Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Towards a process-based understanding of rifted continental margins

Abstract

Interactions between tectonic, magmatic, sedimentary and hydrothermal processes during rifting and break-up of continental lithosphere lead to a variety of rifted margin types. As potential reservoirs for mineral deposits and native hydrogen, and as sites for CO2 storage and generation of geothermal energy, rifted margins are likely to have a key role in the future transition to a carbon-neutral economy. In this Review, we discuss the wide variability of rifted margin anatomy in terms of the processes that shape them. We demonstrate that observations combined with models can provide a process-based understanding of margin evolution that allows any given region to be understood more holistically than with a static end-member type (magma-rich versus magma-poor) classification. Many margins show intermediate characteristics between those end-members. Even within end-member types, there are substantial structural variations, which are shaped by the feedbacks between inheritance, deformation, sedimentation, magmatism and fluid flow. A better understanding of these feedbacks is required to assess the potential of margins to support the carbon-neutral economy. Integration of observations and modelling will help to de-risk exploration of these environments. In particular, margins need to be characterized by integrated geophysical studies, including improved wide-angle seismic velocity models with closely spaced instruments together with advanced numerical modelling techniques.

Key points

  • During rifting, interactions between tectonic, sedimentary, magmatic, hydrothermal and surface processes modulated by the initial lithospheric structure and extension velocity lead to a wide variety of margins, where magma-rich and magma-poor margins are only the end-members of a poorly defined spectrum.

  • Magma-poor margins form where extension velocities are in the ultra-slow range (≤20 mm yr1 full spreading), or where the mantle is originally cold or depleted. These margins are characterized by large brittle faults, minor or practically absent synrift magmatism, and exhumation of the mantle following crustal break-up at the continent–ocean transition.

  • Magma-rich margins are associated with excess magmatism during rifting, which is mainly a function of high mantle temperature associated with plume impact. The relative timing between continental thinning and plume impact, as well as the lithospheric thickness variations around the impact site, determines the final amount of magmatism observed along the margin and whether it is subaerial or submarine.

  • Unlike the two end-members described above, intermediate margins exhibit an abrupt ocean–continent transition with no mantle exhumation, and abundant magmatic rocks, but no seaward-dipping reflectors. Their structure indicates that opening and break-up were accommodated by the interplay of tectonic and magmatic processes.

  • Numerical models have shown how the inherited lithosphere–asthenosphere temperature and composition, in combination with extension velocity, influence margin width and asymmetry, fault geometry and distribution, sedimentary infill and magmatism.

  • Evaluation of the potential for rifted margins to contribute to a carbon-neutral economy will require integrated knowledge of the tectonic, chemical, hydrological and biological processes that shape them. In particular, further understanding the interactions between fluid flow at short timescales and lithosphere deformation, melt transport, and sedimentation over long, geological timescales is necessary.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global distribution of rifted margins.
Fig. 2: The anatomy and wide-angle P-wave seismic velocity of different margin types.
Fig. 3: Formation of seaward-dipping reflectors (SDRs) in the South and North Atlantic.
Fig. 4: Effect of decreasing initial lithospheric strength in tectonic and sedimentary architecture and melting.
Fig. 5: Simulating rift dynamics at the fault-block scale.
Fig. 6: Potential economic resources and processes at rifted margins.

Similar content being viewed by others

References

  1. Dunkley Jones, T., Fauth, G. & LeVay, L. J. Expedition 388 scientific prospectus: equatorial Atlantic gateway. Sci. Prospectuses Int. Ocean Discov. Program https://doi.org/10.14379/iodp.sp.388.2019 (2019).

    Article  Google Scholar 

  2. Planke, S., Berndt, C. & Alvarez Zarikian, C. A. Expedition 396 scientific prospectus: mid-Norwegian continental margin magmatism. Sci. Prospectuses Int. Ocean. Discov. Program https://doi.org/10.14379/iodp.sp.396.2021 (2021).

    Article  Google Scholar 

  3. Brune, S., Williams, S. E. & Müller, R. D. Potential links between continental rifting, CO2 degassing and climate change through time. Nat. Geosci. 10, 941–946 (2017).

    Article  Google Scholar 

  4. Svensen, H. et al. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429, 542–545 (2004).

    Article  Google Scholar 

  5. Pérez-Gussinyé, M. et al. Serpentinization and magmatism during extension at non-volcanic margins: the effect of initial lithospheric structure. Geol. Soc. Spec. Publ. https://doi.org/10.1144/gsl.Sp.2001.187.01.27 (2001).

    Article  Google Scholar 

  6. Pérez-Gussinyé, M. & Reston, T. J. Rheological evolution during extension at nonvolcanic rifted margins: onset of serpentinization and development of detachments leading to continental breakup. J. Geophys. Res. Solid Earth. 106, 3961–3975 (2001).

    Article  Google Scholar 

  7. Albers, E., Bach, W., Pérez-Gussinyé, M., McCammon, C. & Frederichs, T. Serpentinization-driven H2 production from continental break-up to mid-ocean ridge spreading: unexpected high rates at the West Iberia margin. Front. Earth Sci. https://doi.org/10.3389/feart.2021.673063 (2021).

    Article  Google Scholar 

  8. Schwarzenbach, E. M., Früh-Green, G. L., Bernasconi, S. M., Alt, J. C. & Plas, A. Serpentinization and carbon sequestration: a study of two ancient peridotite-hosted hydrothermal systems. Chem. Geol. 351, 115–133 (2013).

    Article  Google Scholar 

  9. Kelley, D. S. et al. A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science 307, 1428–1434 (2005).

    Article  Google Scholar 

  10. McKenzie, D. Some remarks on the development of sedimentary basins. Earth Planet. Sci. Lett. 40, 25–32 (1978).

    Article  Google Scholar 

  11. Karner, G. D. & Watts, A. B. On isostasy at Atlantic-type continental margins. J. Geophys. Res. Solid Earth 87, 2923–2948 (1982).

    Article  Google Scholar 

  12. Jarvis, G. T. & McKenzie, D. P. Sedimentary basin formation with finite extension rates. Earth Planet. Sci. Lett. 48, 42–52 (1980).

    Article  Google Scholar 

  13. Cochran, J. R. Effects of finite rifting times on the development of sedimentary basins. Earth Planet Sci. Lett. 66, 289–302 (1983).

    Article  Google Scholar 

  14. White, R. & Mckenzie, D. Magmatism at rift zones — the generation of volcanic continental margins and flood basalts. J. Geophys. Res. Solid 94, 7685–7729 (1989).

    Article  Google Scholar 

  15. Sawyer, D. S., Coffin, M. F., Reston, T. J., Stock, J. M. & Hopper, J. R. COBBOOM: the Continental Breakup and Birth of Oceans Mission. Sci. Drill. 5, 13–25 (2007).

    Article  Google Scholar 

  16. Morgan, J. P. & Chen, Y. J. Dependence of ridge-axis morphology on magma supply and spreading rate. Nature 364, 706–708 (1993).

    Article  Google Scholar 

  17. Manatschal, G. et al. The role of inheritance in forming rifts and rifted margins and building collisional orogens: a Biscay–Pyrenean perspective. Bull. Soc. Geol. Fr. https://doi.org/10.1051/bsgf/2021042 (2021).

    Article  Google Scholar 

  18. Armitage, J. J., Collier, J. S. & Minshull, T. A. The importance of rift history for volcanic margin formation. Nature 465, 913–917 (2010).

    Article  Google Scholar 

  19. Buck, W. R. Modes of continental lithospheric extension. J. Geophys. Res. Solid Earth 96, 20161–20178 (1991).

    Article  Google Scholar 

  20. Levell, B., Argent, J., Dore, A. G. & Fraser, S. in Petroleum Geology: From Mature Basins to New Frontiers. Proc. 7th Petroleum Geology Conference, 823–830 (The Geological Society, 2010).

  21. Hoggard, M. J. et al. Global distribution of sediment-hosted metals controlled by craton edge stability. Nat. Geosci. https://doi.org/10.1038/s41561-020-0593-2 (2020).

    Article  Google Scholar 

  22. Hitzman, M. W., Selley, D. & Bull, S. Formation of sedimentary rock-hosted stratiform copper deposits through Earth history. Econ. Geol. 105, 627–639 (2010).

    Article  Google Scholar 

  23. Wilkinson, J. J. in Treatise on Geochemistry 2nd edition, Vol. 13 (eds Holland, H. D. & Turekian, K. K.) 219–249 (Elsevier, 2014).

  24. Lefeuvre, N. et al. Natural hydrogen migration along thrust faults in foothill basins: the North Pyrenean Frontal Thrust case study. Appl. Geochem. 145, 105396 (2022).

    Article  Google Scholar 

  25. Liu, Z., Perez-Gussinye, M., García-Pintado, J., Mezri, L. & Bach, W. Mantle serpentinization and associated hydrogen flux at North Atlantic magma-poor rifted margins. Geology https://doi.org/10.1130/G50772.1 (2022).

    Article  Google Scholar 

  26. Kelemen, P. B. & Matter, J. In situ carbonation of peridotite for CO2 storage. Proc. Natl Acad. Sci. USA 105, 17295–17300 (2008).

    Article  Google Scholar 

  27. Jolie, E. et al. Geological controls on geothermal resources for power generation. Nat. Rev. Earth Environ. 2, 324–339 (2021).

    Article  Google Scholar 

  28. Freymark, J. et al. The deep thermal field of the Upper Rhine Graben. Tectonophysics 694, 114–129 (2017).

    Article  Google Scholar 

  29. Boillot, G. & Winterer, E. L. in Proceedings of the Ocean Drilling Program, Scientific Results Vol. 103 (eds Boillot, G. et al.) 809–828 (Ocean Drilling Program, 1988).

  30. Whitmarsh, R. B. & Sawyer, D. S. in Proceedings of the Ocean Drilling Program, Scientific Results Vol. 149 (eds Whitmarsh, R. B. et al.) 713–733 (Ocean Drilling Program, 1996).

  31. Whitmarsh, R. B. & Wallace, P. J. in Proceedings of the Ocean Drilling Program, Scientific Results Vol. 173 (eds Beslier, M.-O. et al.) 1–36 (Ocean Drilling Program, 2001).

  32. Tucholke, B. E. & Sibuet, J.-C. in Proceedings of the Ocean Drilling Program, Scientific Results Vol. 210 (eds Tucholke, B. E. et al.) 1–56 (Ocean Drilling Program, 2007).

  33. Hinz, K. A hypothesis on terrestrial catastrophes: wedges of very thick oceanward dipping layers beneath passive continental margins — their origin and paleoenvironmental significance. Geolog. Jb. Reihe E Geophys. 22, 3–28 (1981).

    Google Scholar 

  34. Mutter, J. C., Talwani, M. & Stoffa, P. L. Origin of seaward-dipping reflectors in oceanic-crust off the Norwegian margin by subaerial sea-floor spreading. Geology 10, 353–357 (1982).

    Article  Google Scholar 

  35. Roberts, D. G., Backman, J., Morton, A. C., Murray, J. W. & Keene, J. B. Evolution of volcanic rifted margins — synthesis of Leg-81 results on the west margin of Rockall Plateau. Initial Rep. Deep Sea 81, 883–911 (1984).

    Google Scholar 

  36. Eldholm, O. et al. in Proceedings of the Ocean Drilling Program, Scientific Results Vol. 104 (ed. Winker, W. R.) 1033–1065 (1989).

  37. Larsen, H. C. & Saunders, A. D. in Proceedings of the Ocean Drilling Program, Scientific Results Vol. 152 (eds Saunders, A. D. et al.) 503–533 (Ocean Drilling Program, 1998).

  38. White, R. S. et al. Magmatism at rifted continental margins. Nature 330, 439–444 (1987).

    Article  Google Scholar 

  39. White, R. S., Mckenzie, D. & Onions, R. K. Oceanic crustal thickness from seismic measurements and rare-Earth element inversions. J. Geophys. Res. Solid Earth. 97, 19683–19715 (1992).

    Article  Google Scholar 

  40. Funck, T. et al. A review of the NE Atlantic conjugate margins based on seismic refraction data. Geol. Soc. Lond. Spec. Publ. 447, 171–205 (2017).

    Article  Google Scholar 

  41. Coffin, M. F. & Eldholm, O. Large igneous provinces — crustal structure, dimensions, and external consequences. Rev. Geophys. 32, 1–36 (1994).

    Article  Google Scholar 

  42. Courtillot, V., Jaupart, C., Manighetti, I., Tapponnier, P. & Besse, J. On causal links between flood basalts and continental breakup. Earth Planet. Sci. Lett. 166, 177–195 (1999).

    Article  Google Scholar 

  43. Peron-Pinvidic, G., Manatschal, G. & Osmundsen, P. T. Structural comparison of archetypal Atlantic rifted margins: a review of observations and concepts. Mar. Pet. Geol. 43, 21–47 (2013).

    Article  Google Scholar 

  44. Franke, D. Rifting, lithosphere breakup and volcanism: comparison of magma-poor and volcanic rifted margins. Mar. Pet. Geol. 43, 63–87 (2013).

    Article  Google Scholar 

  45. Haupert, I., Manatschal, G., Decarlis, A. & Unternehr, P. Upper-plate magma-poor rifted margins: stratigraphic architecture and structural evolution. Mar. Pet. Geol. 69, 241–261 (2016).

    Article  Google Scholar 

  46. Manatschal, G., Sutra, E. & Péron‐Pinvidic, G. in Proc. 2nd Central & North Atlantic Conjugate Margins Conference: Rediscovering the Atlantic, New Insights, News Winds for an Old Sea (eds Pena Dos Reis R. & Pimenetel, N.) (Lisbon, 2020).

  47. Froitzheim, N. & Manatschal, G. Kinematics of Jurassic rifting, mantle exhumation, and passive-margin formation in the Austroalpine and Penninic nappes (eastern Switzerland). GSA Bull. 108, 1120–1133 (1996).

    Article  Google Scholar 

  48. Whitmarsh, R. B., Manatschal, G. & Minshull, T. A. Evolution of magma-poor continental margins from rifting to seafloor spreading. Nature 413, 150–154 (2001).

    Article  Google Scholar 

  49. Harkin, C., Kusznir, N., Tugend, J., Manatschal, G. & McDermott, K. Evaluating magmatic additions at a magma-poor rifted margin: an East Indian case study. Geophys. J. Int. 217, 25–40 (2019).

    Google Scholar 

  50. Tugend, J. et al. Reappraisal of the magma-rich versus magma-poor rifted margin archetypes. Geol. Soc. Lond. Spec. Publ. https://doi.org/10.1144/sp476.9 (2020).

    Article  Google Scholar 

  51. Taylor, B., Goodliffe, A., Martinez, F. & Hey, R. Continental rifting and initial sea-floor spreading in the Woodlark Basin. Nature 374, 534–537 (1995).

    Article  Google Scholar 

  52. Taylor, B., Goodliffe, A. M. & Martinez, F. How continents break up: insights from Papua New Guinea. J. Geophys. Res. Solid Earth. 104, 7497–7512 (1999).

    Article  Google Scholar 

  53. Loureiro, A. et al. Imaging exhumed lower continental crust in the distal Jequitinhonha basin, Brazil. J. South. Am. Earth Sci. 84, 351–372 (2018).

    Article  Google Scholar 

  54. Pinheiro, J. M. et al. Lithospheric structuration onshore–offshore of the Sergipe–Alagoas passive margin, NE Brazil, based on wide-angle seismic data. J. South Am. Earth Sci. 88, 649–672 (2018).

    Article  Google Scholar 

  55. Evain, M. et al. Deep structure of the Santos Basin–Sao Paulo Plateau System, SE Brazil. J. Geophys. Res. Solid Earth. 120, 5401–5431 (2015).

    Article  Google Scholar 

  56. Lizarralde, D. et al. Variation in styles of rifting in the Gulf of California. Nature 448, 466–469 (2007).

    Article  Google Scholar 

  57. Merino, I., Prada, M., Ranero, C. R., Sallarès, V. & Calahorrano, A. The structure of the continent–ocean transition in the Gulf of Lions from joint refraction and reflection travel-time tomography. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2021JB021711 (2021).

    Article  Google Scholar 

  58. Ligi, M. et al. Birth of an ocean in the Red Sea: initial pangs. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2012GC004155 (2012).

    Article  Google Scholar 

  59. Cameselle, A. L., Ranero, C. R. & Barckhausen, U. Understanding the 3D formation of a wide rift: the central South China Sea rift system. Tectonics https://doi.org/10.1029/2019TC006040 (2020).

    Article  Google Scholar 

  60. Cameselle, A. L., Ranero, C. R., Franke, D. & Barckhausen, U. The continent–ocean transition on the northwestern South China Sea. Basin Res. 29, 73–95 (2017).

    Article  Google Scholar 

  61. Larsen, H. C. et al. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea. Nat. Geosci. 11, 782–789 (2018).

    Article  Google Scholar 

  62. Sun, Z. et al. South China Sea rifted margin. Sci. Prospectuses Int. Ocean Discov. Program https://doi.org/10.14379/iodp.proc.367368.2018 (2018).

    Article  Google Scholar 

  63. Lymer, G. et al. 3D development of detachment faulting during continental breakup. Earth Planet. Sci. Lett. 515, 90–99 (2019).

    Article  Google Scholar 

  64. Reston, T. J., Krawczyk, C. M. & Klaeschen, D. The S reflector west of Galicia (Spain): evidence from prestack depth migration for detachment faulting during continental breakup. J. Geophys. Res. Solid Earth. 101, 8075–8091 (1996).

    Article  Google Scholar 

  65. Davy, R. G. et al. Continental hyperextension, mantle exhumation, and thin oceanic crust at the continent–ocean transition, West Iberia: new insights from wide-angle seismic. J. Geophys. Res. Solid Earth. 121, 3177–3199 (2016).

    Article  Google Scholar 

  66. Bayrakci, G. et al. Fault-controlled hydration of the upper mantle during continental rifting. Nat. Geosci. 9, 384–388 (2016).

    Article  Google Scholar 

  67. Liu, Z. et al. Lateral coexistence of ductile and brittle deformation shapes magma-poor distal margins: an example from the West Iberia–Newfoundland margins. Earth Planet. Sci. Lett. 578, 117288 (2022).

    Article  Google Scholar 

  68. Thinon, I. et al. Deep structure of the Armorican Basin (Bay of Biscay): a review of Norgasis seismic reflection and refraction data. J. Geol. Soc. Lond. 160, 99–116 (2003).

    Article  Google Scholar 

  69. de Charpal, O., Guennoc, P., Montadert, L. & Roberts, D. G. Rifting, crustal attenuation and subsidence in the Bay of Biscay. Nature 275, 706–711 (1978).

    Article  Google Scholar 

  70. Krawczyk, C. M., Reston, T. J., Boillot, G. & Beslier, M.-O. in Proceedings of the Ocean Drilling Program, Scientific Results Vol. 149, 603–615 (1996).

  71. Afilhado, A. et al. From unthinned continent to ocean: the deep structure of the West Iberia passive continental margin at 38°N. Tectonophysics 458, 9–50 (2008).

    Article  Google Scholar 

  72. Merino, I., Ranero, C. R., Prada, M., Sallarès, V. & Grevemeyer, I. The rift and continent-ocean transition structure under the Tagus Abyssal Plain west of the Iberia. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2021JB022629 (2021).

    Article  Google Scholar 

  73. Keen, C. E., Dickie, K. & Dafoe, L. T. Structural evolution of the rifted margin off northern Labrador: the role of hyperextension and magmatism. Tectonics 37, 1955–1972 (2018).

    Article  Google Scholar 

  74. Hopper, J. R. et al. Continental breakup and the onset of ultraslow seafloor spreading off Flemish Cap on the Newfoundland rifted margin. Geology 32, 93–96 (2004).

    Article  Google Scholar 

  75. Ranero, C. R. & Perez-Gussinye, M. Sequential faulting explains the asymmetry and extension discrepancy of conjugate margins. Nature 468, 294–299 (2010).

    Article  Google Scholar 

  76. Van Avendonk, H. J. A. et al. Seismic velocity structure of the rifted margin of the eastern Grand Banks of Newfoundland, Canada. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2005JB004156 (2006).

    Article  Google Scholar 

  77. Dean, S. M., Minshull, T. A., Whitmarsh, R. B. & Louden, K. E. Deep structure of the ocean–continent transition in the southern Iberia Abyssal Plain from seismic refraction profiles: the IAM-9 transect at 40 degrees 20’ N. J. Geophys. Res. Solid Earth. 105, 5859–5885 (2000).

    Article  Google Scholar 

  78. Reston, T. J., Pennell, J., Stubenrauch, A., Walker, I. & Perez-Gussinye, M. Detachment faulting, mantle serpentinization, and serpentinite-mud volcanism beneath the Porcupine Basin, southwest of Ireland. Geology 29, 587–590 (2001).

    Article  Google Scholar 

  79. Reston, T. J. & Perez-Gussinye, M. Lithospheric extension from rifting to continental breakup at magma-poor margins: rheology, serpentinisation and symmetry. Int. J. Earth Sci. 96, 1033–1046 (2007).

    Article  Google Scholar 

  80. Pérez-Gussinyé, M., Ranero, C. R., Reston, T. J. & Sawyer, D. Mechanisms of extension at nonvolcanic margins: evidence from the Galicia interior basin, west of Iberia. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2001jb000901 (2003).

    Article  Google Scholar 

  81. Minshull, T. A., Dean, S. M. & Whitmarsh, R. B. The peridotite ridge province in the southern Iberia Abyssal Plain: seismic constraints revisited. J. Geophys. Res. Solid Earth. 119, 1580–1598 (2014).

    Article  Google Scholar 

  82. Grevemeyer, I., Ranero, C. R. & Ivandic, M. Structure of oceanic crust and serpentinization at subduction trenches. Geosphere 14, 395–418 (2018).

    Article  Google Scholar 

  83. Watanabe, T., Kasami, H. & Ohshima, S. Compressional and shear wave velocities of serpentinized peridotites up to 200 MPa. Earth Planets Space 59, 233–244 (2007).

    Article  Google Scholar 

  84. Grevemeyer, I. et al. The continent-to-ocean transition in the Iberia Abyssal Plain. Geology 50, 615–619 (2022).

    Article  Google Scholar 

  85. Lau, K. W. H., Nedimović, M. R. & Louden, K. E. Continent–ocean transition across the northeastern Nova Scotian margin from a dense wide-angle seismic profile. J. Geophys. Res. Solid Earth 123, 4331–4359 (2018).

    Article  Google Scholar 

  86. Jian, H., Nedimović, M. R., Canales, J. P. & Lau, K. W. H. New insights into the rift to drift transition across the northeastern Nova Scotian margin from wide-angle seismic waveform inversion and reflection imaging. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2021JB022201 (2021).

    Article  Google Scholar 

  87. Chian, D. P., Louden, K. E. & Reid, I. Crustal structure of the Labrador Sea conjugate margin and implications for the formation of nonvolcanic continental margins. J. Geophys. Res. Solid Earth 100, 24239–24253 (1995).

    Article  Google Scholar 

  88. Welford, J. K., Dehler, S. A. & Funck, T. Crustal velocity structure across the Orphan Basin and Orphan Knoll to the continent–ocean transition, offshore Newfoundland, Canada. Geophys. J. Int. 221, 37–59 (2019).

    Article  Google Scholar 

  89. Prada, M. et al. Seismic structure of the Central Tyrrhenian basin: geophysical constraints on the nature of the main crustal domains. J. Geophys. Res. Solid Earth 119, 52–70 (2014).

    Article  Google Scholar 

  90. Prada, M. et al. The complex 3-D transition from continental crust to backarc magmatism and exhumed mantle in the Central Tyrrhenian basin. Geophys. J. Int. 203, 63–78 (2015).

    Article  Google Scholar 

  91. Hopper, J. R. et al. A deep seismic investigation of the Flemish Cap margin: implications for the origin of deep reflectivity and evidence for asymmetric break-up between Newfoundland and Iberia. Geophys. J. Int. 164, 501–515 (2006).

    Article  Google Scholar 

  92. Bullock, A. D. & Minshull, T. A. From continental extension to seafloor spreading: crustal structure of the Goban Spur rifted margin, southwest of the UK. Geophys. J. Int. 163, 527–546 (2005).

    Article  Google Scholar 

  93. Eddy, D. R., Van Avendonk, H. J. A. & Shillington, D. J. Compressional and shear-wave velocity structure of the continent-ocean transition zone at the eastern Grand Banks, Newfoundland. Geophys. Res. Lett. 40, 3014–3020 (2013).

    Article  Google Scholar 

  94. Rooney, T. O. The Cenozoic magmatism of East-Africa: Part I — Flood basalts and pulsed magmatism. Lithos 286, 264–301 (2017).

    Article  Google Scholar 

  95. Shillington, D. et al. Controls on rift faulting in the North Basin of the Malawi (Nyasa) Rift, East Africa. Tectonics https://doi.org/10.1029/2019TC005633 (2020).

    Article  Google Scholar 

  96. Scholz, C. A. et al. Intrarift fault fabric, segmentation, and basin evolution of the Lake Malawi (Nyasa) Rift, East Africa. Geosphere 16, 1293–1311 (2020).

    Article  Google Scholar 

  97. Planke, S., Symonds, P. A., Alvestad, E. & Skogseid, J. Seismic volcanostratigraphy of large-volume basaltic extrusive complexes on rifted margins. J. Geophys. Res. Solid Earth 105, 19335–19351 (2000).

    Article  Google Scholar 

  98. Berndt, C., Planke, S., Alvestad, E., Tsikalas, F. & Rasmussen, T. Seismic volcanostratigraphy of the Norwegian margin: constraints on tectonomagmatic break-up processes. J. Geol. Soc. Lond. 158, 413–426 (2001).

    Article  Google Scholar 

  99. White, R. S. et al. Lower-crustal intrusion on the North Atlantic continental margin. Nature 452, 460–464 (2008).

    Article  Google Scholar 

  100. Peate, I. U., Larsen, M. & Lesher, C. L. The transition from sedimentation to flood volcanism in the Kangerlussuaq Basin, East Greenland: basaltic pyroclastic volcanism during initial Palaeogene continental break-up. J. Geol. Soc. Lond. 160, 759–772 (2003).

    Article  Google Scholar 

  101. Paton, D. A., Pindell, J., McDermott, K., Bellingham, P. & Horn, B. Evolution of seaward-dipping reflectors at the onset of oceanic crust formation at volcanic passive margins: insights from the South Atlantic. Geology 45, 439–442 (2017).

    Article  Google Scholar 

  102. McDermott, C., Collier, J. S., Lonergan, L., Fruehn, J. & Bellingham, P. Seismic velocity structure of seaward-dipping reflectors on the South American continental margin. Earth Planet. Sci. Lett. 521, 14–24 (2019).

    Article  Google Scholar 

  103. McDermott, C., Lonergan, L., Collier, J. S., McDermott, K. G. & Bellingham, P. Characterization of seaward-dipping reflectors along the South American Atlantic margin and implications for continental breakup. Tectonics 37, 3303–3327 (2018).

    Article  Google Scholar 

  104. Stica, J. M., Zalan, P. V. & Ferrari, A. L. The evolution of rifting on the volcanic margin of the Pelotas Basin and the contextualization of the Parana–Etendeka LIP in the separation of Gondwana in the South Atlantic. Mar. Pet. Geol. 50, 1–21 (2014).

    Article  Google Scholar 

  105. Bauer, K. et al. Deep structure of the Namibia continental margin as derived from integrated geophysical studies. J. Geophys. Res. Solid Earth 105, 25829–25853 (2000).

    Article  Google Scholar 

  106. Holbrook, W. S. et al. Mantle thermal structure and active upwelling during continental breakup in the North Atlantic. Earth Planet. Sci. Lett. 190, 251–266 (2001).

    Article  Google Scholar 

  107. Breivik, A. J., Faleide, J. I., Mjelde, R. & Flueh, E. R. Magma productivity and early seafloor spreading rate correlation on the northern Voring Margin, Norway — constraints on mantle melting. Tectonophysics 468, 206–223 (2009).

    Article  Google Scholar 

  108. Voss, M., Schmidt-Aursch, M. C. & Jokat, W. Variations in magmatic processes along the East Greenland volcanic margin. Geophys. J. Int. 177, 755–782 (2009).

    Article  Google Scholar 

  109. Sapin, F., Ringenbach, J. C. & Clerc, C. Rifted margins classification and forcing parameters. Sci. Rep. https://doi.org/10.1038/s41598-021-87648-3 (2021).

    Article  Google Scholar 

  110. Clerc, C., Jolivet, L. & Ringenbach, J. C. Ductile extensional shear zones in the lower crust of a passive margin. Earth Planet. Sci. Lett. 431, 1–7 (2015).

    Article  Google Scholar 

  111. Walker, G. P. L. Zeolite zones and dike distribution in relation to the structure of the basalts of eastern Iceland. J. Geol. 68, 515–528 (1960).

    Article  Google Scholar 

  112. Buck, W. R. The role of magmatic loads and rift jumps in generating seaward dipping reflectors on volcanic rifted margins. Earth Planet. Sci. Lett. 466, 62–69 (2017).

    Article  Google Scholar 

  113. Morgan, R. L. & Watts, A. B. Seismic and gravity constraints on flexural models for the origin of seaward dipping reflectors. Geophys. J. Int. 214, 2073–2083 (2018).

    Article  Google Scholar 

  114. White, R. S. & Smith, L. K. Crustal structure of the Hatton and the conjugate east Greenland rifted volcanic continental margins, NE Atlantic. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2008jb005856 (2009).

    Article  Google Scholar 

  115. Collier, J. S. et al. New constraints on the age and style of continental breakup in the South Atlantic from magnetic anomaly data. Earth Planet. Sci. Lett. 477, 27–40 (2017).

    Article  Google Scholar 

  116. Hopper, J. R. et al. Structure of the SE Greenland margin from seismic reflection and refraction data: implications for nascent spreading center subsidence and asymmetric crustal accretion during North Atlantic opening. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2002jb001996 (2003).

    Article  Google Scholar 

  117. Taposeea, C. A., Armitage, J. J. & Collier, J. S. Asthenosphere and lithosphere structure controls on early onset oceanic crust production in the southern South Atlantic. Tectonophysics 716, 4–20 (2017).

    Article  Google Scholar 

  118. Becker, K. et al. Asymmetry of high-velocity lower crust on the South Atlantic rifted margins and implications for the interplay of magmatism and tectonics in continental breakup. Solid Earth 5, 1011–1026 (2014).

    Article  Google Scholar 

  119. Koopmann, H. et al. Segmentation and volcano-tectonic characteristics along the SW African continental margin, South Atlantic, as derived from multichannel seismic and potential field data. Mar. Pet. Geol. 50, 22–39 (2014).

    Article  Google Scholar 

  120. Chauvet, F., Sapin, F., Geoffroy, L., Ringenbach, J. C. & Ferry, J. N. Conjugate volcanic passive margins in the austral segment of the South Atlantic — architecture and development. Earth Sci. Rev. https://doi.org/10.1016/j.earscirev.2020.103461 (2021).

