Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Review
  • Published:

Landslide detection, monitoring and prediction with remote-sensing techniques

Abstract

Landslides are widespread occurrences that can become catastrophic when they occur near settlements and infrastructure. Detection, monitoring and prediction are fundamental to managing landslide risks and often rely on remote-sensing techniques (RSTs) that include the observation of Earth from space, laser scanning and ground-based interferometry. In this Technical Review, we describe the use of RSTs in landslide analysis and management. Satellite RSTs are used to detect and measure landslide displacement, providing a synoptic view over various spatiotemporal scales. Ground-based sensors (including ground-based interferometric radar, Doppler radar and lidar) monitor smaller areas, but combine accuracy, high acquisition frequency and configuration flexibility, and are therefore increasingly used in real-time monitoring and early warning of landslides. Each RST has advantages and limitations that depend on the application (detection, monitoring or prediction), the size of the area of concern, the type of landslide, deformation pattern and risks posed by landslide. The integration of various technologies is, therefore, often best. More effective landslide risk management requires greater leveraging of big data, more strategic use of monitoring resources and better communication with residents of landslide-prone areas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Landslide remote-sensing products.
Fig. 2: Technical comparison between different remote-sensing techniques.
Fig. 3: Site monitoring with remote-sensing techniques.
Fig. 4: The field of action of ground-based interferometry and Doppler radar in common types of landslides.

Similar content being viewed by others

References

  1. Bennett, G. L., Miller, S. R., Roering, J. J. & Schmidt, D. A. Landslides, threshold slopes, and the survival of relict terrain in the wake of the Mendocino Triple Junction. Geology 44, 363–366 (2016).

    Article  Google Scholar 

  2. Moreiras, S. M. Climatic effect of ENSO associated with landslide occurrence in the Central Andes, Mendoza Province, Argentina. Landslides 2, 53–59 (2005).

    Article  Google Scholar 

  3. Petley, D. N. et al. Trends in landslide occurrence in Nepal. Nat. Hazards 43, 23–44 (2007).

    Article  Google Scholar 

  4. Froude, M. J. & Petley, D. N. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 18, 2161–2181 (2018).

    Article  Google Scholar 

  5. Patton, A. I., Rathburn, S. L. & Capps, D. M. Landslide response to climate change in permafrost regions. Geomorphology 340, 116–128 (2019).

    Article  Google Scholar 

  6. Mantovani, F., Soeters, R. & Van Westen, C. J. Remote sensing techniques for landslide studies and hazard zonation in Europe. Geomorphology 15, 213–225 (1996).

    Article  Google Scholar 

  7. Metternicht, G., Hurni, L. & Gogu, R. Remote sensing of landslides: an analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments. Remote Sens. Environ. 98, 284–303 (2005).

    Article  Google Scholar 

  8. Delacourt, C. et al. Remote-sensing techniques for analysing landslide kinematics: a review. Bull. Soc. Géol. Fr. 178, 89–100 (2007).

    Article  Google Scholar 

  9. Crosetto, M., Monserrat, O., Cuevas-González, M., Devanthéry, N. & Crippa, B. Persistent scatterer interferometry: a review. ISPRS J. Photogramm. Remote Sens. 115, 78–89 (2016).

    Article  Google Scholar 

  10. Mondini, A. C. et al. Landslide failures detection and mapping using synthetic aperture radar: past, present and future. Earth Sci. Rev. 216, 103574 (2021).

    Article  Google Scholar 

  11. Casagli, N. et al. Spaceborne, UAV and ground-based remote sensing techniques for landslide mapping, monitoring and early warning. Geoenviron. Disasters 4, 9 (2017).

    Article  Google Scholar 

  12. Lillesand, T., Kiefer, R. W. & Chipman, J. Remote Sensing and Image Interpretation (John Wiley & Sons, 2014).

  13. Jaboyedoff, M. et al. Use of LIDAR in landslide investigations: a review. Nat. Hazards 61, 5–28 (2012).

    Article  Google Scholar 

  14. Salvini, R., Francioni, M., Riccucci, S., Bonciani, F. & Callegari, I. Photogrammetry and laser scanning for analyzing slope stability and rock fall runout along the Domodossola–Iselle railway, the Italian Alps. Geomorphology 185, 110–122 (2013).

    Article  Google Scholar 

  15. Rosi, A. et al. The new landslide inventory of Tuscany (Italy) updated with PS-InSAR: geomorphological features and landslide distribution. Landslides 15, 5–19 (2018).

    Article  Google Scholar 

  16. Lombardi, L. et al. The Calatabiano landslide (southern Italy): preliminary GB-InSAR monitoring data and remote 3D mapping. Landslides 14, 685–696 (2017).

    Article  Google Scholar 

  17. Ferrigno, F., Gigli, G., Fanti, R., Intrieri, E. & Casagli, N. GB-InSAR monitoring and observational method for landslide emergency management: the Montaguto earthflow (AV, Italy). Nat. Hazards Earth Syst. Sci. 17, 845–860 (2017).

    Article  Google Scholar 

  18. Intrieri, E. et al. Big data managing in a landslide early warning system: experience from a ground-based interferometric radar application. Nat. Hazards Earth Syst. Sci. 17, 1713–1723 (2017).

    Article  Google Scholar 

  19. MacDonald, H. C. & Grubbs, R. S. NASA Lyndon B. Johnson Space Center NASA Earth Resources Survey Symposium Vol. 1-B (NASA, 1975).

  20. Zhao, C. & Lu, Z. Remote sensing of landslides: a review. Remote Sens. 10, 279 (2018).

    Article  Google Scholar 

  21. Martha, T. R., Kerle, N., Van Westen, C. J., Jetten, V. & Kumar, K. V. Object-oriented analysis of multi-temporal panchromatic images for creation of historical landslide inventories. ISPRS J. Photogramm. Remote Sens. 67, 105–119 (2011).

    Article  Google Scholar 

  22. Hölbling, D. et al. Comparing manual and semi-automated landslide mapping based on optical satellite images from different sensors. Geosciences 7, 37 (2017).

    Article  Google Scholar 

  23. Solari, L. et al. Review of satellite interferometry for landslide detection in Italy. Remote Sens. 12, 1351 (2020).

    Article  Google Scholar 

  24. Guzzetti, F. et al. Landslide inventory maps: new tools for an old problem. Earth Sci. Rev. 112, 42–66 (2012).

    Article  Google Scholar 

  25. Scaioni, M., Longoni, L., Melillo, V. & Papini, M. Remote sensing for landslide investigations: an overview of recent achievements and perspectives. Remote Sens. 6, 9600–9652 (2014).

    Article  Google Scholar 

  26. Tofani, V., Segoni, S., Agostini, A., Catani, F. & Casagli, N. Technical note: use of remote sensing for landslide studies in Europe. Nat. Hazards Earth Syst. Sci. 13, 299–309 (2013).

    Article  Google Scholar 

  27. Savvaidis, P. D. Existing landslide monitoring systems and techniques. In From Stars to Earth and Culture 242–258 (Academia, 2003).

  28. Ose, K., Corpetti, T. & Demagistri, L. in Optical Remote Sensing of Land Surface 57–124 (Elsevier, 2016).

  29. Li, J. & Roy, D. P. A global analysis of Sentinel-2A, Sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring. Remote. Sens. 9, 902 (2017).

    Article  Google Scholar 

  30. Li, J. & Chen, B. Global revisit interval analysis of Landsat-8-9 and Sentinel-2A-2B data for terrestrial monitoring. Sensors 20, 6631 (2020).

    Article  Google Scholar 

  31. Jacobsen, K. Characteristics of very high resolution optical satellites for topographic mapping (isprs, 2011); https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XXXVIII-4-W19/137/2011/.

  32. Li, S., Kang, X., Fang, L., Hu, J. & Yin, H. Pixel-level image fusion: a survey of the state of the art. Inf. Fusion 33, 100–112 (2017).

    Article  Google Scholar 

  33. Santurri, L. et al. Assessment of very high resolution satellite data fusion techniques for landslide recognition. In ISPRS TC VII Symposium– 100 Years Vienna, Austria (eds Wagner, W. & Székely, B.) 5–7 (ISPRS, 2010).

  34. Curlander, J. C. & McDonough, R. N. Synthetic Aperture Radar Vol. 11 (Wiley, 1991).

  35. Wasowski, J. & Bovenga, F. Investigating landslides and unstable slopes with satellite multi temporal interferometry: current issues and future perspectives. Eng. Geol. 174, 103–138 (2014).

    Article  Google Scholar 

  36. Bamler, R. & Hartl, P. Synthetic aperture radar interferometry. Inverse Probl. 14, R1 (1998).

    Article  Google Scholar 

  37. Gabriel, A. K., Goldstein, R. M. & Zebker, H. A. Mapping small elevation changes over large areas: differential radar interferometry. J. Geophys. Res. Solid Earth 94, 9183–9191 (1989).

    Article  Google Scholar 

  38. Massonnet, D. & Feigl, K. L. Discrimination of geophysical phenomena in satellite radar interferograms. Geophys. Res. Lett. 22, 1537–1540 (1995).

    Article  Google Scholar 

  39. Zebker, H. A. & Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 30, 950–959 (1992).

    Article  Google Scholar 

  40. Ferretti, A., Prati, C. & Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 39, 8–20 (2001).

    Article  Google Scholar 

  41. Berardino, P., Fornaro, G., Lanari, R. & Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 40, 2375–2383 (2002).

    Article  Google Scholar 

  42. Conforti, M., Pascale, S., Pepe, M., Sdao, F. & Sole, A. Denudation processes and landforms map of the Camastra River catchment (Basilicata–South Italy). J. Maps 9, 444–455 (2013).

    Article  Google Scholar 

  43. Zhou, X., Chang, N.-B. & Li, S. Applications of SAR interferometry in earth and environmental science research. Sensors 9, 1876–1912 (2009).

    Article  Google Scholar 

  44. Colesanti, C., Ferretti, A., Locatelli, R., Novali, F. & Savio, G. In 2003 IEEE International Geoscience and Remote Sensing Symposium Proceedings 1193–1195 (IEEE, 2003).

  45. Michel, R. M., Avouac, J. P. & Taboury, J. Measuring ground displacements from SAR amplitude images: application to the Landers earthquake. Geophys. Res. Lett. 26, 875–878 (1999).

    Article  Google Scholar 

  46. Strozzi, T., Luckman, A., Murray, T., Wegmuller, U. & Werner, C. L. Glacier motion estimation using SAR offset-tracking procedures. IEEE Trans. Geosci. Remote Sens. 40, 2384–2391 (2002).

    Article  Google Scholar 

  47. De Zan, F. Accuracy of incoherent speckle tracking for circular Gaussian signals. IEEE Geosci. Remote Sens. Lett. 11, 264–267 (2014).

    Article  Google Scholar 

  48. Reeves, B., Noon, D. A., Stickley, G. F. & Longstaff, D. Slope stability radar for monitoring mine walls. In Proc. Subsurface and Surface Sensing Technologies and Applications III Vol. (ed. Nguyen, C.) 57–67 (SPIE, 2001).

  49. Tarchi, D. et al. SAR interferometry for structural changes detection: A demonstration test on a dam. In IEEE 1999 International Geoscience and Remote Sensing Symposium 1522–1524 (IEEE, 1999).

  50. Atzeni, C. et al. Ground-based radar interferometry for landslide monitoring and control. In Proc. ISSMGE Field Workshop on Landslides and Natural/Cultural Heritage Trabzon (Turkey) 195–209 (ISSMGE, 2001).

  51. Dick, G. J., Eberhardt, E., Cabrejo-Liévano, A. G., Stead, D. & Rose, N. D. Development of an early-warning time-of-failure analysis methodology for open-pit mine slopes utilizing ground-based slope stability radar monitoring data. Can. Geotech. J. 52, 515–529 (2015).

    Article  Google Scholar 

  52. Carlà, T., Farina, P., Intrieri, E., Ketizmen, H. & Casagli, N. Integration of ground-based radar and satellite InSAR data for the analysis of an unexpected slope failure in an open-pit mine. Eng. Geol. 235, 39–52 (2018).

    Article  Google Scholar 

  53. Di Traglia, F. et al. Ground-based InSAR reveals conduit pressurization pulses at Stromboli volcano. Terra Nova 25, 192–198 (2013).

    Article  Google Scholar 

  54. Del Ventisette, C. et al. Using ground based radar interferometry during emergency: the case of the A3 motorway (Calabria Region, Italy) threatened by a landslide. Nat. Hazards Earth Syst. Sci. 11, 2483–2495 (2011).

    Article  Google Scholar 

  55. Gubler, H. Five years experience with avalanche-, mudflow-, and rockfall-alarm systems in Switzerland. In Proc. International Snow Science Workshop 1–9 (ISSW, 2000).

  56. Meier, L., Jacquemart, M., Blattmann, B. & Arnold, B. Real-time avalanche detection with long-range, wide-angle radars for road safety in Zermatt, Switzerland. In Proc. International Snow Science Workshop 304–308 (ISSW, 2016).

  57. Cui, P., Guo, X., Yan, Y., Li, Y. & Ge, Y. Real-time observation of an active debris flow watershed in the Wenchuan Earthquake area. Geomorphology 321, 153–166 (2018).

    Article  Google Scholar 

  58. Mikoš, M. & Huebl, J. Practice guidelines on monitoring and warning technology for debris flows: TXT-tool 2.386-1.2. Landslide Dyn. ISDR-ICL Landslide Interact. Teach. Tools 1, 567–585 (2018).

    Google Scholar 

  59. Meier, L., Jacquemart, M., Wahlen, S. & Blattmann, B. Real-time rockfall detection with doppler radars. In Proc. 6th Interdisciplinary Workshop on Rockfall Protection 1–4 (CIMNE, 2017).

  60. Michelini, A. et al. A new radar-based system for detecting and tracking rockfall in open pit mines. In Proc. 2020 International Symposium on Slope Stability in Open Pit Mining and Civil Engineering 1183–1192 (Australian Centre for Geomechanics, 2020).

  61. Wahlen, S. et al. Real-time rockfall detection system with automatic road closure and reopening using Doppler radar technology at the Ruinon Landslide, Italy. EGU General Assembly 2021 https://doi.org/10.5194/egusphere-egu21-14818 (2021).

  62. Viviani, F., Michelini, A. & Mayer, L. RockSpot: an Interferometric Doppler Radar for Rockfall/Avalanche Detection and Tracking. In 2020 IEEE Radar Conference (RadarConf20) 1–5 (IEEE, 2020).

  63. Mallet, C. M. & Bretar, F. D. R. Full-waveform topographic lidar: state-of-the-art. ISPRS J. Photogramm. Remote Sens. 64, 1–16 (2009).

    Article  Google Scholar 

  64. Brunsden, D. Mass movement: the research frontier and beyond: a geomorphological approach. Geomorphology 7, 85–128 (1993).

    Article  Google Scholar 

  65. Mondini, A. et al. Semi-automatic recognition and mapping of rainfall induced shallow landslides using optical satellite images. Remote Sens. Environ. 115, 1743–1757 (2011).

    Article  Google Scholar 

  66. Achache, J., Fruneau, B. & Delacourt, C. Applicability of SAR interferometry for monitoring of landslides. ERS Appl. 383, 165 (1996).

    Google Scholar 

  67. Fruneau, B. N. D., Achache, J. & Delacourt, C. Observation and modelling of the Saint-Etienne-de-Tinée landslide using SAR interferometry. Tectonophysics 265, 181–190 (1996).

    Article  Google Scholar 

  68. Kimura, H. & Yamaguchi, Y. Detection of landslide areas using satellite radar interferometry. Photogramm. Eng. Remote Sens. 66, 337–344 (2000).

    Google Scholar 

  69. Berardino, P. et al. Use of differential SAR interferometry in monitoring and modelling large slope instability at Maratea (Basilicata, Italy). Eng. Geol. 68, 31–51 (2003).

    Article  Google Scholar 

  70. Rott, H., Scheuchl, B., Siegel, A. & Grasemann, B. Monitoring very slow slope movements by means of SAR interferometry: a case study from a mass waste above a reservoir in the Ötztal Alps, Austria. Geophys. Res. Lett. 26, 1629–1632 (1999).

    Article  Google Scholar 

  71. Schlögel, R., Doubre, C., Malet, J.-P. & Masson, F. Landslide deformation monitoring with ALOS/PALSAR imagery: a D-InSAR geomorphological interpretation method. Geomorphology 231, 314–330 (2015).

    Article  Google Scholar 

  72. Bekaert, D. P. S., Handwerger, A. L., Agram, P. & Kirschbaum, D. B. InSAR-based detection method for mapping and monitoring slow-moving landslides in remote regions with steep and mountainous terrain: an application to Nepal. Remote Sens. Environ. 249, 111983 (2020).

    Article  Google Scholar 

  73. Singhroy, V., Alasset, P.-J., Couture, R. & Poncos, V. InSAR monitoring of landslides on permafrost terrain in Canada. In 2007 IEEE International Geoscience and Remote Sensing Symposium 2451–2454 (IEEE, 2007).

  74. Hao, J. et al. Investigation of a small landslide in the Qinghai-Tibet Plateau by InSAR and absolute deformation model. Remote Sens. 11, 2126 (2019).

    Article  Google Scholar 

  75. Yao, T. et al. Recent third pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysis. Bull. Am. Meteorol. Soc. 100, 423–444 (2019).

    Article  Google Scholar 

  76. Cui, P. & Jia, Y. Mountain hazards in the Tibetan Plateau: research status and prospects. Natl Sci. Rev. 2, 397–399 (2015).

    Article  Google Scholar 

  77. Di Martire, D. et al. A nation-wide system for landslide mapping and risk management in Italy: the second Not-ordinary Plan of Environmental Remote Sensing. Int. J. Appl. Earth Obs. Geoinf. 63, 143–157 (2017).

    Google Scholar 

  78. Meisina, C. et al. Geological interpretation of PSInSAR data at regional scale. Sensors 8, 7469–7492 (2008).

    Article  Google Scholar 

  79. Zhang, Y. et al. Detection of geohazards in the Bailong River Basin using synthetic aperture radar interferometry. Landslides 13, 1273–1284 (2016).

    Article  Google Scholar 

  80. Lauknes, T. et al. Detailed rockslide mapping in northern Norway with small baseline and persistent scatterer interferometric SAR time series methods. Remote Sens. Environ. 114, 2097–2109 (2010).

    Article  Google Scholar 

  81. Ciampalini, A. et al. Analysis of building deformation in landslide area using multisensor PSInSAR™ technique. Int. J. Appl. Earth Obs. Geoinf. 33, 166–180 (2014).

    Google Scholar 

  82. Raspini, F. et al. The contribution of satellite SAR-derived displacement measurements in landslide risk management practices. Nat. Hazards 86, 327–351 (2017).

    Article  Google Scholar 

  83. Cigna, F., Bianchini, S. & Casagli, N. How to assess landslide activity and intensity with persistent scatterer interferometry (PSI): the PSI-based matrix approach. Landslides 10, 267–283 (2013).

    Article  Google Scholar 

  84. Tofani, V., Raspini, F., Catani, F. & Casagli, N. Persistent scatterer interferometry (PSI) technique for landslide characterization and monitoring. Remote Sens. 5, 1045–1065 (2013).

    Article  Google Scholar 

  85. Berti, M., Corsini, A., Franceschini, S. & Iannacone, J. Automated classification of persistent scatterers interferometry time series. Nat. Hazards Earth Syst. Sci. 13, 1945–1958 (2013).

    Article  Google Scholar 

  86. Cruden, D. M. & Varnes, D. J. in Landslides: Investigation and Mitigation Special Report 247 (eds Turner, A. K. & Schuster, R. L.) Ch. 3 (Transportation Research Board, National Academy of Sciences, 1996).

  87. Strozzi, T. et al. Survey and monitoring of landslide displacements by means of L-band satellite SAR interferometry. Landslides 2, 193–201 (2005).

    Article  Google Scholar 

  88. Dong, J. et al. Mapping landslide surface displacements with time series SAR interferometry by combining persistent and distributed scatterers: a case study of Jiaju landslide in Danba, China. Remote Sens. Environ. 205, 180–198 (2018).

    Article  Google Scholar 

  89. Cignetti, M. et al. Taking advantage of the ESA G-pod service to study ground deformation processes in high mountain areas: a Valle d’Aosta case study, northern Italy. Remote Sens. 8, 852 (2016).

    Article  Google Scholar 

  90. Manconi, A. et al. Brief communication: rapid mapping of landslide events: the 3 December 2013 Montescaglioso landslide, Italy. Nat. Hazards Earth Syst. Sci. 14, 1835–1841 (2014).

    Article  Google Scholar 

  91. Raspini, F. et al. Exploitation of amplitude and phase of satellite SAR images for landslide mapping: the case of Montescaglioso (South Italy). Remote Sens. 7, 14576–14596 (2015).

    Article  Google Scholar 

  92. Singleton, A., Li, Z., Hoey, T. & Muller, J. P. Evaluating sub-pixel offset techniques as an alternative to D-InSAR for monitoring episodic landslide movements in vegetated terrain. Remote Sens. Environ. 147, 133–144 (2014).

    Article  Google Scholar 

  93. Jaboyedoff, M. & Derron, M.-H. in Developments in Earth Surface Processes Vol. 23 (Elsevier, 2020).

  94. Ardizzone, F., Cardinali, M., Galli, M., Guzzetti, F. & Reichenbach, P. Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne Lidar. Nat. Hazards Earth Syst. Sci. 7, 637–650 (2007).

    Article  Google Scholar 

  95. Chigira, M., Tsou, C.-Y., Matsushi, Y., Hiraishi, N. & Matsuzawa, M. Topographic precursors and geological structures of deep-seated catastrophic landslides caused by Typhoon Talas. Geomorphology 201, 479–493 (2013).

    Article  Google Scholar 

  96. Sturzenegger, M. & Stead, D. Quantifying discontinuity orientation and persistence on high mountain rock slopes and large landslides using terrestrial remote sensing techniques. Nat. Hazards Earth Syst. Sci. 9, 267–287 (2009).

    Article  Google Scholar 

  97. Gigli, G. & Casagli, N. Semi-automatic extraction of rock mass structural data from high resolution LIDAR point clouds. Int. J. Rock Mech. Min. Sci. 48, 187–198 (2011).

    Article  Google Scholar 

  98. Battulwar, R., Zare-Naghadehi, M., Emami, E. & Sattarvand, J. A state-of-the-art review of automated extraction of rock mass discontinuity characteristics using three-dimensional surface models. J. Rock Mech. Geotech. Eng. 13, 920–936 (2021).

    Article  Google Scholar 

  99. Giordan, D. et al. Morphological and kinematic evolution of a large earthflow: the Montaguto landslide, southern Italy. Geomorphology 187, 61–79 (2013).

    Article  Google Scholar 

  100. Frodella, W. et al. Synergic use of satellite and ground based remote sensing methods for monitoring the San Leo rock cliff (northern Italy). Geomorphology 264, 80–94 (2016).

    Article  Google Scholar 

  101. Hervás, J. et al. Monitoring landslides from optical remotely sensed imagery: the case history of Tessina landslide, Italy. Geomorphology 54, 63–75 (2003).

    Article  Google Scholar 

  102. Drusch, M. et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 120, 25–36 (2021).

    Article  Google Scholar 

  103. Leprince, S., Barbot, S., Ayoub, F. & Avouac, J.-P. Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. IEEE Trans. Geosci. Remote Sens. 45, 1529–1558 (2007).

    Article  Google Scholar 

  104. Leprince, S. B., Berthier, E., Ayoub, F. O., Delacourt, C. & Avouac, J. P. Monitoring earth surface dynamics with optical imagery. Eos Trans. Am. Geophys. Union 89, 1–2 (2008).

    Article  Google Scholar 

  105. Delacourt, C., Allemand, P., Casson, B. & Vadon, H. Velocity field of the ‘La Clapière’ landslide measured by the correlation of aerial and QuickBird satellite images. Geophys. Res. Lett. 31, 2004GL020193 (2004).

    Article  Google Scholar 

  106. Lacroix, P., Berthier, E. & Maquerhua, E. T. Earthquake-driven acceleration of slow-moving landslides in the Colca valley, Peru, detected from Pléiades images. Remote Sens. Environ. 165, 148–158 (2015).

    Article  Google Scholar 

  107. Xiong, Z. et al. Pre- and post-failure spatial–temporal deformation pattern of the Baige landslide retrieved from multiple radar and optical satellite images. Eng. Geol. 279, 105880 (2020).

    Article  Google Scholar 

  108. Yang, W. Selecting the best image pairs to measure slope deformation. Sensors 20, 4721 (2020).

    Article  Google Scholar 

  109. Bontemps, N., Lacroix, P. & Doin, M.-P. Inversion of deformation fields time-series from optical images, and application to the long term kinematics of slow-moving landslides in Peru. Remote Sens. Environ. 210, 144–158 (2018).

    Article  Google Scholar 

  110. Lacroix, P., Araujo, G., Hollingsworth, J. & Taipe, E. Self-entrainment motion of a slow-moving landslide inferred from Landsat-8 time series. J. Geophys. Res. Earth Surf. 124, 1201–1216 (2019).

    Article  Google Scholar 

  111. Stumpf, A., Malet, J.-P. & Delacourt, C. Correlation of satellite image time-series for the detection and monitoring of slow-moving landslides. Remote Sens. Environ. 189, 40–55 (2017).

    Article  Google Scholar 

  112. Stumpf, A., Malet, J. P., Allemand, P. & Ulrich, P. Surface reconstruction and landslide displacement measurements with Plèiades satellite images. ISPRS J. Photogramm. Remote Sens. 95, 1–12 (2014).

    Article  Google Scholar 

  113. Stumpf, A., Michéa, D. & Malet, J.-P. Improved co-registration of Sentinel-2 and Landsat-8 imagery for Earth surface motion measurements. Remote Sens. 10, 160 (2018).

    Article  Google Scholar 

  114. Cigna, F., Del Ventisette, C., Liguori, V. & Casagli, N. Advanced radar-interpretation of InSAR time series for mapping and characterization of geological processes. Nat. Hazards Earth Syst. Sci. 11, 865–881 (2011).

    Article  Google Scholar 

  115. Cigna, F., Tapete, D. & Casagli, N. Semi-automated extraction of deviation indexes (DI) from satellite persistent scatterers time series: tests on sedimentary volcanism and tectonically-induced motions. Nonlinear Process. Geophys. 19, 643–655 (2012).

    Article  Google Scholar 

  116. Hussain, E., Novellino, A., Jordan, C. & Bateson, L. Offline-online change detection for Sentinel-1 InSAR time series. Remote Sens. 13, 1656 (2021).

    Article  Google Scholar 

  117. Mateos, R. M. et al. The combined use of PSInSAR and UAV photogrammetry techniques for the analysis of the kinematics of a coastal landslide affecting an urban area (SE Spain). Landslides https://doi.org/10.1007/s10346-016-0723-5 (2017).

    Article  Google Scholar 

  118. Necsoiu, M., McGinnis, R. N. & Hooper, D. M. New insights on the Salmon Falls Creek Canyon landslide complex based on geomorphological analysis and multitemporal satellite InSAR techniques. Landslides 11, 1141–1153 (2014).

    Article  Google Scholar 

  119. Zhang, Y. et al. Investigating slow-moving landslides in the Zhouqu region of China using InSAR time series. Landslides 15, 1299–1315 (2018).

    Article  Google Scholar 

  120. Raspini, F. et al. Persistent scatterers continuous streaming for landslide monitoring and mapping: the case of the Tuscany region (Italy). Landslides 16, 2033–2044 (2019).

    Article  Google Scholar 

  121. Journault, J. et al. Measuring displacements of the Thompson River valley landslides, south of Ashcroft, BC, Canada, using satellite InSAR. Landslides 15, 621–636 (2018).

    Article  Google Scholar 

  122. Confuorto, P. et al. Monitoring of remedial works performance on landslide-affected areas through ground- and satellite-based techniques. Catena 178, 77–89 (2019).

    Article  Google Scholar 

  123. Raspini, F. et al. Continuous, semi-automatic monitoring of ground deformation using Sentinel-1 satellites. Sci. Rep. 8, 7253 (2018).

    Article  Google Scholar 

  124. Garthwaite, M. C. On the design of radar corner reflectors for deformation monitoring in multi-frequency InSAR. Remote Sens. 9, 648 (2017).

    Article  Google Scholar 

  125. Crosetto, M. et al. Deformation monitoring using SAR Interferometry and active and passive reflectors. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 43, 287–292 (2020).

    Article  Google Scholar 

  126. Bovenga, F., Pasquariello, G., Pellicani, R., Refice, A. & Spilotro, G. Landslide monitoring for risk mitigation by using corner reflector and satellite SAR interferometry: the large landslide of Carlantino (Italy). Catena 151, 49–62 (2017).

    Article  Google Scholar 

  127. Ferretti, A. et al. Submillimeter accuracy of InSAR time series: experimental validation. IEEE Trans. Geosci. Remote Sens. 45, 1142–1153 (2007).

    Article  Google Scholar 

  128. Bardi, F. et al. Monitoring the rapid-moving reactivation of Earth flows by means of GB-InSAR: the April 2013 Capriglio Landslide (northern Appennines, Italy). Remote Sens. 9, 165 (2017).

    Article  Google Scholar 

  129. Barla, G., Antolini, F., Barla, M., Mensi, E. & Piovano, G. Monitoring of the Beauregard landslide (Aosta Valley, Italy) using advanced and conventional techniques. Eng. Geol. 116, 218–235 (2010).

    Article  Google Scholar 

  130. Di Traglia, F. et al. Review of ten years of volcano deformations recorded by the ground-based InSAR monitoring system at Stromboli volcano: a tool to mitigate volcano flank dynamics and intense volcanic activity. Earth Sci. Rev. 139, 317–335 (2014).

    Article  Google Scholar 

  131. Kromer, R. A. et al. Automated terrestrial laser scanning with near-real-time change detection-monitoring of the Séchilienne landslide. Earth Surf. Dyn. 5, 293–310 (2017).

    Article  Google Scholar 

  132. Catani, F. & Segoni, S. in Treatise on Geomorphology 2nd edn, 531–545 (Elsevier, 2021).

  133. Intrieri, E., Carlà, T. & Gigli, G. Forecasting the time of failure of landslides at slope-scale: a literature review. Earth Sci. Rev. 193, 333–349 (2019).

    Article  Google Scholar 

  134. Hungr, O. & Kent, A. Coal mine waste dump failures in British Columbia, Canada. Landslide News 9, 26–28 (1995).

    Google Scholar 

  135. Hutchinson, J. Landslide risk — to know, to foresee, to prevent. Geol. Tecnica Ambientale 9, 3–24 (2001).

    Google Scholar 

  136. Gigli, G., Fanti, R., Canuti, P. & Casagli, N. Integration of advanced monitoring and numerical modeling techniques for the complete risk scenario analysis of rockslides: the case of Mt. Beni (Florence, Italy). Eng. Geol. 120, 48–59 (2011).

    Article  Google Scholar 

  137. Intrieri, E. & Gigli, G. Landslide forecasting and factors influencing predictability. Nat. Hazards Earth Syst. Sci. 16, 2501–2510 (2016).

    Article  Google Scholar 

  138. Saito, M. Forecasting time of slope failure by tertiary creep. In Proc. 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City, Vol. 2 677–683 (Sociedad Mexicana de Mecanica, 1969).

  139. Fukuzono, T. A method to predict the time of slope failure caused by rainfall using the inverse number of velocity of surface displacement. Landslides 22, 8–13 (1985).

    Article  Google Scholar 

  140. Voight, B. A method for prediction of volcanic eruptions. Nature 332, 125–130 (1988).

    Article  Google Scholar 

  141. Kilburn, C. R. & Petley, D. N. Forecasting giant, catastrophic slope collapse: lessons from Vajont, northern Italy. Geomorphology 54, 21–32 (2003).

    Article  Google Scholar 

  142. Intrieri, E. et al. The Maoxian landslide as seen from space: detecting precursors of failure with Sentinel-1 data. Landslides 15, 123–133 (2018).

    Article  Google Scholar 

  143. Rose, N. D. & Hungr, O. Forecasting potential rock slope failure in open pit mines using the inverse-velocity method. Int. J. Rock Mech. Min. Sci. 44, 308–320 (2007).

    Article  Google Scholar 

  144. Carlà, T., Farina, P., Intrieri, E., Botsialas, K. & Casagli, N. On the monitoring and early-warning of brittle slope failures in hard rock masses: examples from an open-pit mine. Eng. Geol. 228, 71–81 (2017).

    Article  Google Scholar 

  145. Petley, D. N., Bulmer, M. H. & Murphy, W. Patterns of movement in rotational and translational landslides. Geology 30, 719–722 (2002).

    Article  Google Scholar 

  146. Torres, R. et al. GMES Sentinel-1 mission. Remote Sens. Environ. 120, 9–24 (2012).

    Article  Google Scholar 

  147. Dong, J. et al. Measuring precursory movements of the recent Xinmo landslide in Mao County, China with Sentinel-1 and ALOS-2 PALSAR-2 datasets. Landslides 15, 135–144 (2018).

    Article  Google Scholar 

  148. Qi, W., Yang, W., He, X. & Xu, C. Detecting Chamoli landslide precursors in the southern Himalayas using remote sensing data. Landslides 18, 3449–3456 (2021).

    Article  Google Scholar 

  149. Dick, G. J., Eberhardt, E., Cabrejo-Liévano, A. G., Stead, D. & Rose, N. D. Development of an early-warning time-of-failure analysis methodology for open-pit mine slopes utilizing ground-based slope stability radar monitoring data. Can. Geotech. J. 52, 515–529 (2015).

    Article  Google Scholar 

  150. Crosetto, M. et al. The evolution of wide-area DInSAR: from regional and national services to the European Ground Motion Service. Remote Sens. 12, 2043 (2020).

    Article  Google Scholar 

  151. Rosen, P. et al. The NASA-ISRO SAR (NISAR) mission dual-band radar instrument preliminary design. In IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 3832–3835 (IEEE, 2017).

  152. Kristensen, L. et al. Movements, failure and climatic control of the Veslemannen rockslide, Western Norway. Landslides 18, 1963–1980 (2021).

    Article  Google Scholar 

  153. Xu, Q., Yuan, Y., Zeng, Y. & Hack, R. Some new pre-warning criteria for creep slope failure. Sci. China Technol. Sci. 54, 210–220 (2011).

    Article  Google Scholar 

  154. Alcántara-Ayala, I. & Oliver-Smith, A. in Identifying Emerging Issues in Disaster Risk Reduction, Migration, Climate Change and Sustainable Development 101–124 (Springer, 2017).

  155. Alcántara-Ayala, I. & Moreno, A. R. Landslide risk perception and communication for disaster risk management in mountain areas of developing countries: a Mexican foretaste. J. Mt. Sci. 13, 2079–2093 (2016).

    Article  Google Scholar 

  156. Intrieri, E., Gigli, G., Casagli, N. & Nadim, F. Brief communication ‘Landslide early warning system: toolbox and general concepts’. Nat. Hazards Earth Syst. Sci. 13, 85–90 (2013).

    Article  Google Scholar 

  157. Varnes, D. J. Landslide types and processes. Landslides Eng. Pract. 24, 20–47 (1958).

    Google Scholar 

  158. Zaruba, Q. & Mencl, V. Landslides and Their Control (Elsevier, 1969).

  159. Aleotti, P. A warning system for rainfall-induced shallow failures. Eng. Geol. 73, 247–265 (2004).

    Article  Google Scholar 

  160. Van Asch, T. W. J., Buma, J. & Van Beek, L. P. H. A view on some hydrological triggering systems in landslides. Geomorphology 30, 25–32 (1999).

    Article  Google Scholar 

  161. Zêzere, J. L., Trigo, R. M. & Trigo, I. F. Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): assessment of relationships with the North Atlantic Oscillation. Nat. Hazards Earth Syst. Sci. 5, 331–344 (2005).

    Article  Google Scholar 

  162. Varnes, D. J. Slope movement types and processes. Spec. Rep. 176, 11–33 (1978).

    Google Scholar 

  163. Hungr, O., Leroueil, S. & Picarelli, L. The Varnes classification of landslide types, an update. Landslides 11, 167–194 (2014).

    Article  Google Scholar 

  164. Carlà, T. et al. Rockfall forecasting and risk management along a major transportation corridor in the Alps through ground-based radar interferometry. Landslides 16, 1425–1435 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

N.C. coordinated and revised the work and provided the funding. E.I. contributed to the writing, revised the paper, coordinated revisions and prepared some of the figures. G.G. contributed to the writing, revised the paper and prepared some of the figures. V.T. contributed to the writing and revised the paper. F.R. contributed to the writing and one of the figures and revised the paper. All authors contributed to the definition and structure of the article.

Corresponding author

Correspondence to Emanuele Intrieri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Michel Jaboyedoff and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Interferometry

A technique that calculates the displacement of a target by measuring the phase shift between two electromagnetic waves that have been backscattered by the same target in two different times.

Multispectral

The range of the electromagnetic spectrum from 0.4 μm to about 12.5 μm.

Multispectral band

A specific wavelength range across the electromagnetic spectrum that roughly corresponds to the blue, green and red visible light up to near and shortwave infrared that are captured by multispectral sensors.

Radar

A sensor that emits signals within specific bands of the microwave domain, corresponding to different wavelengths.

Revisiting time

The time interval between two consecutive observations of an area.

Synthetic aperture radar

A technique that moves the antennas of a radar interferometer to obtain data with a spatial resolution equal to that of a sensor with antennas as large as the entire trajectory length.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casagli, N., Intrieri, E., Tofani, V. et al. Landslide detection, monitoring and prediction with remote-sensing techniques. Nat Rev Earth Environ 4, 51–64 (2023). https://doi.org/10.1038/s43017-022-00373-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00373-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing