Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review article
  • Published:

Soil structure and microbiome functions in agroecosystems

Abstract

Soil microbiomes drive key functions in agroecosystems, determining soil fertility, crop productivity and stress tolerance. The microbiome is intricately linked with soil structure, such as aggregation and pore connectivity, because this structure regulates the flow of water, oxygen and nutrients through the system. In this Review, we summarize the key functions of soil microbiomes in agroecosystems, highlight the dependence of these functions on the structural integrity of the soil, and discuss how agricultural practices influence the link between soil structure and microbiome functioning. System-level agricultural management practices can induce structural alterations to the soil, thereby changing the microbial processes occurring at the microscale. These changes have large-scale consequences, such as soil erosion, reduced soil fertility and increased greenhouse gas emissions. Sustainable approaches such as integrated soil fertility management and integrated pest management seek to improve soil structure and enhance microbial biodiversity, but we lack a mechanistic understanding of how multifaceted decisions at the farm level shape these context-dependent small-scale processes in the long term. Future research needs to bridge the microscale and field scale to inform agricultural management decisions for building climate-smart, resource-efficient and stress-resilient agroecosystems, and to harness the soil microbiome as a nature-based solution for sustainable agriculture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microbial key functions in the plant–soil system.
Fig. 2: Abiotic and biotic interactions at the soil aggregate scale.
Fig. 3: Differences in soil properties between structurally intact versus degraded soils.
Fig. 4: Differences in management practices between industrial and conservation agriculture.

Similar content being viewed by others

References

  1. Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    Article  Google Scholar 

  2. Tscharntke, T. et al. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 151, 53–59 (2012).

    Article  Google Scholar 

  3. DeFries, R. S., Foley, J. A. & Asner, G. P. Land-use choices: balancing human needs and ecosystem function. Front. Ecol. Environ. 2, 249–257 (2004).

    Article  Google Scholar 

  4. Matson, P. A., Parton, W. J., Power, A. G. & Swift, M. J. Agricultural intensification and ecosystem properties. Science 277, 504–509 (1997).

    Article  Google Scholar 

  5. Zabel, F. et al. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nat. Commun. 10, 2844 (2019).

    Article  Google Scholar 

  6. Tsiafouli, M. A. et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Change Biol. 21, 973–985 (2015).

    Article  Google Scholar 

  7. Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

    Article  Google Scholar 

  8. Mehrabi, Z., Ellis, E. C. & Ramankutty, N. The challenge of feeding the world while conserving half the planet. Nat. Sustain. 1, 409–412 (2018).

    Article  Google Scholar 

  9. Kopittke, P. M., Menzies, N. W., Wang, P., McKenna, B. A. & Lombi, E. Soil and the intensification of agriculture for global food security. Environ. Int. 132, 105078 (2019).

    Article  Google Scholar 

  10. Pereira, P., Bogunovic, I., Muñoz-Rojas, M. & Brevik, E. C. Soil ecosystem services, sustainability, valuation and management. Curr. Opin. Environ. Sci. Health 5, 7–13 (2018).

    Article  Google Scholar 

  11. Bai, Z. G., Dent, D. L., Olsson, L. & Schaepman, M. E. Proxy global assessment of land degradation. Soil Use Manage. 24, 223–234 (2008).

    Article  Google Scholar 

  12. Stockmann, U., Minasny, B. & McBratney, A. B. How fast does soil grow? Geoderma 216, 48–61 (2014).

    Article  Google Scholar 

  13. Wall, D. H., Nielsen, U. N. & Six, J. Soil biodiversity and human health. Nature 528, 69–76 (2015).

    Article  Google Scholar 

  14. Wilhelm, R. C., van Es, H. M. & Buckley, D. H. Predicting measures of soil health using the microbiome and supervised machine learning. Soil Biol. Biochem. 164, 108472 (2022).

    Article  Google Scholar 

  15. König, S., Vogel, H.-J., Harms, H. & Worrich, A. Physical, chemical and biological effects on soil bacterial dynamics in microscale models. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.00053 (2020).

  16. Six, J., Frey, S. D., Thiet, R. K. & Batten, K. M. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J. 70, 555–569 (2006).

    Article  Google Scholar 

  17. Status of the World’s Soil Resources (SWSR) — Main Report, 650 (FAO/Intergovernmental Technical Panel on Soils, 2015).

  18. Singh, B. K., Bardgett, R. D., Smith, P. & Reay, D. S. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 8, 779–790 (2010).

    Article  Google Scholar 

  19. Gougoulias, C., Clark, J. M. & Shaw, L. J. The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J. Sci. Food Agric. 94, 2362–2371 (2014).

    Article  Google Scholar 

  20. Naylor, D. et al. Soil microbiomes under climate change and implications for carbon cycling. Annu. Rev. Environ. Resour. 45, 29–59 (2020).

    Article  Google Scholar 

  21. Berg, I. A. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl. Environ. Microbiol. 77, 1925–1936 (2011).

    Article  Google Scholar 

  22. Yuan, H., Ge, T., Chen, C., O’Donnell, A. G. & Wu, J. Significant role for microbial autotrophy in the sequestration of soil carbon. Appl. Environ. Microbiol. 78, 2328–2336 (2012).

    Article  Google Scholar 

  23. Stevenson, F. J. Humus Chemistry: Genesis, Composition, Reactions 2nd edition (Wiley, 1994).

  24. Liang, C., Amelung, W., Lehmann, J. & Kästner, M. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob. Change Biol. 25, 3578–3590 (2019).

    Article  Google Scholar 

  25. Crowther, T. W. et al. Biotic interactions mediate soil microbial feedbacks to climate change. Proc. Natl Acad. Sci. USA 112, 7033–7038 (2015).

    Article  Google Scholar 

  26. Angel, R., Claus, P. & Conrad, R. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J. 6, 847–862 (2012).

    Article  Google Scholar 

  27. Conrad, R. The global methane cycle: recent advances in understanding the microbial processes involved. Environ. Microbiol. Rep. 1, 285–292 (2009).

    Article  Google Scholar 

  28. Saunois, M. et al. The global methane budget 2000–2017. Earth Syst. Sci. Data 12, 1561–1623 (2020).

    Article  Google Scholar 

  29. Dutta, H. & Dutta, A. The microbial aspect of climate change. Energy Ecol. Environ. 1, 209–232 (2016).

    Article  Google Scholar 

  30. Hu, H.-W., Chen, D. & He, J.-Z. Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiol. Rev. 39, 729–749 (2015).

    Article  Google Scholar 

  31. Tian, H. et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256 (2020).

    Article  Google Scholar 

  32. Marschner, P. in Nutrient Cycling in Terrestrial Ecosystems (eds Petra, M. & Zdenko, R.) 159–182 (Springer, 2007).

  33. Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive Earth’s biogeochemical cycles. Science 320, 1034–1039 (2008).

    Article  Google Scholar 

  34. Saccá, M. L., Barra Caracciolo, A., Di Lenola, M. & Grenni, P. Soil Biological Communities and Ecosystem Resilience (eds Martin, L., Paola, G. & Mauro, G.) 9–24 (Springer, 2017).

  35. Jetten, M. S. M. The microbial nitrogen cycle. Environ. Microbiol. 10, 2903–2909 (2008).

    Article  Google Scholar 

  36. Kuypers, M. M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276 (2018).

    Article  Google Scholar 

  37. Canfield, D. E., Glazer, A. N. & Falkowski, P. G. The evolution and future of Earth’s nitrogen cycle. Science 330, 192–196 (2010).

    Article  Google Scholar 

  38. Clark, I. M., Hughes, D. J., Fu, Q., Abadie, M. & Hirsch, P. R. Metagenomic approaches reveal differences in genetic diversity and relative abundance of nitrifying bacteria and archaea in contrasting soils. Sci. Rep. 11, 15905 (2021).

    Article  Google Scholar 

  39. Philippot, L., Hallin, S. & Schloter, M. in Advances in Agronomy Vol. 96, 249–305 (Academic, 2007).

  40. Hayatsu, M., Tago, K. & Saito, M. Various players in the nitrogen cycle: diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Sci. Plant Nutr. 54, 33–45 (2008).

    Article  Google Scholar 

  41. Mackey, K. R. M. & Paytan, A. in Encyclopedia of Microbiology 3rd edition (ed. Moselio, S.) 322–334 (Academic, 2009).

  42. Richardson, A. E., Barea, J.-M., McNeill, A. M. & Prigent-Combaret, C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant. Soil. 321, 305–339 (2009).

    Article  Google Scholar 

  43. Richardson, A. E. & Simpson, R. J. Soil microorganisms mediating phosphorus availability. Plant. Physiol. 156, 989–996 (2011).

    Article  Google Scholar 

  44. Li, J.-t. et al. A comprehensive synthesis unveils the mysteries of phosphate-solubilizing microbes. Biol. Rev. 96, 2771–2793 (2021).

    Article  Google Scholar 

  45. Kobae, Y. Dynamic phosphate uptake in arbuscular mycorrhizal roots under field conditions. Front. Env. Sci. https://doi.org/10.3389/fenvs.2018.00159 (2019).

  46. Oberson, A. & Joner, E. J. in Organic Phosphorus in the Environment (eds Turner, B. L. et al.) 133–164 (CABI, 2005).

  47. Compant, S., Samad, A., Faist, H. & Sessitsch, A. A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J. Adv. Res. 19, 29–37 (2019).

    Article  Google Scholar 

  48. Eichmann, R., Richards, L. & Schäfer, P. Hormones as go-betweens in plant microbiome assembly. Plant J. 105, 518–541 (2021).

    Article  Google Scholar 

  49. Nascimento, F. X., Hernandez, A. G., Glick, B. R. & Rossi, M. J. The extreme plant-growth-promoting properties of Pantoea phytobeneficialis MSR2 revealed by functional and genomic analysis. Environ. Microbiol. 22, 1341–1355 (2020).

    Article  Google Scholar 

  50. Valliere, J. M., Wong, W. S., Nevill, P. G., Zhong, H. & Dixon, K. W. Preparing for the worst: utilizing stress-tolerant soil microbial communities to aid ecological restoration in the Anthropocene. Ecol. Solut. Evid. 1, e12027 (2020).

    Article  Google Scholar 

  51. Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant–microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 18, 607–621 (2020).

    Article  Google Scholar 

  52. Rolfe, S. A., Griffiths, J. & Ton, J. Crying out for help with root exudates: adaptive mechanisms by which stressed plants assemble health-promoting soil microbiomes. Curr. Opin. Microbiol. 49, 73–82 (2019).

    Article  Google Scholar 

  53. Costa, O. Y. A., Raaijmakers, J. M. & Kuramae, E. E. Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.01636 (2018).

  54. Sharma, A. et al. Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9, 285 (2019).

    Article  Google Scholar 

  55. Singh, D. P. et al. Microbial inoculation in rice regulates antioxidative reactions and defense related genes to mitigate drought stress. Sci. Rep. 10, 4818 (2020).

    Article  Google Scholar 

  56. Bárzana, G., Aroca, R., Bienert, G. P., Chaumont, F. & Ruiz-Lozano, J. M. New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance. Mol. Plant Microbe Interact. 27, 349–363 (2014).

    Article  Google Scholar 

  57. Gamalero, E. & Glick, B. R. Bacterial modulation of plant ethylene levels. Plant Physiol. 169, 13–22 (2015).

    Article  Google Scholar 

  58. Le Pioufle, O., Ganoudi, M., Calonne-Salmon, M., Ben Dhaou, F. & Declerck, S. Rhizophagus irregularis MUCL 41833 improves phosphorus uptake and water use efficiency in maize plants during recovery from drought stress. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.00897 (2019).

  59. Begum, N. et al. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.01068 (2019).

  60. Köhl, J., Kolnaar, R. & Ravensberg, W. J. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.00845 (2019).

  61. Hu, L. et al. Root exudate metabolites drive plant–soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat. Commun. 9, 2738 (2018).

    Article  Google Scholar 

  62. Granato, E. T., Meiller-Legrand, T. A. & Foster, K. R. The evolution and ecology of bacterial warfare. Curr. Biol. 29, R521–R537 (2019).

    Article  Google Scholar 

  63. Shah, P. A. & Pell, J. K. Entomopathogenic fungi as biological control agents. Appl. Microbiol. Biotechnol. 61, 413–423 (2003).

    Article  Google Scholar 

  64. Soares, F. Ed. F., Sufiate, B. L. & de Queiroz, J. H. Nematophagous fungi: far beyond the endoparasite, predator and ovicidal groups. Agric. Nat. Resour. 52, 1–8 (2018).

    Google Scholar 

  65. Nordbring-Hertz, B., Jansson, H.-B. & Tunlid, A. in eLS (Wiley, 2011); https://doi.org/10.1002/9780470015902.a0000374.pub3.

  66. Tian, B., Yang, J. & Zhang, K.-Q. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS Microbiol. Ecol. 61, 197–213 (2007).

    Article  Google Scholar 

  67. Shafi, J., Tian, H. & Ji, M. Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol. Biotechnol. Equip. 31, 446–459 (2017).

    Article  Google Scholar 

  68. Bravo, A., Likitvivatanavong, S., Gill, S. S. & Soberón, M. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 41, 423–431 (2011).

    Article  Google Scholar 

  69. Schnepf, E. et al. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 775–806 (1998).

    Article  Google Scholar 

  70. Wei, J.-Z. et al. Bacillus thuringiensis crystal proteins that target nematodes. Proc. Natl Acad. Sci. USA 100, 2760–2765 (2003).

    Article  Google Scholar 

  71. Flury, P. et al. Insect pathogenicity in plant-beneficial pseudomonads: phylogenetic distribution and comparative genomics. ISME J. 10, 2527–2542 (2016).

    Article  Google Scholar 

  72. Vurukonda, S. S. K. P., Giovanardi, D. & Stefani, E. Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int. J. Mol. Sci. 19, 952 (2018).

    Article  Google Scholar 

  73. Whipps, J. M. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52, 487–511 (2001).

    Article  Google Scholar 

  74. MacLeod, M., Arp, H. P. H., Tekman, M. B. & Jahnke, A. The global threat from plastic pollution. Science 373, 61–65 (2021).

    Article  Google Scholar 

  75. Sharma, A. et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 1, 1446 (2019).

    Article  Google Scholar 

  76. Gworek, B., Kijeńska, M., Wrzosek, J. & Graniewska, M. Pharmaceuticals in the soil and plant environment: a review. Water Air Soil Pollut. 232, 145 (2021).

    Article  Google Scholar 

  77. Tang, F. H. M., Lenzen, M., McBratney, A. & Maggi, F. Risk of pesticide pollution at the global scale. Nat. Geosci. 14, 206–210 (2021).

    Article  Google Scholar 

  78. Zumstein, M. T. et al. Biodegradation of synthetic polymers in soils: tracking carbon into CO2 and microbial biomass. Sci. Adv. 4, eaas9024 (2018).

    Article  Google Scholar 

  79. Singh, B. & Singh, K. Microbial degradation of herbicides. Crit. Rev. Microbiol. 42, 245–261 (2016).

    Google Scholar 

  80. Teng, Y. & Chen, W. Soil microbiomes — a promising strategy for contaminated soil remediation: a review. Pedosphere 29, 283–297 (2019).

    Article  Google Scholar 

  81. Vogt, C. & Richnow, H. H. in Geobiotechnology II: Energy Resources, Subsurface Technologies, Organic Pollutants and Mining Legal Principles (eds Schippers, A. et al.) 123–146 (Springer, 2014).

  82. Mishra, S. et al. Recent advanced technologies for the characterization of xenobiotic-degrading microorganisms and microbial communities. Front. Bioeng. Biotechnol. https://doi.org/10.3389/fbioe.2021.632059 (2021).

  83. Rolli, E. et al. ‘Cry-for-help’ in contaminated soil: a dialogue among plants and soil microbiome to survive in hostile conditions. Environ. Microbiol. 23, 5690–5703 (2021).

    Article  Google Scholar 

  84. Wilpiszeski, R. L. et al. Soil aggregate microbial communities: towards understanding microbiome interactions at biologically relevant scales. Appl. Environ. Microbiol. https://doi.org/10.1128/aem.00324-19 (2019).

  85. Blott, S. J. & Pye, K. Particle size scales and classification of sediment types based on particle size distributions: review and recommended procedures. Sedimentology 59, 2071–2096 (2012).

    Article  Google Scholar 

  86. Totsche, K. U. et al. Microaggregates in soils. J. Plant Nutr. Soil Sci. 181, 104–136 (2018).

    Article  Google Scholar 

  87. Martin, J. P., Martin, W. P., Page, J. B., Raney, W. A. & de Ment, J. D. in Advances in Agronomy Vol. 7 (ed. Norman, A. G.) 1–37 (Academic, 1955).

  88. Chotte, J.-L. in Microorganisms in Soils: Roles in Genesis and Functions (eds Varma, A. & Buscot, F.) 107–119 (Springer, 2005).

  89. Oades, J. M. Soil organic matter and structural stability: mechanisms and implications for management. Plant. Soil. 76, 319–337 (1984).

    Article  Google Scholar 

  90. Six, J., Elliott, E. T. & Paustian, K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 32, 2099–2103 (2000).

    Article  Google Scholar 

  91. Six, J., Bossuyt, H., Degryze, S. & Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 79, 7–31 (2004).

    Article  Google Scholar 

  92. Schlüter, S. et al. Microscale carbon distribution around pores and particulate organic matter varies with soil moisture regime. Nat. Commun. 13, 2098 (2022).

    Article  Google Scholar 

  93. Acosta, J. A., Martínez-Martínez, S., Faz, A. & Arocena, J. Accumulations of major and trace elements in particle size fractions of soils on eight different parent materials. Geoderma 161, 30–42 (2011).

    Article  Google Scholar 

  94. Sessitsch, A., Weilharter, A., Gerzabek, M. H., Kirchmann, H. & Kandeler, E. Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Appl. Environ. Microbiol. 67, 4215–4224 (2001).

    Article  Google Scholar 

  95. Zhang, Q. et al. Fatty-acid profiles and enzyme activities in soil particle-size fractions under long-term fertilization. Soil Sci. Soc. Am. J. 80, 97–111 (2016).

    Article  Google Scholar 

  96. Hemkemeyer, M., Christensen, B. T., Martens, R. & Tebbe, C. C. Soil particle size fractions harbour distinct microbial communities and differ in potential for microbial mineralisation of organic pollutants. Soil Biol. Biochem. 90, 255–265 (2015).

    Article  Google Scholar 

  97. Briar, S. S. et al. The distribution of nematodes and soil microbial communities across soil aggregate fractions and farm management systems. Soil Biol. Biochem. 43, 905–914 (2011).

    Article  Google Scholar 

  98. Hemkemeyer, M., Dohrmann, A. B., Christensen, B. T. & Tebbe, C. C. Bacterial preferences for specific soil particle size fractions revealed by community analyses. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.00149 (2018).

  99. Hemkemeyer, M., Christensen, B. T., Tebbe, C. C. & Hartmann, M. Taxon-specific fungal preference for distinct soil particle size fractions. Eur. J. Soil Biol. 94, 103103 (2019).

    Article  Google Scholar 

  100. Christensen, B. T. & Olesen, J. E. Nitrogen mineralization potential of organomineral size separates from soils with annual straw incorporation. Eur. J. Soil Sci. 49, 25–36 (1998).

    Article  Google Scholar 

  101. Christensen, B. T. Decomposability of organic matter in particle size fractions from field soils with straw incorporation. Soil Biol. Biochem. 19, 429–435 (1987).

    Article  Google Scholar 

  102. Luo, G. et al. Long-term fertilisation regimes affect the composition of the alkaline phosphomonoesterase encoding microbial community of a vertisol and its derivative soil fractions. Biol. Fertil. Soils 53, 375–388 (2017).

    Article  Google Scholar 

  103. Mummey, D., Holben, W., Six, J. & Stahl, P. Spatial stratification of soil bacterial populations in aggregates of diverse soils. Microb. Ecol. 51, 404–411 (2006).

    Article  Google Scholar 

  104. Ranjard, L. et al. Heterogeneous cell density and genetic structure of bacterial pools associated with various soil microenvironments as determined by enumeration and DNA fingerprinting approach (RISA). Microb. Ecol. 39, 263–272 (2000).

    Google Scholar 

  105. Raynaud, X. & Nunan, N. Spatial ecology of bacteria at the microscale in soil. PLoS One 9, e87217 (2014).

    Article  Google Scholar 

  106. Rillig, M. C., Muller, L. A. H. & Lehmann, A. Soil aggregates as massively concurrent evolutionary incubators. ISME J. 11, 1943–1948 (2017).

    Article  Google Scholar 

  107. Trivedi, P. et al. Soil aggregation and associated microbial communities modify the impact of agricultural management on carbon content. Environ. Microbiol. 19, 3070–3086 (2017).

    Article  Google Scholar 

  108. Borer, B., Tecon, R. & Or, D. Spatial organization of bacterial populations in response to oxygen and carbon counter-gradients in pore networks. Nat. Commun. 9, 769 (2018).

    Article  Google Scholar 

  109. Kong, A. Y. Y., Hristova, K., Scow, K. M. & Six, J. Impacts of different N management regimes on nitrifier and denitrifier communities and N cycling in soil microenvironments. Soil Biol. Biochem. 42, 1523–1533 (2010).

    Article  Google Scholar 

  110. Bhattacharyya, S. S. et al. Soil carbon sequestration, greenhouse gas emissions, and water pollution under different tillage practices. Sci. Total Environ. 826, 154161 (2022).

    Article  Google Scholar 

  111. Zhang, W. et al. Differences in the nitrous oxide emission and the nitrifier and denitrifier communities among varying aggregate sizes of an arable soil in China. Geoderma 389, 114970 (2021).

    Article  Google Scholar 

  112. Tilman, D. et al. Forecasting agriculturally driven global environmental change. Science 292, 281–284 (2001).

    Article  Google Scholar 

  113. Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).

    Article  Google Scholar 

  114. Hartmann, M., Frey, B., Mayer, J., Mader, P. & Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 9, 1177–1194 (2015).

    Article  Google Scholar 

  115. Degrune, F. et al. The pedological context modulates the response of soil microbial communities to agroecological management. Front. Ecol. Environ. 7, 261 (2019).

    Article  Google Scholar 

  116. Longepierre, M. et al. Limited resilience of the soil microbiome to mechanical compaction within four growing seasons of agricultural management. ISME Commun. 1, 44 (2021).

    Article  Google Scholar 

  117. Delitte, M., Caulier, S., Bragard, C. & Desoignies, N. Plant microbiota beyond farming practices: a review. Front. Sustain. Food Syst. https://doi.org/10.3389/fsufs.2021.624203 (2021).

  118. Hobbs, P. R., Sayre, K. & Gupta, R. The role of conservation agriculture in sustainable agriculture. Phil. Trans. R. Soc. B 363, 543–555 (2008).

    Article  Google Scholar 

  119. Van den Putte, A., Govers, G., Diels, J., Gillijns, K. & Demuzere, M. Assessing the effect of soil tillage on crop growth: a meta-regression analysis on European crop yields under conservation agriculture. Eur. J. Agron. 33, 231–241 (2010).

    Article  Google Scholar 

  120. Six, J. et al. Soil organic matter, biota and aggregation in temperate and tropical soils — effects of no-tillage. Agronomie 22, 755–775 (2002).

    Article  Google Scholar 

  121. Young, I. M. & Ritz, K. Tillage, habitat space and function of soil microbes. Soil Tillage Res. 53, 201–213 (2000).

    Article  Google Scholar 

  122. Degrune, F. et al. Temporal dynamics of soil microbial communities below the seedbed under two contrasting tillage regimes. Front. Microbiol. 8, 1127 (2017).

    Article  Google Scholar 

  123. Pittelkow, C. M. et al. Productivity limits and potentials of the principles of conservation agriculture. Nature 517, 365–368 (2015).

    Article  Google Scholar 

  124. Babin, D. et al. Impact of long-term agricultural management practices on soil prokaryotic communities. Soil Biol. Biochem. https://doi.org/10.1016/j.soilbio.2018.11.002 (2018).

    Article  Google Scholar 

  125. Srour, A. Y. et al. Microbial communities associated with long-term tillage and fertility treatments in a corn–soybean cropping system. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.01363 (2020).

  126. Cania, B. et al. Site-specific conditions change the response of bacterial producers of soil structure-stabilizing agents such as exopolysaccharides and lipopolysaccharides to tillage intensity. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.00568 (2020).

  127. Cooper, H. V., Sjögersten, S., Lark, R. M. & Mooney, S. J. To till or not to till in a temperate ecosystem? Implications for climate change mitigation. Environ. Res. Lett. 16, 054022 (2021).

    Article  Google Scholar 

  128. Mangalassery, S. et al. To what extent can zero tillage lead to a reduction in greenhouse gas emissions from temperate soils? Sci. Rep. 4, 4586 (2014).

    Article  Google Scholar 

  129. Abdalla, M. et al. Conservation tillage systems: a review of its consequences for greenhouse gas emissions. Soil Use Manage. 29, 199–209 (2013).

    Article  Google Scholar 

  130. Six, J. et al. The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Glob. Change Biol. 10, 155–160 (2004).

    Article  Google Scholar 

  131. van Kessel, C. et al. Climate, duration, and N placement determine N2O emissions in reduced tillage systems: a meta-analysis. Glob. Change Biol. 19, 33–44 (2013).

    Article  Google Scholar 

  132. Hamza, M. A. & Anderson, W. K. Soil compaction in cropping systems: a review of the nature, causes and possible solutions. Soil Tillage Res. 82, 121–145 (2005).

    Article  Google Scholar 

  133. Schäffer, B., Stauber, M., Mueller, T. L., Muller, R. & Schulin, R. Soil and macro-pores under uniaxial compression. I. Mechanical stability of repacked soil and deformation of different types of macro-pores. Geoderma 146, 183–191 (2008).

    Article  Google Scholar 

  134. Hartmann, M. et al. Resistance and resilience of the forest soil microbiome to logging-associated compaction. ISME J. 8, 226–244 (2014).

    Article  Google Scholar 

  135. Sitaula, B. K., Hansen, S., Sitaula, J. I. B. & Bakken, L. R. Methane oxidation potentials and fluxes in agricultural soil: effects of fertilisation and soil compaction. Biogeochemistry 48, 323–339 (2000).

    Article  Google Scholar 

  136. Sitaula, B. K., Hansen, S., Sitaula, J. I. B. & Bakken, L. R. Effects of soil compaction on N2O emission in agricultural soil. Chemosphere Glob. Change Sci. 2, 367–371 (2000).

    Article  Google Scholar 

  137. Beckett, C. T. S. et al. Compaction conditions greatly affect growth during early plant establishment. Ecol. Eng. 106, 471–481 (2017).

    Article  Google Scholar 

  138. Reichert, J. M., Suzuki, L. E. A. S., Reinert, D. J., Horn, R. & Håkansson, I. Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil Tillage Res. 102, 242–254 (2009).

    Article  Google Scholar 

  139. von Wilpert, K. & Schäffer, J. Ecological effects of soil compaction and initial recovery dynamics: a preliminary study. Eur. J. For. Res. 125, 129–138 (2006).

    Article  Google Scholar 

  140. Tim Chamen, W. C., Moxey, A. P., Towers, W., Balana, B. & Hallett, P. D. Mitigating arable soil compaction: a review and analysis of available cost and benefit data. Soil Tillage Res. 146, 10–25 (2015).

    Article  Google Scholar 

  141. Beillouin, D., Ben-Ari, T., Malézieux, E., Seufert, V. & Makowski, D. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Glob. Change Biol. 27, 4697–4710 (2021).

    Article  Google Scholar 

  142. Smith, R. G., Gross, K. L. & Robertson, G. P. Effects of crop diversity on agroecosystem function: crop yield response. Ecosystems 11, 355–366 (2008).

    Article  Google Scholar 

  143. Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).

    Article  Google Scholar 

  144. Galindo-Castañeda, T., Lynch, J. P., Six, J. & Hartmann, M. Improving soil resource uptake by plants through capitalizing on synergies between root architecture and anatomy and root-associated microorganisms. Front. Plant Sci. https://doi.org/10.3389/fpls.2022.827369 (2022).

  145. Venter, Z. S., Jacobs, K. & Hawkins, H.-J. The impact of crop rotation on soil microbial diversity: a meta-analysis. Pedobiologia 59, 215–223 (2016).

    Article  Google Scholar 

  146. Stefan, L., Hartmann, M., Engbersen, N., Six, J. & Schöb, C. Positive effects of crop diversity on productivity driven by changes in soil microbial composition. Front. Microbiol. 12, 660749 (2021).

    Article  Google Scholar 

  147. Peralta, A. L., Sun, Y., McDaniel, M. D. & Lennon, J. T. Crop rotational diversity increases disease suppressive capacity of soil microbiomes. Ecosphere 9, e02235 (2018).

    Article  Google Scholar 

  148. Abdalla, M. et al. A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity. Glob. Change Biol. 25, 2530–2543 (2019).

    Article  Google Scholar 

  149. Bacq-Labreuil, A., Crawford, J., Mooney, S. J., Neal, A. L. & Ritz, K. Cover crop species have contrasting influence upon soil structural genesis and microbial community phenotype. Sci. Rep. 9, 7473 (2019).

    Article  Google Scholar 

  150. Kong, A. Y. Y. & Six, J. Microbial community assimilation of cover crop rhizodeposition within soil microenvironments in alternative and conventional cropping systems. Plant Soil 356, 315–330 (2012).

    Article  Google Scholar 

  151. Kim, N., Zabaloy, M. C., Guan, K. & Villamil, M. B. Do cover crops benefit soil microbiome? A meta-analysis of current research. Soil Biol. Biochem. 142, 107701 (2020).

    Article  Google Scholar 

  152. Alahmad, A. et al. Cover crops in arable lands increase functional complementarity and redundancy of bacterial communities. J. Appl. Ecol. 56, 651–664 (2019).

    Article  Google Scholar 

  153. Cloutier, M. L. et al. Fungal community shifts in soils with varied cover crop treatments and edaphic properties. Sci. Rep. 10, 6198 (2020).

    Article  Google Scholar 

  154. Finney, D. M., Buyer, J. S. & Kaye, J. P. Living cover crops have immediate impacts on soil microbial community structure and function. J. Soil Water Conserv. 72, 361–373 (2017).

    Article  Google Scholar 

  155. Vukicevich, E., Lowery, T., Bowen, P., Úrbez-Torres, J. R. & Hart, M. Cover crops to increase soil microbial diversity and mitigate decline in perennial agriculture. A review. Agron. Sustain. Dev. 36, 48 (2016).

    Article  Google Scholar 

  156. Sanz-Cobena, A. et al. Do cover crops enhance N2O, CO2 or CH4 emissions from soil in Mediterranean arable systems? Sci. Total Environ. 466-467, 164–174 (2014).

    Article  Google Scholar 

  157. Basche, A. D., Miguez, F. E., Kaspar, T. C. & Castellano, M. J. Do cover crops increase or decrease nitrous oxide emissions? A meta-analysis. J. Soil Water Conserv. 69, 471–482 (2014).

    Article  Google Scholar 

  158. Tribouillois, H., Constantin, J. & Justes, E. Cover crops mitigate direct greenhouse gases balance but reduce drainage under climate change scenarios in temperate climate with dry summers. Glob. Change Biol. 24, 2513–2529 (2018).

    Article  Google Scholar 

  159. Vanlauwe, B. et al. Integrated soil fertility management: operational definition and consequences for implementation and dissemination. Outlook Agric. 39, 17–24 (2010).

    Article  Google Scholar 

  160. Barzman, M. et al. Eight principles of integrated pest management. Agron. Sustain. Dev. 35, 1199–1215 (2015).

    Article  Google Scholar 

  161. Francioli, D. et al. Mineral vs. organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.01446 (2016).

  162. Lentendu, G. et al. Effects of long-term differential fertilization on eukaryotic microbial communities in an arable soil: a multiple barcoding approach. Mol. Ecol. 23, 3341–3355 (2014).

    Article  Google Scholar 

  163. Lori, M., Symnaczik, S., Mäder, P., De Deyn, G. & Gattinger, A. Organic farming enhances soil microbial abundance and activity — a meta-analysis and meta-regression. PLoS One 12, e0180442 (2017).

    Article  Google Scholar 

  164. Bebber, D. P. & Richards, V. R. A meta-analysis of the effect of organic and mineral fertilizers on soil microbial diversity. Appl. Soil Ecol. 175, 104450 (2022).

    Article  Google Scholar 

  165. Rillig, M. C., Tsang, A. & Roy, J. Microbial community coalescence for microbiome engineering. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.01967 (2016).

  166. Loaiza Puerta, V., Pujol Pereira, E. I., Wittwer, R., van der Heijden, M. & Six, J. Improvement of soil structure through organic crop management, conservation tillage and grass-clover ley. Soil Tillage Res. 180, 1–9 (2018).

    Article  Google Scholar 

  167. Řezáčová, V. et al. Organic fertilization improves soil aggregation through increases in abundance of eubacteria and products of arbuscular mycorrhizal fungi. Sci. Rep. 11, 12548 (2021).

    Article  Google Scholar 

  168. Fonte, S. J., Kong, A. Y. Y., van Kessel, C., Hendrix, P. F. & Six, J. Influence of earthworm activity on aggregate-associated carbon and nitrogen dynamics differs with agroecosystem management. Soil Biol. Biochem. 39, 1014–1022 (2007).

    Article  Google Scholar 

  169. Fu, B., Chen, L., Huang, H., Qu, P. & Wei, Z. Impacts of crop residues on soil health: a review. Environ. Pollut. Bioavailab. 33, 164–173 (2021).

    Article  Google Scholar 

  170. Blanco-Canqui, H. & Lal, R. Crop residue removal impacts on soil productivity and environmental quality. Crit. Rev. Plant Sci. 28, 139–163 (2009).

    Article  Google Scholar 

  171. Yang, H. et al. Wheat straw return influences nitrogen-cycling and pathogen associated soil microbiota in a wheat–soybean rotation system. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.01811 (2019).

  172. Enebe, M. C. & Babalola, O. O. Soil fertilization affects the abundance and distribution of carbon and nitrogen cycling genes in the maize rhizosphere. AMB Express 11, 24 (2021).

    Article  Google Scholar 

  173. Skinner, C. et al. The impact of long-term organic farming on soil-derived greenhouse gas emissions. Sci. Rep. 9, 1702 (2019).

    Article  Google Scholar 

  174. Lazcano, C., Zhu-Barker, X. & Decock, C. Effects of organic fertilizers on the soil microorganisms responsible for N2O emissions: a review. Microorganisms https://doi.org/10.3390/microorganisms9050983 (2021).

  175. Tilston, E. L., Pitt, D. & Groenhof, A. C. Composted recycled organic matter suppresses soil-borne diseases of field crops. N. Phytol. 154, 731–740 (2002).

    Article  Google Scholar 

  176. Bonanomi, G., Antignani, V., Capodilupo, M. & Scala, F. Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biol. Biochem. 42, 136–144 (2010).

    Article  Google Scholar 

  177. Briceño, G., Palma, G. & Durán, N. Influence of organic amendment on the biodegradation and movement of pesticides. Crit. Rev. Environ. Sci. Technol. 37, 233–271 (2007).

    Article  Google Scholar 

  178. Lehmann, J. & Joseph, S. Biochar for Environmental Management: Science, Technology and Implementation (Routledge, 2015).

  179. Wang, D., Fonte, S. J., Parikh, S. J., Six, J. & Scow, K. M. Biochar additions can enhance soil structure and the physical stabilization of C in aggregates. Geoderma 303, 110–117 (2017).

    Article  Google Scholar 

  180. Wang, J., Xiong, Z. & Kuzyakov, Y. Biochar stability in soil: meta-analysis of decomposition and priming effects. GCB Bioenergy 8, 512–523 (2016).

    Article  Google Scholar 

  181. Lehmann, J. et al. Biochar effects on soil biota — a review. Soil Biol. Biochem. 43, 1812–1836 (2011).

    Article  Google Scholar 

  182. Liu, X., Shi, Y., Zhang, Q. & Li, G. Effects of biochar on nitrification and denitrification-mediated N2O emissions and the associated microbial community in an agricultural soil. Environ. Sci. Pollut. Res. 28, 6649–6663 (2021).

    Article  Google Scholar 

  183. Zhang, L. et al. Effects of biochar application on soil nitrogen transformation, microbial functional genes, enzyme activity, and plant nitrogen uptake: a meta-analysis of field studies. GCB Bioenergy 13, 1859–1873 (2021).

    Article  Google Scholar 

  184. Deb, D., Kloft, M., Lässig, J. & Walsh, S. Variable effects of biochar and P solubilizing microbes on crop productivity in different soil conditions. Agroecol. Sustain. Food Syst. 40, 145–168 (2016).

    Article  Google Scholar 

  185. Li, X., Wang, T., Chang, S. X., Jiang, X. & Song, Y. Biochar increases soil microbial biomass but has variable effects on microbial diversity: a meta-analysis. Sci. Total Environ. 749, 141593 (2020).

    Article  Google Scholar 

  186. Yoo, G., Lee, Y. O., Won, T. J., Hyun, J. G. & Ding, W. Variable effects of biochar application to soils on nitrification-mediated N2O emissions. Sci. Total Environ. 626, 603–611 (2018).

    Article  Google Scholar 

  187. Verhoeven, E. et al. Toward a better assessment of biochar–nitrous oxide mitigation potential at the field scale. J. Environ. Qual. 46, 237–246 (2017).

    Article  Google Scholar 

  188. He, Y. et al. Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis. GCB Bioenergy 9, 743–755 (2017).

    Article  Google Scholar 

  189. Wang, W. et al. Biochar application alleviated negative plant–soil feedback by modifying soil microbiome. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.00799 (2020).

  190. Duan, M. et al. Effects of biochar on reducing the abundance of oxytetracycline, antibiotic resistance genes, and human pathogenic bacteria in soil and lettuce. Environ. Pollut. 224, 787–795 (2017).

    Article  Google Scholar 

  191. Liu, Y., Lonappan, L., Brar, S. K. & Yang, S. Impact of biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides: a review. Sci. Total Environ. 645, 60–70 (2018).

    Article  Google Scholar 

  192. du Jardin, P. Plant biostimulants: definition, concept, main categories and regulation. Sci. Hortic. 196, 3–14 (2015).

    Article  Google Scholar 

  193. Le Mire, G. et al. Review: implementing plant biostimulants and biocontrol strategies in the agroecological management of cultivated ecosystems. Biotechnol. Agron. Soc. Environ. 20, 1–15 (2016).

    Google Scholar 

  194. Leggett, M. et al. Soybean response to inoculation with Bradyrhizobium japonicum in the United States and Argentina. Agron. J. 109, 1031–1038 (2017).

    Article  Google Scholar 

  195. Coniglio, A., Mora, V., Puente, M. & Cassán, F. in Microbial Probiotics for Agricultural Systems: Advances in Agronomic Use (eds Zúñiga-Dávila, D. et al.) 45–70 (Springer, 2019).

  196. Alori, E. T., Dare, M. O. & Babalola, O. O. in Sustainable Agriculture Reviews (ed. Lichtfouse, E.) 281–307 (Springer, 2017).

  197. Rillig, M. C. & Mummey, D. L. Mycorrhizas and soil structure. N. Phytol. 171, 41–53 (2006).

    Article  Google Scholar 

  198. Mawarda, P. C., Le Roux, X., Dirk van Elsas, J. & Salles, J. F. Deliberate introduction of invisible invaders: a critical appraisal of the impact of microbial inoculants on soil microbial communities. Soil. Biol. Biochem. 148, 107874 (2020).

    Article  Google Scholar 

  199. Liu, X., Le Roux, X. & Salles, J. F. The legacy of microbial inoculants in agroecosystems and potential for tackling climate change challenges. iScience 25, 103821 (2022).

    Article  Google Scholar 

  200. Cornell, C. et al. Do bioinoculants affect resident microbial communities? A meta-analysis. Front. Agron. https://doi.org/10.3389/fagro.2021.753474 (2021).

  201. Bender, S. F., Schlaeppi, K., Held, A. & Van der Heijden, M. G. A. Establishment success and crop growth effects of an arbuscular mycorrhizal fungus inoculated into Swiss corn fields. Agric. Ecosyst. Environ. 273, 13–24 (2019).

    Article  Google Scholar 

  202. Schreiter, S. et al. Soil type-dependent effects of a potential biocontrol inoculant on indigenous bacterial communities in the rhizosphere of field-grown lettuce. FEMS Microbiol. Ecol. 90, 718–730 (2014).

    Article  Google Scholar 

  203. Mueller, U. G. & Sachs, J. L. Engineering microbiomes to improve plant and animal health. Trends Microbiol. 23, 606–617 (2015).

    Article  Google Scholar 

  204. Kennedy, T. L., Suddick, E. C. & Six, J. Reduced nitrous oxide emissions and increased yields in California tomato cropping systems under drip irrigation and fertigation. Agric. Ecosyst. Environ. 170, 16–27 (2013).

    Article  Google Scholar 

  205. Fonte, S. J., Barrios, E. & Six, J. Earthworms, soil fertility and aggregate-associated soil organic matter dynamics in the Quesungual agroforestry system. Geoderma 155, 320–328 (2010).

    Article  Google Scholar 

  206. Pauli, N., Barrios, E., Conacher, A. J. & Oberthür, T. Soil macrofauna in agricultural landscapes dominated by the Quesungual slash-and-mulch agroforestry system, western Honduras. Appl. Soil. Ecol. 47, 119–132 (2011).

    Article  Google Scholar 

  207. Eichorst, S. A. et al. Advancements in the application of NanoSIMS and Raman microspectroscopy to investigate the activity of microbial cells in soils. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiv106 (2015).

  208. Musat, N., Musat, F., Weber, P. K. & Pett-Ridge, J. Tracking microbial interactions with NanoSIMS. Curr. Opin. Biotechnol. 41, 114–121 (2016).

    Article  Google Scholar 

  209. Bronick, C. J. & Lal, R. Soil structure and management: a review. Geoderma 124, 3–22 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge J. Binswanger (Fig. 1) and N. Ohannessian (Figs. 3 and 4) for scientific illustration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hartmann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Agroecosystems

Sites or integrated regions that support food production while conserving biotic and abiotic resources and providing a balanced supply of ecosystem services.

Antibiosis

A biological interaction between two or more organisms that is detrimental to at least one of them.

Biochar

The product of thermal degradation of organic matter at high temperature in the absence of air (pyrolysis).

Biologicals

Products consisting of either a living organism or a substance derived from it, providing protection against pests and diseases or promoting plant growth and stress tolerance.

Coalescence

The mixing of different biological communities (for example through inoculation) that results in new metacommunities with potential novel functional attributes.

Copiotrophs

Organisms that preferentially consume labile organic C pools, have high nutritional requirements and can exhibit high growth rates when resource conditions are abundant.

Cover cropping

The planting of crops between periods of regular production of the main crop, with the goal of covering and protecting the soil rather than being harvested as cash crop.

Endosphere

Internal environment of the host that can be colonized by microorganisms called endophytes.

Host-mediated indirect selection

Using the host to select for beneficial microbes that improve host performance by selecting and propagating microbial communities associated with specific host-traits of interest (such as plant growth).

Hyperparasitism

A relationship between two parasites in which one acts as parasite on the other.

Integrated soil fertility management

A set of practices related to cropping, fertilizers, organic resources and other amendments on smallholder farms to increase crop production and input use efficiency.

Integrated pest management

A set of best practices that focuses on long-term prevention or suppression of pests and diseases.

Microbiome

A characteristic microbial community occupying a well-defined habitat with distinct physio-chemical properties, and its associated theatre of activity.

Mycorrhizal fungi

Fungi that form mutualistic symbiotic relationships with roots of certain vascular plant species in which the fungus receives carbohydrates from the plant in exchange for mineral nutrients.

Oligotrophs

Organisms that exhibit slow growth, low metabolic rates and generally low population density, but feature high substrate affinity under low nutrient availability.

Phytohormones

Chemicals produced by plants that regulate their growth, development and reproduction, but are also used as signalling molecules to interact with microbes.

Plant-growth-promoting microorganisms

Microorganisms that colonize various plant compartments such as the rhizosphere or endosphere and have positive effects on plant growth and stress tolerance.

Rhizodeposition

Active and passive release of organic compounds from plant roots into the surrounding soil.

Rhizosphere

Zone surrounding plant roots in which the chemistry and microbiology are influenced by root activity.

Root exudates

A suite of substances that are secreted by the roots of living plants into the surrounding compartment.

Secondary metabolites

Organic compounds produced by organisms that are not directly involved in normal growth, development or reproduction of the organism.

Soil aggregates

A group of primary soil particles that are more cohesive than other surrounding particles and are classified by size into macroaggregates (>250 μm) and microaggregates (<250 μm).

Soil organic matter

The organic component of soil derived from plant and animal detritus at various stages of decomposition as well as soil microorganisms and the organic substances synthesized by these organisms.

Soil structure

The arrangement of soil particles and aggregates into a porous structure that regulates the flow of resources.

Systemic resistance

Resistance mechanism in plants induced by microorganisms or abiotic inducers that present a long-lasting defence function against a broad spectrum of pests and pathogens.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartmann, M., Six, J. Soil structure and microbiome functions in agroecosystems. Nat Rev Earth Environ 4, 4–18 (2023). https://doi.org/10.1038/s43017-022-00366-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00366-w

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene