Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Global water resources and the role of groundwater in a resilient water future

An Author Correction to this article was published on 29 March 2023

This article has been updated

Abstract

Water is a critical resource, but ensuring its availability faces challenges from climate extremes and human intervention. In this Review, we evaluate the current and historical evolution of water resources, considering surface water and groundwater as a single, interconnected resource. Total water storage trends have varied across regions over the past century. Satellite data from the Gravity Recovery and Climate Experiment (GRACE) show declining, stable and rising trends in total water storage over the past two decades in various regions globally. Groundwater monitoring provides longer-term context over the past century, showing rising water storage in northwest India, central Pakistan and the northwest United States, and declining water storage in the US High Plains and Central Valley. Climate variability causes some changes in water storage, but human intervention, particularly irrigation, is a major driver. Water-resource resilience can be increased by diversifying management strategies. These approaches include green solutions, such as forest and wetland preservation, and grey solutions, such as increasing supplies (desalination, wastewater reuse), enhancing storage in surface reservoirs and depleted aquifers, and transporting water. A diverse portfolio of these solutions, in tandem with managing groundwater and surface water as a single resource, can address human and ecosystem needs while building a resilient water system.

Key points

  • Net trends in total water storage data from the GRACE satellite mission range from −310 km3 to 260 km3 total over a 19-year record in different regions globally, caused by climate and human intervention.

  • Groundwater and surface water are strongly linked, with 85% of groundwater withdrawals sourced from surface water capture and reduced evapotranspiration, and the remaining 15% derived from aquifer depletion.

  • Climate and human interventions caused loss of ~90,000 km2 of surface water area between 1984 and 2015, while 184,000 km2 of new surface water area developed elsewhere, primarily through filling reservoirs.

  • Human intervention affects water resources directly through water use, particularly irrigation, and indirectly through land-use change, such as agricultural expansion and urbanization.

  • Strategies for increasing water-resource resilience include preserving and restoring forests and wetlands, and conjunctive surface water and groundwater management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The water cycle.
Fig. 2: GRACE satellite total water storage trends.
Fig. 3: Aquifer dynamics in response to development.
Fig. 4: Modelled global and regional groundwater storage over time.
Fig. 5: Relationship between agricultural development and groundwater depth.
Fig. 6: Global virtual water flows linked to food trade.

Similar content being viewed by others

Change history

References

  1. Vorosmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).

    Article  Google Scholar 

  2. Doell, P., Mueller Schmied, H., Schuh, C., Portmann, F. T. & Eicker, A. Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resour. Res. 50, 5698–5720 (2014).

    Article  Google Scholar 

  3. Wada, Y. et al. Global depletion of groundwater resources. Geophys. Res. Lett. 37, L20402 (2010).

    Article  Google Scholar 

  4. Douville, H. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1055–1210 (IPCC, Cambridge Univ. Press, 2021).

  5. Olivier, D. W. & Xu, Y. X. Making effective use of groundwater to avoid another water supply crisis in Cape Town, South Africa. Hydrogeol. J. 27, 823–826 (2019).

    Article  Google Scholar 

  6. Ozment, S. et al. Natural infrastructure in Sao Paulo’s water system. World Resources Institute Report 2013–2014: Interim Findings (2018).

  7. Pascale, S., Kapnick, S. B., Delworth, T. L. & Cooke, W. F. Increasing risk of another Cape Town ‘Day Zero’ drought in the 21st century. Proc. Natl Acad. Sci. USA 117, 29495 (2020).

    Article  Google Scholar 

  8. Alley, W. M., Reilly, T. E. & Franke, O. L. Sustainability of ground-water resources. US Geological Survey Circular 1186 (1999).

  9. Breslin, S. COP26 has 4 goals. Water is central to all of them. SIWI News https://siwi.org/latest/cop26-has-4-goals-water-is-central-to-all-of-them/ (2021).

  10. Global Risks 2021 16th edition (World Economic Forum, 2021); https://www.weforum.org/reports/the-global-risks-report-2021/

  11. The Water Challenge: The Roundtable on Water Financing (OECD, 2022); https://www.oecd.org/water/roundtable-on-financing-water.htm

  12. The United Nations World Water Development Report 2018: Nature-Based Solutions for Water (United Nations World Water Assessment Program/UNESCO, 2018).

  13. Browder, G., Ozment, S., Rehberger-Bescos, I., Gartner, T. & Lange, G. M. Integrating Green and Gray: Creating Next Generation Infrastructure (World Bank and World Resources Institute, 2019); https://openknowledge.worldbank.org/handle/10986/31430

  14. Making Every Drop Count: Agenda for Water Action (High Level Panel on Water, United Nations and World Bank, 2018).

  15. Lederer, E. M. Next UN assembly president warns world in dangerous crisis. Washington Post https://www.washingtonpost.com/world/next-un-assembly-president-warns-world-in-dangerous-crisis/2022/06/07/55075dce-e6b6-11ec-a422-11bbb91db30b_story.html (7 June 2022).

  16. Tapley, B. D. et al. Contributions of GRACE to understanding climate change. Nat. Clim. Change 9, 358–369 (2019).

    Article  Google Scholar 

  17. Wada, Y. & Bierkens, M. F. P. Sustainability of global water use: past reconstruction and future projections. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/9/10/104003 (2014).

    Article  Google Scholar 

  18. Mekonnen, M. M. & Hoekstra, A. Y. Blue water footprint linked to national consumption and international trade is unsustainable. Nat. Food 1, 792–800 (2020).

    Article  Google Scholar 

  19. Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 651–659 (2018).

    Article  Google Scholar 

  20. Save, H., Bettadpur, S. & Tapley, B. D. High-resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth 121, 7547–7569 (2016).

    Article  Google Scholar 

  21. Tapley, B. D., Bettadpur, S., Watkins, M. & Reigber, C. The Gravity Recovery And Climate Experiment: mission overview and early results. Geophys. Res. Lett. https://doi.org/10.1029/2004gl019920 (2004).

    Article  Google Scholar 

  22. Richey, A. S. et al. Quantifying renewable groundwater stress with GRACE. Water Resour. Res. 51, 5217–5238 (2015).

    Article  Google Scholar 

  23. Shamsudduha, M. & Taylor, R. G. Groundwater storage dynamics in the world’s large aquifer systems from GRACE: uncertainty and role of extreme precipitation. Earth Syst. Dyn. 11, 755–774 (2020).

    Article  Google Scholar 

  24. Vishwakarma, B. D., Bates, P., Sneeuw, N., Westaway, R. M. & Bamber, J. L. Re-assessing global water storage trends from GRACE time series. Environ. Res. Lett. 16, 034005 (2021).

    Article  Google Scholar 

  25. Pekel, J. F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–436 (2016).

    Article  Google Scholar 

  26. Lehner, B. et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9, 494–502 (2011).

    Article  Google Scholar 

  27. Scanlon, B. R. et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl Acad. Sci. USA 115, E1080–E1089 (2018).

    Article  Google Scholar 

  28. Winter, T. C., Harvey, J. W., Franke, O. L. & Alley, W. M. Ground Water and Surface Water: A Single Resource. Circular 1139 (United States Geological Survey, 1998).

  29. Konikow, L. F. Overestimated water storage. Nat. Geosci. 6, 3 (2013).

    Article  Google Scholar 

  30. Konikow, L. F. Contribution of global groundwater depletion since 1900 to sea-level rise. Geophys. Res. Lett. https://doi.org/10.1029/2011gl048604 (2011).

    Article  Google Scholar 

  31. Pokhrel, Y. N. et al. Model estimates of sea-level change due to anthropogenic impacts on terrestrial water storage. Nat. Geosci. 5, 389–392 (2012).

    Article  Google Scholar 

  32. de Graaf, I. E. M. et al. A global-scale two-layer transient groundwater model: development and application to groundwater depletion. Adv. Water Resour. 102, 53–67 (2017).

    Article  Google Scholar 

  33. Rateb, A. et al. Comparison of groundwater storage changes from GRACE satellites with monitoring and modeling of major U.S. aquifers. Water Resour. Res. https://doi.org/10.1029/2020WR027556 (2020).

    Article  Google Scholar 

  34. de Graaf, I. E. M., Gleeson, T., van Beek, L. P. H., Sutanudjaja, E. H. & Bierkens, M. F. P. Environmental flow limits to global groundwater pumping. Nature 574, 90–94 (2019).

    Article  Google Scholar 

  35. Sophocleous, M. From safe yield to sustainable development of water resources — the Kansas experience. J. Hydrol. 235, 27–43 (2000).

    Article  Google Scholar 

  36. Konikow, L. F. & Bredehoeft, J. D. Groundwater Resource Development: Effects and Sustainability (The Groundwater Project, 2020).

  37. MacAllister, D. J., Krishan, G., Basharat, M., Cuba, D. & MacDonald, A. M. A century of groundwater accumulation in Pakistan and northwest India. Nat. Geosci. https://doi.org/10.1038/s41561-022-00926-1 (2022).

    Article  Google Scholar 

  38. Scanlon, B. R. et al. Effects of climate and irrigation on GRACE-based estimates of water storage changes in major US aquifers. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ac16ff (2021).

    Article  Google Scholar 

  39. McGuire, V. L. Water-Level and Recoverable Water In Storage Changes, High Plains Aquifer, Predevelopment to 2015 and 2013–15. US Geological Survey Scientific Investigations Report 2017–5040 (2017); https://doi.org/10.3133/sir20175040

  40. Faunt, C. C. Groundwater availability of the Central Valley Aquifer, California. US Geol. Surv. Prof. Pap. 1766 (2009).

  41. Vorosmarty, C. J., Green, P., Salisbury, J. & Lammers, R. B. Global water resources: vulnerability from climate change and population growth. Science 289, 284–288 (2000).

    Article  Google Scholar 

  42. Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. https://doi.org/10.1126/sciadv.1500323 (2016).

    Article  Google Scholar 

  43. Vorosmarty, C. J. & Sahagian, D. Anthropogenic disturbance of the terrestrial water cycle. Bioscience 50, 753–765 (2000).

    Article  Google Scholar 

  44. Gronwall, J. & Danert, K. Regarding groundwater and drinking water access through a human rights lens: self-supply as a norm. Water https://doi.org/10.3390/w12020419 (2020).

    Article  Google Scholar 

  45. van Vliet, M. T. H. et al. Global water scarcity including surface water quality and expansions of clean water technologies. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/abbfc3 (2021).

    Article  Google Scholar 

  46. Podgorski, J. & Berg, M. Global threat of arsenic in groundwater. Science 368, 845–850 (2020).

    Article  Google Scholar 

  47. Yapiyev, V., Sagintayev, Z., Inglezakis, V. J., Samarkhanov, K. & Verhoef, A. Essentials of endorheic basins and lakes: a review in the context of current and future water resource management and mitigation activities in Central Asia. Water https://doi.org/10.3390/w9100798 (2017).

    Article  Google Scholar 

  48. Pauloo, R. A., Fogg, G. E., Guo, Z. L. & Harter, T. Anthropogenic basin closure and groundwater salinization (ABCSAL). J. Hydrol. https://doi.org/10.1016/j.jhydrol.2020.125787 (2021).

    Article  Google Scholar 

  49. Cao, T. Z., Han, D. M. & Song, X. F. Past, present, and future of global seawater intrusion research: a bibliometric analysis. J. Hydrol. https://doi.org/10.1016/j.jhydrol.2021.126844 (2021).

    Article  Google Scholar 

  50. Werner, A. D. et al. Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv. Water Resour. 51, 3–26 (2013).

    Article  Google Scholar 

  51. Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Article  Google Scholar 

  52. Fan, X., Duan, Q. Y., Shen, C. P., Wu, Y. & Xing, C. Global surface air temperatures in CMIP6: historical performance and future changes. Environ. Res. Lett. 15, 104056 (2020).

    Article  Google Scholar 

  53. Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. https://doi.org/10.1038/s41598-020-70816-2 (2020).

    Article  Google Scholar 

  54. Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314 (2020).

    Article  Google Scholar 

  55. Arias, P. A. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 33−144 (IPCC, Cambridge Univ. Press, 2021).

  56. van Dijk, A. et al. The Millennium Drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour. Res. 49, 1040–1057 (2013).

    Article  Google Scholar 

  57. Scanlon, B. R. et al. Hydrologic implications of GRACE satellite data in the Colorado River Basin. Water Resour. Res. 51, 9891–9903 (2015).

    Article  Google Scholar 

  58. Rateb, A., Scanlon, B. R. & Kuo, C. Y. Multi-decadal assessment of water budget and hydrological extremes in the Tigris-Euphrates Basin using satellites, modeling, and in-situ data. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.144337 (2021).

    Article  Google Scholar 

  59. Anyamba, A., Glennie, E. & Small, J. Teleconnections and interannual transitions as observed in African vegetation: 2015–2017. Remote Sens. https://doi.org/10.3390/rs10071038 (2018).

    Article  Google Scholar 

  60. Scanlon, B. R. et al. Linkages between GRACE water storage, hydrologic extremes, and climate teleconnections in major African aquifers. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ac3bfc (2022).

    Article  Google Scholar 

  61. Ul Hassan, W. & Nayak, M. A. Global teleconnections in droughts caused by oceanic and atmospheric circulation patterns. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/abc9e2 (2021).

    Article  Google Scholar 

  62. Shen, Z. X. et al. Drying in the low-latitude Atlantic Ocean contributed to terrestrial water storage depletion across Eurasia. Nat. Commun. 13, 1849 (2022).

    Article  Google Scholar 

  63. Dettinger, M. D. Atmospheric rivers as drought busters on the US West Coast. J. Hydrometeorol. 14, 1721–1732 (2013).

    Article  Google Scholar 

  64. Taylor, R. G. et al. Ground water and climate change. Nat. Clim. Change 3, 322–329 (2013).

    Article  Google Scholar 

  65. Cuthbert, M. O. et al. Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature 572, 230 (2019).

    Article  Google Scholar 

  66. Hugonnet, R. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 592, 726 (2021).

    Article  Google Scholar 

  67. Zhao, F., Long, D., Li, X., Huang, Q. & Han, P. Rapid glacier mass loss in the Southeastern Tibetan Plateau since the year 2000 from satellite observations. Remote. Sens. Environ. 270, 112853 (2022).

    Article  Google Scholar 

  68. Li, X. Y. et al. Climate change threatens terrestrial water storage over the Tibetan Plateau. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01443-0 (2022).

    Article  Google Scholar 

  69. Yao, T. D. et al. The imbalance of the Asian water tower. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-022-00299-4 (2022).

    Article  Google Scholar 

  70. Immerzeel, W. W., van Beek, L. P. H. & Bierkens, M. F. P. Climate change will affect the Asian water towers. Science 328, 1382–1385 (2010).

    Article  Google Scholar 

  71. Immerzeel, W. W. et al. Importance and vulnerability of the world’s water towers. Nature 577, 364 (2020).

    Article  Google Scholar 

  72. Dery, S. J. et al. Detection of runoff timing changes in pluvial, nival, and glacial rivers of western Canada. Water Resour. Res. https://doi.org/10.1029/2008wr006975 (2009).

    Article  Google Scholar 

  73. Siebert, S. et al. Groundwater use for irrigation – a global inventory. Hydrol. Earth Syst. Sci. 7, 3977–4021 (2010).

    Google Scholar 

  74. Scanlon, B. R. et al. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl Acad. Sci. USA 109, 9320–9325 (2012).

    Article  Google Scholar 

  75. Dahlke, H. E. et al. in Advanced Tools for Integrated Water Resources Management Vol. 3 (eds Friesen, J. & Rodriguez-Sinobas, L.) 215–275 (Elsevier, 2018).

  76. Reddy, V. R., Pavelic, P. & Hanjra, M. A. Underground taming of floods for irrigation (UTFI) in the river basins of South Asia: institutionalising approaches and policies for sustainable water management and livelihood enhancement. Water Policy 20, 369–387 (2018).

    Article  Google Scholar 

  77. McDonald, R. I., Weber, K. F., Padowski, J., Boucher, T. & Shemie, D. Estimating watershed degradation over the last century and its impact on water-treatment costs for the world’s large cities. Proc. Natl Acad. Sci. USA 113, 9117–9122 (2016).

    Article  Google Scholar 

  78. The State of the World’s Forests 2020. Forests, Biodiversity, and People (FAO/UNEP, 2020).

  79. Convention on Wetlands. Global Wetland Outlook: Special Edition 2021 (Secretariat of the Convention on Wetlands, 2021).

  80. Scanlon, B. R., Jolly, I., Sophocleous, M. & Zhang, L. Global impacts of conversions from natural to agricultural ecosystems on water resources: quantity versus quality. Water Resour. Res. https://doi.org/10.1029/2006WR005486 (2007).

    Article  Google Scholar 

  81. Nosetto, M. D., Paez, R. A., Ballesteros, S. I. & Jobbagy, E. G. Higher water-table levels and flooding risk under grain vs. livestock production systems in the subhumid plains of the Pampas. Agric. Ecosyst. Environ. 206, 60–70 (2015).

    Article  Google Scholar 

  82. Favreau, G. et al. Land clearing, climate variability, and water resources increase in semiarid southwest Niger: a review. Water Resour. Res. https://doi.org/10.1029/2007wr006785 (2009).

    Article  Google Scholar 

  83. Walker, C. D., Zhang, l, Ellis, T. W., Hatton, T. J. & Petheram, C. Estimating impacts of changed land use on recharge: review of modelling and other approaches appropriate for management of dryland salinity. Hydrogeol. J. 10, 68–90 (2002).

    Article  Google Scholar 

  84. Nosetto, M. D., Jobbagy, E. G., Jackson, R. B. & Sznaider, G. A. Reciprocal influence of crops and shallow ground water in sandy landscapes of the Inland Pampas. Field Crops Res. 113, 138–148 (2009).

    Article  Google Scholar 

  85. Gimenez, R., Mercau, J., Nosetto, M., Paez, R. & Jobbagy, E. The ecohydrological imprint of deforestation in the semiarid Chaco: insights from the last forest remnants of a highly cultivated landscape. Hydrol. Process. 30, 2603–2616 (2016).

    Article  Google Scholar 

  86. Eilers, R. G., Eilers, W. D. & Fitzgerald, M. M. A salinity risk index for soils of the Canadian prairies. Hydrogeol. J. 5, 68–79 (1997).

    Article  Google Scholar 

  87. Progress on Household Drinking Water, Sanitation and Hygiene 2000–2020: Five Years into the SDGs (WHO/UNICEF, 2021).

  88. Cobbing, J. & Hiller, B. Waking a sleeping giant: realizing the potential of groundwater in sub-Saharan Africa. World Dev. 122, 597–613 (2019).

    Article  Google Scholar 

  89. Rockström, J. & Falkenmark, M. Agriculture: increase water harvesting in Africa. Nature 519, 283–285 (2015).

    Article  Google Scholar 

  90. MacAllister, D. J., MacDonald, A. M., Kebede, S., Godfrey, S. & Calow, R. Comparative performance of rural water supplies during drought. Nat. Commun. 11, 1099 (2020).

    Article  Google Scholar 

  91. Aboah, M. & Miyittah, M. K. Estimating global water, sanitation, and hygiene levels and related risks on human health, using global indicators data from 1990 to 2020. J. Water Health 20, 1091–1101 (2022).

    Article  Google Scholar 

  92. Abell, R. et al. Beyond the Source: The Environmental, Economic and Community Benefits of Source Water Protection (The Nature Conservancy, 2017).

  93. Herrera-Garcia, G. et al. Mapping the global threat of land subsidence. Science 371, 34–36 (2021).

    Article  Google Scholar 

  94. Scanlon, B. R., Reedy, R. C., Faunt, C. C., Pool, D. & Uhlman, K. Enhancing drought resilience with conjunctive use and managed aquifer recharge in California and Arizona. Environ. Res. Lett. 11, 035013 (2016).

    Article  Google Scholar 

  95. Qadir, M. et al. Global and regional potential of wastewater as a water, nutrient and energy source. Nat. Resour. Forum 44, 40–51 (2020).

    Article  Google Scholar 

  96. Water Reuse within a Circular Economy Context. Global Water Security Issues Series 2 (UNESCO, 2020).

  97. Jones, E. R., van Vliet, M. T. H., Qadir, M. & Bierkens, M. F. P. Country-level and gridded estimates of wastewater production, collection, treatment and reuse. Earth Syst. Sci. Data 13, 237–254 (2021).

    Article  Google Scholar 

  98. Jeuland, M. Challenges to wastewater reuse in the Middle East and North Africa. Middle East. Dev. J. 7, 1–25 (2015).

    Article  Google Scholar 

  99. Zhang, Y. & Shen, Y. Wastewater irrigation: past, present, and future. WIREs Water 6, e1234 (2019).

    Article  Google Scholar 

  100. Fito, J. & Van Hulle, S. W. H. Wastewater reclamation and reuse potentials in agriculture: towards environmental sustainability. Environ. Dev. Sust. 23, 2949–2972 (2021).

    Article  Google Scholar 

  101. Gao, L., Yoshikawa, S., Iseri, Y., Fujimori, S. & Kanae, S. An economic assessment of the global potential for seawater desalination to 2050. Water https://doi.org/10.3390/w9100763 (2017).

    Article  Google Scholar 

  102. Ahdab, Y. D., Thiel, G. P., Bohlke, J. K., Stanton, J. & Lienhard, J. H. Minimum energy requirements for desalination of brackish groundwater in the United States with comparison to international datasets. Water Res. 141, 387–404 (2018).

    Article  Google Scholar 

  103. Jones, E., Qadir, M., van Vliet, M. T. H., Smakhtin, V. & Kang, S. M. The state of desalination and brine production: a global outlook. Sci. Total Environ. 657, 1343–1356 (2019).

    Article  Google Scholar 

  104. Lin, S. S. et al. Seawater desalination technology and engineering in China: a review. Desalination https://doi.org/10.1016/j.desal.2020.114728 (2021).

    Article  Google Scholar 

  105. Martinez-Alvarez, V., Martin-Gorriz, B. & Soto-Garcia, M. Seawater desalination for crop irrigation — a review of current experiences and revealed key issues. Desalination 381, 58–70 (2016).

    Article  Google Scholar 

  106. Smith, K., Liu, S. M., Hu, H. Y., Dong, X. & Wen, X. H. Water and energy recovery: the future of wastewater in China. Sci. Total Environ. 637, 1466–1470 (2018).

    Article  Google Scholar 

  107. Pulido-Bosch, A. et al. Impacts of agricultural irrigation on groundwater salinity. Environ/ Earth Sci. https://doi.org/10.1007/s12665-018-7386-6 (2018).

    Article  Google Scholar 

  108. Kurnik, J. The Next California: Phase 1: Investigating Potential in the Mid-Mississippi Delta River Region (The Markets Institute at WWF, 2020); https://www.worldwildlife.org/publications/the-next-california-phase-1-investigating-potential-in-the-mid-mississippi-delta-river-region

  109. Senay, G. B., Schauer, M., Friedrichs, M., Velpuri, N. M. & Singh, R. K. Satellite-based water use dynamics using historical Landsat data (1984–2014) in the southwestern United States. Remote Sens. Environ. 202, 98–112 (2017).

    Article  Google Scholar 

  110. Gebremichael, M., Krishnamurthy, P. K., Ghebremichael, L. T. & Alam, S. What drives crop land use change during multi-year droughts in California’s Central Valley? Prices or concern for water? Remote Sens. https://doi.org/10.3390/rs13040650 (2021).

    Article  Google Scholar 

  111. Brauman, K. A., Siebert, S. & Foley, J. A. Improvements in crop water productivity increase water sustainability and food security — a global analysis. Environ. Res. Lett. 8, 024030 (2013).

    Article  Google Scholar 

  112. Mekonnen, M. M., Hoekstra, A. Y., Neale, C. M. U., Ray, C. & Yang, H. S. Water productivity benchmarks: the case of maize and soybean in Nebraska. Agric. Water Manag. https://doi.org/10.1016/j.agwat.2020.106122 (2020).

    Article  Google Scholar 

  113. Colaizzi, P. D., Gowda, P. H., Marek, T. H. & Porter, D. O. Irrigation in the Texas High Plains: a brief history and potential reductions in demand. Irrig. Drain. 58, 257–274 (2008).

    Article  Google Scholar 

  114. Scanlon, B. R., Gates, J. B., Reedy, R. C., Jackson, A. & Bordovsky, J. Effects of irrigated agroecosystems: (2). Quality of soil water and groundwater in the southern High Plains, Texas. Water Resour. Res. 46, W09538 (2010).

    Google Scholar 

  115. Ward, F. A. & Pulido-Velazquez, M. Water conservation in irrigation can increase water use. Proc. Natl Acad. Sci. USA 105, 18215–18220 (2008).

    Article  Google Scholar 

  116. Grafton, R. Q. et al. The paradox of irrigation efficiency. Science 361, 748–750 (2018).

    Article  Google Scholar 

  117. Alcott, B. in The Jevons Paradox and the Myth of Resource Efficiency Improvements (eds Polimeni, J. M., Mayumi, K., & Giampetro, M.) 7–78 (Earthscan, 2008).

  118. Aarnoudse, E. & Bluemling, B. Controlling Groundwater Through Smart Card Machines: The Case of Water Quotas and Pricing Mechanisms in Gansu Province, China. Groundwater Solutions Initiative for Policy and Practice (GRIPP) Case Profile Series 02 (International Water Management Institute, 2017); https://doi.org/10.5337/2016.224

  119. Kinzelbach, W., Wang, H., Li, Y., Wang, L. & Li, N. Groundwater Overexploitation in the North China Plain: A Path to Sustainability (Springer, 2021).

  120. McDougall, R., Kristiansen, P. & Rader, R. Small-scale urban agriculture results in high yields but requires judicious management of inputs to achieve sustainability. Proc. Natl Acad. Sci. USA 116, 129–134 (2019).

    Article  Google Scholar 

  121. Langemeyer, J., Madrid-Lopez, C., Mendoza Beltran, A. & Villalba Mendez, G. Urban agriculture — a necessary pathway towards urban resilience and global sustainability? Landsc. Urban Plan. 210, 104055 (2021).

    Article  Google Scholar 

  122. Palmer, L. Urban agriculture growth in US cities. Nat. Sust. 1, 5–7 (2018).

    Article  Google Scholar 

  123. Grafius, D. R. et al. Estimating food production in an urban landscape. Sci. Rep. 10, 5141 (2020).

    Article  Google Scholar 

  124. The State of Food Insecurity in the World 2015 (FAO/IFAD/WFP, 2015).

  125. Kummu, M. et al. Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci. Total Environ. 438, 477–489 (2012).

    Article  Google Scholar 

  126. Gleick, P. H. Global freshwater resources: soft-path solutions for the 21st century. Science 302, 1524–1528 (2003).

    Article  Google Scholar 

  127. Miralles-Wilhelm, F. Nature-Based Solutions in Agriculture — Sustainable Management and Conservation of Land, Water, and Biodiversity (FAO/The Nature Conservancy, 2021).

  128. McDonald, R. I. & Shemie, D. Urban Water Blueprint: Mapping Conservation Solutions to the Global Water Challenge (The Nature Conservancy, 2014); http://water.nature.org/waterblueprint

  129. Kane, M. & Erickson, J. D. Urban metabolism and payment for ecosystem services: history and policy analysis of the New York city water supply. Adv. Econ. Environ. Resour. 7, 307–328 (2007).

    Article  Google Scholar 

  130. Greater Cape Town Water Fund: Business Case: Assessing the Return on Investment for Ecological Infrastructure Restoration (The Nature Conservancy, 2019).

  131. Hu, J., Lu, Y. H., Fu, B. J., Comber, A. J. & Harris, P. Quantifying the effect of ecological restoration on runoff and sediment yields: a meta-analysis for the Loess Plateau of China. Prog. Phys. Geogr. Earth Environ. 41, 753–774 (2017).

    Article  Google Scholar 

  132. Liu, W. W. et al. Improving wetland ecosystem health in China. Ecol. Indic. https://doi.org/10.1016/j.ecolind.2020.106184 (2020).

    Article  Google Scholar 

  133. Cities100: Chennai Is Restoring Waterbodies to Protect Against Flooding and Drought. C40 Knowledge Hub: Nordic Sustainability, South and West Asia, Chennai, Case Studies and Best Practice Examples https://www.c40knowledgehub.org/s/article/Cities100-Chennai-is-restoring-waterbodies-to-protect-against-flooding-and-drought?language=en_US (2019).

  134. Chung, M. G., Frank, K. A., Pokhrel, Y., Dietz, T. & Liu, J. G. Natural infrastructure in sustaining global urban freshwater ecosystem services. Nat. Sust. 4, 1068 (2021).

    Article  Google Scholar 

  135. Qi, Y. F. et al. Addressing challenges of urban water management in Chinese sponge cities via nature-based solutions. Water https://doi.org/10.3390/w12102788 (2020).

    Article  Google Scholar 

  136. Acreman, M. et al. Evidence for the effectiveness of nature-based solutions to water issues in Africa. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ac0210 (2021).

    Article  Google Scholar 

  137. Livneh, B. & Badger, A. M. Drought less predictable under declining future snowpack. Nat. Clim. Change 10, 452–458 (2020).

    Article  Google Scholar 

  138. Mulligan, M., van Soesbergen, A. & Sáenz, L. GOODD, a global dataset of more than 38,000 georeferenced dams. Sci. Data 7, 31 (2020).

    Article  Google Scholar 

  139. International Commission on Large Dams https://www.icold-cigb.org/ (2022).

  140. Yang, G., Guo, S., Liu, P. & Block, P. Integration and evaluation of forecast-informed multiobjective reservoir operations. J. Water Resour. Plan. Manag. 146, 04020038 (2020).

    Article  Google Scholar 

  141. Delaney, C. J. et al. Forecast informed reservoir operations using ensemble streamflow predictions for a multipurpose reservoir in northern California. Water Resour. Res. https://doi.org/10.1029/2019wr026604 (2020).

  142. Amarasinghe, U. A., Muthuwatta, L., Surinaidu, L., Anand, S. & Jain, S. K. Reviving the Ganges water machine: potential. Hydrol. Earth Syst. Sci. 20, 1085–1101 (2016).

    Article  Google Scholar 

  143. Shamsudduha, M. et al. The Bengal water machine: quantified freshwater capture in Bangladesh. Science 377, 1315–1319 (2022).

    Article  Google Scholar 

  144. Chao, B. F., Wu, Y. H. & Li, Y. S. Impact of artificial reservoir water impoundment on global sea level. Science 320, 212–214 (2008).

    Article  Google Scholar 

  145. Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77, 161–170 (2015).

    Article  Google Scholar 

  146. Zarfl, C. et al. Future large hydropower dams impact global freshwater megafauna. Sci. Rep. https://doi.org/10.1038/s41598-019-54980-8 (2019).

    Article  Google Scholar 

  147. Wheeler, K. G., Jeuland, M., Hall, J. W., Zagona, E. & Whittington, D. Understanding and managing new risks on the Nile with the Grand Ethiopian Renaissance Dam. Nat. Commun. https://doi.org/10.1038/s41467-020-19089-x (2020).

    Article  Google Scholar 

  148. Di Baldassarre, G. et al. Water shortages worsened by reservoir effects. Nat. Sust. 1, 617–622 (2018).

    Article  Google Scholar 

  149. Dahlke, H. E., Brown, A. G., Orloff, S., Putnam, D. & O’Geen, T. Managed winter flooding of alfalfa recharges groundwater with minimal crop damage. Calif. Agric. 72, 65–75 (2018).

    Article  Google Scholar 

  150. Yang, Q. & Scanlon, B. R. How much water can be captured from flood flows to store in depleted aquifers for mitigating floods and droughts? A case study from Texas, US. Environ. Res. Lett. 14, 054011 (2019).

    Article  Google Scholar 

  151. Dillon, P. et al. Sixty years of global progress in managed aquifer recharge. Hydrogeol. J. https://doi.org/10.1007/s10040-018-1841-z. (2018).

    Article  Google Scholar 

  152. Groundwater Replenishment System Technical Brochure, https://www.ocwd.com/media/10443/gwrs-technical-brochure-2021.pdf (2021).

  153. Konikow, L. F. Groundwater Depletion in the United States (1900–2008). US Geological Survey Scientific Investigation Report 2013–5079, http://pubs.usgs.gov/sir/2013/5079 (2013).

  154. Hartog, N. & Stuyfzand, P. J. Water quality donsiderations on the rise as the use of managed aquifer recharge systems widens. Water 9, 808 (2017).

    Article  Google Scholar 

  155. Shumilova, O., Tockner, K., Thieme, M., Koska, A. & Zarfl, C. Global water transfer megaprojects: a potential solution for the water–food–energy nexus? Front. Environ. Sci. https://doi.org/10.3389/fenvs.2018.00150 (2018).

    Article  Google Scholar 

  156. Long, D. et al. South-to-north water diversion stabilizing Beijing’s groundwater levels. Nat. Commun. https://doi.org/10.1038/s41467-020-17428-6 (2020).

    Article  Google Scholar 

  157. Zhuang, W. Eco-environmental impact of inter-basin water transfer projects: a review. Environ. Sci. Pollut. Res. 23, 12867–12879 (2016).

    Article  Google Scholar 

  158. Hoekstra, A. Y. Virtual Water Trade: Proceedings of the International Expert Meeting on Virtual Water Trade (UNESCO-IHE, 2003).

  159. Oki, T. & Kanae, S. Virtual water trade and world water resources. Water Sci. Technol. 49, 203–209 (2004).

    Article  Google Scholar 

  160. Dolan, F. et al. Evaluating the economic impact of water scarcity in a changing world. Nat. Commun. https://doi.org/10.1038/s41467-021-22194-0 (2021).

    Article  Google Scholar 

  161. Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl Acad. Sci. USA 109, 3232–3237 (2012).

    Article  Google Scholar 

  162. Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700–704 (2017).

  163. Hanasaki, N., Inuzuka, T., Kanae, S. & Oki, T. An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. J. Hydrol. 384, 232–244 (2010).

    Article  Google Scholar 

  164. Mekonnen, M. M. & Gerbens-Leenes, W. The water footprint of global food production. Water https://doi.org/10.3390/w12102696 (2020).

    Article  Google Scholar 

  165. Australian Water Markets Report: 2019-20 Review and 2020-21 Outlook (Aither, 2020); https://aither.com.au/wp-content/uploads/2020/08/2020-Water-Markets-Report.pdf

  166. Grafton, R. Q. & Wheeler, S. A. Economics of water recovery in the Murray–Darling Basin, Australia. Annu. Rev. Resour. Econ. 10, 487–510 (2018).

    Article  Google Scholar 

  167. Moench, M. Water and the potential for social instability: livelihoods, migration and the building of society. Nat. Resour. Forum 26, 195–204 (2002).

    Article  Google Scholar 

  168. Water Markets in Australia: A Short History (National Water Commission, 2011).

  169. Kundzewicz, Z. W. & Döll, P. Will groundwater ease freshwater stress under climate change? Hydrol. Sci. J. 54, 665–675 (2009).

    Article  Google Scholar 

  170. A Snapshot of the World’s Water Quality: Towards a Global Assessment (UNEP, 2016).

  171. Summary Progress Update 2021: SDG 6 — Water and Sanitation for All (UN-Water, 2021).

  172. GEMStat: Global Environmental Monitoring System, https://gemstat.org/ (UNEP, 2022).

  173. Akhmouch, A. & Correia, F. N. The 12 OECD principles on water governance — when science meets policy. Util. Policy 43, 14–20 (2016).

    Article  Google Scholar 

  174. Lankford, B., Bakker, K., Zeitoun, M. & Conway, B. D. Water Security: Principles, Perspectives, and Practices (Routledge, 2013).

  175. Potapov, P. et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 3, 19 (2022).

    Article  Google Scholar 

  176. Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

B.R.S. conceptualized the review and coordinated input. S.F. reviewed many of the topics and developed some of the figures. A.R. analysed GRACE satellite data and M.S. reviewed this output. Q.G. provided input on water economics. E.J. reviewed impacts of land-use change. S.R.K. provided data on future precipitation changes. L.F.K. provided detailed information on surface water/groundwater interactions. M.M. provided data on water trade. C.J.V. provided input on green and grey solutions. All authors reviewed the paper and provided edits.

Corresponding author

Correspondence to Bridget R. Scanlon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Helen Dahlke, Diana Allen, who co-reviewed with Aspen Anderson, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scanlon, B.R., Fakhreddine, S., Rateb, A. et al. Global water resources and the role of groundwater in a resilient water future. Nat Rev Earth Environ 4, 87–101 (2023). https://doi.org/10.1038/s43017-022-00378-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00378-6

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene