much lower eruptive rate than a LIP.
- Kimberlites
-
Ultramafic igneous rocks that are the main host rocks for diamonds and whose eruption sites have been linked to the edges of the large low shear velocity provinces.
- Large igneous provinces
-
(LIPs). A large volume of igneous rock emplaced over a geologically short period, commonly ascribed to the first arrival of a mantle plume (the plume ‘head’) to the surface of the Earth.
- Large low shear velocity provinces
-
(LLSVPs). Lowermost mantle structures of uncertain physical nature, defined by the robust observation that shear waves (and also P waves) propagate markedly slower than in the ambient mantle.
- Low-temperature thermochronology
-
Application of radiometric dating to determine the time at which a mineral cooled below a ‘closure temperature’ (which is method-specific, but generally in the range ~70–400 °C), below which the radiogenic daughter products are retained.
- Magnetic anomaly identifications
-
A spatiotemporal representation of a marine magnetic anomaly interpreted on the basis of a synthetic crustal magnetic model and the geomagnetic polarity timescale.
- Mantle plumes
-
An upwelling of buoyant, hot mantle rock from the mantle, hypothesized to be the causative mechanism of large igneous provinces and time-progressive volcanic hotspot tracks.
- Oceanic gateways
-
Narrow, shallow, diffuse connections between neighbouring oceans, which facilitate the large-scale exchange of water, heat, salinity and nutrients between ocean basins.
- Orogenic belt
-
Zone of collision along convergent plate margins, resulting in the formation of a mountain range.
- Passive margin
-
A non-active plate margin composed of stretched continental crust that was once the site of continental extension, which ultimately gave way to sea-floor spreading.
- Plume generation zones
-
(PGZs). Marginal areas of the large low shear velocity provinces in the lowermost mantle, associated with strong lateral gradients in seismic wave velocities, proposed to be nucleation sites of mantle plumes.
- Radiometric dating
-
A method to estimate the numerical age of igneous and metamorphic rocks, by measuring the decay products of radioactive isotopes in the constituent minerals of rocks.
- Sea-floor-spreading isochrons
-
Lines of equal age drawn on the sea floor depicting the sea-floor-spreading record and theoretically representing palaeo-mid-ocean ridge locations.
- Seamount
-
A topographically isolated submarine feature that rises from the sea floor, typically formed by volcanic activity.
- Seismic tomography
-
A geophysical technique that renders 2D or 3D images of the interior structure of the Earth by analysing recordings of seismic waves that traversed the interior.
- Small circles
-
A circle formed on the surface of a sphere by the intersection of a plane that does not pass through the centre of the sphere.
- Stage rotations
-
Rotations about a Euler pole that describe the motion of a plate between two specific times.
- Supercontinent
-
The aggregation of most continental crust into a single landmass.
- Syn-rift sedimentary sequences
-
Sedimentary rocks deposited during continental rifting that are characterized by coarse-grained, poorly sorted terrestrial deposits.
- Tectonic plates
-
A rigid body of crust and uppermost mantle, delimited against other plates by tectonically active boundaries such as subduction zones, mid-ocean ridges and transform faults.
- True polar wander
-
(TPW). A rotation of the entire solid Earth in response to mass re-distributions that perturb the planetary moment of inertia, acting to restore the principal moment of inertia to the planetary spin axis.
- Volcanic arcs
-
Linear, trench-parallel belt of volcanoes that develops about 80–100 km above a subducting slab and represents a key marker of convergent plate margins.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Seton, M., Williams, S.E., Domeier, M. et al. Deconstructing plate tectonic reconstructions. Nat Rev Earth Environ 4, 185–204 (2023). https://doi.org/10.1038/s43017-022-00384-8
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s43017-022-00384-8