    Article  Google Scholar 

  121. Fromm, T. et al. South Atlantic opening: a plume-induced breakup? Geology 43, 931–934 (2015).

    Article  Google Scholar 

  122. Planert, L. et al. The wide-angle seismic image of a complex rifted margin, offshore North Namibia: implications for the tectonics of continental breakup. Tectonophysics 716, 130–148 (2017).

    Article  Google Scholar 

  123. Á Horni, J. et al. Regional distribution of volcanism within the North Atlantic Igneous Province. Geol. Soc. Lond. Spec. Publ. 447, 105–125 (2017).

    Article  Google Scholar 

  124. Steinberger, B., Bredow, E., Lebedev, S., Schaeffer, A. & Torsvik, T. H. Widespread volcanism in the Greenland–North Atlantic region explained by the Iceland plume. Nat. Geosci. https://doi.org/10.1038/s41561-018-0251-0 (2019).

    Article  Google Scholar 

  125. Morgan, J. P., Taramon, J. M., Araujo, M., Hasenclever, J. & Perez-Gussinye, M. Causes and consequences of asymmetric lateral plume flow during South Atlantic rifting. Proc. Natl Acad. Sci. USA 117, 27877–27883 (2020).

    Article  Google Scholar 

  126. Nielsen, T. K., Larsen, H. C. & Hopper, J. R. Contrasting rifted margin styles south of Greenland: implications for mantle plume dynamics. Earth Planet. Sci. Lett. 200, 271–286 (2002).

    Article  Google Scholar 

  127. Moulin, M. et al. Geological constraints on the evolution of the Angolan margin based on reflection and refraction seismic data (ZaiAngo project). Geophys. J. Int. 162, 793–810 (2005).

    Article  Google Scholar 

  128. Deng, H. et al. South China Sea documents the transition from wide continental rift to continental break up. Nat. Commun. 11, 4583 (2020).

    Article  Google Scholar 

  129. Ding, W. et al. Lateral evolution of the rift-to-drift transition in the South China Sea: evidence from multi-channel seismic data and IODP Expeditions 367&368 drilling results. Earth Planet. Sci. Lett. 531, 115932 (2020).

    Article  Google Scholar 

  130. li, F. et al. Continental interior and edge breakup at convergent margins induced by subduction direction reversal: a numerical modeling study applied to the South China Sea margin. Tectonics https://doi.org/10.1029/2020TC006409 (2020).

    Article  Google Scholar 

  131. li, F., Sun, Z. & Yang, H. Possible spatial distribution of the Mesozoic volcanic arc in the present-day South China Sea continental margin and its tectonic implications. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2017JB014861 (2018).

    Article  Google Scholar 

  132. Sun, Z. et al. The rifting-breakup process of the passive continental margin and its relationship with magmatism: the attribution of the South China Sea. Earth Sci. 46, 770–789 (2021).

    Google Scholar 

  133. Wan, K., Xia, S., Cao, J., Sun, J. & Xu, H.-L. Deep seismic structure of the northeastern South China Sea: origin of a high‐velocity layer in the lower crust. J. Geophys. Res. Solid Earth. 122, 2831–2858 (2017).

    Article  Google Scholar 

  134. Yang, L. et al. The structure and evolution of deepwater basins in the distal margin of the northern South China Sea and their implications for the formation of the continental margin. Mar. Pet. Geol. 92, 234–254 (2018).

    Article  Google Scholar 

  135. Zhang, C. et al. Syn-rift magmatic characteristics and evolution at a sediment-rich margin: insights from high-resolution seismic data from the South China Sea. Gondwana Res. 91, 81–96 (2021).

    Article  Google Scholar 

  136. Pin, Y., Di, Z. & Zhaoshu, L. A crustal structure profile across the northern continental margin of the South China Sea. Tectonophysics 338, 1–21 (2001).

    Article  Google Scholar 

  137. Sun, Z. et al. The role of magmatism in the thinning and breakup of the South China Sea continental margin. Special Topic: the South China Sea Ocean Drilling. Natl Sci. Rev. 6, 871–876 (2019).

    Article  Google Scholar 

  138. Wu, J., Liu, Z. & Yu, X. Plagioclase-regulated hydrothermal alteration of basaltic rocks with implications for the South China Sea rifting. Chem. Geol. 585, 120569 (2021).

    Article  Google Scholar 

  139. Nirrengarten, M. et al. Extension modes and breakup processes of the southeast China–Northwest Palawan conjugate rifted margins. Mar. Pet. Geol. 113, 104123 (2020).

    Article  Google Scholar 

  140. Ding, W., Sun, Z., Dadd, K., Fang, Y. & Li, J. Structures within the oceanic crust of the central South China Sea basin and their implications for oceanic accretionary processes. Earth Planet. Sci. Lett. 488, 115–125 (2018).

    Article  Google Scholar 

  141. Yu, J. et al. Oceanic crustal structures and temporal variations of magmatic budget during seafloor spreading in the East Sub-basin of the South China Sea. Mar. Geol. 436, 106475 (2021).

    Article  Google Scholar 

  142. Huismans, R. & Beaumont, C. Depth-dependent extension, two-stage breakup and cratonic underplating at rifted margins. Nature 473, 74–78 (2011).

    Article  Google Scholar 

  143. Buck, W. R. Flexural rotation of normal faults. Tectonics 7, 959–973 (1988).

    Article  Google Scholar 

  144. Pérez-Gussinyé, M. et al. Lithospheric strength and rift migration controls on synrift stratigraphy and breakup unconformities at rifted margins: examples from numerical models, the Atlantic and South China Sea margins. Tectonics https://doi.org/10.1029/2020TC006255 (2020).

    Article  Google Scholar 

  145. Theunissen, T. & Huismans, R. S. Long-term coupling and feedback between tectonics and surface processes during non-volcanic rifted margin formation. J. Geophys. Res. Solid Earth. 124, 12323–12347 (2019).

    Article  Google Scholar 

  146. Ros, E. et al. Lower crustal strength controls on melting and serpentinization at magma-poor margins: potential implications for the South Atlantic. Geochem. Geophys. Geosyst. 18, 4538–4557 (2017).

    Article  Google Scholar 

  147. Armitage, J., Petersen, K. D. & Perez-Gussinye, M. The role of crustal strength in controlling magmatism and melt chemistry during rifting and break‐up. Geochem. Geophys. Geosyst. 19, https://doi.org/10.1002/2017gc007326 (2018).

  148. Lu, G. & Huismans, R. S. Melt volume at Atlantic volcanic rifted margins controlled by depth-dependent extension and mantle temperature. Nat. Commun. 12, 3894 (2021).

    Article  Google Scholar 

  149. Cowie, P. A., Underhill, J. R., Behn, M. D., Lin, J. & Gill, C. E. Spatio-temporal evolution of strain accumulation derived from multi-scale observations of Late Jurassic rifting in the northern North Sea: a critical test of models for lithospheric extension. Earth Planet. Sci. Lett. 234, 401–419 (2005).

    Article  Google Scholar 

  150. Mattei, M. et al. Tectonic evolution of fault-bounded continental blocks: comparison of paleomagnetic and GPS data in the Corinth and Megara basins (Greece). J. Geophys. Res. Solid Earth https://doi.org/10.1029/2003JB002506 (2004).

    Article  Google Scholar 

  151. Gawthorpe, R. L. et al. Normal fault growth, displacement localisation and the evolution of normal fault populations: the Hammam Faraun fault block, Suez rift, Egypt. J. Struct. Geol. 25, 883–895 (2003).

    Article  Google Scholar 

  152. Brune, S., Heine, C., Perez-Gussinye, M. & Sobolev, S. V. Rift migration explains continental margin asymmetry and crustal hyper-extension. Nat. Commun. 5, 4014 (2014).

    Article  Google Scholar 

  153. Petit, C. & Déverchère, J. Structure and evolution of the Baikal rift: a synthesis. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2006GC001265 (2006).

    Article  Google Scholar 

  154. England, P. Constraints on extension of continental lithosphere. J. Geophys. Res. Solid Earth 88, 1145–1152 (1983).

    Article  Google Scholar 

  155. Svartman Dias, A. E., Lavier, L. L. & Hayman, N. W. Conjugate rifted margins width and asymmetry: the interplay between lithospheric strength and thermomechanical processes. J. Geophys. Res. Solid Earth. 120, 8672–8700 (2015).

    Article  Google Scholar 

  156. Tetreault, J. L. & Buiter, S. J. H. The influence of extension rate and crustal rheology on the evolution of passive margins from rifting to break-up. Tectonophysics 746, 155–172 (2018).

    Article  Google Scholar 

  157. Naliboff, J. & Buiter, S. J. H. Rift reactivation and migration during multiphase extension. Earth Planet. Sci. Lett. 421, 58–67 (2015).

    Article  Google Scholar 

  158. Neuharth, D. et al. Evolution of rift systems and their fault networks in response to surface processes. Tectonics https://doi.org/10.1029/2021TC007166 (2022).

    Article  Google Scholar 

  159. Reston, T. J. Polyphase faulting during the development of the west Galicia rifted margin. Earth Planet. Sci. Lett. 237, 561–576 (2005).

    Article  Google Scholar 

  160. Naliboff, J. B., Buiter, S. J. H., Peron-Pinvidic, G., Osmundsen, P. T. & Tetreault, J. Complex fault interaction controls continental rifting. Nat. Commun. 8, 1179 (2017).

    Article  Google Scholar 

  161. Lavier, L. L. & Manatschal, G. A mechanism to thin the continental lithosphere at magma-poor margins. Nature 440, 324–328 (2006).

    Article  Google Scholar 

  162. Lavier, L. L. & Buck, W. R. Half graben versus large-offset low-angle normal fault: importance of keeping cool during normal faulting. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2001JB000513 (2002).

    Article  Google Scholar 

  163. Rey, P. F., Teyssier, C. & Whitney, D. L. Extension rates, crustal melting, and core complex dynamics. Geology 37, 391–394 (2009).

    Article  Google Scholar 

  164. Brun, J. P., White, R. S., Hardman, R. F. P., Watts, A. B. & Whitmarsh, R. B. Narrow rifts versus wide rifts: inferences for the mechanics of rifting from laboratory experiments. Phil. Trans. R. Soc. Lond. A 357, 695–712 (1999).

    Article  Google Scholar 

  165. Buiter, S. J. H., Huismans, R. S. & Beaumont, C. Dissipation analysis as a guide to mode selection during crustal extension and implications for the styles of sedimentary basins. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2007JB005272 (2008).

    Article  Google Scholar 

  166. Olive, J.-A., Behn, M. D. & Malatesta, L. C. Modes of extensional faulting controlled by surface processes. Geophys. Res. Lett. 41, 6725–6733 (2014).

    Article  Google Scholar 

  167. Andres-Martinez, M., Perez-Gussinye, M., Armitage, J. & Morgan, J. P. Thermomechanical implications of sediment transport for the architecture and evolution of continental rifts and margins. Tectonics 38, 641–665 (2019).

    Article  Google Scholar 

  168. Peron-Pinvidic, G., Manatschal, G., Minshull, T. A. & Sawyer, D. S. Tectonosedimentary evolution of the deep Iberia–Newfoundland margins: evidence for a complex breakup history. Tectonics https://doi.org/10.1029/2006tc001970 (2007).

    Article  Google Scholar 

  169. Masini, E., Manatschal, G. & Mohn, G. The Alpine Tethys rifted margins: reconciling old and new ideas to understand the stratigraphic architecture of magma-poor rifted margins. Sedimentology 60, 174–196 (2013).

    Article  Google Scholar 

  170. Pérez-Gussinyé, M. et al. A tectonic model for hyperextension at magma-poor rifted margins: an example from the West Iberia–Newfoundland conjugate margins. Geol. Soc. Lond. Spec. Publ. https://doi.org/10.1144/sp369.19 (2013).

    Article  Google Scholar 

  171. Karner, G. D., Gambôa, L. A. P., Schreiber, B. C., Lugli, S. & Bąbel, M. Timing and origin of the South Atlantic pre-salt sag basins and their capping evaporites. Geol. Soc. Lond. Spec. Publ. https://doi.org/10.1144/sp285.2 (2007).

    Article  Google Scholar 

  172. Neto Araujo, M., Pérez-Gussinyé, M. & Muldashev, I. Oceanward rift migration during formation of Santos–Benguela ultra-wide rifted margins. Geol. Soc. Lond. Spec. Publ. https://doi.org/10.1144/SP524-2021-123 (2022).

    Article  Google Scholar 

  173. Bastow, I. D. & Keir, D. The protracted development of the continent–ocean transition in Afar. Nat. Geosci. 4, 248–250 (2011).

    Article  Google Scholar 

  174. Buck, W. R. The role of magma in the development of the Afro-Arabian Rift System. Geol. Soc. Lond. Spec. Publ. 259, 43–54 (2006).

    Article  Google Scholar 

  175. Annen, C. & Sparks, R. S. J. Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust. Earth Planet. Sci. Lett. 203, 937–955 (2002).

    Article  Google Scholar 

  176. Armitage, J. J. & Collier, J. S. The thermal structure of volcanic passive margins. Pet. Geosci. 24, 393–401 (2018).

    Article  Google Scholar 

  177. Jull, M. & McKenzie, D. The effect of deglaciation on mantle melting beneath Iceland. J. Geophys. Res. Solid Earth. 101, 21815–21828 (1996).

    Article  Google Scholar 

  178. Armitage, J. J., Ferguson, D. J., Petersen, K. D. & Creyts, T. T. The importance of Icelandic ice sheet growth and retreat on mantle CO2 flux. Geophys. Res. Lett. 46, 6451–6458 (2019).

    Article  Google Scholar 

  179. Sternai, P. Surface processes forcing on extensional rock melting. Sci. Rep. 10, 7711 (2020).

    Article  Google Scholar 

  180. Theissen-Krah, S., Iyer, K., Rüpke, L. H. & Morgan, J. P. Coupled mechanical and hydrothermal modeling of crustal accretion at intermediate to fast spreading ridges. Earth Planet. Sci. Lett. 311, 275–286 (2011).

    Article  Google Scholar 

  181. Sibuet, J. C., Srivastava, S. & Manatschal, G. Exhumed mantle-forming transitional crust in the Newfoundland–Iberia rift and associated magnetic anomalies. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2005jb003856 (2007).

    Article  Google Scholar 

  182. Reston, T. J. & Morgan, J. P. Continental geotherm and the evolution of rifted margins. Geology 32, 133–136 (2004).

    Article  Google Scholar 

  183. Müntener, O. & Manatschal, G. High degrees of melt extraction recorded by spinel harzburgite of the Newfoundland margin: the role of inheritance and consequences for the evolution of the southern North Atlantic. Earth Planet. Sci. Lett. 252, 437–452 (2006).

    Article  Google Scholar 

  184. Pérez-Gussinyé, M., Morgan, J. P., Reston, T. J. & Ranero, C. R. The rift to drift transition at non-volcanic margins: insights from numerical modelling. Earth Planet. Sci. Lett. 244, 458–473 (2006).

    Article  Google Scholar 

  185. Mohn, G. et al. Structural and stratigraphic evolution of the Iberia–Newfoundland hyper-extended rifted margin: a quantitative modelling approach. Geol. Soc. Lond. Spec. Publ. https://doi.org/10.1144/sp413.9 (2015).

    Article  Google Scholar 

  186. Reston, T. J. & McDermott, K. G. Successive detachment faults and mantle unroofing at magma-poor rifted margins. Geology 39, 1071–1074 (2011).

    Article  Google Scholar 

  187. Gillard, M. et al. Birth of an oceanic spreading center at a magma-poor rift system. Sci. Rep. 7, 15072 (2017).

    Article  Google Scholar 

  188. Brune, S., Williams, S. E., Butterworth, N. P. & Muller, R. D. Abrupt plate accelerations shape rifted continental margins. Nature 536, 201–204 (2016).

    Article  Google Scholar 

  189. van Wijk, J. W., Huismans, R. S., ter Voorde, M. & Cloetingh, S. A. P. L. Melt generation at volcanic continental margins: no need for a mantle plume? Geophys. Res. Lett. 28, 3995–3998 (2001).

    Article  Google Scholar 

  190. Campbell, I. H. Testing the plume theory. Chem. Geol. 241, 153–176 (2007).

    Article  Google Scholar 

  191. Sleep, N. H. Lateral flow and ponding of starting plume material. J. Geophys. Res. Solid Earth. 102, 10001–10012 (1997).

    Article  Google Scholar 

  192. Ringrose, P. S. & Meckel, T. A. Maturing global CO2 storage resources on offshore continental margins to achieve 2DS emissions reductions. Sci. Rep. 9, 17944 (2019).

    Article  Google Scholar 

  193. Krevor, S. Subsurface carbon dioxide and hydrogen storage in a sustainable energy future. Nat. Rev. Earth Environ. (in the press).

  194. Goldberg, D. S., Kent, D. V. & Olsen, P. E. Potential on-shore and off-shore reservoirs for CO2 sequestration in Central Atlantic magmatic province basalts. Proc. Natl Acad. Sci. USA 107, 1327–1332 (2010).

    Article  Google Scholar 

  195. Snæbjörnsdóttir, S. Ó. et al. Carbon dioxide storage through mineral carbonation. Nat. Rev. Earth Environ. 1, 90–102 (2020).

    Article  Google Scholar 

  196. Matter, J. M. & Kelemen, P. B. Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation. Nat. Geosci. 2, 837–841 (2009).

    Article  Google Scholar 

  197. Dichicco, M. C. et al. Serpentinite carbonation for CO2 sequestration in the southern Apennines: preliminary study. Energy Procedia 76, 477–486 (2015).

    Article  Google Scholar 

  198. Lithium de France, geothermal. Les Sources https://www.lithiumdefrance.earth/les-sources (2022).

  199. Lockett, G. Geothermal power: an alternate role for redundant North Sea platforms? Offshore Magazine (7 March 2018).

  200. Arnulf, A. F., Harding, A. J., Singh, S. C., Kent, G. M. & Crawford, W. Fine-scale velocity structure of upper oceanic crust from full waveform inversion of downward continued seismic reflection data at the Lucky Strike Volcano, Mid-Atlantic Ridge. Geophys. Res. Lett. https://doi.org/10.1029/2012GL051064 (2012).

    Article  Google Scholar 

  201. Peron-Pinvidic, G., Fourel, L. & Buiter, S. J. H. The influence of orogenic collision inheritance on rifted margin architecture: Insights from comparing numerical experiments to the Mid-Norwegian margin. Tectonophysics https://doi.org/10.1016/j.tecto.2022.229273 (2022).

    Article  Google Scholar 

  202. Neuharth, D., Brune, S., Glerum, A., Heine, C. & Welford, J. K. Formation of continental microplates through rift linkage: Numerical modeling and its application to the Flemish Cap and Sao Paulo Plateau. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2020GC009615 (2021).

    Article  Google Scholar 

  203. Gouiza, M. & Naliboff, J. Rheological inheritance controls the formation of segmented rifted margins in cratonic lithosphere. Nat. Commun. 12, 4653 (2021).

    Article  Google Scholar 

  204. Le Pourhiet, L. et al. Continental break-up of the South China Sea stalled by far-field compression. Nat. Geosci. 11, 605–609 (2018).

    Article  Google Scholar 

  205. Biari, Y. et al. Structure and evolution of the Atlantic passive margins: a review of existing rifting models from wide-angle seismic data and kinematic reconstruction. Mar. Pet. Geol. 126, 104898 (2021).

    Article  Google Scholar 

  206. Eddy, D. R., Van Avendonk, H. J. A., Christeson, G. L. & Norton, I. O. Structure and origin of the rifted margin of the northern Gulf of Mexico. Geosphere 14, 1804–1817 (2018).

    Article  Google Scholar 

  207. Eddy, D. R. et al. Deep crustal structure of the northeastern Gulf of Mexico: implications for rift evolution and seafloor spreading. J. Geophys. Res. Solid Earth. 119, 6802–6822 (2014).

    Article  Google Scholar 

  208. Direen, N. G., Stagg, H. M. J., Symonds, P. A. & Colwell, J. B. Dominant symmetry of a conjugate southern Australian and East Antarctic magma-poor rifted margin segment. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2010GC003306 (2011).

    Article  Google Scholar 

  209. Ball, P., Eagles, G., Ebinger, C., McClay, K. & Totterdell, J. The spatial and temporal evolution of strain during the separation of Australia and Antarctica. Geochem. Geophys. Geosyst. 14, 2771–2799 (2013).

    Article  Google Scholar 

  210. Gillard, M. et al. Tectonomagmatic evolution of the final stages of rifting along the deep conjugate Australian–Antarctic magma-poor rifted margins: constraints from seismic observations. Tectonics 34, 753–783 (2015).

    Article  Google Scholar 

  211. Bryan, S. E. & Ferrari, L. Large igneous provinces and silicic large igneous provinces: progress in our understanding over the last 25  years. GSA Bull. 125, 1053–1078 (2013).

    Article  Google Scholar 

  212. Seton, M. et al. A global data set of present-day oceanic crustal age and seafloor spreading parameters. Geochem. Geophys. Geosys. 21, e2020GC009214 (2020).

    Article  Google Scholar 

  213. Muldashev, I. A., Pérez-Gussinyé, M. & de Araújo, M. N. C. KineDyn: thermomechanical forward method for validation of seismic interpretations and investigation of dynamics of rifts and rifted margins. Phys. Earth Planet. Inter. 317, 106748 (2021).

    Article  Google Scholar 

  214. Deregowski, S. M. Prestack depth migration by the 2-D boundary integral method. 4th Annual International Meeting SEG, Expanded Abstracts, 414–417 (1985).

  215. Carlson, R. L. & Herrick, C. N. Densities and porosities in the oceanic crust and their variations with depth and age. J. Geophys. Res. Solid Earth 95, 9153–9170 (1990).

    Article  Google Scholar 

  216. Carlson, R. L. & Miller, D. J. Mantle wedge water contents estimated from seismic velocities in partially serpentinized peridotites. Geophys. Res. Lett. https://doi.org/10.1029/2002GL016600 (2003).

    Article  Google Scholar 

  217. Christensen, N. I. & Mooney, W. D. Seismic velocity structure and composition of the continental crust: a global view. J. Geophys. Res. Solid Earth 100, 9761–9788 (1995).

    Article  Google Scholar 

  218. Kelemen, P. B. & Holbrook, W. S. Origin of thick, high-velocity igneous crust along the US east-coast margin. J. Geophys. Res. Solid Earth. 100, 10077–10094 (1995).

    Article  Google Scholar 

  219. Korenaga, J., Kelemen, P. B. & Holbrook, W. S. Methods for resolving the origin of large igneous provinces from crustal seismology. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2001jb001030 (2002).

    Article  Google Scholar 

  220. Davy, R. G., Collier, J. S., Henstock, T. J. & Consortium, T. V. Wide-angle seismic imaging of two modes of crustal accretion in mature Atlantic Ocean crust. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2019JB019100 (2020).

    Article  Google Scholar 

  221. Dunn, R. A., Arai, R., Eason, D. E., Canales, J. P. & Sohn, R. A. Three-dimensional seismic structure of the Mid-Atlantic Ridge: an investigation of tectonic, magmatic, and hydrothermal processes in the Rainbow area. J. Geophys. Res. Solid Earth. 122, 9580–9602 (2017).

    Article  Google Scholar 

  222. Corbalán, A. et al. Seismic velocity structure along and across the ultraslow-spreading Southwest Indian Ridge at 64° 30′ E showcases flipping detachment faults. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2021JB022177 (2021).

    Article  Google Scholar 

  223. Sauter, D. et al. Continuous exhumation of mantle-derived rocks at the Southwest Indian Ridge for 11 million years. Nat. Geosci. 6, 314–320 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank J. Garcia Pintado who contributed to building the numerical models presented here, and L. Mezri and R. Li who helped with some of the figure drafting. M. Prada and I. Merino contributed to draft versions of figures in Box 1. M.P.G. was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC-2077 — 390741603.

Author information

Authors and Affiliations

Authors

Contributions

M.P.G. took the lead in writing a first draft of the article. All authors contributed to the conceptualization, writing and figure drafting.

Corresponding author

Correspondence to Marta Pérez-Gussinyé.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

43017_2022_380_MOESM2_ESM.mp4

Supplementary Movie 1. Evolution of Model 1. Top: zoom at the rift centre. Bottom: more general view of model. Red shade is plastic (brittle) strain rate and blue is ductile strain rate. Grey shading shows accumulated plastic (brittle) strain and represents areas where faulting occurred. Sediments are colour-coded by age since the start of rifting: in rainbow colours are sediments deposited during rifting and in white to red those deposited after breakup. Blue line marks the 1021 Pa s iso-viscosity line. Thin dotted black lines are isotherms. Red dashed line shows a prediction of the location and thickness of underplated magmatic material, where the line is on top of the Moho, then the thickness of the underplated body is zero. In the model it is assumed that the magma produced in a time step is instantaneously advected to the area of highest strain rate in the Moho (ref. 146). Note that, in the model, the magma is only underplated, but in nature it will intrude into and extrude from the crust, thus the model only gives a representation of the areas where magmatic products would be present and their total thickness.

43017_2022_380_MOESM3_ESM.mp4

Supplementary Movie 2. Evolution of Model 2. Top: zoom at the rift centre. Bottom: more general view of model. Red shade is plastic (brittle) strain rate and blue is ductile strain rate. Grey shading shows accumulated plastic (brittle) strain and represents areas where faulting occurred. Sediments are colour-coded by age since the start of rifting: in rainbow colours are sediments deposited during rifting and in white to red those deposited after breakup. Blue line marks the 1021 Pa s iso-viscosity line. Thin dotted black lines are isotherms. Red dashed line shows a prediction of the location and thickness of underplated magmatic material, where the line is on top of the Moho, then the thickness of the underplated body is zero. In the model it is assumed that the magma produced in a time step is instantaneously advected to the area of highest strain rate in the Moho (ref. 146). Note that, in the model, the magma is only underplated, but in nature it will intrude into and extrude from the crust, thus the model only gives a representation of the area where magmatic products would be present and their total thickness.

43017_2022_380_MOESM4_ESM.mp4

Supplementary Movie 3. Evolution of Model 3. Top: zoom at the rift centre. Bottom: more general view of model. Red shade is plastic (brittle) strain rate and blue is ductile strain rate. Grey shading shows accumulated plastic (brittle) strain and represents areas where faulting occurred. Sediments are colour-coded by age since the start of rifting: in rainbow colours are sediments deposited during rifting and in white to red those deposited after breakup. Blue line marks the 1021 Pa s iso-viscosity line. Thin dotted black lines are isotherms. Red dashed line shows a prediction of the location and thickness of underplated magmatic material, where the line is on top of the Moho, then the thickness of the underplated body is zero. In the model it is assumed that the magma produced in a time step is instantaneously advected to the area of highest strain rate in the Moho (ref. 146). Note that, in the model, the magma is only underplated, but in nature it will intrude into and extrude from the crust, thus the model only gives a representation of the area where magmatic products would be present and their total thickness.

43017_2022_380_MOESM5_ESM.mp4

Supplementary Movie 4. Evolution of Model 4. Top: zoom at the rift centre. Bottom: more general view of model. Red shade is plastic (brittle) strain rate and blue is ductile strain rate. Grey shading shows accumulated plastic (brittle) strain and represents areas where faulting occurred. Sediments are colour-coded by age since the start of rifting: in rainbow colours are sediments deposited during rifting and in white to red those deposited after breakup. Blue line marks the 1021 Pa s iso-viscosity line. Thin dotted black lines are isotherms. Red dashed line shows a prediction of the location and thickness of underplated magmatic material, where the line is on top of the Moho, then the thickness of the underplated body is zero. In the model it is assumed that the magma produced in a time step is instantaneously advected to the area of highest strain rate in the Moho (ref. 146). Note that, in the model, the magma is only underplated, but in nature it will intrude into and extrude from the crust, thus the model only gives a representation of the area where magmatic products would be present and their total thickness.

Glossary

Break-up

The point (in time and space) where the thinning continents physically separate from each other.

Conjugate margins

Two sides of an ocean basin that before rifting were joined.

Continent–ocean transition

(COT). The area seawards of the thinned continental crust, which does not show seismic velocity–depth nor tectonic structures typical of thinned continental or Penrose-like oceanic crust.

Footwall

The block that does not experience subsidence on one side of an active fault.

Hangingwall

The block that experiences subsidence on one side of an active fault.

High-velocity lower-crustal bodies

(HVLCs). Bodies in the seismically defined lower crust exhibiting high velocities (VP of 7.0–7.8 km s−1) in wide-angle data and interpreted as magmatic intrusions.

Large igneous provinces

(LIPs). Formed by the injection of large volumes of magmatism in very short geological periods, 1–2 Myr or less. Traditionally interpreted as formed by the impact of a new mantle plume.

Listric

A fault that has high angle in its shallowest segments (~60–30°) and has much lower angle at depth.

Magnetic anomaly lineations

Commonly interpreted to indicate seafloor spreading (oceanic crust). Formed when mafic magma cools below the Curie point (580 °C) and takes the polarity of the Earth’s field at that time.

Multichannel seismic

(MCS) data. Data that mainly records the near-normal incidence reflected waves and gives a high-resolution image of the reflectivity in the subsurface.

Necking zone

Where the crust thins from the continental platform (crustal thickness 28–25 km) towards the distal domain (crustal thickness of ~20–15 km or less). Necking zones can be spatially abrupt or occur over a large distance.

Penrose-like oceanic crust

Oceanic crust that is ~6–7 km thick, with an upper crust formed by extrusive pillow basalts and dolerite dykes, overlying a gabbroic lower crust.

Postrift

Period of time after break-up.

Post-tectonic sediment

Sediment deposited after the activity of the underlying basement faults.

Seaward-dipping reflectors

(SDRs). Formed of tilted, stacked, lava and sediment interbeds.

Sequential faulting

A system of faults that young oceanwards and cut through the hangingwall of the previous ones.

Strain weakening

A reduction in the strength of the lithosphere due to mechanical damage. Strain weakening can result from the presence of fluids at faults, mineralization, reduction in grain size and the formation of crystallographic preferred orientations.

Synrift

Period of time before break-up.

Syntectonic sediment

Sediment deposited during the activity of the underlying basement faults.

Unconformities

Boundaries between sedimentary rocks caused by a period of erosion or a pause in sediment accumulation.

Underplated

Material added to the base of the crust.

Wide-angle seismic

(WAS) data. Data that records wide-angle refracted, turning and reflected waves and yields information on the velocity-depth structure in the subsurface.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Gussinyé, M., Collier, J.S., Armitage, J.J. et al. Towards a process-based understanding of rifted continental margins. Nat Rev Earth Environ 4, 166–184 (2023). https://doi.org/10.1038/s43017-022-00380-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00380-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing