Abstract
Earth’s origins are challenging to elucidate, given the lack of surviving terrestrial geology from the first 500 Myr of the Solar System. In this Review, we discuss breakthroughs in geochemistry and theoretical modelling that have advanced understanding of Earth accretion. Theory holds that solar nebula dust particles stuck together to form pebbles, concentrations of which gravitationally collapsed into ∼100-km-sized planetesimals, which in turn accreted to yield planets. Isotopic variations in meteorites indicate that pebbles formed within the first 100 kyr of the Solar System, planetesimals melted and differentiated within a few 100 kyr, and Mars accreted quickly within 5 Myr. Earth’s growth was more protracted, with >98% of its mass being accreted by the time of the Moon-forming Giant Impact at ∼70–120 Myr. Earth is more enriched in s-process nuclides than chondritic meteorites, with a chemical composition affected by condensation, melting and loss. Early volatiles acquired from the nebula largely escaped, with the remnant volatiles being diluted by main-stage Earth accretion, accompanied by loss of nitrogen to the core and/or space. Areas for further research should include assessing mixing during large collisions and investigating the origin of very early mantle isotopic heterogeneities, which might indicate mass transfer from core to mantle over time.
Key points
-
Terrestrial planet accretion commenced with disk grains and high-temperature condensates sticking together to form pebbles, which in turn gravitationally coalesced to form planetesimals up to hundreds of kilometres in size. Planetesimals with metallic cores, sampled today as iron meteorites, were present within the first million years of the Solar System.
-
Planetesimals collided to form Moon-to-Mars-sized planetary embryos in the presence of the solar nebula. Nebular dispersal triggered an era of giant collisions among the embryos that established the inner Solar System’s architecture and, for Earth, culminated in the Giant Impact that produced the Moon.
-
Although most of Earth’s nucleosynthetic makeup is closest to that of enstatite chondrites, earlier (<50% by mass) stages of accretion had an isotopic signature intermediate between enstatite and ordinary chondrites. However, Earth is more enriched in those nuclides formed by slow addition of neutrons in large stars compared with all meteorites, and is different chemically from chondrites, particularly enstatites.
-
These chemical differences partly reflect early melting and condensation in the disk, which produced fractionated chemical and isotopic compositions, but also result from subsequent losses and additions, especially of volatile elements, during accretion.
-
Most lunar origin models fail to provide a natural explanation for the identical isotopic composition of the bulk silicate Earth and Moon for non-volatile elements. This isotopic match is particularly problematic for tungsten, which is sensitive to the nature and timing of core formation and is unlikely to result from the Giant Impact unless there was post-impact mixing and isotopic equilibration between the silicate Earth and Moon.
-
The discovery of mantle isotopic heterogeneities generated in the first 100 million years of Earth’s history has changed thinking on preservation of primordial reservoirs in the deep Earth, as well as the nature of Earth’s late veneer, which could partially reflect a long history of compositional fluxes from Earth’s core.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Wetherill, G. W. in Origin of the Moon (eds Hartmann, W. K., Phillips, R. J. & Taylor, G. J.) 519–550 (Lunar Planetary Institute, 1986).
Cameron, A. G. W. & Benz, W. Origin of the Moon and the single impact hypothesis IV. Icarus 92, 204–216 (1991).
Wasserburg, G. J., Papanastassiou, D. A., Tera, F. & Huneke, J. C. Outline of a lunar chronology. Phil. Trans. R. Soc. Lond. A 285, 7–22 (1977).
Kruijer, T. S., Burkhardt, C., Budde, G. & Kleine, T. Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proc. Natl Acad. Sci. USA 114, 6712–6716 (2017).
Spitzer, F. et al. Isotopic evolution of the inner Solar System inferred from molybdenum isotopes in meteorites. Astrophys. J. Lett. 898, L2 (2020).
Winn, J. N. & Fabrycky, D. C. The occurrence and architecture of exoplanetary systems. Annu. Rev. Astron. Astrophys. 53, 409 (2015).
Haisch, K. E. Jr, Lada, E. A. & Lada, C. J. Disk frequencies and lifetimes in young clusters. Am. Astron. Soc. 553, L153–L156 (2001).
Dullemond, C. P. & Dominik, C. Dust coagulation in protoplanetary disks, a rapid depletion of small grains. Astron. Astrophys. 434, 971–986 (2005).
Chambers, J. E. Pebble accretion and the diversity of planetary systems. Astrophys. J. 825, 18 (2016).
Youdin, A. N. & Goodman, J. Streaming instabilities in protoplanetary disks. Astrophys. J. 620, 459–469 (2005).
Johansen, A., Oishi, J. S., Low, M.-M. M., Klahr, H. & Youdin, A. Rapid planetesimal formation in turbulent circumstellar disks. Nature 448, 1022–1025 (2007).
Johansen, A., Low, M.-M. M., Lacerda, P. & Bizzarro, M. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion. Sci. Adv. 1, e1500109 (2015).
Simon, S. B., Armitage, P. J. & Li, R. The mass and size distribution of planetesimals formed by the streaming instability I. The role of self-gravity. Astrophys. J. 822, 18 (2016).
Nesvorný, D., Rixin, L., Youdin, A. N., Simon, J. B. & Grundy, W. M. Trans-Neptunian binaries as evidence for planetesimal formation by the streaming instability. Nat. Astron. 3, 808–812 (2019).
Connelly, J. N. et al. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338, 651–655 (2012).
MacPherson, G. J. in Meteorites, Comets, and Planets. Treatise on Geochemistry 2nd edn, Vol. 1 (ed. Davis, A. M.) 139–179 (Elsevier, 2014).
Krot, A. N. Refractory inclusions in carbonaceous chondrites: records of early Solar System processes. Meteorit. Planet. Sci. 54, 1647–1691 (2019).
Bollard, J. et al. Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules. Sci. Adv. 3, e1700407 (2017).
Ansdell, M. et al. ALMA survey of Lupus protoplanetary disks. I. Dust and gas masses. Astrophys. J. 828, 46 (2016).
Manara, C. F., Morbidelli, A. & Guillot, T. Why do protoplanetary disks appear not massive enough to form the known exoplanet population? Astron. Astrophys. 618, L3 (2018).
Miotello, A. et al. Grain growth in the envelopes and disks of Class I protostars. Astron. Astrophys. 567, A32 (2014).
Harsono, D. P. et al. Evidence for the start of planet formation in a young circumstellar disk. Nat. Astron. 2, 646–651 (2018).
Markowski, A. et al. Correlated helium-3 and tungsten isotopes in iron meteorites: quantitative cosmogenic corrections and planetesimal formation times. Earth Planet. Sci. Lett. 250, 104–115 (2006).
Scherstén, A., Elliott, T., Hawkesworth, C. J., Russell, S. & Masarik, J. Hf–W evidence for rapid differentiation of iron meteorite parent bodies. Earth Planet. Sci. Lett. 241, 530–542 (2006).
Qin, L., Dauphas, N., Wadhwa, M., Masarik, J. & Janney, P. E. Rapid accretion and differentiation of iron meteorite parent bodies inferred from 182Hf–182W chronometry and thermal modeling. Earth Planet. Sci. Lett. 273, 94–104 (2008).
Kruijer, T. S. et al. Protracted core formation and rapid accretion of protoplanets. Science 344, 1150–1154 (2014).
Weidenschilling, S. J., Spaute, D., Davis, D. R., Marzari, F. & Ohtsuki, K. Accretional evolution of a planetesimal swarm. Icarus 128, 429–455 (1997).
Kokubo, E. & Ida, S. Oligarchic growth of protoplanets. Icarus 131, 171–178 (1998).
Kenyon, S. J. & Bromley, B. C. Terrestrial planet formation. I. The transition from oligarchic growth to chaotic growth. Am. Astron. Soc. 131, 1837–1850 (2006).
Agnor, C. B. & Ward, W. R. Damping of terrestrial-planet eccentricities by density-wave interactions with a remnant gas disk. Astrophys. J. 567, 579–586 (2002).
Connelly, J. N., Schiller, M. & Bizzarro, M. Pb isotope evidence for rapid accretion and differentiation of planetary embryos. Earth Planet. Sci. Lett. 525, 115722 (2019).
Markowski, A. et al. Hafnium–tungsten chronometry of angrites and the earliest evolution of planetary objects. Earth Planet. Sci. Lett. 262, 214–229 (2007).
Brennecka, G. A. & Wadhwa, M. Uranium isotope compositions of the basaltic angrite meteorites and the chronological implications for the early Solar System. Proc. Natl Acad. Sci. USA 109, 9299–9303 (2012).
Kruijer, T. S. et al. The early differentiation of Mars inferred from Hf–W chronometry. Earth Planet. Sci. Lett. 474, 345–354 (2017b).
Barr, A. C. & Canup, R. M. Constraints on gas giant satellite formation from the interior states of partially differentiated satellites. Icarus 198, 163–177 (2008).
Castillo-Rogez, J. et al. 26Al decay: heat production and a revised age for Iapetus. Icarus 204, 658–662 (2009).
Morbidelli, A., Lunine, J. I., O’Brien, D. P., Raymond, S. N. & Walsh, K. J. Building terrestrial planets. Annu. Rev. Earth Planet. Sci. 40, 251–275 (2012).
Walsh, K. J. & Levison, H. F. Planetesimals to terrestrial planets: collisional evolution amidst a dissipating gas disk. Icarus 329, 88–100 (2019).
Chambers, J. E. & Wetherill, G. W. Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus 136, 304–327 (1998).
Agnor, C. B., Canup, R. M. & Levison, H. F. On the character and consequences of large impacts in the late stage of terrestrial planet formation. Icarus 142, 219–237 (1999).
Fernandez, J. A. & Ip, W.-H. Some dynamical aspects of the accretion of Uranus and Neptune — the exchange of orbital angular momentum with planetesimals. Icarus 58, 109–120 (1984).
Malhotra, R. The origin of Pluto’s peculiar orbit. Nature 365, 819–821 (1993).
Nesvorný, D. Dynamical evolution of the early Solar System. Annu. Rev. Astron. Astrophys. 56, 137–174 (2018).
Tsiganis, K., Gomes, R., Morbidelli, A. & Levison, H. F. Origin of the orbital architecture of the giant planets of the Solar System. Nature 435, 459–461 (2005).
Gomes, R., Levison, H. F., Tsiganis, K. & Morbidelli, A. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466–469 (2005).
O’Brien, D. P., Morbidelli, A. & Levison, H. F. Terrestrial planet formation with strong dynamical friction. Icarus 184, 39–58 (2006).
Walsh, K. J. & Morbidelli, A. The effect of an early planetesimal-driven migration of the giant planets on terrestrial planet formation. Astron. Astrophys. 526, A126 (2011).
Fischer, R. A. & Ciesla, F. J. Dynamics of the terrestrial planets from a large number of N-body simulations. Earth Planet. Sci. Lett. 392, 28–38 (2014).
Clement, M. S., Kaib, N. A., Raymond, S. N., Chambers, J. E. & Walsh, K. J. The early instability scenario: terrestrial planet formation during the giant planet instability, and the effect of collisional fragmentation. Icarus 321, 778–790 (2019).
Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P. & Mandell, A. M. A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011).
Jacobson, S. A. & Morbidelli, A. Lunar and terrestrial planet formation in the Grand Tack scenario. Phil. Trans. R. Soc. A 372, 20130174 (2014).
O’Brien, D. P., Walsh, K. J., Morbidelli, A., Raymond, S. N. & Mandell, A. M. Water delivery and giant impacts in the Grand Tack scenario. Icarus 239, 74–84 (2014).
Quintana, E. V., Barclay, T., Borucki, W. J., Rowe, J. F. & Chambers, J. E. The frequency of giant impacts on Earth-like worlds. Astrophys. J. 821, 126 (2016).
König, S. et al. The Earth’s tungsten budget during mantle melting and crust formation. Geochim. Cosmochim. Acta 75, 2119–2136 (2011).
Kleine, T. et al. Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73, 5150–5188 (2009).
Thiemens, M. M., Sprung, P., Fonseca, R. O., Leitzke, F. P. & Münker, C. Early Moon formation inferred from hafnium–tungsten systematics. Nat. Geosci. 12, 696–700 (2019).
Kleine, T., Münker, C., Mezger, K. & Palme, H. Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry. Nature 418, 952–955 (2002).
Schoenberg, R., Kamber, B. S., Collerson, K. D. & Eugster, O. New W-isotope evidence for rapid terrestrial accretion and very early core formation. Geochim. Cosmochim. Acta 66, 3151–3160 (2002).
Yin, Q. et al. A short timescale for terrestrial planet formation from Hf–W chronometry of meteorites. Nature 418, 949–952 (2002).
Halliday, A. N. A young Moon-forming giant impact at 70 to 110 million years accompanied by late-stage mixing, core formation and degassing of the Earth. Phil. Trans. R. Soc. Lond. A 366, 4163–4181 (2008).
Yu, G. & Jacobsen, S. B. Fast accretion of the Earth with a late Moon-forming giant impact. Proc. Natl Acad. Sci. USA 108, 17604–17609 (2011).
Halliday, A. N. Mixing, volatile loss and compositional change during impact-driven accretion of the Earth. Nature 427, 505–509 (2004).
Dahl, T. W. & Stevenson, D. J. Turbulent mixing of metal and silicate during planet accretion — and interpretation of the Hf–W chronometer. Earth Planet. Sci. Lett. 295, 177–186 (2010).
Rubie, D. C. et al. Heterogeneous accretion, composition and core–mantle differentiation of the Earth. Earth Planet. Sci. Lett. 301, 31–42 (2011).
Deienno, R., Walsh, K. J., Kretke, K. A. & Levison, H. F. Energy dissipation in large collisions — no change in planet formation outcomes. Am. Astron. Soc. 876, 103 10 (2019).
Hansen, B. M. S. Formation of the terrestrial planets from a narrow annulus. Astrophys. J. 703, 1131–1140 (2009).
Levison, H. F., Kretke, K. A., Walsh, K. J. & Bottke, W. F. Growing the terrestrial planets from the gradual accumulation of submeter-sized objects. Proc. Natl Acad. Sci. USA 112, 14180–14185 (2015).
Clement, M. S., Kaib, N. A., Raymond, S. N. & Walsh, K. J. Mars’ growth stunted by an early giant planet instability. Icarus 311, 340–356 (2018).
Wood, B. J., Smythe, D. J. & Harrison, T. The condensation temperatures of the elements: a reappraisal. Am. Min. 104, 844–856 (2019).
Palme, H., Larimer, J. W. & Lipschultz, M. E. in Meteorites and the Early Solar System (eds Kerridge, J. F. & Matthews, M. S.) 436–461 (Univ. Arizona Press, 1988).
Humayun, M. & Cassen, P. in Origin of the Earth and Moon (eds Canup, R. M. & Righter, K.) 3–23 (Univ. Arizona Press, 2000).
Wetherill, G. W. Provenance of the terrestrial planets. Geochim. Cosmochim. Acta 58, 4513–4520 (1994).
Chambers, J. E. Planetary accretion in the inner Solar System. Earth Planet. Sci. Lett. 223, 241–252 (2004).
Morbidelli, A. et al. Source regions and time-scales for the delivery of water to the Earth. Meteorit. Planet. Sci. 35, 1309–1320 (2000).
Newsom, H. E. in Origin of the Earth (eds Newsom, H. E. & Jones, J. H.) 273–288 (Oxford Univ. Press, 1990).
Schönbächler, M., Carlson, R. W., Horan, M. F., Mock, T. D. & Hauri, E. H. Heterogeneous accretion and the moderately volatile element budget of Earth. Science 328, 884–887 (2010).
C O’Neill St, H. & Palme, H. Collisional erosion and the non-chondritic composition of the terrestrial planets. Phil. Trans. R. Soc. Lond. A 366, 4205–4238 (2008).
Sharp, Z. D. & Draper, D. S. The chlorine abundance of Earth: implications for a habitable planet. Earth Planet. Sci. Lett. 369–370, 71–77 (2013).
Carter, P. J., Leinhardt, Z. M., Elliott, T., Stewart, S. T. & Walter, M. J. Collisional stripping of planetary crusts. Earth Planet. Sci. Lett. 484, 276–286 (2018).
Warren, P. H. A depleted, not ideally chondritic bulk Earth: the explosive-volcanic basalt loss hypothesis. Geochim. Cosmochim. Acta 72, 2217–2235 (2008).
Norris, C. A. & Wood, B. J. Earth’s volatile contents established by melting and vaporization. Nature 547, 507–510 (2017).
Halliday, A. N. & Porcelli, D. In search of lost planets — the paleocosmochemistry of the inner Solar System. Earth Planet. Sci. Lett. 192, 545–559 (2001).
Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313–314, 56–66 (2012).
Nakajima, M. & Stevenson, D. J. Inefficient volatile loss from the Moon forming disk: reconciling the giant impact hypothesis and a wet Moon. Earth Planet. Sci. Lett. 487, 117–126 (2018).
Halliday, A. N. The origins of volatiles in the terrestrial planets. Geochim. Cosmochim. Acta 105, 146–171 (2013).
Budde, G., Burkhardt, C. & Kleine, T. Molybdenum isotopic evidence for the late accretion of outer Solar System material to Earth. Nat. Astron. 3, 736–741 (2019).
Grewal, D. S., Dasgupta, R., Sun, C., Tsuno, K. & Costin, G. Delivery of carbon, nitrogen, and sulfur to the silicate Earth by a giant impact. Sci. Adv. 5, eaau3669 (2019).
Bergin, E. A., Blake, G. A., Ciesla, F. C., Hirschmann, M. M. & Lie, J. Tracing the ingredients for a habitable Earth from interstellar space through planet formation. Proc. Natl Acad. Sci. USA 112, 8965–8970 (2015).
Saal, A. E., Hauri, E. H., Van Orman, J. A. & Rutherford, M. J. Hydrogen isotopes in lunar volcanic glasses and melt inclusions reveal a carbonaceous chondrite heritage. Science 340, 1317–1320 (2013).
Piani, L. et al. Earth’s water may have been inherited from material similar to enstatite chondrite meteorites. Science 369, 1110–1113 (2020).
Wu, J. et al. Origin of Earth’s water: chondritic inheritance plus nebular ingassing and storage of hydrogen in the core. J. Geophys. Res. Planets 123, 2691–2712 (2018).
Horton, F. et al. Primordial neon in high-3He/4He Baffin Island olivines. Earth Planet. Sci. Lett. 558, 116762 (2021).
Tucker, J. T. & Mukhopadhyay, S. Evidence for multiple magma ocean outgassing and atmospheric loss episodes from mantle noble gases. Earth Planet. Sci. Lett. 393, 254–265 (2014).
Porcelli, D. & Halliday, A. N. The possibility of the core as a source of mantle helium. Earth Planet. Sci. Lett. 192, 45–56 (2001).
Roth, A. S. G. et al. The primordial He budget of the Earth set by percolative core formation in planetesimals. Geochem. Persp. Lett. 9, 26–31 (2019).
Bouhifd, M. A., Jephcoat, A. P., Porcelli, D., Kelley, S. P. & Marty, B. Potential of Earth’s core as a reservoir for noble gases: case for helium and neon. Geochem. Persp. Lett. 15, 15–18 (2020).
Olson, P. L. & Sharp, Z. D. Primordial helium-3 exchange between Earth’s core and mantle. Geochem. Geophys. Geosyst. 23, e2021GC009985 (2022).
Sarda, P., Staudacher, T. & Allègre, C. J. Neon isotopes in submarine basalts. Earth Planet. Sci. Lett. 91, 73–88 (1988).
Marty, B. Neon and xenon isotopes in MORB: implications for the Earth-atmosphere evolution. Earth Planet. Sci. Lett. 94, 45–56 (1989).
Notesco, G., Laufer, D., Bar-Nun, A. & Owen, T. An experimental study of the isotopic enrichment in Ar, Kr, and Xe when trapped in water ice. Icarus 142, 298–300 (1999).
Marty, B. et al. Xenon isotopes in 67P/Churyumov-Gerasimenko show that comets contributed to Earth’s atmosphere. Science 356, 1069–1072 (2017).
Zahnle, K. J., Gacesa, M. & Catling, D. C. Strange messenger: a new history of hydrogen on Earth, as told by xenon. Geochim. Cosmochim. Acta 244, 56–85 (2019).
Almayrac, M. G., Broadley, M. W., Bekaert, D. V., Hofmann, A. & Marty, B. Possible discontinuous evolution of atmospheric xenon suggested by Archean barites. Chem. Geol. 581, 120405 (2021).
Carlson, R. W., Borg, L. E., Gaffney, A. M. & Boyet, M. Rb–Sr, Sm–Nd and Lu–Hf isotope systematics of the lunar Mg-suite: the age of the lunar crust and its relation to the time of Moon formation. Phil. Trans. R. Soc. A 372, 20130246 (2014).
Fischer-Gödde, M. et al. Ruthenium isotope vestige of Earth’s pre-late-veneer mantle preserved in Archaean rocks. Nature 579, 240–244 (2020).
Alexander, C. M. O. ’D. Quantitative models for the elemental and isotopic fractionations in the chondrites: the non-carbonaceous chondrites. Geochim. Cosmochim. Acta 254, 246–276 (2019).
Dauphas, N. The isotopic nature of the Earth’s accreting material through time. Nature 541, 521–524 (2017).
Young, E. D. et al. Near-equilibrium isotope fractionation during planetesimal evaporation. Icarus 323, 1–15 (2019).
Wang, S.-J. et al. Nickel isotopic evidence for late-stage accretion of Mercury-like differentiated planetary embryos. Nat. Commun. 12, 294, 7 (2021).
Render, J., Fischer-Gödde, M., Burkhardt, C. & Kleine, T. The cosmic molybdenum-neodymium isotope correlation and the building material of the Earth. Geochem. Persp. Lett. 3, 170–178 (2017).
Javoy, M. et al. The chemical composition of the Earth: enstatite chondrite models. Earth Planet. Sci. Lett. 293, 259–268 (2010).
Van der Hilst, R. D., Widiyantoro, S. & Engdahl, E. R. Evidence for deep mantle circulation from global tomography. Nature 386, 578–584 (1997).
Ballmer, M. D., Houser, C., Hernlund, J. W., Wentzcovitch, R. M. & Hirose, K. Persistence of strong silica-enriched domains in the Earth’s lower mantle. Nat. Geosci. 10, 236–240 (2017).
Armytage, R. M. G., Georg, R. B., Savage, P. S., Williams, H. M. & Halliday, A. N. Silicon isotopes in meteorites and planetary core formation. Geochim. Cosmochim. Acta 75, 3662–3676 (2011).
Armytage, R. M. G., Georg, R. B., Williams, H. M. & Halliday, A. N. Silicon isotopes in lunar rocks: implications for the Moon’s formation and the early history of the Earth. Geochim. Cosmochim. Acta 77, 504–514 (2012).
Fitoussi, C. & Bourdon, B. Silicon isotope evidence against an enstatite chondrite Earth. Science 335, 1477–1480 (2012).
Savage, P. S. & Moynier, F. Silicon isotopic variation in enstatite meteorites: clues to their origin and Earth-forming material. Earth Planet. Sci. Lett. 361, 487–496 (2013).
Kadlaga, Y., Tatzel, M., Frick, D. A. & Becker, H. The origin of unequilibrated EH chondrites — constraints from in situ analysis of Si isotopes, major and trace elements in silicates and metal. Geochim. Cosmochim. Acta 267, 300–321 (2019).
Drake, M. J. & Righter, K. Determining the composition of the Earth. Nature 416, 39–44 (2002).
Ricolleau, A., Fei, Y., Corgne, A., Siebert, J. & Badro, J. Oxygen and silicon contents of Earth’s core from high pressure metal–silicate partitioning experiments. Earth Planet. Sci. Lett. 310, 409–421 (2011).
Dauphas, N., Poitrasson, F., Burkhardt, C., Kobayashi, H. & Kurosawa, K. Planetary and meteoritic Mg/Si and δ30Si variations inherited from solar nebula chemistry. Earth Planet. Sci. Lett. 427, 236–248 (2015).
Morbidelli, A., Libourel, G., Palme, H., Jacobson, S. A. & Rubie, D. C. Subsolar Al/Si and Mg/Si ratios of non-carbonaceous chondrites reveal planetesimal formation during early condensation in the protoplanetary disk. Earth Planet. Sci. Lett. 538, 116220 (2020).
Hewins, R. H. & Herzberg, C. Nebular turbulence, chondrule formation, and the composition of the Earth. Earth Planet. Sci. Lett. 144, 1–7 (1996).
Wiechert, U. & Halliday, A. N. Non-chondritic magnesium and the origins of the inner terrestrial planets. Earth Planet. Sci. Lett. 256, 360–371 (2007).
Hin, R. C. et al. Magnesium isotope evidence that accretional vapour loss shapes planetary compositions. Nature 549, 511–515 (2017).
Georg, R. B., Halliday, A. N., Schauble, E. A. & Reynolds, B. C. Silicon in the Earth’s core. Nature 447, 1102–1106 (2007).
Sasaki, S. in Origin of the Earth (eds Newsom, H. E. & Jones, J. H.) 195–209 (Oxford Univ. Press, 1990).
Tonks, W. B. & Melosh, H. J. Magma ocean formation due to giant impacts. J. Geophys. Res. 98, 5319–5333 (1993).
Williams, H. M., Wood, B. J., Wade, J., Frost, D. J. & Tuff, J. Isotopic evidence for internal oxidation of the Earth’s mantle during accretion. Earth Planet. Sci. Lett. 321/322, 54–63 (2012).
Armstrong, K., Frost, D. J., McCammon, C. A., Rubie, D. C. & Boffa Ballaran, T. Deep magma ocean formation set the oxidation state of Earth’s mantle. Science 365, 903–906 (2019).
Wade, J. & Wood, B. J. Core formation and the oxidation state of the Earth. Earth Planet. Sci. Lett. 236, 78–95 (2005).
Siebert, J., Badro, J., Antonangeli, D. & Ryerson, F. J. Terrestrial accretion under oxidizing conditions. Science 339, 1194–1197 (2013).
Kendall, J. D. & Melosh, H. Differentiated planetesimal impacts into a terrestrial magma ocean: fate of the iron core. Earth Planet. Sci. Lett. 448, 24–33 (2016).
Marchi, S., Canup, R. M. & Walker, R. J. Heterogeneous delivery of silicate and metal to the Earth by large planetesimals. Nat. Geosci. 11, 77 (2018).
Wood, B. J., Walter, M. J. & Wade, J. Accretion of the Earth and segregation of its core. Nature 441, 825–833 (2006).
Kleine, T., Mezger, K., Palme, H. & Münker, C. The W isotope evolution of the bulk silicate Earth: constraints on the timing and mechanisms of core formation and accretion. Earth Planet. Sci. Lett. 228, 109–123 (2004).
Kaib, N. A. & Cowan, N. B. The feeding zones of terrestrial planets and insights into Moon formation. Icarus 252, 161–174 (2015).
Chou, C. L. Fractionation of siderophile elements in the Earth’s upper mantle. Proc. 9th Lunar Sci. Conf. 1, 219–230 (1978).
Li, J. & Agee, C. B. Geochemistry of mantle–core differentiation at high pressure. Nature 381, 686–689 (1996).
Righter, K. & Drake, M. J. Core formation in Earth’s Moon, Mars, and Vesta. Icarus 124, 513–529 (1996).
Righter, K. & Drake, M. J. Effect of water on metal-silicate partitioning of siderophile elements: a high pressure and temperature terrestrial magma ocean and core formation. Earth Planet. Sci. Lett. 171, 383–399 (1999).
Righter, K., Drake, M. J. & Yaxley, G. Prediction of siderophile element metal/silicate partition coefficients to 20 GPa and 2800°C: the effects of pressure, temperature, oxygen fugacity, and silicate and metallic melt compositions. Phys. Earth Planet. Inter. 100, 115–142 (1997).
Righter, K., Walker, R. J. & Warren, P. W. in Origin of the Earth and Moon (eds Canup, R. M. & Righter, K.) 291–322 (Univ. Arizona Press, 2000).
Walker, R. J. et al. In search of late-stage planetary building blocks. Chem. Geol. 411, 125–142 (2015).
Rubie, D. C. et al. Highly siderophile elements were stripped from Earth’s mantle by iron sulfide segregation. Science 353, 1141–1144 (2016).
Wood, B. J. & Halliday, A. N. Cooling of the Earth and core formation after the giant impact. Nature 437, 1345–1348 (2005).
Wood, B. J. & Halliday, A. N. The lead isotopic age of the Earth can be explained by core formation alone. Nature 465, 767–770 (2010).
Walker, R. J., Horan, M. F., Shearer, C. K. & Papike, J. J. Low abundances of highly siderophile elements in the lunar mantle: evidence for prolonged late accretion. Earth Planet. Sci. Lett. 224, 399–413 (2004).
Day, J. M. D. & Walker, R. J. Highly siderophile element depletion in the Moon. Earth Planet. Sci. Lett. 423, 114–124 (2015).
Kruijer, T. S., Kleine, T., Fischer-Gödde, M. & Sprung, P. Lunar tungsten isotopic evidence for the late veneer. Nature 520, 534–537 (2015).
Sleep, N. H. Asteroid bombardment and the core of Theia as possible sources for the Earth’s late veneer component. Geochem. Geophys. Geosyst. 17, 2623–2642 (2016).
Zhu, M.-H. et al. Reconstructing the late-accretion history of the Moon. Nature 571, 226–229 (2019).
Bottke, W. F., Walker, R. J., Day, J. M. D., Desvorny, D. & Elkins-Tanton, L. Stochastic late accretion to Earth, the Moon, and Mars. Science 330, 1527–1530 (2010).
Brasser, R., Mojzsis, S. J., Werner, S. C., Matsumura, S. & Ida, S. Late veneer and late accretion to the terrestrial planets. Earth Planet. Sci. Lett. 455, 85–93 (2016).
Ge, R. et al. A 4463 Ma apparent zircon age from the Jack Hills (Western Australia) resulting from ancient Pb mobilization. Geology 46, 303–306 (2018).
Willbold, M., Elliott, T. & Moorbath, S. The tungsten isotopic composition of the Earth’s mantle before the terminal bombardment. Nature 477, 195–198 (2011).
Willbold, M., Mojzsis, S., Chen, H. & Elliott, T. Tungsten isotope composition of the Acasta gneiss complex. Earth Planet. Sci. Lett. 73, 168–177 (2015).
Puchtel, I. S., Walker, R. J., Touboul, M., Nisbet, E. G. & Byerly, G. R. Insights into early Earth from the Pt–Re–Os isotope and highly siderophile element abundance systematics of Barberton komatiites. Geochim. Cosmochim. Acta 125, 394–413 (2014).
Creech, J. B. et al. Late accretion history of the terrestrial planets inferred from platinum stable isotopes. Geochem. Persp. Lett. 3, 94–104 (2017).
Touboul, M., Puchtel, I. S. & Walker, R. J. Tungsten isotopic evidence for disproportional late accretion to the Earth and Moon. Nature 520, 530–533 (2015).
Kruijer, T. S. & Kleine, T. Tungsten isotopes and the origin of the Moon. Earth Planet. Sci. Lett. 475, 15–24 (2017).
Kruijer, T. S., Archer, G. J. & Kleine, T. No 182W evidence for early Moon formation. Comment on Thiemens, M. M. et al. 2019 “Early Moon formation inferred from hafnium–tungsten systematics”. Nat. Geosci. 14, 714–715 (2021).
Archer, G. J. et al. Lack of late-accreted material as the origin of 182W excesses in the Archean mantle: evidence from the Pilbara Craton, Western Australia. Earth Planet. Sci. Lett. 528, 115841 (2019).
Thiemens, M. M. et al. Reply to “No 182W evidence for early Moon formation”. Nat. Geosci. 14, 716–718 (2021).
Avice, G. & Marty, B. The iodine–plutonium–xenon age of the Moon–Earth system revisited. Phil. Trans. R. Soc. A 372, 20130260 (2014).
Barboni, M. et al. Early formation of the Moon 4.51 billion years ago. Sci. Adv. 3, e1602365 (2017).
Borg, L. E., Connelly, J. N., Boyet, M. & Carlson, R. W. Chronologic evidence that the Moon is either young or did not have a global magma ocean. Nature 477, 70–72 (2011).
Nemchin, A. et al. Timing of crystallization of the lunar magma ocean constrained by the oldest zircon. Nat. Geosc 2, 133–136 (2009).
Maurice, M., Tosi, N., Schwinger, S., Breuer, D. & Kleine, T. A long-lived magma ocean on a young Moon. Sci. Adv. 6, eaba8949 (2020).
Borg, L. E., Gaffney, A. M. & Shearer, C. K. A review of lunar chronology revealing a preponderance of 4.34–4.37 Ga ages. Meteorit. Planet. Sci. 50, 715–732 (2015).
Borg, L. E. et al. Isotopic evidence for a young lunar magma ocean. Earth Planet. Sci. Lett. 523, 115706 (2019).
Carlson, R. W., Garçon, M., O’Neil, J., Reimink, J. & Rizod, H. The nature of Earth’s first crust. Chem. Geol. 530, 119321 (2019).
Zahnle, K. et al. Emergence of a habitable planet. Space Sci. Rev. 129, 35–78 (2007).
Canup, R. M. & Asphaug, E. Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412, 708–712 (2001).
Canup, R. M. Simulations of a late lunar-forming impact. Icarus 168, 433–456 (2004).
Canup, R. M. Lunar-forming collisions with pre-impact rotation. Icarus 196, 518–538 (2008).
Melosh, H. J. New approaches to the Moon’s isotopic crisis. Phil. Trans. R. Soc. A 372, 20130168 (2014).
Pahlevan, K., Stevenson, D. J. & Eiler, J. M. Chemical fractionation in the silicate vapor atmosphere of the Earth. Earth Planet. Sci. Lett. 301, 433–443 (2011).
Canup, R. M., Visscher, C., Salmon, J. & Fegley, B. Depletion of volatile elements in the Moon due to incomplete accretion within an impact-generated disk. Nat. Geosci. 8, 918–921 (2015).
Nie, N. & Dauphas, N. Vapor drainage in the protolunar disk as the cause for the depletion in volatile elements of the Moon. Astrophys. J. Lett. 884, L48 (2019).
Paniello, R., Day, J. & Moynier, F. Zn isotopic evidence for the origin of the Moon. Nature 490, 376–379 (2012).
Boyce, J. W. et al. The chlorine isotope fingerprint of the lunar magma ocean. Sci. Adv. 1, 8 (2015).
Wang, K. & Jacobsen, S. B. Potassium isotopic evidence for a high-energy giant impact origin of the Moon. Nature 538, 487–790 (2016).
Pringle, E. A. & Moynier, F. Rubidium isotopic composition of the Earth, meteorites, and the Moon: evidence for the origin of volatile loss during planetary accretion. Earth Planet. Sci. Lett. 473, 62–70 (2017).
Gargano, A. M. et al. The Cl isotope composition and halogen contents of Apollo-return samples. Proc. Natl Acad. Sci. USA 117, 23418–23425 (2020).
Wimpenny, J., Borg, L. & Sio, C. K. The gallium isotopic composition of the Moon. Earth Planet. Sci. Lett. 578, 117318 (2022).
Gargano, A. M. et al. The Zn, S, and Cl isotope compositions of mare basalts: implications for the effects of eruption style and pressure on volatile element stable isotope fractionation on the Moon. Am. Mineral. https://doi.org/10.1007/s10532-021-09942-1 (2022).
Clayton, R. N. & Mayeda, T. K. Genetic relations between the Moon and meteorites. Proc. Lunar Sci. Conf. 6, 1761–1769 (1975).
Pahlevan, K. & Stevenson, D. J. Equilibration in the aftermath of the lunar-forming giant impact. Earth Planet. Sci. Lett. 262, 438–449 (2007).
Fitoussi, C., Bourdon, B., Kleine, T., Oberli, F. & Reynolds, B. C. Si isotope systematics of meteorites and terrestrial peridotites: implications for Mg/Si fractionation in the solar nebula and for Si in the Earth’s core. Earth Planet. Sci. Lett. 287, 77–85 (2009).
Shahar, A. et al. High-temperature Si isotope fractionation between iron metal and silicate. Geochim. Cosmochim. Acta 75, 7688–7697 (2011).
Ziegler, K., Young, E. D., Schauble, E. A. & Wasson, J. T. Metal–silicate silicon isotope fractionation in enstatite meteorites and constraints on Earth’s core formation. Earth Planet. Sci. Lett. 295, 487–496 (2010).
Pringle, E. A., Moynier, F., Savage, P. S., Badro, J. & Barrat, J. A. Silicon isotopes in angrites and volatile loss in planetesimals. Proc. Natl Acad. Sci. USA 111, 17029–17032 (2014).
Canup, R. M. et al. in New Views of the Moon II, Reviews in Mineralogy and Geochemistry (Mineralogical Society of America, 2022).
Lock, S. J. et al. The origin of the Moon within a terrestrial synestia. J. Geophys. Res. Planets 123, 910–951 (2018).
Hosono, N., Karato, S., Makino, J. & Saitoh, T. R. Terrestrial magma ocean origin of the Moon. Nat. Geosci. 12, 418–423 (2019).
Dauphas, N., Burkhardt, C., Warren, P. H. & Fang-Zhen, T. Geochemical arguments for an Earth-like Moon-forming impactor. Philos. Trans. R. Soc. A 372, 20130244 (2014).
Mastrobuono-Battisti, A., Perets, H. B. & Raymond, S. N. A primordial origin for the compositional similarity between the Earth and the Moon. Nature 520, 212 (2015).
Nielsen, S. G., Bekaert, D. & Auro, M. Isotopic evidence for the formation of the Moon in a giant impact. Nat. Commun. 12, 1817 (2021).
Fischer, R. A., Zube, N. G. & Nimmo, F. The origin of the Moon’s Earth-like tungsten isotopic composition from dynamical and geochemical modeling. Nat. Commun. 12, 35 (2021).
Pahlevan, K. Telltale tungsten and the Moon. Nat. Geosci. 11, 16 (2018).
Melosh, H. J. Why the Moon is so like the Earth. Nat. Geosci. 12, 402–403 (2019).
Wissing, R. & Hobbs, D. A new equation of state applied to planetary impacts. 2. Lunar-forming impact simulations with a primordial magma ocean. Astron. Astrophys. 643, 22 (2020).
Ćuk, M. & Stewart, S. T. Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning. Science 338, 1047–1052 (2012).
Canup, R. M. Forming a Moon with an Earth-like composition via a giant impact. Science 338, 1052–1055 (2012).
Lock, S. J. & Stewart, S. T. The structure of terrestrial bodies: impact heating, corotation limits and synestias. J. Geophys. Res. Planets 122, 950–982 (2017).
Tian, Z., Wisdom, J. & Elkins-Tanton, L. Coupled orbital-thermal evolution of the early Earth–Moon system with a fast-spinning Earth. Icarus 281, 90–102 (2017).
Rufu, R. & Canup, R. M. Tidal evolution of the evection resonance/quasi-resonance and the angular momentum of the Earth–Moon system. J. Geophys. Res. 125, e06312 (2020).
Tian, Z. & Wisdom, J. Vertical angular momentum constraint on lunar formation and orbital history. Proc. Natl Acad. Sci. USA 117, 15460–15464 (2020).
Ćuk, M., Lock, S. J. & Stewart, S. T. Tidal evolution of the Earth–Moon system with a high initial obliquity. Planet. Sci. J. 2, 11 (2021).
Reufer, A., Meier, M. M. M., Benz, W. & Wieler, R. A hit-and-run giant impact scenario. Icarus 221, 296–299 (2012).
Asphaug, E., Emsenhuber, A., Cambioni, S., Gabriel, T. S. J. & Schwartz, S. R. Collision chains among the terrestrial planets. III. Formation of the Moon. Plan. Sci. J. 2, 20 (2021).
Rufu, R., Aharonson, O. & Perets, H. B. A multiple-impact origin for the Moon. Nat. Geosci. 10, 89–94 (2017).
Citron, R. I., Perets, H. B. & Aharonson, O. The role of multiple giant impacts in the formation of the Earth–Moon system. Astrophys. J. 862, 5 (2018).
Caffee, M. W. et al. Primordial noble gases from Earth’s mantle: identification of a primitive volatile component. Science 248, 2115–2118 (1999).
Mukhopadhyay, S. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486, 101–104 (2012).
Harper, C. L. & Jacobsen, S. B. Evidence from coupled 147Sm–143Nd and 146Sm–142Nd systematics for very early (4.5-Gyr) differentiation of the Earth’s mantle. Nature 360, 728–732 (1992).
Boyet, M. et al. 142Nd evidence for early Earth differentiation. Earth Planet. Sci. Lett. 214, 427–442 (2003).
Boyet, M. & Carlson, R. W. 142Nd evidence for early (>4.53 Ga) global differentiation of the silicate Earth. Science 309, 576–581 (2005).
Caro, G., Bourdon, B., Birck, J.-L. & Moorbath, S. 146Sm–142Nd evidence from Isua metamorphosed sediments for early differentiation of the Earth’s mantle. Nature 423, 428–432 (2003).
Caro, G., Bourdon, B., Birck, J.-L. & Moorbath, S. High-precision 142Nd/144Nd measurements in terrestrial rocks: constraints on the early differentiation of the Earth’s mantle. Geochim. Cosmochim. Acta 70, 164–191 (2006).
Kinoshita, N. et al. A shorter 146Sm half-life measured and implications for 146Sm–142Nd chronology in the solar system. Science 335, 1614–1617 (2012).
Nakanishi, N. et al. Tungsten-182 evidence for an ancient kimberlite source. Proc. Natl Acad. Sci. USA 118, e2020680118 (2021).
Rizo, H. et al. Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts. Science 352, 809–812 (2016).
Kruijer, T. S. & Kleine, T. No 182W excess in the Ontong Java Plateau source. Chem. Geol. 485, 24–31 (2018).
Rizo, H. et al. 182W evidence for core–mantle interaction in the source of mantle plumes. Geochem. Perspect. Lett. 11, 6–11 (2019).
Mundl-Petermeier, A. et al. Anomalous 182W in high 3He/4He ocean island basalts: fingerprints of Earth’s core? Geochim. Cosmochim. Acta 271, 191–214 (2020).
Dottin, J. W. III, Labidi, J., Lekic, V., Jackson, M. G. & Farquhar, J. Sulfur isotope characterization of primordial and recycled sources feeding the Samoan mantle plume. Earth Planet. Sci. Lett. 534, 116073 (2020).
Jackson, C. R. M., Bennett, N. R., Du, X., Cottrell, E. & Fei, Y. Early episodes of high-pressure core formation preserved in plume mantle. Nature 553, 491–495 (2018).
Nakajima, M. & Stevenson, D. J. Melting and mixing states of the Earth’s mantle after the Moon-forming impact. Earth Planet. Sci. Lett. 427, 286–295 (2015).
National Academies of Sciences, Engineering, and Medicine. in Origins, Worlds, and Life: A Decadal Strategy for Planetary Science and Astrobiology (National Academies Press, 2022).
Hirose, K., Wood, B. & Vočadlo, L. Light elements in the Earth’s core. Nat. Rev. Earth Environ. 2, 645–658 (2021).
Clay, P. L. et al. Halogens in chondritic meteorites and terrestrial accretion. Nature 511, 614–618 (2017).
Palme, H. & O’Neill, H. St-C. in The Mantle and Core. Treatise on Geochemistry 2nd edn, Vol. 2 (ed. Carlson, R. W.) 1–38 (Elsevier-Pergamon, 2003).
Bouvier, L. C. et al. Evidence for extremely rapid magma ocean crystallization and crust formation on Mars. Nature 558, 586–589 (2018).
Acknowledgements
R.M.C. was supported by NASA Emerging Worlds grants 80NSSC19K1614 and 80NSSC19K0514.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Earth & Environment thanks R. Carlson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Achondrite
-
Silicate-rich meteorites thought to be derived mainly from the outer portions (crust), rarely mantle, of other planetary objects, including Mars.
- Astronomical units
-
(au). A distance of 150 million kilometres, the approximate distance from Earth to the Sun.
- Atmophile
-
Elements preferentially concentrated in the atmosphere and hydrosphere, such as H, C, N and noble gases.
- Bulk silicate Earth
-
(BSE). The integrated composition of the atmosphere, hydrosphere, crust and mantle, or simply Earth minus its core.
- Chalcophile
-
Elements preferentially incorporated into sulfide and expected to be concentrated in the core, including S, Se and Te.
- Evection
-
A gravitational resonance involving Earth, Moon and Sun that occurs when the period of precession of the lunar perigee matches Earth’s orbital period around the Sun.
- Highly siderophile
-
Elements preferentially (>99%) incorporated into metal and expected to be concentrated in the core, such as Ru, Pd, Re, Os, Pt and Ir.
- Late veneer
-
The last material accreted to Earth post-Giant Impact, originally identified by the near-chondritic BSE abundances of the platinum group elements.
- Lithophile
-
Elements preferentially (>50%) incorporated into silicate and expected to be concentrated in the mantle and crust, such as Si, Al, Ca, K, Mg.
- Magmatic iron meteorites
-
Those iron meteorites with compositional trends and (in some cases) cooling textures indicative of core crystallization in a planetesimal or planetary embryo.
- Moderately siderophile
-
Elements preferentially (50–99%) incorporated into metal and expected to be concentrated in the core, such as Ni, Co and Mo.
- Moderately volatile
-
Elements that condense from a hot (solar) nebular gas at temperatures between 1,230 K and 640 K.
- Moon-forming Giant Impact
-
The collision between the proto-Earth and another planet, often called Theia, that led to the formation of Earth’s Moon.
- Pebbles
-
Very early millimetre-to-decimetre-sized objects that formed in the earliest stages of the nebular disk by sticking together of dust grains and perhaps molten droplets.
- Planetary embryo
-
Planetary objects of order 103 km in size formed by runaway growth from accreting planetesimals.
- Planetesimals
-
Early 100-km-scale planetary objects that probably formed through the gravitational collapse of regions of dense concentrations of pebbles in the presence of the solar nebula.
- Refractory elements
-
Elements that condense from a hot (solar) nebular gas at temperatures more than 1,400 K.
- Solar nebula
-
The disk of gas and dust surrounding the newly forming Sun.
- Volatile elements
-
Elements that condense from a hot (solar) nebular gas at temperatures less than 640 K.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Halliday, A.N., Canup, R.M. The accretion of planet Earth. Nat Rev Earth Environ 4, 19–35 (2023). https://doi.org/10.1038/s43017-022-00370-0
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s43017-022-00370-0
This article is cited by
-
A lunar core dynamo limited to the Moon’s first ~140 million years
Communications Earth & Environment (2024)
-
New perspectives on deep carbon cycling
Science China Earth Sciences (2024)
-
Highest terrestrial 3He/4He credibly from the core
Nature (2023)
-
Inductively coupled plasma mass spectrometry
Nature Reviews Methods Primers (2023)