Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Subsurface carbon dioxide and hydrogen storage for a sustainable energy future

Abstract

 Gigatonne scale geological storage of carbon dioxide and energy (such as hydrogen) will be central aspects of a sustainable energy future, both for mitigating CO2 emissions and providing seasonal-based green energy provisions. In this Review, we evaluate the feasibility and challenges of expanding subsurface carbon dioxide storage into a global-scale business, and explore how this experience can be exploited to accelerate the development of underground hydrogen storage. Carbon storage is technically and commercially successful at the megatonne scale, with current projects mitigating approximately 30 Mt of CO2 per year. However, limiting anthropogenic warming to 1.5°C could require gigatonnes of storage per year by 2050, and a scaleup from 2025 approaching rates of deployment that would be historic for energy technology. Scale-up is not limited by geology or engineering. Advances in understanding storage complex geology, subsurface fluid dynamics, and seismic risk underpin new engineering strategies including the development of multi-site, basin scale, storage resource management. Instead economic and societal contraints pose barriers to project development. Underground hydrogen storage, still in development, will face similar issues. Overcoming these barriers with strengthened financial incentives, and programs to address concerns inhibiting public acceptance, will enable the storage of CO2 at climate relevant scales.

Key points

  • Subsurface carbon dioxide storage is deployed at industrial scales in various geological, socio-economic and technological contexts. Climate change mitigation scenarios project that CO2 storage will be an ongoing, rather than a transitionary, contributor to the energy transition, providing gigatonnes of CO2 mitigation per year.

  • The geological understanding of CO2 storage sites uses the concept of the storage complex, including fault compartmentalized systems and residual and dissolution trapping for injected plume immobilization. Advances in understanding injected CO2 plume dynamics and reservoir mechanics open the possibility of predictive modelling of CO2 flow and proactive management of seismicity to ensure safe operation.

  • Underground hydrogen storage (UHS) is a prospect for temporary or seasonal-based terawatt-scale energy storage, similar to natural gas storage. However, the technology is in the early development stage, and the immediate challenges of UHS are addressing uncertainties in the flow properties, storage integrity and the management of microbial degradation of stored H2.

  • Although CO2 storage scale-up is not unduly limited by geological or engineering constraints, both public awareness and acceptance are low. Leading concerns are focused on leakage and seismicity, the continued dependence on fossil-fuel technologies and lack of trust in project operators. UHS could face many of the same concerns.

  • Market-based policy support in the USA, Canada and Norway in the form of tax incentives and carbon credits has led to the emergence of viable business models. The policies and the strength of support in the USA, Canada, and Norway should be considered by other governments interested in scaling up CO2 storage.

  • Carbon storage is poised to have a major role, at gigatonne scales, in future climate change mitigation strategies if existing policy support can be expanded and issues of public acceptance are addressed. Deployment trajectories in integrated assessment models are unrealistic, but can be remediated with the adoption of simple growth constraints.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Geological underground CO2 storage complexes used by industrial-scale projects.
Fig. 2: Comparison between the subsurface storage of natural gas, CO2 and H2.
Fig. 3: Carbon and economic accounting.
Fig. 4: Global storage resources by geography and resource classification.
Fig. 5: Risk reduction strategies for multiple offshore underground storage sites.
Fig. 6: Current deployment, project pipeline, exponential growth trajectories and storage rates in the 1.5 °C Intergovernmental Panel on Climate Change scenario.

Similar content being viewed by others

References

  1. IPCC. Mitigation of Climate Change Climate Change 2022 Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2022).

  2. Zahasky, C. & Krevor, S. Global geologic carbon storage requirements of climate change mitigation scenarios. Energy Environ. Sci. 13, 1561–1567 (2020).

    Article  Google Scholar 

  3. Watson, R. T., Zinyowera, M. C., Moss, R. H. & Dokken, D. J. Climate Change 1995. Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses. Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 1996).

  4. Snæbjörnsdóttir, S. et al. Carbon dioxide storage through mineral carbonation. Nat. Rev. Earth Environ. 1, 90–102 (2020).

    Article  Google Scholar 

  5. Ringrose, P. How to Store CO2 Underground: Insights from Early-Mover CCS Projects (Springer International Publishing, 2020).

  6. Zhang, Y., Jackson, C. & Krevor, S. An estimate of the amount of geological CO2 storage over the period of 1996–2020. Env. Sci. Technol. Lett. 9, 693–698 (2022).

    Article  Google Scholar 

  7. Abdulla, A., Hanna, R., Schell, K. R., Babacan, O. & Victor, D. G. Explaining successful and failed investments in U.S. carbon capture and storage using empirical and expert assessments. Environ. Res. Lett. 16, 014036 (2021).

    Article  Google Scholar 

  8. Jackson, S. J. & Krevor, S. Small-scale capillary heterogeneity linked to rapid plume migration during CO2 storage. Geophys. Res. Lett. 47, e2020GL088616 (2020).

    Article  Google Scholar 

  9. Pettersson, P., Tveit, S. & Gasda, S. E. Dynamic estimates of extreme-case CO2 storage capacity for basin-scale heterogeneous systems under geological uncertainty. Int. J. Greenh. Gas Control 116, 103613 (2022).

    Article  Google Scholar 

  10. Lee, K.-K. et al. Managing injection-induced seismic risks. Science 364, 730–732 (2019).

    Article  Google Scholar 

  11. Hepple, R. P. & Benson, S. M. Geologic storage of carbon dioxide as a climate change mitigation strategy: performance requirements and the implications of surface seepage. Environ. Geol. 47, 576–585 (2005).

    Article  Google Scholar 

  12. Lord, A. S. Overview of Geologic Storage of Natural Gas with an Emphasis on Assessing the Feasibility Storing Hydrogen (eds Bui, M. & Mac Dowell, N.) (OSTI, 2009); https://www.osti.gov/servlets/purl/975258-OsnNqC/

  13. Benson, S. M. & Cole, D. R. CO2 sequestration in deep sedimentary formations. Elements 4, 325–331 (2008).

    Article  Google Scholar 

  14. Krevor, S., Blunt, M. J., Trusler, J. P. M. & de Simone, S. An introduction to subsurface CO2 storage. in RSC Energy and Environment Series, Vols 2020, Ch. 8, 238–295 (Royal Society of Chemistry, 2020).

  15. Bachu, S. Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change. Environ. Geol. 44, 277–289 (2003).

    Article  Google Scholar 

  16. Orr, F. M. Carbon capture, utilization, and storage: an update. SPE J. 23, 2444–2455 (2018).

    Article  Google Scholar 

  17. Edwards, R. W. J. & Celia, M. A. Infrastructure to enable deployment of carbon capture, utilization, and storage in the United States. Proc. Natl Acad. Sci. USA 115, E8815–E8824 (2018).

    Article  Google Scholar 

  18. Alcalde, J. et al. Acorn: developing full-chain industrial carbon capture and storage in a resource- and infrastructure-rich hydrocarbon province. J. Clean. Prod. 233, 963–971 (2019).

    Article  Google Scholar 

  19. Loizzo, M., Lecampion, B., Bérard, T., Harichandran, A. & Jammes, L. Reusing O&G-depleted reservoirs for CO2 storage: pros and cons. SPE Proj. Fac. Const. 5, 166–172 (2010).

    Google Scholar 

  20. Hannis, S. et al. in Energy Procedia Vol. 114 (eds Dixon, T. et al.) 5680–5690 (Elsevier Ltd, 2017).

  21. Raza, A. et al. CO2 storage in depleted gas reservoirs: a study on the effect of residual gas saturation. Petroleum 4, 95–107 (2018).

    Article  Google Scholar 

  22. Lloyd, C., Huuse, M., Barrett, B. J. & Newton, A. M. W. Regional exploration and characterisation of CO2 storage prospects in the Utsira-Skade Aquifer, North Viking Graben, North Sea. Earth Sci. Syst. Soc. https://doi.org/10.3389/esss.2021.10041 (2021).

    Article  Google Scholar 

  23. Ringrose, P. S. et al. Storage of carbon dioxide in saline aquifers: physicochemical processes, key constraints, and scale-up potential. Annu. Rev. Chem. Biomol. Eng. 12, 471–494 (2021).

    Article  Google Scholar 

  24. Allen, P. A. & Allen, J. R. Basin Analysis: Principles and Application to Petroleum Play Assessment (John Wiley & Sons, 2013).

  25. Wu, L. et al. Significance of fault seal in assessing CO2 storage capacity and containment risks — an example from the Horda Platform, Northern North Sea. Pet. Geosci. 27, petgeo2020-102 (2021).

    Article  Google Scholar 

  26. Ringrose, P. & Bentley, M. Reservoir Model Design: A Practitioner’s Guide 2nd edn (Springer, 2021).

  27. Miocic, J. M., Johnson, G. & Bond, C. E. Uncertainty in fault seal parameters: implications for CO2 column height retention and storage capacity in geological CO2 storage projects. Solid Earth 10, 951–967 (2019).

    Article  Google Scholar 

  28. Roberts, J. J. et al. in Geological Society Special Publication Vol. 458 (eds Turner, J. P. et al.) 181–211 (Geological Society of London, 2017).

  29. Sun, X. et al. Appraisal of CO2 storage potential in compressional hydrocarbon-bearing basins: global assessment and case study in the Sichuan Basin (China). Geosci. Front. 11, 2309–2321 (2020).

    Article  Google Scholar 

  30. Sun, X. et al. Hubs and clusters approach to unlock the development of carbon capture and storage — case study in Spain. Appl. Energy 300, 117418 (2021).

    Article  Google Scholar 

  31. Equinor. Northern Lights FEED Report RE-PM673-00057 (2020).

  32. Shell Canada Energy. Quest Carbon Capture and Storage Project Annual Summary ReportAlberta Department of Energy 2020 (2021).

  33. Grude, S., Landrø, M. & Dvorkin, J. Pressure effects caused by CO2 injection in the Tubåen Fm., the Snøhvit field. Int. J. Greenh. Gas Control 27, 178–187 (2014).

    Article  Google Scholar 

  34. Chevron. Gorgon Project. Carbon Dioxide Injection Project. Low Emissions Technology Demonstration Fund. Annual Report. 1 July 2020–30 June 2021 (2022).

  35. Huppert, H. E. & Neufeld, J. A. The fluid mechanics of carbon dioxide sequestration. Annu. Rev. Fluid Mech. 46, 255–272 (2014).

    Article  Google Scholar 

  36. Szulczewski, M. L., MacMinn, C. W., Herzog, H. J. & Juanes, R. Lifetime of carbon capture and storage as a climate-change mitigation technology. Proc. Natl Acad. Sci. USA 109, 5185–5189 (2012).

    Article  Google Scholar 

  37. Krevor, S. et al. Capillary trapping for geologic carbon dioxide storage — from pore scale physics to field scale implications. Int. J. Greenh. Gas Control 40, 221–237 (2015).

    Article  Google Scholar 

  38. Krevor, S. C. M., Pini, R., Li, B. & Benson, S. M. Capillary heterogeneity trapping of CO2 in a sandstone rock at reservoir conditions. Geophys. Res. Lett. 38, GL048239 (2011).

    Article  Google Scholar 

  39. Hesse, M. A. & Woods, A. W. Buoyant dispersal of CO2 during geological storage. Geophys. Res. Lett. 37, 2009GL041128 (2010).

    Article  Google Scholar 

  40. Hesse, M. A., Orr, F. M. & Tchelepi, H. A. Gravity currents with residual trapping. J. Fluid Mech. 611, 35–60 (2008).

    Article  Google Scholar 

  41. Popik, S. et al. 4D surface seismic monitoring the evolution of a small CO2 plume during and after injection: CO2CRC Otway Project study. Explor. Geophys. 51, 570–580 (2020).

    Article  Google Scholar 

  42. Nordbotten, J. M. & Celia, M. Geological Storage of CO2. Modeling Approaches for Large-Scale Simulation (Wiley, 2012).

  43. Riaz, A. & Tchelepi, H. A. Influence of relative permeability on the stability characteristics of immiscible flow in porous media. Transp. Porous Media 64, 315–338 (2006).

    Article  Google Scholar 

  44. Neufeld, J. A. et al. Convective dissolution of carbon dioxide in saline aquifers. Geophys. Res. Lett. 37, 2010GL044728 (2010).

    Article  Google Scholar 

  45. Gilmore, K. A., Neufeld, J. A. & Bickle, M. J. CO2 dissolution trapping rates in heterogeneous porous media. Geophys. Res. Lett. 47, 2020GL087001 (2020).

    Article  Google Scholar 

  46. Gasda, S. E., Nordbotten, J. M. & Celia, M. A. Vertically averaged approaches for CO2 migration with solubility trapping. Water Resour. Res. 47, 5528 (2011).

    Article  Google Scholar 

  47. Macminn, C. W. & Juanes, R. Buoyant currents arrested by convective dissolution. Geophys. Res. Lett. 40, 2017–2022 (2013).

    Article  Google Scholar 

  48. Sathaye, K. J., Hesse, M. A., Cassidy, M. & Stockli, D. F. Constraints on the magnitude and rate of CO2 dissolution at Bravo Dome natural gas field. Proc. Natl Acad. Sci. USA 111, 15332–15337 (2014).

    Article  Google Scholar 

  49. Nordbotten, J. M., Kavetski, D., Celia, M. A. & Bachu, S. Model for CO2 leakage including multiple geological layers and multiple leaky wells. Environ. Sci. Technol. 43, 743–749 (2009).

    Article  Google Scholar 

  50. Gilmore, K. A., Sahu, C. K., Benham, G. P., Neufeld, J. A. & Bickle, M. J. Leakage dynamics of fault zones: Experimental and analytical study with application to CO2 storage. J. Fluid Mech. 931, 359–380 (2022).

    Article  Google Scholar 

  51. Alcalde, J. et al. Estimating geological CO2 storage security to deliver on climate mitigation. Nat. Commun. 9, 2201 (2018).

    Article  Google Scholar 

  52. Jones, D. G. et al. Developments since 2005 in understanding potential environmental impacts of CO2 leakage from geological storage. Int. J. Greenh. Gas Control 40, 350–377 (2015).

    Article  Google Scholar 

  53. Benham, G. P., Bickle, M. J. & Neufeld, J. A. Two-phase gravity currents in layered porous media. J. Fluid Mech. 922, 523 (2021).

    Article  Google Scholar 

  54. Boon, M. & Benson, S. M. A physics-based model to predict the impact of horizontal lamination on CO2 plume migration. Adv. Water Resour. 150, 103881 (2021).

    Article  Google Scholar 

  55. Bickle, M., Chadwick, A., Huppert, H. E., Hallworth, M. & Lyle, S. Modelling carbon dioxide accumulation at Sleipner: implications for underground carbon storage. Earth Planet. Sci. Lett. 255, 164–176 (2007).

    Article  Google Scholar 

  56. Verdon, J. P. et al. Comparison of geomechanical deformation induced by megatonne-scale CO2 storage at Sleipner, Weyburn, and In Salah. Proc. Natl Acad. Sci. USA 110, E2762-71 (2013).

    Article  Google Scholar 

  57. Cowton, L. R. et al. Benchmarking of vertically-integrated CO2 flow simulations at the Sleipner Field, North Sea. Earth Planet. Sci. Lett. 491, 121–133 (2018).

    Article  Google Scholar 

  58. Hodneland, E. et al. Effect of temperature and concentration of impurities in the fluid stream on CO2 migration in the Utsira formation. Int. J. Greenh. Gas Control 83, 20–28 (2019).

    Article  Google Scholar 

  59. Ellsworth, W. L. Injection-induced earthquakes. Science 341, 1225942 (2013).

    Article  Google Scholar 

  60. Grigoli, F. et al. Current challenges in monitoring, discrimination, and management of induced seismicity related to underground industrial activities: a European perspective. Rev. Geophys. 55, 310–340 (2017).

    Article  Google Scholar 

  61. National Research Council. Induced Seismicity Potential in Energy Technologies (The National Academies Press., 2013).

  62. Raleigh, C. B., Healy, J. H. & Bredehoeft, J. D. An experiment in earthquake control at Rangely, Colorado. Science 191, 1230–1237 (1976).

    Article  Google Scholar 

  63. Healy, J. H., Rubey, W. W., Griggs, D. T. & Raleigh, C. B. The Denver earthquakes. Science 161, 1301–1310 (1968).

    Article  Google Scholar 

  64. Segall, P. Earthquakes triggered by fluid extraction. Geology 17, 942–946 (1989).

    Article  Google Scholar 

  65. Gan, W. & Frohlich, C. Gas injection may have triggered earthquakes in the Cogdell oil field, Texas. Proc. Natl Acad. Sci. USA 110, 18786–18791 (2013).

    Article  Google Scholar 

  66. Cesca, S. et al. The 2013 September–October seismic sequence offshore Spain: a case of seismicity triggered by gas injection? Geophys. J. Int. 198, 941–953 (2014).

    Article  Google Scholar 

  67. Brodsky, E. E. & Lajoie, L. J. Anthropogenic seismicity rates and operational parameters at the Salton Sea Geothermal Field. Science 341, 543–546 (2013).

    Article  Google Scholar 

  68. Amos, C. B. et al. Uplift and seismicity driven by groundwater depletion in central California. Nature 509, 483–486 (2014).

    Article  Google Scholar 

  69. Zoback, M. D. & Gorelick, S. M. Earthquake triggering and large-scale geologic storage of carbon dioxide. Proc. Natl Acad. Sci. USA. 109, 10164–10168 (2012).

    Article  Google Scholar 

  70. Jha, B. & Juanes, R. Coupled multiphase flow and poromechanics: a computational model of pore pressure effects on fault slip and earthquake triggering. Water Resour. Res. 50, 3776–3808 (2014).

    Article  Google Scholar 

  71. White, J. A. & Foxall, W. Assessing induced seismicity risk at CO2 storage projects: recent progress and remaining challenges. Int. J. Greenh. Gas Control 49, 413–424 (2016).

    Article  Google Scholar 

  72. Scholz, C. H. Earthquakes and friction laws. Nature 391, 37–42 (1998).

    Article  Google Scholar 

  73. Candela, T. et al. Depletion-induced seismicity at the Groningen gas field: Coulomb rate-and-state models including differential compaction effect. J. Geophys. Res. Solid. Earth 124, 7081–7104 (2019).

    Article  Google Scholar 

  74. van der Baan, M. Earthquakes triggered by underground fluid injection modelled for a tectonically active oil field. Nature 595, 655–656 (2021).

    Article  Google Scholar 

  75. Zhai, G., Shirzaei, M., Manga, M. & Chen, X. Pore-pressure diffusion, enhanced by poroelastic stresses, controls induced seismicity in Oklahoma. Proc. Natl Acad. Sci. USA 116, 16228–16233 (2019).

    Article  Google Scholar 

  76. McGarr, A. et al. Coping with earthquakes induced by fluid injection. Science 347, 830–831 (2015).

    Article  Google Scholar 

  77. Watkins, T. J. M., Verdon, J. P. & Rodríguez-Pradilla, G. The Temporal Evolution of Induced Seismicity Sequences Generated by Long-term, Low Pressure Fluid Injection. Preprint at https://www1.gly.bris.ac.uk/~gljpv/PDFS/Watkins_etal_Preprint.pdf.

  78. Keranen, K. M., Weingarten, M., Abers, G. A., Bekins, B. A. & Ge, S. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection. Science 345, 448–451 (2014).

    Article  Google Scholar 

  79. Weingarten, M., Ge, S., Godt, J. W., Bekins, B. A. & Rubinstein, J. L. High-rate injection is associated with the increase in US midcontinent seismicity. Science 348, 1336–1340 (2015).

    Article  Google Scholar 

  80. Tang, L., Lu, Z., Zhang, M., Sun, L. & Wen, L. Seismicity induced by simultaneous abrupt changes of injection rate and well pressure in Hutubi Gas Field. J. Geophys. Res. Solid Earth 123, 5929–5944 (2018).

    Article  Google Scholar 

  81. Alghannam, M. & Juanes, R. Understanding rate effects in injection-induced earthquakes. Nat. Commun. 11, 3053 (2020).

    Article  Google Scholar 

  82. Linker, M. F. & Dieterich, J. H. Effects of variable normal stress on rock friction: observations and constitutive equations. J. Geophys. Res. 97, 4923–4940 (1992).

    Article  Google Scholar 

  83. Olsson, W. A. The effects of normal stress history on rock friction — Paper ARMA-88-0111. in The 29th US Symposium on Rock Mechanics (eds Cundall, P. A. et al) 111 - 117 (USRMS, 1988).

  84. Increasing Rate of Earthquakes Beginning in 2009. USGS https://www.usgs.gov/media/images/increasing-rate-earthquakes-beginning-2009 (2009).

  85. Chen, Z., Narayan, S. P., Yang, Z. & Rahman, S. S. An experimental investigation of hydraulic behaviour of fractures and joints in granitic rock. Int. J. Rock Mech. Min. Sci. 37, 1061–1071 (2000).

    Article  Google Scholar 

  86. Ikari, M. J., Saffer, D. M. & Marone, C. Frictional and hydrologic properties of clay-rich fault gouge. J. Geophys. Res. Solid Earth 114, 2008JB006089 (2009).

    Article  Google Scholar 

  87. Bürgmann, R. The geophysics, geology and mechanics of slow fault slip. Earth Planet. Sci. Lett. 495, 112–134 (2018).

    Article  Google Scholar 

  88. Juanes, R., Hager, B. H. & Herzog, H. J. No geologic evidence that seismicity causes fault leakage that would render large-scale carbon capture and storage unsuccessful. Proc. Natl Acad. Sci. USA 109, E3623 (2012).

    Article  Google Scholar 

  89. Ringrose, P. S. & Meckel, T. A. Maturing global CO2 storage resources on offshore continental margins to achieve 2DS emissions reductions. Sci. Rep. 9, 17944 (2019).

    Article  Google Scholar 

  90. Baisch, S., Koch, C. & Muntendam-Bos, A. Traffic light systems: to what extent can induced seismicity be controlled? Seismol. Res. Lett. 90, 1145–1154 (2019).

    Article  Google Scholar 

  91. Hager, B. H. et al. A process-based approach to understanding and managing triggered seismicity. Nature 595, 684–689 (2021).

    Article  Google Scholar 

  92. Heinemann, N. et al. Enabling large-scale hydrogen storage in porous media — the scientific challenges. Energy Environ. Sci. 14, 853–864 (2021).

    Article  Google Scholar 

  93. Kabuth, A. et al. Energy storage in the geological subsurface: dimensioning, risk analysis and spatial planning: the ANGUS+ project. Environ. Earth Sci. 76, 23 (2017).

    Article  Google Scholar 

  94. Heinemann, N. et al. Hydrogen storage in saline aquifers: The role of cushion gas for injection and production. Int. J. Hydrog. Energy 46, 39284–39296 (2021).

    Article  Google Scholar 

  95. Amid, A., Mignard, D. & Wilkinson, M. Seasonal storage of hydrogen in a depleted natural gas reservoir. Int. J. Hydrog. Energy 41, 5549–5558 (2016).

    Article  Google Scholar 

  96. Lemmon, E. W., Bell, I. H., Huber, M. L. & McLinden, M. O. in NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (eds Linstrom, P. J. & Mallard, W. G.) (National Institute of Standards and Technology, 2022).

  97. Tarkowski, R., Uliasz-Misiak, B. & Tarkowski, P. Storage of hydrogen, natural gas, and carbon dioxide — geological and legal conditions. Int. J. Hydrog. Energy 46, 20010–20022 (2021).

    Article  Google Scholar 

  98. Caglayan, D. G. et al. Technical potential of salt caverns for hydrogen storage in Europe. Int. J. Hydrog. Energy 45, 6793–6805 (2020).

    Article  Google Scholar 

  99. Tarkowski, R. Underground hydrogen storage: characteristics and prospects. Renew. Sustain. Energy Rev. 105, 86–94 (2019).

    Article  Google Scholar 

  100. Hashemi, L., Blunt, M. & Hajibeygi, H. Pore-scale modelling and sensitivity analyses of hydrogen-brine multiphase flow in geological porous media. Sci. Rep. 11, 8348 (2021).

    Article  Google Scholar 

  101. Simon, J., Ferriz, A. M. & Correas, L. C. HyUnder — hydrogen underground storage at large scale: case study Spain. in Energy Procedia Vol. 73, 136–144 (Elsevier Ltd, 2015).

  102. Carroll, S. et al. Review: role of chemistry, mechanics, and transport on well integrity in CO2 storage environments. Int. J. Greenh. Gas Control 49, 149–160 (2016).

    Article  Google Scholar 

  103. Ramesh Kumar, K., Makhmutov, A., Spiers, C. J. & Hajibeygi, H. Geomechanical simulation of energy storage in salt formations. Sci. Rep. 11, 19640 (2021).

    Article  Google Scholar 

  104. Kaldi, J. et al. Containment of CO2 in CCS: role of caprocks and faults. in Energy Procedia Vol. 37, 5403–5410 (Elsevier Ltd, 2013).

  105. Hafsi, Z., Mishra, M. & Elaoud, S. Hydrogen embrittlement of steel pipelines during transients. in Procedia Structural Integrity Vol. 13, 210–217 (Elsevier B.V., 2018).

  106. Miri, R. & Hellevang, H. Salt precipitation during CO2 storage — a review. Int. J. Greenh. Gas Control 51, 136–147 (2016).

    Article  Google Scholar 

  107. Dopffel, N., Jansen, S. & Gerritse, J. Microbial side effects of underground hydrogen storage — knowledge gaps, risks and opportunities for successful implementation. Int. J. Hydrog. Energy 46, 8594–8606 (2021).

    Article  Google Scholar 

  108. Thaysen, E. M. et al. Estimating microbial growth and hydrogen consumption in hydrogen storage in porous media. Renew. Sustain. Energy Rev. 151, 111481 (2021).

    Article  Google Scholar 

  109. Griffiths, S., Sovacool, B. K., Kim, J., Bazilian, M. & Uratani, J. M. Industrial decarbonization via hydrogen: a critical and systematic review of developments, socio-technical systems and policy options. Energy Res. Soc. Sci. 80, 102208 (2021).

    Article  Google Scholar 

  110. Glanz, S. & Schönauer, A. L. Towards a low-carbon society via hydrogen and carbon capture and storage: social acceptance from a stakeholder perspective. J. Sustain. Dev. Energy Water Environ. Syst. 9, 1–18 (2021).

    Article  Google Scholar 

  111. Lambert, V. & Ashworth, P. The Australian PUBLIC’S Perception of Hydrogen for Energy (ARENA, 2018).

  112. Gough, C. & Mander, S. Beyond social acceptability: applying lessons from CCS social science to support deployment of BECCS. Curr. Sustain. Renew. Energy Rep. 6, 116–123 (2019).

    Google Scholar 

  113. Stalker, L., Roberts, J., Mabon, L. & Hartley, P. Communicating leakage risk in the hydrogen economy: lessons already learned from geoenergy industries. Front. Energy Res. https://doi.org/10.3389/fenrg.2022.869264 (2022).

    Article  Google Scholar 

  114. IPCC. Carbon Dioxide Capture and Storage (Cambridge University Press, 2005).

  115. Rio Declaration on Environment and Development (UN, 1992); https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_CONF.151_26_Vol.I_Declaration.pdf.

  116. IPCC Climate Change 2018: Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) (Cambridge University Press and New York, 2018).

  117. Mikunda, T. et al. Carbon capture and storage and the sustainable development goals. Int. J. Greenh. Gas Control 108, 103318 (2021).

    Article  Google Scholar 

  118. Herzog, H. J. & Drake, E. M. Carbon dioxide recovery and disposal from large energy systems. Annu. Rev. Energy Environ. https://doi.org/10.1146/annurev.energy.21.1.145 (1996).

    Article  Google Scholar 

  119. Hetland, J. & Anantharaman, R. Carbon capture and storage (CCS) options for co-production of electricity and synthetic fuels from indigenous coal in an Indian context. Energy Sustain. Dev. 13, 56–63 (2009).

    Article  Google Scholar 

  120. Audus, E. I. H. IEA greenhouse gas R&D programme: full fuel cycle studies. Energy Convers. Manag. 37, 837–842 (1996).

    Article  Google Scholar 

  121. Mathieu, P. Near Zero Emission Power Plants as Future CO2 Control Technologies (Springer, 2002).

  122. Swennenhuis, F., de Gooyert, V. & de Coninck, H. Towards a CO2-neutral steel industry: justice aspects of CO2 capture and storage, biomass- and green hydrogen-based emission reductions. Energy Res. Soc. Sci. 88, 102598 (2022).

    Article  Google Scholar 

  123. Volkart, K., Bauer, C. & Boulet, C. Life cycle assessment of carbon capture and storage in power generation and industry in Europe. Int. J. Greenh. Gas Control 16, 91–106 (2013).

    Article  Google Scholar 

  124. Pehnt, M. & Henkel, J. Life cycle assessment of carbon dioxide capture and storage from lignite power plants. Int. J. Greenh. Gas Control 3, 49–66 (2009).

    Article  Google Scholar 

  125. Pawar, R. J. et al. The National Risk Assessment Partnership’s integrated assessment model for carbon storage: a tool to support decision making amidst uncertainty. Int. J. Greenh. Gas Control 52, 175–189 (2016).

    Article  Google Scholar 

  126. Kang, M. et al. Identification and characterization of high methane-emitting abandoned oil and gas wells. Proc. Natl Acad. Sci. USA 113, 13636–13641 (2016).

    Article  Google Scholar 

  127. Davies, R. J. et al. Oil and gas wells and their integrity: implications for shale and unconventional resource exploitation. Mar. Pet. Geol. 56, 239–254 (2014).

    Article  Google Scholar 

  128. Shell UK Limited. Peterhead CCS Project Cost Estimate Report, Doc. No. PCCS-00-MM-FA-3101-00001 (2016).

  129. Shaffer, G. Long-term effectiveness and consequences of carbon dioxide sequestration. Nat. Geosci. 3, 464–467 (2010).

    Article  Google Scholar 

  130. Haugan, P. M. & Joos, F. Metrics to assess the mitigation of global warming by carbon capture and storage in the ocean and in geological reservoirs. Geophys. Res. Lett. 31, 2004GL020295 (2004).

    Article  Google Scholar 

  131. EPA. Underground Injection Control (UIC) Program Class VI Implementation Manual for UIC Program Directors (2018).

  132. Heidug, W., Lipponen, J., McCoy, S. & Benoit, P. Storing CO2 through enhanced oil recovery: combining EOR with CO2 storage (EOR+) for profit. in Insight Series (International Energy Agency, 2015).

  133. Kolster, C., Masnadi, M. S., Krevor, S., Mac Dowell, N. & Brandt, A. R. CO2 enhanced oil recovery: a catalyst for gigatonne-scale carbon capture and storage deployment? Energy Environ. Sci. 10, 2594–2608 (2017).

    Article  Google Scholar 

  134. Hepburn, C. et al. The technological and economic prospects for CO2 utilization and removal. Nature 575, 87–97 (2019).

    Article  Google Scholar 

  135. Jaramillo, P., Griffin, W. M. & Mccoy, S. T. Life cycle inventory of CO2 in an enhanced oil recovery system. Env. Sci. Technol. 43, 8027–8032 (2009).

    Article  Google Scholar 

  136. Cooney, G., Littlefield, J., Marriott, J. & Skone, T. J. Evaluating the climate benefits of CO2-enhanced oil recovery using life cycle analysis. Environ. Sci. Technol. 49, 7491–7500 (2015).

    Article  Google Scholar 

  137. Sminchak, J. R., Mawalkar, S. & Gupta, N. Large CO2 storage volumes result in net negative emissions for greenhouse gas life cycle analysis based on records from 22 years of CO2-enhanced oil recovery operations. Energy Fuels 34, 3566–3577 (2020).

    Article  Google Scholar 

  138. Stewart, R. J. & Haszeldine, R. S. Can producing oil store carbon? Greenhouse gas footprint of CO2EOR, offshore North Sea. Environ. Sci. Technol. 49, 5788–5795 (2015).

    Article  Google Scholar 

  139. Núñez-López, V. & Moskal, E. Potential of CO2-EOR for near-term decarbonization. Front. Clim. https://doi.org/10.3389/fclim.2019.00005 (2019).

    Article  Google Scholar 

  140. Alcalde, J. et al. Acorn: developing full-chain industrial carbon capture and storage in a resource- and infrastructure-rich hydrocarbon province. J. Clean. Prod. 233, 963–971 (2019).

    Article  Google Scholar 

  141. Mabon, L., Kita, J. & Xue, Z. Challenges for social impact assessment in coastal regions: a case study of the Tomakomai CCS Demonstration Project. Mar. Policy 83, 243–251 (2017).

    Article  Google Scholar 

  142. Ashworth, P., Wade, S., Reiner, D. & Liang, X. Developments in public communications on CCS. Int. J. Greenh. Gas Control 40, 449–458 (2015).

    Article  Google Scholar 

  143. Haug, J. K. & Stigson, P. Local acceptance and communication as crucial elements for realizing CCS in the Nordic region. in Energy Procedia Vol. 86, 315–323 (Elsevier Ltd, 2016).

  144. Akerboom, S. et al. Different this time? The prospects of CCS in the Netherlands in the 2020s. Front. Energy Res. https://doi.org/10.3389/fenrg.2021.644796 (2021).

    Article  Google Scholar 

  145. Brunsting, S., De Best-Waldhober, M., Feenstra, C. F. J. & Mikunda, T. Stakeholder participation practices and onshore CCS: lessons from the Dutch CCS case Barendrecht. in Energy Procedia Vol. 4, 6376–6383 (Elsevier Ltd, 2011).

  146. van Egmond, S. & Hekkert, M. P. Analysis of a prominent carbon storage project failure — the role of the national government as initiator and decision maker in the Barendrecht case. Int. J. Greenh. Gas Control 34, 1–11 (2015).

    Article  Google Scholar 

  147. Whitmarsh, L., Xenias, D. & Jones, C. R. Framing effects on public support for carbon capture and storage. Palgrave Commun. 5, 17 (2019).

    Article  Google Scholar 

  148. Pianta, S., Rinscheid, A. & Weber, E. U. Carbon capture and storage in the United States: perceptions, preferences, and lessons for policy. Energy Policy 151, 112149 (2021).

    Article  Google Scholar 

  149. Ostfeld, R. & Reiner, D. M. Public views of Scotland’s path to decarbonization: evidence from citizens’ juries and focus groups. Energy Policy 140, 111332 (2020).

    Article  Google Scholar 

  150. Carbon Capture Usage and Storage Public Dialogue (UK Department for Business Energy and Industrial Strategy, 2021).

  151. Merk, C., Nordø, Å. D., Andersen, G., Lægreid, O. M. & Tvinnereim, E. Don’t send us your waste gases: public attitudes toward international carbon dioxide transportation and storage in Europe. Energy Res. Soc. Sci. 87, 102450 (2022).

    Article  Google Scholar 

  152. Gonzalez, A., Mabon, L. & Agarwal, A. Who wants North Sea CCS, and why? Assessing differences in opinion between oil and gas industry respondents and wider energy and environmental stakeholders. Int. J. Greenh. Gas Control 106, 103288 (2021).

    Article  Google Scholar 

  153. Dütschke, E. et al. Differences in the public perception of CCS in Germany depending on CO2 source, transport option and storage location. Int. J. Greenh. Gas Control 53, 149–159 (2016).

    Article  Google Scholar 

  154. Buck, H. J. Social science for the next decade of carbon capture and storage. Electr. J. 34, 107003 (2021).

    Article  Google Scholar 

  155. L’Orange Seigo, S., Dohle, S. & Siegrist, M. Public perception of carbon capture and storage (CCS): a review. Renew. Sustain. Energy Rev. 38, 848–863 (2014).

    Article  Google Scholar 

  156. Broecks, K., Jack, C., ter Mors, E., Boomsma, C. & Shackley, S. How do people perceive carbon capture and storage for industrial processes? Examining factors underlying public opinion in the Netherlands and the United Kingdom. Energy Res. Soc. Sci. 81, 102236 (2021).

    Article  Google Scholar 

  157. Tcvetkov, P., Cherepovitsyn, A. & Fedoseev, S. Public perception of carbon capture and storage: a state-of-the-art overview. Heliyon 5, e02845 (2019).

    Article  Google Scholar 

  158. Chen, Z.-A. et al. A large national survey of public perceptions of CCS technology in China. Appl. Energy 158, 366–377 (2015).

    Article  Google Scholar 

  159. Vercelli, S. et al. Topic and concerns related to the potential impacts of CO2 storage: results from a Stakeholders Questionnaire. Energy Procedia 114, 7379–7398 (2017).

    Article  Google Scholar 

  160. de Coninck, H. Trojan horse or horn of plenty? Reflections on allowing CCS in the CDM. Energy Policy 36, 929–936 (2008).

    Article  Google Scholar 

  161. Cox, E., Spence, E. & Pidgeon, N. Public perceptions of carbon dioxide removal in the United States and the United Kingdom. Nat. Clim. Change 10, 744–749 (2020).

    Article  Google Scholar 

  162. Vergragt, P. J., Markusson, N. & Karlsson, H. Carbon capture and storage, bio-energy with carbon capture and storage, and the escape from the fossil-fuel lock-in. Global Environ. Change 21, 282–292 (2011).

    Article  Google Scholar 

  163. Gough, C., Cunningham, R. & Mander, S. Understanding key elements in establishing a social license for CCS: an empirical approach. Int. J. Greenh. Gas Control 68, 16–25 (2018).

    Article  Google Scholar 

  164. Gough, C., Cunningham, R. & Mander, S. Societal responses to CO2 storage in the UK: media, stakeholder and public perspectives. Energy Procedia 114, 7310–7316 (2017).

    Article  Google Scholar 

  165. Janipour, Z., Swennenhuis, F., de Gooyert, V. & de Coninck, H. Understanding contrasting narratives on carbon dioxide capture and storage for Dutch industry using system dynamics. Int. J. Greenh. Gas Control 105, 103235 (2021).

  166. Hansson, A., Anshelm, J., Fridahl, M. & Haikola, S. The underworld of tomorrow? How subsurface carbon dioxide storage leaked out of the public debate. Energy Res. Soc. Sci. 90, 102606 (2022).

    Article  Google Scholar 

  167. Dowd, A. M., Rodriguez, M. & Jeanneret, T. Social science insights for the BioCCS industry. Energies 8, 4024–4042 (2015).

    Article  Google Scholar 

  168. Havercroft, I., Macrory, R. & Stewart, R. B. Carbon Capture and Storage: Emerging Legal and Regulatory Issues (Bloomsbury Publishing, 2018).

  169. Ghaleigh, N. S. in Encyclopedia of Environmental Law: Climate Change Law Vol. 1 (eds Farber, D. A. & Peeters, M.) (Edward Elgar Publishing Ltd, 2016).

  170. European Parliament and Council of the European Union. Directive 2009/31/EC of the European Parliament and of the Council of 23 April 2009 on the Geological Storage of Carbon Dioxide (2009).

  171. Benson, S. M. et al. Carbon capture and storage. in Global Energy Assessment — Toward a Sustainable Future (Cambridge University Press, 2012).

  172. Baines, S. et al. CO2 storage resource catalogue cycle 3 report, Oil and Gas Climate Initiative (Global CCS Institute, 2022).

  173. Specifications for the Application of the United Nations Classification for Fossil Energy and Mineral Reserves and Resources 2009 to Injection Projects for the Purpose of Geological Storage. UNECE https://unece.org/sustainable-energy/unfc-and-sustainable-resource-management/unfc-documents (2016).

  174. Society of Petroleum Engineers. CO2 Storage Resources Management System (Society of Petroleum Engineers, 2017).

  175. Duong, C., Bower, C., Hume, K., Rock, L. & Tessarolo, S. Quest carbon capture and storage offset project: findings and learnings from 1st reporting period. Int. J. Greenh. Gas Control 89, 65–75 (2019).

    Article  Google Scholar 

  176. Dean, M. & Tucker, O. A risk-based framework for measurement, monitoring and verification (MMV) of the Goldeneye storage complex for the Peterhead CCS project, UK. Int. J. Greenh. Gas Control 61, 1–15 (2017).

    Article  Google Scholar 

  177. Ringrose, P. S. The CCS hub in Norway: some insights from 22 years of saline aquifer storage. in Energy Procedia Vol. 146, 166–172 (Elsevier Ltd, 2018).

  178. Equinor. Northern Lights FEED Report, RE-PM673-00057 (2020).

  179. Akhurst, M. et al. Storage Readiness Levels: communicating the maturity of site technical understanding, permitting and planning needed for storage operations using CO2. Int. J. Greenh. Gas Control 110, 103402 (2021).

    Article  Google Scholar 

  180. National Energy Technology Laboratory. Best Practices: Site Screening, Site Selection, and Site Characterization for Geologic Storage Projects. DOE/NETL-2017/1844 (2017).

  181. Barros, E. G. D., Leeuwenburgh, O. & Szklarz, S. P. Quantitative assessment of monitoring strategies for conformance verification of CO2 storage projects. Int. J. Greenh. Gas Control 110, 103403 (2021).

    Article  Google Scholar 

  182. Bourne, S., Crouch, S. & Smith, M. A risk-based framework for measurement, monitoring and verification of the Quest CCS Project, Alberta, Canada. Int. J. Greenh. Gas Control 26, 109–126 (2014).

    Article  Google Scholar 

  183. Tveit, S., Mannseth, T., Park, J., Sauvin, G. & Agersborg, R. Combining CSEM or gravity inversion with seismic AVO inversion, with application to monitoring of large-scale CO2 injection. Comput. Geosci. 24, 1201–1220 (2020).

    Article  Google Scholar 

  184. Pevzner, R. et al. Seismic monitoring of a small CO2 injection using a multi-well DAS array: operations and initial results of Stage 3 of the CO2CRC Otway project. Int. J. Greenh. Gas Control 110, 103437 (2021).

    Article  Google Scholar 

  185. Chopra, S. & Castagna, J. P. AVO (Society of Exploration Geophysicists, 2014).

  186. Furre, A. K., Eiken, O., Alnes, H., Vevatne, J. N. & Kiær, A. F. 20 years of monitoring CO2-injection at Sleipner. in Energy Procedia Vol. 114, 3916–3926 (Elsevier Ltd, 2017).

  187. Mykkeltvedt, T. S. & Nordbotten, J. M. Estimating effective rates of convective mixing from commercial-scale injection. Environ. Earth Sci. 67, 527–535 (2012).

    Article  Google Scholar 

  188. Moghadasi, R., Basirat, F., Bensabat, J., Doughty, C. & Niemi, A. Role of critical gas saturation in the interpretation of a field scale CO2 injection experiment. Int. J. Greenh. Gas Control 115, 103624 (2022).

  189. Pawar, R. J. et al. Recent advances in risk assessment and risk management of geologic CO2 storage. Int. J. Greenh. Gas Control 40, 292–311 (2015).

    Article  Google Scholar 

  190. Nicol, A., Carne, R., Gerstenberger, M. & Christophersen, A. Induced seismicity and its implications for CO2 storage risk. in Energy Procedia Vol. 4, 3699–3706 (Elsevier Ltd, 2011).

  191. Guglielmi, Y. et al. Field-scale fault reactivation experiments by fluid injection highlight aseismic leakage in caprock analogs: implications for CO2 sequestration. Int. J. Greenh. Gas Control 111, 103471 (2021).

    Article  Google Scholar 

  192. Duguid, A. et al. Practical leakage risk assessment for CO2 assisted enhanced oil recovery and geologic storage in Ohio’s depleted oil fields. Int. J. Greenh. Gas Control 109, 103338 (2021).

    Article  Google Scholar 

  193. de Coninck, H. & Benson, S. M. Carbon dioxide capture and storage: issues and prospects. Annu. Rev. Environ. Resour. 39, 243–270 (2014).

    Article  Google Scholar 

  194. Dean, M., Blackford, J., Connelly, D. & Hines, R. Insights and guidance for offshore CO2 storage monitoring based on the QICS, ETI MMV, and STEMM-CCS projects. Int. J. Greenh. Gas Control 100, 103120 (2020).

    Article  Google Scholar 

  195. Waage, M. et al. Feasibility of using the P-cable high-resolution 3D seismic system in detecting and monitoring CO2 leakage. Int. J. Greenh. Gas Control 106, 103240 (2021).

    Article  Google Scholar 

  196. Glubokovskikh, S. et al. How well can time-lapse seismic characterize a small CO2 leakage into a saline aquifer: CO2CRC Otway 2C experiment (Victoria, Australia). Int. J. Greenh. Gas Control 92, 102854 (2020).

    Article  Google Scholar 

  197. BP Exploration Operating Company Limited. Multi-Store Development Philosophy. Key Knowledge Document NS051-SS-PHI-000-00010 (2022).

  198. de Simone, S. & Krevor, S. A tool for first order estimates and optimisation of dynamic storage resource capacity in saline aquifers. Int. J. Greenh. Gas Control 106, 103258 (2021).

    Article  Google Scholar 

  199. Birkholzer, J. T. & Zhou, Q. Basin-scale hydrogeologic impacts of CO2 storage: capacity and regulatory implications. Int. J. Greenh. Gas Control 3, 745–756 (2009).

    Article  Google Scholar 

  200. Bandilla, K. W. & Celia, M. A. Active pressure management through brine production for basin-wide deployment of geologic carbon sequestration. Int. J. Greenh. Gas Control 61, 155–167 (2017).

    Article  Google Scholar 

  201. Birkholzer, J. T., Cihan, A. & Zhou, Q. Impact-driven pressure management via targeted brine extraction — conceptual studies of CO2 storage in saline formations. Int. J. Greenh. Gas Control 7, 168–180 (2012).

    Article  Google Scholar 

  202. Cihan, A., Birkholzer, J. T. & Bianchi, M. Optimal well placement and brine extraction for pressure management during CO2 sequestration. Int. J. Greenh. Gas Control 42, 175–187 (2015).

    Article  Google Scholar 

  203. Gasda, S. E., Wangen, M., Bjørnarå, T. I. & Elenius, M. T. Investigation of caprock integrity due to pressure build-up during high-volume injection into the Utsira formation. in Energy Procedia Vol. 114, 3157–3166 (Elsevier Ltd, 2017).

  204. Elenius, M. et al. Assessment of CO2 storage capacity based on sparse data: Skade formation. Int. J. Greenh. Gas Control 79, 252–271 (2018).

    Article  Google Scholar 

  205. Martin-Roberts, E. et al. Carbon capture and storage at the end of a lost decade. One Earth 4, 1569–1584 (2021).

    Article  Google Scholar 

  206. Wang, N., Akimoto, K. & Nemet, G. F. What went wrong? Learning from three decades of carbon capture, utilization and sequestration (CCUS) pilot and demonstration projects. Energy Policy 158, 112456 (2021).

    Article  Google Scholar 

  207. Smith, E. et al. The cost of CO2 transport and storage in global integrated assessment modeling. Int. J. Greenh. Gas Control 109, 103367 (2021).

    Article  Google Scholar 

  208. Rubin, E. S., Davison, J. E. & Herzog, H. J. The cost of CO2 capture and storage. Int. J. Greenh. Gas Control 40, 378–400 (2015).

    Article  Google Scholar 

  209. Morgan, D. & Grant, T. FE/NETL CO2 Saline Storage Cost Model: Model Description and Baseline Results, DOE/NETL-2014/1659 (2014).

  210. ACT Acorn. D08 East Mey CO2 Storage Site Development Plan (2018).

  211. Torp, T. & Brown, K. CO2 underground storage costs as experienced at Sleipner and Weyburn. in Greenhouse Gas Control Technologies Vol. 7, 531–538 (Elsevier, 2005).

  212. Short-Term Actions & Transition Strategies. National Petroleum Council www.npc.org (2019).

  213. Leeson, D., Mac Dowell, N., Shah, N., Petit, C. & Fennell, P. S. A techno-economic analysis and systematic review of carbon capture and storage (CCS) applied to the iron and steel, cement, oil refining and pulp and paper industries, as well as other high purity sources. Int. J. Greenh. Gas Control 61, 71–84 (2017).

    Article  Google Scholar 

  214. Herzog, H. Lessons Learned CCS Demonstration and Large Pilot Projects. An MIT Energy Initiative Working Paper. MIT http://sequestration.mit.edu/tools/projects/index.html (2016).

  215. Whitmore, A. Contracts to support deployment of carbon capture. In Carbon Capture, Utilization and Storage (CCUS): Barriers, Enabling Frameworks and Prospects for Climate Change Mitigation Oxford Energy Forum 130, 13–16 (2022).

  216. Rassool, D., Consoli, C., Townsend, A. & Liu, H. Overview of Organisations and Policies Supporting the Deployment of Large-Scale CCS Facilities (Global CCS Institute, 2020).

  217. Norwegian Ministry of Petroleum and Energy. LongshipCarbon Capture and Storage. Meld. St. 33 (2019-2020) Report to the Storting (White Paper) (2020).

  218. UK Department for Business Energy and Industrial Strategy. Carbon Capture Usage and Storage: An Update on the Business Model for Transport and Storage (2021).

  219. Global CCS Institute. Global Status of CCS 2021: CCS Accelerating to Net Zero (2021).

  220. Finley, R. J. An overview of the Illinois Basin — Decatur Project. Greenh. Gases Sci. Technol. 4, 571–579 (2014).

    Article  Google Scholar 

  221. CCUS in Industry and Transformation. IEA https://www.iea.org/reports/ccus-in-industry-and-transformation (2022).

  222. Class VI Wells Permitted by EPA. EPA https://www.epa.gov/uic/class-vi-wells-permitted-epa (2022).

  223. Huppmann, D., Rogelj, J., Kriegler, E., Krey, V. & Riahi, K. A new scenario resource for integrated 1.5 °C research. Nat. Clim. Change 8, 1027–1030 (2018).

    Article  Google Scholar 

  224. European Commission. A Clean Planet for All COM(2018) 773 (2018).

  225. United States Department of State and the United States Executive Office of the President. The Long-term Strategy of the United States: Pathways to Net-Zero Greenhouse Gas Emissions by 2050 (2021).

  226. Lane, J., Greig, C. & Garnett, A. Uncertain storage prospects create a conundrum for carbon capture and storage ambitions. Nat. Clim. Change 11, 925–936 (2021).

    Article  Google Scholar 

  227. Veil, J. U.S. Produced Water Volumes and Management Practices in 2012 (2015).

  228. Vilarrasa, V. & Carrera, J. Geologic carbon storage is unlikely to trigger large earthquakes and reactivate faults through which CO2 could leak. Proc. Natl Acad. Sci. USA 112, 5938–5943 (2015).

    Article  Google Scholar 

  229. Wei, Y. M. et al. A proposed global layout of carbon capture and storage in line with a 2 °C climate target. Nat. Clim. Change 11, 112–118 (2021).

    Article  Google Scholar 

  230. Zhang, Y., Jackson, C., Zahasky, C., Nadhira, A. & Krevor, S. European carbon storage resource requirements of climate change mitigation targets. Int. J. Greenh. Gas Control 114, 103568 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

N.S.G. acknowledges support of the CO2RE Hub, funded by the Natural Environment Research Council of the UK (Grant Ref: NE/V013106/1). J.N. acknowledges funding through the GeoCquest consortium, a BHP-funded collaborative project among the Universities of Cambridge, Stanford and Melbourne. R.J. acknowledges funding from the U.S. Department of Energy (Grant No. DE-SC0018357). S.E.G. acknowledges funding through the Centre for Sustainable Subsurface Resources supported by the Research Council of Norway and industry stakeholders (grant nr. 331841).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to designing, writing, reviewing and editing the manuscript, which was led and coordinated by S.K.

Corresponding author

Correspondence to Samuel Krevor.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks P. Gabrielli, S. Hovorka and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krevor, S., de Coninck, H., Gasda, S.E. et al. Subsurface carbon dioxide and hydrogen storage for a sustainable energy future. Nat Rev Earth Environ 4, 102–118 (2023). https://doi.org/10.1038/s43017-022-00376-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00376-8

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene