Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The accretion of planet Earth

Abstract

Earth’s origins are challenging to elucidate, given the lack of surviving terrestrial geology from the first 500 Myr of the Solar System. In this Review, we discuss breakthroughs in geochemistry and theoretical modelling that have advanced understanding of Earth accretion. Theory holds that solar nebula dust particles stuck together to form pebbles, concentrations of which gravitationally collapsed into 100-km-sized planetesimals, which in turn accreted to yield planets. Isotopic variations in meteorites indicate that pebbles formed within the first 100 kyr of the Solar System, planetesimals melted and differentiated within a few 100 kyr, and Mars accreted quickly within 5 Myr. Earth’s growth was more protracted, with >98% of its mass being accreted by the time of the Moon-forming Giant Impact at 70–120 Myr. Earth is more enriched in s-process nuclides than chondritic meteorites, with a chemical composition affected by condensation, melting and loss. Early volatiles acquired from the nebula largely escaped, with the remnant volatiles being diluted by main-stage Earth accretion, accompanied by loss of nitrogen to the core and/or space. Areas for further research should include assessing mixing during large collisions and investigating the origin of very early mantle isotopic heterogeneities, which might indicate mass transfer from core to mantle over time.

Key points

  • Terrestrial planet accretion commenced with disk grains and high-temperature condensates sticking together to form pebbles, which in turn gravitationally coalesced to form planetesimals up to hundreds of kilometres in size. Planetesimals with metallic cores, sampled today as iron meteorites, were present within the first million years of the Solar System.

  • Planetesimals collided to form Moon-to-Mars-sized planetary embryos in the presence of the solar nebula. Nebular dispersal triggered an era of giant collisions among the embryos that established the inner Solar System’s architecture and, for Earth, culminated in the Giant Impact that produced the Moon.

  • Although most of Earth’s nucleosynthetic makeup is closest to that of enstatite chondrites, earlier (<50% by mass) stages of accretion had an isotopic signature intermediate between enstatite and ordinary chondrites. However, Earth is more enriched in those nuclides formed by slow addition of neutrons in large stars compared with all meteorites, and is different chemically from chondrites, particularly enstatites.

  • These chemical differences partly reflect early melting and condensation in the disk, which produced fractionated chemical and isotopic compositions, but also result from subsequent losses and additions, especially of volatile elements, during accretion.

  • Most lunar origin models fail to provide a natural explanation for the identical isotopic composition of the bulk silicate Earth and Moon for non-volatile elements. This isotopic match is particularly problematic for tungsten, which is sensitive to the nature and timing of core formation and is unlikely to result from the Giant Impact unless there was post-impact mixing and isotopic equilibration between the silicate Earth and Moon.

  • The discovery of mantle isotopic heterogeneities generated in the first 100 million years of Earth’s history has changed thinking on preservation of primordial reservoirs in the deep Earth, as well as the nature of Earth’s late veneer, which could partially reflect a long history of compositional fluxes from Earth’s core.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Formation of the Solar System, Earth and Moon.
Fig. 2: Chronology of the earliest Solar System, as determined from various isotopic systems.
Fig. 3: Concentrations of elements in bulk silicate Earth (BSE) relative to the most primitive carbonaceous chondritic abundances.
Fig. 4: Best estimates for the chronology of Earth accretion.

Similar content being viewed by others

References

  1. Wetherill, G. W. in Origin of the Moon (eds Hartmann, W. K., Phillips, R. J. & Taylor, G. J.) 519–550 (Lunar Planetary Institute, 1986).

  2. Cameron, A. G. W. & Benz, W. Origin of the Moon and the single impact hypothesis IV. Icarus 92, 204–216 (1991).

    Article  Google Scholar 

  3. Wasserburg, G. J., Papanastassiou, D. A., Tera, F. & Huneke, J. C. Outline of a lunar chronology. Phil. Trans. R. Soc. Lond. A 285, 7–22 (1977).

    Article  Google Scholar 

  4. Kruijer, T. S., Burkhardt, C., Budde, G. & Kleine, T. Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proc. Natl Acad. Sci. USA 114, 6712–6716 (2017).

    Article  Google Scholar 

  5. Spitzer, F. et al. Isotopic evolution of the inner Solar System inferred from molybdenum isotopes in meteorites. Astrophys. J. Lett. 898, L2 (2020).

    Article  Google Scholar 

  6. Winn, J. N. & Fabrycky, D. C. The occurrence and architecture of exoplanetary systems. Annu. Rev. Astron. Astrophys. 53, 409 (2015).

    Article  Google Scholar 

  7. Haisch, K. E. Jr, Lada, E. A. & Lada, C. J. Disk frequencies and lifetimes in young clusters. Am. Astron. Soc. 553, L153–L156 (2001).

    Google Scholar 

  8. Dullemond, C. P. & Dominik, C. Dust coagulation in protoplanetary disks, a rapid depletion of small grains. Astron. Astrophys. 434, 971–986 (2005).

    Article  Google Scholar 

  9. Chambers, J. E. Pebble accretion and the diversity of planetary systems. Astrophys. J. 825, 18 (2016).

    Article  Google Scholar 

  10. Youdin, A. N. & Goodman, J. Streaming instabilities in protoplanetary disks. Astrophys. J. 620, 459–469 (2005).

    Article  Google Scholar 

  11. Johansen, A., Oishi, J. S., Low, M.-M. M., Klahr, H. & Youdin, A. Rapid planetesimal formation in turbulent circumstellar disks. Nature 448, 1022–1025 (2007).

    Article  Google Scholar 

  12. Johansen, A., Low, M.-M. M., Lacerda, P. & Bizzarro, M. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion. Sci. Adv. 1, e1500109 (2015).

    Article  Google Scholar 

  13. Simon, S. B., Armitage, P. J. & Li, R. The mass and size distribution of planetesimals formed by the streaming instability I. The role of self-gravity. Astrophys. J. 822, 18 (2016).

    Article  Google Scholar 

  14. Nesvorný, D., Rixin, L., Youdin, A. N., Simon, J. B. & Grundy, W. M. Trans-Neptunian binaries as evidence for planetesimal formation by the streaming instability. Nat. Astron. 3, 808–812 (2019).

    Article  Google Scholar 

  15. Connelly, J. N. et al. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338, 651–655 (2012).

    Article  Google Scholar 

  16. MacPherson, G. J. in Meteorites, Comets, and Planets. Treatise on Geochemistry 2nd edn, Vol. 1 (ed. Davis, A. M.) 139–179 (Elsevier, 2014).

  17. Krot, A. N. Refractory inclusions in carbonaceous chondrites: records of early Solar System processes. Meteorit. Planet. Sci. 54, 1647–1691 (2019).

    Article  Google Scholar 

  18. Bollard, J. et al. Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules. Sci. Adv. 3, e1700407 (2017).

    Article  Google Scholar 

  19. Ansdell, M. et al. ALMA survey of Lupus protoplanetary disks. I. Dust and gas masses. Astrophys. J. 828, 46 (2016).

    Article  Google Scholar 

  20. Manara, C. F., Morbidelli, A. & Guillot, T. Why do protoplanetary disks appear not massive enough to form the known exoplanet population? Astron. Astrophys. 618, L3 (2018).

    Article  Google Scholar 

  21. Miotello, A. et al. Grain growth in the envelopes and disks of Class I protostars. Astron. Astrophys. 567, A32 (2014).

    Article  Google Scholar 

  22. Harsono, D. P. et al. Evidence for the start of planet formation in a young circumstellar disk. Nat. Astron. 2, 646–651 (2018).

    Article  Google Scholar 

  23. Markowski, A. et al. Correlated helium-3 and tungsten isotopes in iron meteorites: quantitative cosmogenic corrections and planetesimal formation times. Earth Planet. Sci. Lett. 250, 104–115 (2006).

    Article  Google Scholar 

  24. Scherstén, A., Elliott, T., Hawkesworth, C. J., Russell, S. & Masarik, J. Hf–W evidence for rapid differentiation of iron meteorite parent bodies. Earth Planet. Sci. Lett. 241, 530–542 (2006).

    Article  Google Scholar 

  25. Qin, L., Dauphas, N., Wadhwa, M., Masarik, J. & Janney, P. E. Rapid accretion and differentiation of iron meteorite parent bodies inferred from 182Hf–182W chronometry and thermal modeling. Earth Planet. Sci. Lett. 273, 94–104 (2008).

    Article  Google Scholar 

  26. Kruijer, T. S. et al. Protracted core formation and rapid accretion of protoplanets. Science 344, 1150–1154 (2014).

    Article  Google Scholar 

  27. Weidenschilling, S. J., Spaute, D., Davis, D. R., Marzari, F. & Ohtsuki, K. Accretional evolution of a planetesimal swarm. Icarus 128, 429–455 (1997).

    Article  Google Scholar 

  28. Kokubo, E. & Ida, S. Oligarchic growth of protoplanets. Icarus 131, 171–178 (1998).

    Article  Google Scholar 

  29. Kenyon, S. J. & Bromley, B. C. Terrestrial planet formation. I. The transition from oligarchic growth to chaotic growth. Am. Astron. Soc. 131, 1837–1850 (2006).

    Google Scholar 

  30. Agnor, C. B. & Ward, W. R. Damping of terrestrial-planet eccentricities by density-wave interactions with a remnant gas disk. Astrophys. J. 567, 579–586 (2002).

    Article  Google Scholar 

  31. Connelly, J. N., Schiller, M. & Bizzarro, M. Pb isotope evidence for rapid accretion and differentiation of planetary embryos. Earth Planet. Sci. Lett. 525, 115722 (2019).

    Article  Google Scholar 

  32. Markowski, A. et al. Hafnium–tungsten chronometry of angrites and the earliest evolution of planetary objects. Earth Planet. Sci. Lett. 262, 214–229 (2007).

    Article  Google Scholar 

  33. Brennecka, G. A. & Wadhwa, M. Uranium isotope compositions of the basaltic angrite meteorites and the chronological implications for the early Solar System. Proc. Natl Acad. Sci. USA 109, 9299–9303 (2012).

    Article  Google Scholar 

  34. Kruijer, T. S. et al. The early differentiation of Mars inferred from Hf–W chronometry. Earth Planet. Sci. Lett. 474, 345–354 (2017b).

    Article  Google Scholar 

  35. Barr, A. C. & Canup, R. M. Constraints on gas giant satellite formation from the interior states of partially differentiated satellites. Icarus 198, 163–177 (2008).

    Article  Google Scholar 

  36. Castillo-Rogez, J. et al. 26Al decay: heat production and a revised age for Iapetus. Icarus 204, 658–662 (2009).

    Article  Google Scholar 

  37. Morbidelli, A., Lunine, J. I., O’Brien, D. P., Raymond, S. N. & Walsh, K. J. Building terrestrial planets. Annu. Rev. Earth Planet. Sci. 40, 251–275 (2012).

    Article  Google Scholar 

  38. Walsh, K. J. & Levison, H. F. Planetesimals to terrestrial planets: collisional evolution amidst a dissipating gas disk. Icarus 329, 88–100 (2019).

    Article  Google Scholar 

  39. Chambers, J. E. & Wetherill, G. W. Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus 136, 304–327 (1998).

    Article  Google Scholar 

  40. Agnor, C. B., Canup, R. M. & Levison, H. F. On the character and consequences of large impacts in the late stage of terrestrial planet formation. Icarus 142, 219–237 (1999).

    Article  Google Scholar 

  41. Fernandez, J. A. & Ip, W.-H. Some dynamical aspects of the accretion of Uranus and Neptune — the exchange of orbital angular momentum with planetesimals. Icarus 58, 109–120 (1984).

    Article  Google Scholar 

  42. Malhotra, R. The origin of Pluto’s peculiar orbit. Nature 365, 819–821 (1993).

    Article  Google Scholar 

  43. Nesvorný, D. Dynamical evolution of the early Solar System. Annu. Rev. Astron. Astrophys. 56, 137–174 (2018).

    Article  Google Scholar 

  44. Tsiganis, K., Gomes, R., Morbidelli, A. & Levison, H. F. Origin of the orbital architecture of the giant planets of the Solar System. Nature 435, 459–461 (2005).

    Article  Google Scholar 

  45. Gomes, R., Levison, H. F., Tsiganis, K. & Morbidelli, A. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466–469 (2005).

    Article  Google Scholar 

  46. O’Brien, D. P., Morbidelli, A. & Levison, H. F. Terrestrial planet formation with strong dynamical friction. Icarus 184, 39–58 (2006).

    Article  Google Scholar 

  47. Walsh, K. J. & Morbidelli, A. The effect of an early planetesimal-driven migration of the giant planets on terrestrial planet formation. Astron. Astrophys. 526, A126 (2011).

    Article  Google Scholar 

  48. Fischer, R. A. & Ciesla, F. J. Dynamics of the terrestrial planets from a large number of N-body simulations. Earth Planet. Sci. Lett. 392, 28–38 (2014).

    Article  Google Scholar 

  49. Clement, M. S., Kaib, N. A., Raymond, S. N., Chambers, J. E. & Walsh, K. J. The early instability scenario: terrestrial planet formation during the giant planet instability, and the effect of collisional fragmentation. Icarus 321, 778–790 (2019).

    Article  Google Scholar 

  50. Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P. & Mandell, A. M. A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011).

    Article  Google Scholar 

  51. Jacobson, S. A. & Morbidelli, A. Lunar and terrestrial planet formation in the Grand Tack scenario. Phil. Trans. R. Soc. A 372, 20130174 (2014).

    Article  Google Scholar 

  52. O’Brien, D. P., Walsh, K. J., Morbidelli, A., Raymond, S. N. & Mandell, A. M. Water delivery and giant impacts in the Grand Tack scenario. Icarus 239, 74–84 (2014).

    Article  Google Scholar 

  53. Quintana, E. V., Barclay, T., Borucki, W. J., Rowe, J. F. & Chambers, J. E. The frequency of giant impacts on Earth-like worlds. Astrophys. J. 821, 126 (2016).

    Article  Google Scholar 

  54. König, S. et al. The Earth’s tungsten budget during mantle melting and crust formation. Geochim. Cosmochim. Acta 75, 2119–2136 (2011).

    Article  Google Scholar 

  55. Kleine, T. et al. Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73, 5150–5188 (2009).

    Article  Google Scholar 

  56. Thiemens, M. M., Sprung, P., Fonseca, R. O., Leitzke, F. P. & Münker, C. Early Moon formation inferred from hafnium–tungsten systematics. Nat. Geosci. 12, 696–700 (2019).

    Article  Google Scholar 

  57. Kleine, T., Münker, C., Mezger, K. & Palme, H. Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry. Nature 418, 952–955 (2002).

    Article  Google Scholar 

  58. Schoenberg, R., Kamber, B. S., Collerson, K. D. & Eugster, O. New W-isotope evidence for rapid terrestrial accretion and very early core formation. Geochim. Cosmochim. Acta 66, 3151–3160 (2002).

    Article  Google Scholar 

  59. Yin, Q. et al. A short timescale for terrestrial planet formation from Hf–W chronometry of meteorites. Nature 418, 949–952 (2002).

    Article  Google Scholar 

  60. Halliday, A. N. A young Moon-forming giant impact at 70 to 110 million years accompanied by late-stage mixing, core formation and degassing of the Earth. Phil. Trans. R. Soc. Lond. A 366, 4163–4181 (2008).

    Google Scholar 

  61. Yu, G. & Jacobsen, S. B. Fast accretion of the Earth with a late Moon-forming giant impact. Proc. Natl Acad. Sci. USA 108, 17604–17609 (2011).

    Article  Google Scholar 

  62. Halliday, A. N. Mixing, volatile loss and compositional change during impact-driven accretion of the Earth. Nature 427, 505–509 (2004).

    Article  Google Scholar 

  63. Dahl, T. W. & Stevenson, D. J. Turbulent mixing of metal and silicate during planet accretion — and interpretation of the Hf–W chronometer. Earth Planet. Sci. Lett. 295, 177–186 (2010).

    Article  Google Scholar 

  64. Rubie, D. C. et al. Heterogeneous accretion, composition and core–mantle differentiation of the Earth. Earth Planet. Sci. Lett. 301, 31–42 (2011).

    Article  Google Scholar 

  65. Deienno, R., Walsh, K. J., Kretke, K. A. & Levison, H. F. Energy dissipation in large collisions — no change in planet formation outcomes. Am. Astron. Soc. 876, 103 10 (2019).

    Google Scholar 

  66. Hansen, B. M. S. Formation of the terrestrial planets from a narrow annulus. Astrophys. J. 703, 1131–1140 (2009).

    Article  Google Scholar 

  67. Levison, H. F., Kretke, K. A., Walsh, K. J. & Bottke, W. F. Growing the terrestrial planets from the gradual accumulation of submeter-sized objects. Proc. Natl Acad. Sci. USA 112, 14180–14185 (2015).

    Article  Google Scholar 

  68. Clement, M. S., Kaib, N. A., Raymond, S. N. & Walsh, K. J. Mars’ growth stunted by an early giant planet instability. Icarus 311, 340–356 (2018).

    Article  Google Scholar 

  69. Wood, B. J., Smythe, D. J. & Harrison, T. The condensation temperatures of the elements: a reappraisal. Am. Min. 104, 844–856 (2019).

    Article  Google Scholar 

  70. Palme, H., Larimer, J. W. & Lipschultz, M. E. in Meteorites and the Early Solar System (eds Kerridge, J. F. & Matthews, M. S.) 436–461 (Univ. Arizona Press, 1988).

  71. Humayun, M. & Cassen, P. in Origin of the Earth and Moon (eds Canup, R. M. & Righter, K.) 3–23 (Univ. Arizona Press, 2000).

  72. Wetherill, G. W. Provenance of the terrestrial planets. Geochim. Cosmochim. Acta 58, 4513–4520 (1994).

    Article  Google Scholar 

  73. Chambers, J. E. Planetary accretion in the inner Solar System. Earth Planet. Sci. Lett. 223, 241–252 (2004).

    Article  Google Scholar 

  74. Morbidelli, A. et al. Source regions and time-scales for the delivery of water to the Earth. Meteorit. Planet. Sci. 35, 1309–1320 (2000).

    Article  Google Scholar 

  75. Newsom, H. E. in Origin of the Earth (eds Newsom, H. E. & Jones, J. H.) 273–288 (Oxford Univ. Press, 1990).

  76. Schönbächler, M., Carlson, R. W., Horan, M. F., Mock, T. D. & Hauri, E. H. Heterogeneous accretion and the moderately volatile element budget of Earth. Science 328, 884–887 (2010).

    Article  Google Scholar 

  77. C O’Neill St, H. & Palme, H. Collisional erosion and the non-chondritic composition of the terrestrial planets. Phil. Trans. R. Soc. Lond. A 366, 4205–4238 (2008).

    Google Scholar 

  78. Sharp, Z. D. & Draper, D. S. The chlorine abundance of Earth: implications for a habitable planet. Earth Planet. Sci. Lett. 369–370, 71–77 (2013).

    Article  Google Scholar 

  79. Carter, P. J., Leinhardt, Z. M., Elliott, T., Stewart, S. T. & Walter, M. J. Collisional stripping of planetary crusts. Earth Planet. Sci. Lett. 484, 276–286 (2018).

    Article  Google Scholar 

  80. Warren, P. H. A depleted, not ideally chondritic bulk Earth: the explosive-volcanic basalt loss hypothesis. Geochim. Cosmochim. Acta 72, 2217–2235 (2008).

    Article  Google Scholar 

  81. Norris, C. A. & Wood, B. J. Earth’s volatile contents established by melting and vaporization. Nature 547, 507–510 (2017).

    Article  Google Scholar 

  82. Halliday, A. N. & Porcelli, D. In search of lost planets — the paleocosmochemistry of the inner Solar System. Earth Planet. Sci. Lett. 192, 545–559 (2001).

    Article  Google Scholar 

  83. Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313–314, 56–66 (2012).

    Article  Google Scholar 

  84. Nakajima, M. & Stevenson, D. J. Inefficient volatile loss from the Moon forming disk: reconciling the giant impact hypothesis and a wet Moon. Earth Planet. Sci. Lett. 487, 117–126 (2018).

    Article  Google Scholar 

  85. Halliday, A. N. The origins of volatiles in the terrestrial planets. Geochim. Cosmochim. Acta 105, 146–171 (2013).

    Article  Google Scholar 

  86. Budde, G., Burkhardt, C. & Kleine, T. Molybdenum isotopic evidence for the late accretion of outer Solar System material to Earth. Nat. Astron. 3, 736–741 (2019).

    Article  Google Scholar 

  87. Grewal, D. S., Dasgupta, R., Sun, C., Tsuno, K. & Costin, G. Delivery of carbon, nitrogen, and sulfur to the silicate Earth by a giant impact. Sci. Adv. 5, eaau3669 (2019).

    Article  Google Scholar 

  88. Bergin, E. A., Blake, G. A., Ciesla, F. C., Hirschmann, M. M. & Lie, J. Tracing the ingredients for a habitable Earth from interstellar space through planet formation. Proc. Natl Acad. Sci. USA 112, 8965–8970 (2015).

    Article  Google Scholar 

  89. Saal, A. E., Hauri, E. H., Van Orman, J. A. & Rutherford, M. J. Hydrogen isotopes in lunar volcanic glasses and melt inclusions reveal a carbonaceous chondrite heritage. Science 340, 1317–1320 (2013).

    Article  Google Scholar 

  90. Piani, L. et al. Earth’s water may have been inherited from material similar to enstatite chondrite meteorites. Science 369, 1110–1113 (2020).

    Article  Google Scholar 

  91. Wu, J. et al. Origin of Earth’s water: chondritic inheritance plus nebular ingassing and storage of hydrogen in the core. J. Geophys. Res. Planets 123, 2691–2712 (2018).

    Article  Google Scholar 

  92. Horton, F. et al. Primordial neon in high-3He/4He Baffin Island olivines. Earth Planet. Sci. Lett. 558, 116762 (2021).

    Article  Google Scholar 

  93. Tucker, J. T. & Mukhopadhyay, S. Evidence for multiple magma ocean outgassing and atmospheric loss episodes from mantle noble gases. Earth Planet. Sci. Lett. 393, 254–265 (2014).

    Article  Google Scholar 

  94. Porcelli, D. & Halliday, A. N. The possibility of the core as a source of mantle helium. Earth Planet. Sci. Lett. 192, 45–56 (2001).

    Article  Google Scholar 

  95. Roth, A. S. G. et al. The primordial He budget of the Earth set by percolative core formation in planetesimals. Geochem. Persp. Lett. 9, 26–31 (2019).

    Article  Google Scholar 

  96. Bouhifd, M. A., Jephcoat, A. P., Porcelli, D., Kelley, S. P. & Marty, B. Potential of Earth’s core as a reservoir for noble gases: case for helium and neon. Geochem. Persp. Lett. 15, 15–18 (2020).

    Article  Google Scholar 

  97. Olson, P. L. & Sharp, Z. D. Primordial helium-3 exchange between Earth’s core and mantle. Geochem. Geophys. Geosyst. 23, e2021GC009985 (2022).

    Article  Google Scholar 

  98. Sarda, P., Staudacher, T. & Allègre, C. J. Neon isotopes in submarine basalts. Earth Planet. Sci. Lett. 91, 73–88 (1988).

    Article  Google Scholar 

  99. Marty, B. Neon and xenon isotopes in MORB: implications for the Earth-atmosphere evolution. Earth Planet. Sci. Lett. 94, 45–56 (1989).

    Article  Google Scholar 

  100. Notesco, G., Laufer, D., Bar-Nun, A. & Owen, T. An experimental study of the isotopic enrichment in Ar, Kr, and Xe when trapped in water ice. Icarus 142, 298–300 (1999).

    Article  Google Scholar 

  101. Marty, B. et al. Xenon isotopes in 67P/Churyumov-Gerasimenko show that comets contributed to Earth’s atmosphere. Science 356, 1069–1072 (2017).

    Article  Google Scholar 

  102. Zahnle, K. J., Gacesa, M. & Catling, D. C. Strange messenger: a new history of hydrogen on Earth, as told by xenon. Geochim. Cosmochim. Acta 244, 56–85 (2019).

    Article  Google Scholar 

  103. Almayrac, M. G., Broadley, M. W., Bekaert, D. V., Hofmann, A. & Marty, B. Possible discontinuous evolution of atmospheric xenon suggested by Archean barites. Chem. Geol. 581, 120405 (2021).

    Article  Google Scholar 

  104. Carlson, R. W., Borg, L. E., Gaffney, A. M. & Boyet, M. Rb–Sr, Sm–Nd and Lu–Hf isotope systematics of the lunar Mg-suite: the age of the lunar crust and its relation to the time of Moon formation. Phil. Trans. R. Soc. A 372, 20130246 (2014).

    Article  Google Scholar 

  105. Fischer-Gödde, M. et al. Ruthenium isotope vestige of Earth’s pre-late-veneer mantle preserved in Archaean rocks. Nature 579, 240–244 (2020).

    Article  Google Scholar 

  106. Alexander, C. M. O. ’D. Quantitative models for the elemental and isotopic fractionations in the chondrites: the non-carbonaceous chondrites. Geochim. Cosmochim. Acta 254, 246–276 (2019).

    Article  Google Scholar 

  107. Dauphas, N. The isotopic nature of the Earth’s accreting material through time. Nature 541, 521–524 (2017).

    Article  Google Scholar 

  108. Young, E. D. et al. Near-equilibrium isotope fractionation during planetesimal evaporation. Icarus 323, 1–15 (2019).

    Article  Google Scholar 

  109. Wang, S.-J. et al. Nickel isotopic evidence for late-stage accretion of Mercury-like differentiated planetary embryos. Nat. Commun. 12, 294, 7 (2021).

    Google Scholar 

  110. Render, J., Fischer-Gödde, M., Burkhardt, C. & Kleine, T. The cosmic molybdenum-neodymium isotope correlation and the building material of the Earth. Geochem. Persp. Lett. 3, 170–178 (2017).

    Article  Google Scholar 

  111. Javoy, M. et al. The chemical composition of the Earth: enstatite chondrite models. Earth Planet. Sci. Lett. 293, 259–268 (2010).

    Article  Google Scholar 

  112. Van der Hilst, R. D., Widiyantoro, S. & Engdahl, E. R. Evidence for deep mantle circulation from global tomography. Nature 386, 578–584 (1997).

    Article  Google Scholar 

  113. Ballmer, M. D., Houser, C., Hernlund, J. W., Wentzcovitch, R. M. & Hirose, K. Persistence of strong silica-enriched domains in the Earth’s lower mantle. Nat. Geosci. 10, 236–240 (2017).

    Article  Google Scholar 

  114. Armytage, R. M. G., Georg, R. B., Savage, P. S., Williams, H. M. & Halliday, A. N. Silicon isotopes in meteorites and planetary core formation. Geochim. Cosmochim. Acta 75, 3662–3676 (2011).

    Article  Google Scholar 

  115. Armytage, R. M. G., Georg, R. B., Williams, H. M. & Halliday, A. N. Silicon isotopes in lunar rocks: implications for the Moon’s formation and the early history of the Earth. Geochim. Cosmochim. Acta 77, 504–514 (2012).

    Article  Google Scholar 

  116. Fitoussi, C. & Bourdon, B. Silicon isotope evidence against an enstatite chondrite Earth. Science 335, 1477–1480 (2012).

    Article  Google Scholar 

  117. Savage, P. S. & Moynier, F. Silicon isotopic variation in enstatite meteorites: clues to their origin and Earth-forming material. Earth Planet. Sci. Lett. 361, 487–496 (2013).

    Article  Google Scholar 

  118. Kadlaga, Y., Tatzel, M., Frick, D. A. & Becker, H. The origin of unequilibrated EH chondrites — constraints from in situ analysis of Si isotopes, major and trace elements in silicates and metal. Geochim. Cosmochim. Acta 267, 300–321 (2019).

    Article  Google Scholar 

  119. Drake, M. J. & Righter, K. Determining the composition of the Earth. Nature 416, 39–44 (2002).

    Article  Google Scholar 

  120. Ricolleau, A., Fei, Y., Corgne, A., Siebert, J. & Badro, J. Oxygen and silicon contents of Earth’s core from high pressure metal–silicate partitioning experiments. Earth Planet. Sci. Lett. 310, 409–421 (2011).

    Article  Google Scholar 

  121. Dauphas, N., Poitrasson, F., Burkhardt, C., Kobayashi, H. & Kurosawa, K. Planetary and meteoritic Mg/Si and δ30Si variations inherited from solar nebula chemistry. Earth Planet. Sci. Lett. 427, 236–248 (2015).

    Article  Google Scholar 

  122. Morbidelli, A., Libourel, G., Palme, H., Jacobson, S. A. & Rubie, D. C. Subsolar Al/Si and Mg/Si ratios of non-carbonaceous chondrites reveal planetesimal formation during early condensation in the protoplanetary disk. Earth Planet. Sci. Lett. 538, 116220 (2020).

    Article  Google Scholar 

  123. Hewins, R. H. & Herzberg, C. Nebular turbulence, chondrule formation, and the composition of the Earth. Earth Planet. Sci. Lett. 144, 1–7 (1996).

    Article  Google Scholar 

  124. Wiechert, U. & Halliday, A. N. Non-chondritic magnesium and the origins of the inner terrestrial planets. Earth Planet. Sci. Lett. 256, 360–371 (2007).

    Article  Google Scholar 

  125. Hin, R. C. et al. Magnesium isotope evidence that accretional vapour loss shapes planetary compositions. Nature 549, 511–515 (2017).

    Article  Google Scholar 

  126. Georg, R. B., Halliday, A. N., Schauble, E. A. & Reynolds, B. C. Silicon in the Earth’s core. Nature 447, 1102–1106 (2007).

    Article  Google Scholar 

  127. Sasaki, S. in Origin of the Earth (eds Newsom, H. E. & Jones, J. H.) 195–209 (Oxford Univ. Press, 1990).

  128. Tonks, W. B. & Melosh, H. J. Magma ocean formation due to giant impacts. J. Geophys. Res. 98, 5319–5333 (1993).

    Article  Google Scholar 

  129. Williams, H. M., Wood, B. J., Wade, J., Frost, D. J. & Tuff, J. Isotopic evidence for internal oxidation of the Earth’s mantle during accretion. Earth Planet. Sci. Lett. 321/322, 54–63 (2012).

    Article  Google Scholar 

  130. Armstrong, K., Frost, D. J., McCammon, C. A., Rubie, D. C. & Boffa Ballaran, T. Deep magma ocean formation set the oxidation state of Earth’s mantle. Science 365, 903–906 (2019).

    Article  Google Scholar 

  131. Wade, J. & Wood, B. J. Core formation and the oxidation state of the Earth. Earth Planet. Sci. Lett. 236, 78–95 (2005).

    Article  Google Scholar 

  132. Siebert, J., Badro, J., Antonangeli, D. & Ryerson, F. J. Terrestrial accretion under oxidizing conditions. Science 339, 1194–1197 (2013).

    Article  Google Scholar 

  133. Kendall, J. D. & Melosh, H. Differentiated planetesimal impacts into a terrestrial magma ocean: fate of the iron core. Earth Planet. Sci. Lett. 448, 24–33 (2016).

    Article  Google Scholar 

  134. Marchi, S., Canup, R. M. & Walker, R. J. Heterogeneous delivery of silicate and metal to the Earth by large planetesimals. Nat. Geosci. 11, 77 (2018).

    Article  Google Scholar 

  135. Wood, B. J., Walter, M. J. & Wade, J. Accretion of the Earth and segregation of its core. Nature 441, 825–833 (2006).

    Article  Google Scholar 

  136. Kleine, T., Mezger, K., Palme, H. & Münker, C. The W isotope evolution of the bulk silicate Earth: constraints on the timing and mechanisms of core formation and accretion. Earth Planet. Sci. Lett. 228, 109–123 (2004).

    Article  Google Scholar 

  137. Kaib, N. A. & Cowan, N. B. The feeding zones of terrestrial planets and insights into Moon formation. Icarus 252, 161–174 (2015).

    Article  Google Scholar 

  138. Chou, C. L. Fractionation of siderophile elements in the Earth’s upper mantle. Proc. 9th Lunar Sci. Conf. 1, 219–230 (1978).

    Google Scholar 

  139. Li, J. & Agee, C. B. Geochemistry of mantle–core differentiation at high pressure. Nature 381, 686–689 (1996).

    Article  Google Scholar 

  140. Righter, K. & Drake, M. J. Core formation in Earth’s Moon, Mars, and Vesta. Icarus 124, 513–529 (1996).

    Article  Google Scholar 

  141. Righter, K. & Drake, M. J. Effect of water on metal-silicate partitioning of siderophile elements: a high pressure and temperature terrestrial magma ocean and core formation. Earth Planet. Sci. Lett. 171, 383–399 (1999).

    Article  Google Scholar 

  142. Righter, K., Drake, M. J. & Yaxley, G. Prediction of siderophile element metal/silicate partition coefficients to 20 GPa and 2800°C: the effects of pressure, temperature, oxygen fugacity, and silicate and metallic melt compositions. Phys. Earth Planet. Inter. 100, 115–142 (1997).

    Article  Google Scholar 

  143. Righter, K., Walker, R. J. & Warren, P. W. in Origin of the Earth and Moon (eds Canup, R. M. & Righter, K.) 291–322 (Univ. Arizona Press, 2000).

  144. Walker, R. J. et al. In search of late-stage planetary building blocks. Chem. Geol. 411, 125–142 (2015).

    Article  Google Scholar 

  145. Rubie, D. C. et al. Highly siderophile elements were stripped from Earth’s mantle by iron sulfide segregation. Science 353, 1141–1144 (2016).

    Article  Google Scholar 

  146. Wood, B. J. & Halliday, A. N. Cooling of the Earth and core formation after the giant impact. Nature 437, 1345–1348 (2005).

    Article  Google Scholar 

  147. Wood, B. J. & Halliday, A. N. The lead isotopic age of the Earth can be explained by core formation alone. Nature 465, 767–770 (2010).

    Article  Google Scholar 

  148. Walker, R. J., Horan, M. F., Shearer, C. K. & Papike, J. J. Low abundances of highly siderophile elements in the lunar mantle: evidence for prolonged late accretion. Earth Planet. Sci. Lett. 224, 399–413 (2004).

    Article  Google Scholar 

  149. Day, J. M. D. & Walker, R. J. Highly siderophile element depletion in the Moon. Earth Planet. Sci. Lett. 423, 114–124 (2015).

    Article  Google Scholar 

  150. Kruijer, T. S., Kleine, T., Fischer-Gödde, M. & Sprung, P. Lunar tungsten isotopic evidence for the late veneer. Nature 520, 534–537 (2015).

    Article  Google Scholar 

  151. Sleep, N. H. Asteroid bombardment and the core of Theia as possible sources for the Earth’s late veneer component. Geochem. Geophys. Geosyst. 17, 2623–2642 (2016).

    Article  Google Scholar 

  152. Zhu, M.-H. et al. Reconstructing the late-accretion history of the Moon. Nature 571, 226–229 (2019).

    Article  Google Scholar 

  153. Bottke, W. F., Walker, R. J., Day, J. M. D., Desvorny, D. & Elkins-Tanton, L. Stochastic late accretion to Earth, the Moon, and Mars. Science 330, 1527–1530 (2010).

    Article  Google Scholar 

  154. Brasser, R., Mojzsis, S. J., Werner, S. C., Matsumura, S. & Ida, S. Late veneer and late accretion to the terrestrial planets. Earth Planet. Sci. Lett. 455, 85–93 (2016).

    Article  Google Scholar 

  155. Ge, R. et al. A 4463 Ma apparent zircon age from the Jack Hills (Western Australia) resulting from ancient Pb mobilization. Geology 46, 303–306 (2018).

    Article  Google Scholar 

  156. Willbold, M., Elliott, T. & Moorbath, S. The tungsten isotopic composition of the Earth’s mantle before the terminal bombardment. Nature 477, 195–198 (2011).

    Article  Google Scholar 

  157. Willbold, M., Mojzsis, S., Chen, H. & Elliott, T. Tungsten isotope composition of the Acasta gneiss complex. Earth Planet. Sci. Lett. 73, 168–177 (2015).

    Article  Google Scholar 

  158. Puchtel, I. S., Walker, R. J., Touboul, M., Nisbet, E. G. & Byerly, G. R. Insights into early Earth from the Pt–Re–Os isotope and highly siderophile element abundance systematics of Barberton komatiites. Geochim. Cosmochim. Acta 125, 394–413 (2014).

    Article  Google Scholar 

  159. Creech, J. B. et al. Late accretion history of the terrestrial planets inferred from platinum stable isotopes. Geochem. Persp. Lett. 3, 94–104 (2017).

    Article  Google Scholar 

  160. Touboul, M., Puchtel, I. S. & Walker, R. J. Tungsten isotopic evidence for disproportional late accretion to the Earth and Moon. Nature 520, 530–533 (2015).

    Article  Google Scholar 

  161. Kruijer, T. S. & Kleine, T. Tungsten isotopes and the origin of the Moon. Earth Planet. Sci. Lett. 475, 15–24 (2017).

    Article  Google Scholar 

  162. Kruijer, T. S., Archer, G. J. & Kleine, T. No 182W evidence for early Moon formation. Comment on Thiemens, M. M. et al. 2019 “Early Moon formation inferred from hafnium–tungsten systematics”. Nat. Geosci. 14, 714–715 (2021).

    Article  Google Scholar 

  163. Archer, G. J. et al. Lack of late-accreted material as the origin of 182W excesses in the Archean mantle: evidence from the Pilbara Craton, Western Australia. Earth Planet. Sci. Lett. 528, 115841 (2019).

    Article  Google Scholar 

  164. Thiemens, M. M. et al. Reply to “No 182W evidence for early Moon formation”. Nat. Geosci. 14, 716–718 (2021).

    Article  Google Scholar 

  165. Avice, G. & Marty, B. The iodine–plutonium–xenon age of the Moon–Earth system revisited. Phil. Trans. R. Soc. A 372, 20130260 (2014).

    Article  Google Scholar 

  166. Barboni, M. et al. Early formation of the Moon 4.51 billion years ago. Sci. Adv. 3, e1602365 (2017).

    Article  Google Scholar 

  167. Borg, L. E., Connelly, J. N., Boyet, M. & Carlson, R. W. Chronologic evidence that the Moon is either young or did not have a global magma ocean. Nature 477, 70–72 (2011).

    Article  Google Scholar 

  168. Nemchin, A. et al. Timing of crystallization of the lunar magma ocean constrained by the oldest zircon. Nat. Geosc 2, 133–136 (2009).

    Article  Google Scholar 

  169. Maurice, M., Tosi, N., Schwinger, S., Breuer, D. & Kleine, T. A long-lived magma ocean on a young Moon. Sci. Adv. 6, eaba8949 (2020).

    Article  Google Scholar 

  170. Borg, L. E., Gaffney, A. M. & Shearer, C. K. A review of lunar chronology revealing a preponderance of 4.34–4.37 Ga ages. Meteorit. Planet. Sci. 50, 715–732 (2015).

    Article  Google Scholar 

  171. Borg, L. E. et al. Isotopic evidence for a young lunar magma ocean. Earth Planet. Sci. Lett. 523, 115706 (2019).

    Article  Google Scholar 

  172. Carlson, R. W., Garçon, M., O’Neil, J., Reimink, J. & Rizod, H. The nature of Earth’s first crust. Chem. Geol. 530, 119321 (2019).

    Article  Google Scholar 

  173. Zahnle, K. et al. Emergence of a habitable planet. Space Sci. Rev. 129, 35–78 (2007).

    Article  Google Scholar 

  174. Canup, R. M. & Asphaug, E. Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412, 708–712 (2001).

    Article  Google Scholar 

  175. Canup, R. M. Simulations of a late lunar-forming impact. Icarus 168, 433–456 (2004).

    Article  Google Scholar 

  176. Canup, R. M. Lunar-forming collisions with pre-impact rotation. Icarus 196, 518–538 (2008).

    Article  Google Scholar 

  177. Melosh, H. J. New approaches to the Moon’s isotopic crisis. Phil. Trans. R. Soc. A 372, 20130168 (2014).

    Article  Google Scholar 

  178. Pahlevan, K., Stevenson, D. J. & Eiler, J. M. Chemical fractionation in the silicate vapor atmosphere of the Earth. Earth Planet. Sci. Lett. 301, 433–443 (2011).

    Article  Google Scholar 

  179. Canup, R. M., Visscher, C., Salmon, J. & Fegley, B. Depletion of volatile elements in the Moon due to incomplete accretion within an impact-generated disk. Nat. Geosci. 8, 918–921 (2015).

    Article  Google Scholar 

  180. Nie, N. & Dauphas, N. Vapor drainage in the protolunar disk as the cause for the depletion in volatile elements of the Moon. Astrophys. J. Lett. 884, L48 (2019).

    Article  Google Scholar 

  181. Paniello, R., Day, J. & Moynier, F. Zn isotopic evidence for the origin of the Moon. Nature 490, 376–379 (2012).

    Article  Google Scholar 

  182. Boyce, J. W. et al. The chlorine isotope fingerprint of the lunar magma ocean. Sci. Adv. 1, 8 (2015).

    Article  Google Scholar 

  183. Wang, K. & Jacobsen, S. B. Potassium isotopic evidence for a high-energy giant impact origin of the Moon. Nature 538, 487–790 (2016).

    Article  Google Scholar 

  184. Pringle, E. A. & Moynier, F. Rubidium isotopic composition of the Earth, meteorites, and the Moon: evidence for the origin of volatile loss during planetary accretion. Earth Planet. Sci. Lett. 473, 62–70 (2017).

    Article  Google Scholar 

  185. Gargano, A. M. et al. The Cl isotope composition and halogen contents of Apollo-return samples. Proc. Natl Acad. Sci. USA 117, 23418–23425 (2020).

    Article  Google Scholar 

  186. Wimpenny, J., Borg, L. & Sio, C. K. The gallium isotopic composition of the Moon. Earth Planet. Sci. Lett. 578, 117318 (2022).

    Article  Google Scholar 

  187. Gargano, A. M. et al. The Zn, S, and Cl isotope compositions of mare basalts: implications for the effects of eruption style and pressure on volatile element stable isotope fractionation on the Moon. Am. Mineral. https://doi.org/10.1007/s10532-021-09942-1 (2022).

    Article  Google Scholar 

  188. Clayton, R. N. & Mayeda, T. K. Genetic relations between the Moon and meteorites. Proc. Lunar Sci. Conf. 6, 1761–1769 (1975).

    Google Scholar 

  189. Pahlevan, K. & Stevenson, D. J. Equilibration in the aftermath of the lunar-forming giant impact. Earth Planet. Sci. Lett. 262, 438–449 (2007).

    Article  Google Scholar 

  190. Fitoussi, C., Bourdon, B., Kleine, T., Oberli, F. & Reynolds, B. C. Si isotope systematics of meteorites and terrestrial peridotites: implications for Mg/Si fractionation in the solar nebula and for Si in the Earth’s core. Earth Planet. Sci. Lett. 287, 77–85 (2009).

    Article  Google Scholar 

  191. Shahar, A. et al. High-temperature Si isotope fractionation between iron metal and silicate. Geochim. Cosmochim. Acta 75, 7688–7697 (2011).

    Article  Google Scholar 

  192. Ziegler, K., Young, E. D., Schauble, E. A. & Wasson, J. T. Metal–silicate silicon isotope fractionation in enstatite meteorites and constraints on Earth’s core formation. Earth Planet. Sci. Lett. 295, 487–496 (2010).

    Article  Google Scholar 

  193. Pringle, E. A., Moynier, F., Savage, P. S., Badro, J. & Barrat, J. A. Silicon isotopes in angrites and volatile loss in planetesimals. Proc. Natl Acad. Sci. USA 111, 17029–17032 (2014).

    Article  Google Scholar 

  194. Canup, R. M. et al. in New Views of the Moon II, Reviews in Mineralogy and Geochemistry (Mineralogical Society of America, 2022).

  195. Lock, S. J. et al. The origin of the Moon within a terrestrial synestia. J. Geophys. Res. Planets 123, 910–951 (2018).

    Article  Google Scholar 

  196. Hosono, N., Karato, S., Makino, J. & Saitoh, T. R. Terrestrial magma ocean origin of the Moon. Nat. Geosci. 12, 418–423 (2019).

    Article  Google Scholar 

  197. Dauphas, N., Burkhardt, C., Warren, P. H. & Fang-Zhen, T. Geochemical arguments for an Earth-like Moon-forming impactor. Philos. Trans. R. Soc. A 372, 20130244 (2014).

    Article  Google Scholar 

  198. Mastrobuono-Battisti, A., Perets, H. B. & Raymond, S. N. A primordial origin for the compositional similarity between the Earth and the Moon. Nature 520, 212 (2015).

    Article  Google Scholar 

  199. Nielsen, S. G., Bekaert, D. & Auro, M. Isotopic evidence for the formation of the Moon in a giant impact. Nat. Commun. 12, 1817 (2021).

    Article  Google Scholar 

  200. Fischer, R. A., Zube, N. G. & Nimmo, F. The origin of the Moon’s Earth-like tungsten isotopic composition from dynamical and geochemical modeling. Nat. Commun. 12, 35 (2021).

    Article  Google Scholar 

  201. Pahlevan, K. Telltale tungsten and the Moon. Nat. Geosci. 11, 16 (2018).

    Article  Google Scholar 

  202. Melosh, H. J. Why the Moon is so like the Earth. Nat. Geosci. 12, 402–403 (2019).

    Article  Google Scholar 

  203. Wissing, R. & Hobbs, D. A new equation of state applied to planetary impacts. 2. Lunar-forming impact simulations with a primordial magma ocean. Astron. Astrophys. 643, 22 (2020).

    Article  Google Scholar 

  204. Ćuk, M. & Stewart, S. T. Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning. Science 338, 1047–1052 (2012).

    Article  Google Scholar 

  205. Canup, R. M. Forming a Moon with an Earth-like composition via a giant impact. Science 338, 1052–1055 (2012).

    Article  Google Scholar 

  206. Lock, S. J. & Stewart, S. T. The structure of terrestrial bodies: impact heating, corotation limits and synestias. J. Geophys. Res. Planets 122, 950–982 (2017).

    Article  Google Scholar 

  207. Tian, Z., Wisdom, J. & Elkins-Tanton, L. Coupled orbital-thermal evolution of the early Earth–Moon system with a fast-spinning Earth. Icarus 281, 90–102 (2017).

    Article  Google Scholar 

  208. Rufu, R. & Canup, R. M. Tidal evolution of the evection resonance/quasi-resonance and the angular momentum of the Earth–Moon system. J. Geophys. Res. 125, e06312 (2020).

    Article  Google Scholar 

  209. Tian, Z. & Wisdom, J. Vertical angular momentum constraint on lunar formation and orbital history. Proc. Natl Acad. Sci. USA 117, 15460–15464 (2020).

    Article  Google Scholar 

  210. Ćuk, M., Lock, S. J. & Stewart, S. T. Tidal evolution of the Earth–Moon system with a high initial obliquity. Planet. Sci. J. 2, 11 (2021).

    Article  Google Scholar 

  211. Reufer, A., Meier, M. M. M., Benz, W. & Wieler, R. A hit-and-run giant impact scenario. Icarus 221, 296–299 (2012).

    Article  Google Scholar 

  212. Asphaug, E., Emsenhuber, A., Cambioni, S., Gabriel, T. S. J. & Schwartz, S. R. Collision chains among the terrestrial planets. III. Formation of the Moon. Plan. Sci. J. 2, 20 (2021).

    Google Scholar 

  213. Rufu, R., Aharonson, O. & Perets, H. B. A multiple-impact origin for the Moon. Nat. Geosci. 10, 89–94 (2017).

    Article  Google Scholar 

  214. Citron, R. I., Perets, H. B. & Aharonson, O. The role of multiple giant impacts in the formation of the Earth–Moon system. Astrophys. J. 862, 5 (2018).

    Article  Google Scholar 

  215. Caffee, M. W. et al. Primordial noble gases from Earth’s mantle: identification of a primitive volatile component. Science 248, 2115–2118 (1999).

    Article  Google Scholar 

  216. Mukhopadhyay, S. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486, 101–104 (2012).

    Article  Google Scholar 

  217. Harper, C. L. & Jacobsen, S. B. Evidence from coupled 147Sm–143Nd and 146Sm–142Nd systematics for very early (4.5-Gyr) differentiation of the Earth’s mantle. Nature 360, 728–732 (1992).

    Article  Google Scholar 

  218. Boyet, M. et al. 142Nd evidence for early Earth differentiation. Earth Planet. Sci. Lett. 214, 427–442 (2003).

    Article  Google Scholar 

  219. Boyet, M. & Carlson, R. W. 142Nd evidence for early (>4.53 Ga) global differentiation of the silicate Earth. Science 309, 576–581 (2005).

    Article  Google Scholar 

  220. Caro, G., Bourdon, B., Birck, J.-L. & Moorbath, S. 146Sm–142Nd evidence from Isua metamorphosed sediments for early differentiation of the Earth’s mantle. Nature 423, 428–432 (2003).

    Article  Google Scholar 

  221. Caro, G., Bourdon, B., Birck, J.-L. & Moorbath, S. High-precision 142Nd/144Nd measurements in terrestrial rocks: constraints on the early differentiation of the Earth’s mantle. Geochim. Cosmochim. Acta 70, 164–191 (2006).

    Article  Google Scholar 

  222. Kinoshita, N. et al. A shorter 146Sm half-life measured and implications for 146Sm–142Nd chronology in the solar system. Science 335, 1614–1617 (2012).

    Article  Google Scholar 

  223. Nakanishi, N. et al. Tungsten-182 evidence for an ancient kimberlite source. Proc. Natl Acad. Sci. USA 118, e2020680118 (2021).

    Article  Google Scholar 

  224. Rizo, H. et al. Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts. Science 352, 809–812 (2016).

    Article  Google Scholar 

  225. Kruijer, T. S. & Kleine, T. No 182W excess in the Ontong Java Plateau source. Chem. Geol. 485, 24–31 (2018).

    Article  Google Scholar 

  226. Rizo, H. et al. 182W evidence for core–mantle interaction in the source of mantle plumes. Geochem. Perspect. Lett. 11, 6–11 (2019).

    Article  Google Scholar 

  227. Mundl-Petermeier, A. et al. Anomalous 182W in high 3He/4He ocean island basalts: fingerprints of Earth’s core? Geochim. Cosmochim. Acta 271, 191–214 (2020).

    Article  Google Scholar 

  228. Dottin, J. W. III, Labidi, J., Lekic, V., Jackson, M. G. & Farquhar, J. Sulfur isotope characterization of primordial and recycled sources feeding the Samoan mantle plume. Earth Planet. Sci. Lett. 534, 116073 (2020).

    Article  Google Scholar 

  229. Jackson, C. R. M., Bennett, N. R., Du, X., Cottrell, E. & Fei, Y. Early episodes of high-pressure core formation preserved in plume mantle. Nature 553, 491–495 (2018).

    Article  Google Scholar 

  230. Nakajima, M. & Stevenson, D. J. Melting and mixing states of the Earth’s mantle after the Moon-forming impact. Earth Planet. Sci. Lett. 427, 286–295 (2015).

    Article  Google Scholar 

  231. National Academies of Sciences, Engineering, and Medicine. in Origins, Worlds, and Life: A Decadal Strategy for Planetary Science and Astrobiology (National Academies Press, 2022).

  232. Hirose, K., Wood, B. & Vočadlo, L. Light elements in the Earth’s core. Nat. Rev. Earth Environ. 2, 645–658 (2021).

    Article  Google Scholar 

  233. Clay, P. L. et al. Halogens in chondritic meteorites and terrestrial accretion. Nature 511, 614–618 (2017).

    Article  Google Scholar 

  234. Palme, H. & O’Neill, H. St-C. in The Mantle and Core. Treatise on Geochemistry 2nd edn, Vol. 2 (ed. Carlson, R. W.) 1–38 (Elsevier-Pergamon, 2003).

  235. Bouvier, L. C. et al. Evidence for extremely rapid magma ocean crystallization and crust formation on Mars. Nature 558, 586–589 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

R.M.C. was supported by NASA Emerging Worlds grants 80NSSC19K1614 and 80NSSC19K0514.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Alex N. Halliday.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks R. Carlson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Achondrite

Silicate-rich meteorites thought to be derived mainly from the outer portions (crust), rarely mantle, of other planetary objects, including Mars.

Astronomical units

(au). A distance of 150 million kilometres, the approximate distance from Earth to the Sun.

Atmophile

Elements preferentially concentrated in the atmosphere and hydrosphere, such as H, C, N and noble gases.

Bulk silicate Earth

(BSE). The integrated composition of the atmosphere, hydrosphere, crust and mantle, or simply Earth minus its core.

Chalcophile

Elements preferentially incorporated into sulfide and expected to be concentrated in the core, including S, Se and Te.

Evection

A gravitational resonance involving Earth, Moon and Sun that occurs when the period of precession of the lunar perigee matches Earth’s orbital period around the Sun.

Highly siderophile

Elements preferentially (>99%) incorporated into metal and expected to be concentrated in the core, such as Ru, Pd, Re, Os, Pt and Ir.

Late veneer

The last material accreted to Earth post-Giant Impact, originally identified by the near-chondritic BSE abundances of the platinum group elements.

Lithophile

Elements preferentially (>50%) incorporated into silicate and expected to be concentrated in the mantle and crust, such as Si, Al, Ca, K, Mg.

Magmatic iron meteorites

Those iron meteorites with compositional trends and (in some cases) cooling textures indicative of core crystallization in a planetesimal or planetary embryo.

Moderately siderophile

Elements preferentially (50–99%) incorporated into metal and expected to be concentrated in the core, such as Ni, Co and Mo.

Moderately volatile

Elements that condense from a hot (solar) nebular gas at temperatures between 1,230 K and 640 K.

Moon-forming Giant Impact

The collision between the proto-Earth and another planet, often called Theia, that led to the formation of Earth’s Moon.

Pebbles

Very early millimetre-to-decimetre-sized objects that formed in the earliest stages of the nebular disk by sticking together of dust grains and perhaps molten droplets.

Planetary embryo

Planetary objects of order 103 km in size formed by runaway growth from accreting planetesimals.

Planetesimals

Early 100-km-scale planetary objects that probably formed through the gravitational collapse of regions of dense concentrations of pebbles in the presence of the solar nebula.

Refractory elements

Elements that condense from a hot (solar) nebular gas at temperatures more than 1,400 K.

Solar nebula

The disk of gas and dust surrounding the newly forming Sun.

Volatile elements

Elements that condense from a hot (solar) nebular gas at temperatures less than 640 K.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halliday, A.N., Canup, R.M. The accretion of planet Earth. Nat Rev Earth Environ 4, 19–35 (2023). https://doi.org/10.1038/s43017-022-00370-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00370-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing