Abstract
Soil microbiomes drive key functions in agroecosystems, determining soil fertility, crop productivity and stress tolerance. The microbiome is intricately linked with soil structure, such as aggregation and pore connectivity, because this structure regulates the flow of water, oxygen and nutrients through the system. In this Review, we summarize the key functions of soil microbiomes in agroecosystems, highlight the dependence of these functions on the structural integrity of the soil, and discuss how agricultural practices influence the link between soil structure and microbiome functioning. System-level agricultural management practices can induce structural alterations to the soil, thereby changing the microbial processes occurring at the microscale. These changes have large-scale consequences, such as soil erosion, reduced soil fertility and increased greenhouse gas emissions. Sustainable approaches such as integrated soil fertility management and integrated pest management seek to improve soil structure and enhance microbial biodiversity, but we lack a mechanistic understanding of how multifaceted decisions at the farm level shape these context-dependent small-scale processes in the long term. Future research needs to bridge the microscale and field scale to inform agricultural management decisions for building climate-smart, resource-efficient and stress-resilient agroecosystems, and to harness the soil microbiome as a nature-based solution for sustainable agriculture.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).
Tscharntke, T. et al. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 151, 53–59 (2012).
DeFries, R. S., Foley, J. A. & Asner, G. P. Land-use choices: balancing human needs and ecosystem function. Front. Ecol. Environ. 2, 249–257 (2004).
Matson, P. A., Parton, W. J., Power, A. G. & Swift, M. J. Agricultural intensification and ecosystem properties. Science 277, 504–509 (1997).
Zabel, F. et al. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nat. Commun. 10, 2844 (2019).
Tsiafouli, M. A. et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Change Biol. 21, 973–985 (2015).
Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).
Mehrabi, Z., Ellis, E. C. & Ramankutty, N. The challenge of feeding the world while conserving half the planet. Nat. Sustain. 1, 409–412 (2018).
Kopittke, P. M., Menzies, N. W., Wang, P., McKenna, B. A. & Lombi, E. Soil and the intensification of agriculture for global food security. Environ. Int. 132, 105078 (2019).
Pereira, P., Bogunovic, I., Muñoz-Rojas, M. & Brevik, E. C. Soil ecosystem services, sustainability, valuation and management. Curr. Opin. Environ. Sci. Health 5, 7–13 (2018).
Bai, Z. G., Dent, D. L., Olsson, L. & Schaepman, M. E. Proxy global assessment of land degradation. Soil Use Manage. 24, 223–234 (2008).
Stockmann, U., Minasny, B. & McBratney, A. B. How fast does soil grow? Geoderma 216, 48–61 (2014).
Wall, D. H., Nielsen, U. N. & Six, J. Soil biodiversity and human health. Nature 528, 69–76 (2015).
Wilhelm, R. C., van Es, H. M. & Buckley, D. H. Predicting measures of soil health using the microbiome and supervised machine learning. Soil Biol. Biochem. 164, 108472 (2022).
König, S., Vogel, H.-J., Harms, H. & Worrich, A. Physical, chemical and biological effects on soil bacterial dynamics in microscale models. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.00053 (2020).
Six, J., Frey, S. D., Thiet, R. K. & Batten, K. M. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J. 70, 555–569 (2006).
Status of the World’s Soil Resources (SWSR) — Main Report, 650 (FAO/Intergovernmental Technical Panel on Soils, 2015).
Singh, B. K., Bardgett, R. D., Smith, P. & Reay, D. S. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 8, 779–790 (2010).
Gougoulias, C., Clark, J. M. & Shaw, L. J. The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J. Sci. Food Agric. 94, 2362–2371 (2014).
Naylor, D. et al. Soil microbiomes under climate change and implications for carbon cycling. Annu. Rev. Environ. Resour. 45, 29–59 (2020).
Berg, I. A. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl. Environ. Microbiol. 77, 1925–1936 (2011).
Yuan, H., Ge, T., Chen, C., O’Donnell, A. G. & Wu, J. Significant role for microbial autotrophy in the sequestration of soil carbon. Appl. Environ. Microbiol. 78, 2328–2336 (2012).
Stevenson, F. J. Humus Chemistry: Genesis, Composition, Reactions 2nd edition (Wiley, 1994).
Liang, C., Amelung, W., Lehmann, J. & Kästner, M. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob. Change Biol. 25, 3578–3590 (2019).
Crowther, T. W. et al. Biotic interactions mediate soil microbial feedbacks to climate change. Proc. Natl Acad. Sci. USA 112, 7033–7038 (2015).
Angel, R., Claus, P. & Conrad, R. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J. 6, 847–862 (2012).
Conrad, R. The global methane cycle: recent advances in understanding the microbial processes involved. Environ. Microbiol. Rep. 1, 285–292 (2009).
Saunois, M. et al. The global methane budget 2000–2017. Earth Syst. Sci. Data 12, 1561–1623 (2020).
Dutta, H. & Dutta, A. The microbial aspect of climate change. Energy Ecol. Environ. 1, 209–232 (2016).
Hu, H.-W., Chen, D. & He, J.-Z. Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiol. Rev. 39, 729–749 (2015).
Tian, H. et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256 (2020).
Marschner, P. in Nutrient Cycling in Terrestrial Ecosystems (eds Petra, M. & Zdenko, R.) 159–182 (Springer, 2007).
Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive Earth’s biogeochemical cycles. Science 320, 1034–1039 (2008).
Saccá, M. L., Barra Caracciolo, A., Di Lenola, M. & Grenni, P. Soil Biological Communities and Ecosystem Resilience (eds Martin, L., Paola, G. & Mauro, G.) 9–24 (Springer, 2017).
Jetten, M. S. M. The microbial nitrogen cycle. Environ. Microbiol. 10, 2903–2909 (2008).
Kuypers, M. M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276 (2018).
Canfield, D. E., Glazer, A. N. & Falkowski, P. G. The evolution and future of Earth’s nitrogen cycle. Science 330, 192–196 (2010).
Clark, I. M., Hughes, D. J., Fu, Q., Abadie, M. & Hirsch, P. R. Metagenomic approaches reveal differences in genetic diversity and relative abundance of nitrifying bacteria and archaea in contrasting soils. Sci. Rep. 11, 15905 (2021).
Philippot, L., Hallin, S. & Schloter, M. in Advances in Agronomy Vol. 96, 249–305 (Academic, 2007).
Hayatsu, M., Tago, K. & Saito, M. Various players in the nitrogen cycle: diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Sci. Plant Nutr. 54, 33–45 (2008).
Mackey, K. R. M. & Paytan, A. in Encyclopedia of Microbiology 3rd edition (ed. Moselio, S.) 322–334 (Academic, 2009).
Richardson, A. E., Barea, J.-M., McNeill, A. M. & Prigent-Combaret, C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant. Soil. 321, 305–339 (2009).
Richardson, A. E. & Simpson, R. J. Soil microorganisms mediating phosphorus availability. Plant. Physiol. 156, 989–996 (2011).
Li, J.-t. et al. A comprehensive synthesis unveils the mysteries of phosphate-solubilizing microbes. Biol. Rev. 96, 2771–2793 (2021).
Kobae, Y. Dynamic phosphate uptake in arbuscular mycorrhizal roots under field conditions. Front. Env. Sci. https://doi.org/10.3389/fenvs.2018.00159 (2019).
Oberson, A. & Joner, E. J. in Organic Phosphorus in the Environment (eds Turner, B. L. et al.) 133–164 (CABI, 2005).
Compant, S., Samad, A., Faist, H. & Sessitsch, A. A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J. Adv. Res. 19, 29–37 (2019).
Eichmann, R., Richards, L. & Schäfer, P. Hormones as go-betweens in plant microbiome assembly. Plant J. 105, 518–541 (2021).
Nascimento, F. X., Hernandez, A. G., Glick, B. R. & Rossi, M. J. The extreme plant-growth-promoting properties of Pantoea phytobeneficialis MSR2 revealed by functional and genomic analysis. Environ. Microbiol. 22, 1341–1355 (2020).
Valliere, J. M., Wong, W. S., Nevill, P. G., Zhong, H. & Dixon, K. W. Preparing for the worst: utilizing stress-tolerant soil microbial communities to aid ecological restoration in the Anthropocene. Ecol. Solut. Evid. 1, e12027 (2020).
Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant–microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 18, 607–621 (2020).
Rolfe, S. A., Griffiths, J. & Ton, J. Crying out for help with root exudates: adaptive mechanisms by which stressed plants assemble health-promoting soil microbiomes. Curr. Opin. Microbiol. 49, 73–82 (2019).
Costa, O. Y. A., Raaijmakers, J. M. & Kuramae, E. E. Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.01636 (2018).
Sharma, A. et al. Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9, 285 (2019).
Singh, D. P. et al. Microbial inoculation in rice regulates antioxidative reactions and defense related genes to mitigate drought stress. Sci. Rep. 10, 4818 (2020).
Bárzana, G., Aroca, R., Bienert, G. P., Chaumont, F. & Ruiz-Lozano, J. M. New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance. Mol. Plant Microbe Interact. 27, 349–363 (2014).
Gamalero, E. & Glick, B. R. Bacterial modulation of plant ethylene levels. Plant Physiol. 169, 13–22 (2015).
Le Pioufle, O., Ganoudi, M., Calonne-Salmon, M., Ben Dhaou, F. & Declerck, S. Rhizophagus irregularis MUCL 41833 improves phosphorus uptake and water use efficiency in maize plants during recovery from drought stress. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.00897 (2019).
Begum, N. et al. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.01068 (2019).
Köhl, J., Kolnaar, R. & Ravensberg, W. J. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.00845 (2019).
Hu, L. et al. Root exudate metabolites drive plant–soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat. Commun. 9, 2738 (2018).
Granato, E. T., Meiller-Legrand, T. A. & Foster, K. R. The evolution and ecology of bacterial warfare. Curr. Biol. 29, R521–R537 (2019).
Shah, P. A. & Pell, J. K. Entomopathogenic fungi as biological control agents. Appl. Microbiol. Biotechnol. 61, 413–423 (2003).
Soares, F. Ed. F., Sufiate, B. L. & de Queiroz, J. H. Nematophagous fungi: far beyond the endoparasite, predator and ovicidal groups. Agric. Nat. Resour. 52, 1–8 (2018).
Nordbring-Hertz, B., Jansson, H.-B. & Tunlid, A. in eLS (Wiley, 2011); https://doi.org/10.1002/9780470015902.a0000374.pub3.
Tian, B., Yang, J. & Zhang, K.-Q. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS Microbiol. Ecol. 61, 197–213 (2007).
Shafi, J., Tian, H. & Ji, M. Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol. Biotechnol. Equip. 31, 446–459 (2017).
Bravo, A., Likitvivatanavong, S., Gill, S. S. & Soberón, M. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 41, 423–431 (2011).
Schnepf, E. et al. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 775–806 (1998).
Wei, J.-Z. et al. Bacillus thuringiensis crystal proteins that target nematodes. Proc. Natl Acad. Sci. USA 100, 2760–2765 (2003).
Flury, P. et al. Insect pathogenicity in plant-beneficial pseudomonads: phylogenetic distribution and comparative genomics. ISME J. 10, 2527–2542 (2016).
Vurukonda, S. S. K. P., Giovanardi, D. & Stefani, E. Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int. J. Mol. Sci. 19, 952 (2018).
Whipps, J. M. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52, 487–511 (2001).
MacLeod, M., Arp, H. P. H., Tekman, M. B. & Jahnke, A. The global threat from plastic pollution. Science 373, 61–65 (2021).
Sharma, A. et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 1, 1446 (2019).
Gworek, B., Kijeńska, M., Wrzosek, J. & Graniewska, M. Pharmaceuticals in the soil and plant environment: a review. Water Air Soil Pollut. 232, 145 (2021).
Tang, F. H. M., Lenzen, M., McBratney, A. & Maggi, F. Risk of pesticide pollution at the global scale. Nat. Geosci. 14, 206–210 (2021).
Zumstein, M. T. et al. Biodegradation of synthetic polymers in soils: tracking carbon into CO2 and microbial biomass. Sci. Adv. 4, eaas9024 (2018).
Singh, B. & Singh, K. Microbial degradation of herbicides. Crit. Rev. Microbiol. 42, 245–261 (2016).
Teng, Y. & Chen, W. Soil microbiomes — a promising strategy for contaminated soil remediation: a review. Pedosphere 29, 283–297 (2019).
Vogt, C. & Richnow, H. H. in Geobiotechnology II: Energy Resources, Subsurface Technologies, Organic Pollutants and Mining Legal Principles (eds Schippers, A. et al.) 123–146 (Springer, 2014).
Mishra, S. et al. Recent advanced technologies for the characterization of xenobiotic-degrading microorganisms and microbial communities. Front. Bioeng. Biotechnol. https://doi.org/10.3389/fbioe.2021.632059 (2021).
Rolli, E. et al. ‘Cry-for-help’ in contaminated soil: a dialogue among plants and soil microbiome to survive in hostile conditions. Environ. Microbiol. 23, 5690–5703 (2021).
Wilpiszeski, R. L. et al. Soil aggregate microbial communities: towards understanding microbiome interactions at biologically relevant scales. Appl. Environ. Microbiol. https://doi.org/10.1128/aem.00324-19 (2019).
Blott, S. J. & Pye, K. Particle size scales and classification of sediment types based on particle size distributions: review and recommended procedures. Sedimentology 59, 2071–2096 (2012).
Totsche, K. U. et al. Microaggregates in soils. J. Plant Nutr. Soil Sci. 181, 104–136 (2018).
Martin, J. P., Martin, W. P., Page, J. B., Raney, W. A. & de Ment, J. D. in Advances in Agronomy Vol. 7 (ed. Norman, A. G.) 1–37 (Academic, 1955).
Chotte, J.-L. in Microorganisms in Soils: Roles in Genesis and Functions (eds Varma, A. & Buscot, F.) 107–119 (Springer, 2005).
Oades, J. M. Soil organic matter and structural stability: mechanisms and implications for management. Plant. Soil. 76, 319–337 (1984).
Six, J., Elliott, E. T. & Paustian, K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 32, 2099–2103 (2000).
Six, J., Bossuyt, H., Degryze, S. & Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 79, 7–31 (2004).
Schlüter, S. et al. Microscale carbon distribution around pores and particulate organic matter varies with soil moisture regime. Nat. Commun. 13, 2098 (2022).
Acosta, J. A., Martínez-Martínez, S., Faz, A. & Arocena, J. Accumulations of major and trace elements in particle size fractions of soils on eight different parent materials. Geoderma 161, 30–42 (2011).
Sessitsch, A., Weilharter, A., Gerzabek, M. H., Kirchmann, H. & Kandeler, E. Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Appl. Environ. Microbiol. 67, 4215–4224 (2001).
Zhang, Q. et al. Fatty-acid profiles and enzyme activities in soil particle-size fractions under long-term fertilization. Soil Sci. Soc. Am. J. 80, 97–111 (2016).
Hemkemeyer, M., Christensen, B. T., Martens, R. & Tebbe, C. C. Soil particle size fractions harbour distinct microbial communities and differ in potential for microbial mineralisation of organic pollutants. Soil Biol. Biochem. 90, 255–265 (2015).
Briar, S. S. et al. The distribution of nematodes and soil microbial communities across soil aggregate fractions and farm management systems. Soil Biol. Biochem. 43, 905–914 (2011).
Hemkemeyer, M., Dohrmann, A. B., Christensen, B. T. & Tebbe, C. C. Bacterial preferences for specific soil particle size fractions revealed by community analyses. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.00149 (2018).
Hemkemeyer, M., Christensen, B. T., Tebbe, C. C. & Hartmann, M. Taxon-specific fungal preference for distinct soil particle size fractions. Eur. J. Soil Biol. 94, 103103 (2019).
Christensen, B. T. & Olesen, J. E. Nitrogen mineralization potential of organomineral size separates from soils with annual straw incorporation. Eur. J. Soil Sci. 49, 25–36 (1998).
Christensen, B. T. Decomposability of organic matter in particle size fractions from field soils with straw incorporation. Soil Biol. Biochem. 19, 429–435 (1987).
Luo, G. et al. Long-term fertilisation regimes affect the composition of the alkaline phosphomonoesterase encoding microbial community of a vertisol and its derivative soil fractions. Biol. Fertil. Soils 53, 375–388 (2017).
Mummey, D., Holben, W., Six, J. & Stahl, P. Spatial stratification of soil bacterial populations in aggregates of diverse soils. Microb. Ecol. 51, 404–411 (2006).
Ranjard, L. et al. Heterogeneous cell density and genetic structure of bacterial pools associated with various soil microenvironments as determined by enumeration and DNA fingerprinting approach (RISA). Microb. Ecol. 39, 263–272 (2000).
Raynaud, X. & Nunan, N. Spatial ecology of bacteria at the microscale in soil. PLoS One 9, e87217 (2014).
Rillig, M. C., Muller, L. A. H. & Lehmann, A. Soil aggregates as massively concurrent evolutionary incubators. ISME J. 11, 1943–1948 (2017).
Trivedi, P. et al. Soil aggregation and associated microbial communities modify the impact of agricultural management on carbon content. Environ. Microbiol. 19, 3070–3086 (2017).
Borer, B., Tecon, R. & Or, D. Spatial organization of bacterial populations in response to oxygen and carbon counter-gradients in pore networks. Nat. Commun. 9, 769 (2018).
Kong, A. Y. Y., Hristova, K., Scow, K. M. & Six, J. Impacts of different N management regimes on nitrifier and denitrifier communities and N cycling in soil microenvironments. Soil Biol. Biochem. 42, 1523–1533 (2010).
Bhattacharyya, S. S. et al. Soil carbon sequestration, greenhouse gas emissions, and water pollution under different tillage practices. Sci. Total Environ. 826, 154161 (2022).
Zhang, W. et al. Differences in the nitrous oxide emission and the nitrifier and denitrifier communities among varying aggregate sizes of an arable soil in China. Geoderma 389, 114970 (2021).
Tilman, D. et al. Forecasting agriculturally driven global environmental change. Science 292, 281–284 (2001).
Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).
Hartmann, M., Frey, B., Mayer, J., Mader, P. & Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 9, 1177–1194 (2015).
Degrune, F. et al. The pedological context modulates the response of soil microbial communities to agroecological management. Front. Ecol. Environ. 7, 261 (2019).
Longepierre, M. et al. Limited resilience of the soil microbiome to mechanical compaction within four growing seasons of agricultural management. ISME Commun. 1, 44 (2021).
Delitte, M., Caulier, S., Bragard, C. & Desoignies, N. Plant microbiota beyond farming practices: a review. Front. Sustain. Food Syst. https://doi.org/10.3389/fsufs.2021.624203 (2021).
Hobbs, P. R., Sayre, K. & Gupta, R. The role of conservation agriculture in sustainable agriculture. Phil. Trans. R. Soc. B 363, 543–555 (2008).
Van den Putte, A., Govers, G., Diels, J., Gillijns, K. & Demuzere, M. Assessing the effect of soil tillage on crop growth: a meta-regression analysis on European crop yields under conservation agriculture. Eur. J. Agron. 33, 231–241 (2010).
Six, J. et al. Soil organic matter, biota and aggregation in temperate and tropical soils — effects of no-tillage. Agronomie 22, 755–775 (2002).
Young, I. M. & Ritz, K. Tillage, habitat space and function of soil microbes. Soil Tillage Res. 53, 201–213 (2000).
Degrune, F. et al. Temporal dynamics of soil microbial communities below the seedbed under two contrasting tillage regimes. Front. Microbiol. 8, 1127 (2017).
Pittelkow, C. M. et al. Productivity limits and potentials of the principles of conservation agriculture. Nature 517, 365–368 (2015).
Babin, D. et al. Impact of long-term agricultural management practices on soil prokaryotic communities. Soil Biol. Biochem. https://doi.org/10.1016/j.soilbio.2018.11.002 (2018).
Srour, A. Y. et al. Microbial communities associated with long-term tillage and fertility treatments in a corn–soybean cropping system. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.01363 (2020).
Cania, B. et al. Site-specific conditions change the response of bacterial producers of soil structure-stabilizing agents such as exopolysaccharides and lipopolysaccharides to tillage intensity. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.00568 (2020).
Cooper, H. V., Sjögersten, S., Lark, R. M. & Mooney, S. J. To till or not to till in a temperate ecosystem? Implications for climate change mitigation. Environ. Res. Lett. 16, 054022 (2021).
Mangalassery, S. et al. To what extent can zero tillage lead to a reduction in greenhouse gas emissions from temperate soils? Sci. Rep. 4, 4586 (2014).
Abdalla, M. et al. Conservation tillage systems: a review of its consequences for greenhouse gas emissions. Soil Use Manage. 29, 199–209 (2013).
Six, J. et al. The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Glob. Change Biol. 10, 155–160 (2004).
van Kessel, C. et al. Climate, duration, and N placement determine N2O emissions in reduced tillage systems: a meta-analysis. Glob. Change Biol. 19, 33–44 (2013).
Hamza, M. A. & Anderson, W. K. Soil compaction in cropping systems: a review of the nature, causes and possible solutions. Soil Tillage Res. 82, 121–145 (2005).
Schäffer, B., Stauber, M., Mueller, T. L., Muller, R. & Schulin, R. Soil and macro-pores under uniaxial compression. I. Mechanical stability of repacked soil and deformation of different types of macro-pores. Geoderma 146, 183–191 (2008).
Hartmann, M. et al. Resistance and resilience of the forest soil microbiome to logging-associated compaction. ISME J. 8, 226–244 (2014).
Sitaula, B. K., Hansen, S., Sitaula, J. I. B. & Bakken, L. R. Methane oxidation potentials and fluxes in agricultural soil: effects of fertilisation and soil compaction. Biogeochemistry 48, 323–339 (2000).
Sitaula, B. K., Hansen, S., Sitaula, J. I. B. & Bakken, L. R. Effects of soil compaction on N2O emission in agricultural soil. Chemosphere Glob. Change Sci. 2, 367–371 (2000).
Beckett, C. T. S. et al. Compaction conditions greatly affect growth during early plant establishment. Ecol. Eng. 106, 471–481 (2017).
Reichert, J. M., Suzuki, L. E. A. S., Reinert, D. J., Horn, R. & Håkansson, I. Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil Tillage Res. 102, 242–254 (2009).
von Wilpert, K. & Schäffer, J. Ecological effects of soil compaction and initial recovery dynamics: a preliminary study. Eur. J. For. Res. 125, 129–138 (2006).
Tim Chamen, W. C., Moxey, A. P., Towers, W., Balana, B. & Hallett, P. D. Mitigating arable soil compaction: a review and analysis of available cost and benefit data. Soil Tillage Res. 146, 10–25 (2015).
Beillouin, D., Ben-Ari, T., Malézieux, E., Seufert, V. & Makowski, D. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Glob. Change Biol. 27, 4697–4710 (2021).
Smith, R. G., Gross, K. L. & Robertson, G. P. Effects of crop diversity on agroecosystem function: crop yield response. Ecosystems 11, 355–366 (2008).
Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).
Galindo-Castañeda, T., Lynch, J. P., Six, J. & Hartmann, M. Improving soil resource uptake by plants through capitalizing on synergies between root architecture and anatomy and root-associated microorganisms. Front. Plant Sci. https://doi.org/10.3389/fpls.2022.827369 (2022).
Venter, Z. S., Jacobs, K. & Hawkins, H.-J. The impact of crop rotation on soil microbial diversity: a meta-analysis. Pedobiologia 59, 215–223 (2016).
Stefan, L., Hartmann, M., Engbersen, N., Six, J. & Schöb, C. Positive effects of crop diversity on productivity driven by changes in soil microbial composition. Front. Microbiol. 12, 660749 (2021).
Peralta, A. L., Sun, Y., McDaniel, M. D. & Lennon, J. T. Crop rotational diversity increases disease suppressive capacity of soil microbiomes. Ecosphere 9, e02235 (2018).
Abdalla, M. et al. A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity. Glob. Change Biol. 25, 2530–2543 (2019).
Bacq-Labreuil, A., Crawford, J., Mooney, S. J., Neal, A. L. & Ritz, K. Cover crop species have contrasting influence upon soil structural genesis and microbial community phenotype. Sci. Rep. 9, 7473 (2019).
Kong, A. Y. Y. & Six, J. Microbial community assimilation of cover crop rhizodeposition within soil microenvironments in alternative and conventional cropping systems. Plant Soil 356, 315–330 (2012).
Kim, N., Zabaloy, M. C., Guan, K. & Villamil, M. B. Do cover crops benefit soil microbiome? A meta-analysis of current research. Soil Biol. Biochem. 142, 107701 (2020).
Alahmad, A. et al. Cover crops in arable lands increase functional complementarity and redundancy of bacterial communities. J. Appl. Ecol. 56, 651–664 (2019).
Cloutier, M. L. et al. Fungal community shifts in soils with varied cover crop treatments and edaphic properties. Sci. Rep. 10, 6198 (2020).
Finney, D. M., Buyer, J. S. & Kaye, J. P. Living cover crops have immediate impacts on soil microbial community structure and function. J. Soil Water Conserv. 72, 361–373 (2017).
Vukicevich, E., Lowery, T., Bowen, P., Úrbez-Torres, J. R. & Hart, M. Cover crops to increase soil microbial diversity and mitigate decline in perennial agriculture. A review. Agron. Sustain. Dev. 36, 48 (2016).
Sanz-Cobena, A. et al. Do cover crops enhance N2O, CO2 or CH4 emissions from soil in Mediterranean arable systems? Sci. Total Environ. 466-467, 164–174 (2014).
Basche, A. D., Miguez, F. E., Kaspar, T. C. & Castellano, M. J. Do cover crops increase or decrease nitrous oxide emissions? A meta-analysis. J. Soil Water Conserv. 69, 471–482 (2014).
Tribouillois, H., Constantin, J. & Justes, E. Cover crops mitigate direct greenhouse gases balance but reduce drainage under climate change scenarios in temperate climate with dry summers. Glob. Change Biol. 24, 2513–2529 (2018).
Vanlauwe, B. et al. Integrated soil fertility management: operational definition and consequences for implementation and dissemination. Outlook Agric. 39, 17–24 (2010).
Barzman, M. et al. Eight principles of integrated pest management. Agron. Sustain. Dev. 35, 1199–1215 (2015).
Francioli, D. et al. Mineral vs. organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.01446 (2016).
Lentendu, G. et al. Effects of long-term differential fertilization on eukaryotic microbial communities in an arable soil: a multiple barcoding approach. Mol. Ecol. 23, 3341–3355 (2014).
Lori, M., Symnaczik, S., Mäder, P., De Deyn, G. & Gattinger, A. Organic farming enhances soil microbial abundance and activity — a meta-analysis and meta-regression. PLoS One 12, e0180442 (2017).
Bebber, D. P. & Richards, V. R. A meta-analysis of the effect of organic and mineral fertilizers on soil microbial diversity. Appl. Soil Ecol. 175, 104450 (2022).
Rillig, M. C., Tsang, A. & Roy, J. Microbial community coalescence for microbiome engineering. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.01967 (2016).
Loaiza Puerta, V., Pujol Pereira, E. I., Wittwer, R., van der Heijden, M. & Six, J. Improvement of soil structure through organic crop management, conservation tillage and grass-clover ley. Soil Tillage Res. 180, 1–9 (2018).
Řezáčová, V. et al. Organic fertilization improves soil aggregation through increases in abundance of eubacteria and products of arbuscular mycorrhizal fungi. Sci. Rep. 11, 12548 (2021).
Fonte, S. J., Kong, A. Y. Y., van Kessel, C., Hendrix, P. F. & Six, J. Influence of earthworm activity on aggregate-associated carbon and nitrogen dynamics differs with agroecosystem management. Soil Biol. Biochem. 39, 1014–1022 (2007).
Fu, B., Chen, L., Huang, H., Qu, P. & Wei, Z. Impacts of crop residues on soil health: a review. Environ. Pollut. Bioavailab. 33, 164–173 (2021).
Blanco-Canqui, H. & Lal, R. Crop residue removal impacts on soil productivity and environmental quality. Crit. Rev. Plant Sci. 28, 139–163 (2009).
Yang, H. et al. Wheat straw return influences nitrogen-cycling and pathogen associated soil microbiota in a wheat–soybean rotation system. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.01811 (2019).
Enebe, M. C. & Babalola, O. O. Soil fertilization affects the abundance and distribution of carbon and nitrogen cycling genes in the maize rhizosphere. AMB Express 11, 24 (2021).
Skinner, C. et al. The impact of long-term organic farming on soil-derived greenhouse gas emissions. Sci. Rep. 9, 1702 (2019).
Lazcano, C., Zhu-Barker, X. & Decock, C. Effects of organic fertilizers on the soil microorganisms responsible for N2O emissions: a review. Microorganisms https://doi.org/10.3390/microorganisms9050983 (2021).
Tilston, E. L., Pitt, D. & Groenhof, A. C. Composted recycled organic matter suppresses soil-borne diseases of field crops. N. Phytol. 154, 731–740 (2002).
Bonanomi, G., Antignani, V., Capodilupo, M. & Scala, F. Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biol. Biochem. 42, 136–144 (2010).
Briceño, G., Palma, G. & Durán, N. Influence of organic amendment on the biodegradation and movement of pesticides. Crit. Rev. Environ. Sci. Technol. 37, 233–271 (2007).
Lehmann, J. & Joseph, S. Biochar for Environmental Management: Science, Technology and Implementation (Routledge, 2015).
Wang, D., Fonte, S. J., Parikh, S. J., Six, J. & Scow, K. M. Biochar additions can enhance soil structure and the physical stabilization of C in aggregates. Geoderma 303, 110–117 (2017).
Wang, J., Xiong, Z. & Kuzyakov, Y. Biochar stability in soil: meta-analysis of decomposition and priming effects. GCB Bioenergy 8, 512–523 (2016).
Lehmann, J. et al. Biochar effects on soil biota — a review. Soil Biol. Biochem. 43, 1812–1836 (2011).
Liu, X., Shi, Y., Zhang, Q. & Li, G. Effects of biochar on nitrification and denitrification-mediated N2O emissions and the associated microbial community in an agricultural soil. Environ. Sci. Pollut. Res. 28, 6649–6663 (2021).
Zhang, L. et al. Effects of biochar application on soil nitrogen transformation, microbial functional genes, enzyme activity, and plant nitrogen uptake: a meta-analysis of field studies. GCB Bioenergy 13, 1859–1873 (2021).
Deb, D., Kloft, M., Lässig, J. & Walsh, S. Variable effects of biochar and P solubilizing microbes on crop productivity in different soil conditions. Agroecol. Sustain. Food Syst. 40, 145–168 (2016).
Li, X., Wang, T., Chang, S. X., Jiang, X. & Song, Y. Biochar increases soil microbial biomass but has variable effects on microbial diversity: a meta-analysis. Sci. Total Environ. 749, 141593 (2020).
Yoo, G., Lee, Y. O., Won, T. J., Hyun, J. G. & Ding, W. Variable effects of biochar application to soils on nitrification-mediated N2O emissions. Sci. Total Environ. 626, 603–611 (2018).
Verhoeven, E. et al. Toward a better assessment of biochar–nitrous oxide mitigation potential at the field scale. J. Environ. Qual. 46, 237–246 (2017).
He, Y. et al. Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis. GCB Bioenergy 9, 743–755 (2017).
Wang, W. et al. Biochar application alleviated negative plant–soil feedback by modifying soil microbiome. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.00799 (2020).
Duan, M. et al. Effects of biochar on reducing the abundance of oxytetracycline, antibiotic resistance genes, and human pathogenic bacteria in soil and lettuce. Environ. Pollut. 224, 787–795 (2017).
Liu, Y., Lonappan, L., Brar, S. K. & Yang, S. Impact of biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides: a review. Sci. Total Environ. 645, 60–70 (2018).
du Jardin, P. Plant biostimulants: definition, concept, main categories and regulation. Sci. Hortic. 196, 3–14 (2015).
Le Mire, G. et al. Review: implementing plant biostimulants and biocontrol strategies in the agroecological management of cultivated ecosystems. Biotechnol. Agron. Soc. Environ. 20, 1–15 (2016).
Leggett, M. et al. Soybean response to inoculation with Bradyrhizobium japonicum in the United States and Argentina. Agron. J. 109, 1031–1038 (2017).
Coniglio, A., Mora, V., Puente, M. & Cassán, F. in Microbial Probiotics for Agricultural Systems: Advances in Agronomic Use (eds Zúñiga-Dávila, D. et al.) 45–70 (Springer, 2019).
Alori, E. T., Dare, M. O. & Babalola, O. O. in Sustainable Agriculture Reviews (ed. Lichtfouse, E.) 281–307 (Springer, 2017).
Rillig, M. C. & Mummey, D. L. Mycorrhizas and soil structure. N. Phytol. 171, 41–53 (2006).
Mawarda, P. C., Le Roux, X., Dirk van Elsas, J. & Salles, J. F. Deliberate introduction of invisible invaders: a critical appraisal of the impact of microbial inoculants on soil microbial communities. Soil. Biol. Biochem. 148, 107874 (2020).
Liu, X., Le Roux, X. & Salles, J. F. The legacy of microbial inoculants in agroecosystems and potential for tackling climate change challenges. iScience 25, 103821 (2022).
Cornell, C. et al. Do bioinoculants affect resident microbial communities? A meta-analysis. Front. Agron. https://doi.org/10.3389/fagro.2021.753474 (2021).
Bender, S. F., Schlaeppi, K., Held, A. & Van der Heijden, M. G. A. Establishment success and crop growth effects of an arbuscular mycorrhizal fungus inoculated into Swiss corn fields. Agric. Ecosyst. Environ. 273, 13–24 (2019).
Schreiter, S. et al. Soil type-dependent effects of a potential biocontrol inoculant on indigenous bacterial communities in the rhizosphere of field-grown lettuce. FEMS Microbiol. Ecol. 90, 718–730 (2014).
Mueller, U. G. & Sachs, J. L. Engineering microbiomes to improve plant and animal health. Trends Microbiol. 23, 606–617 (2015).
Kennedy, T. L., Suddick, E. C. & Six, J. Reduced nitrous oxide emissions and increased yields in California tomato cropping systems under drip irrigation and fertigation. Agric. Ecosyst. Environ. 170, 16–27 (2013).
Fonte, S. J., Barrios, E. & Six, J. Earthworms, soil fertility and aggregate-associated soil organic matter dynamics in the Quesungual agroforestry system. Geoderma 155, 320–328 (2010).
Pauli, N., Barrios, E., Conacher, A. J. & Oberthür, T. Soil macrofauna in agricultural landscapes dominated by the Quesungual slash-and-mulch agroforestry system, western Honduras. Appl. Soil. Ecol. 47, 119–132 (2011).
Eichorst, S. A. et al. Advancements in the application of NanoSIMS and Raman microspectroscopy to investigate the activity of microbial cells in soils. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiv106 (2015).
Musat, N., Musat, F., Weber, P. K. & Pett-Ridge, J. Tracking microbial interactions with NanoSIMS. Curr. Opin. Biotechnol. 41, 114–121 (2016).
Bronick, C. J. & Lal, R. Soil structure and management: a review. Geoderma 124, 3–22 (2005).
Acknowledgements
We acknowledge J. Binswanger (Fig. 1) and N. Ohannessian (Figs. 3 and 4) for scientific illustration.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Earth & Environment thanks the anonymous reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Agroecosystems
-
Sites or integrated regions that support food production while conserving biotic and abiotic resources and providing a balanced supply of ecosystem services.
- Antibiosis
-
A biological interaction between two or more organisms that is detrimental to at least one of them.
- Biochar
-
The product of thermal degradation of organic matter at high temperature in the absence of air (pyrolysis).
- Biologicals
-
Products consisting of either a living organism or a substance derived from it, providing protection against pests and diseases or promoting plant growth and stress tolerance.
- Coalescence
-
The mixing of different biological communities (for example through inoculation) that results in new metacommunities with potential novel functional attributes.
- Copiotrophs
-
Organisms that preferentially consume labile organic C pools, have high nutritional requirements and can exhibit high growth rates when resource conditions are abundant.
- Cover cropping
-
The planting of crops between periods of regular production of the main crop, with the goal of covering and protecting the soil rather than being harvested as cash crop.
- Endosphere
-
Internal environment of the host that can be colonized by microorganisms called endophytes.
- Host-mediated indirect selection
-
Using the host to select for beneficial microbes that improve host performance by selecting and propagating microbial communities associated with specific host-traits of interest (such as plant growth).
- Hyperparasitism
-
A relationship between two parasites in which one acts as parasite on the other.
- Integrated soil fertility management
-
A set of practices related to cropping, fertilizers, organic resources and other amendments on smallholder farms to increase crop production and input use efficiency.
- Integrated pest management
-
A set of best practices that focuses on long-term prevention or suppression of pests and diseases.
- Microbiome
-
A characteristic microbial community occupying a well-defined habitat with distinct physio-chemical properties, and its associated theatre of activity.
- Mycorrhizal fungi
-
Fungi that form mutualistic symbiotic relationships with roots of certain vascular plant species in which the fungus receives carbohydrates from the plant in exchange for mineral nutrients.
- Oligotrophs
-
Organisms that exhibit slow growth, low metabolic rates and generally low population density, but feature high substrate affinity under low nutrient availability.
- Phytohormones
-
Chemicals produced by plants that regulate their growth, development and reproduction, but are also used as signalling molecules to interact with microbes.
- Plant-growth-promoting microorganisms
-
Microorganisms that colonize various plant compartments such as the rhizosphere or endosphere and have positive effects on plant growth and stress tolerance.
- Rhizodeposition
-
Active and passive release of organic compounds from plant roots into the surrounding soil.
- Rhizosphere
-
Zone surrounding plant roots in which the chemistry and microbiology are influenced by root activity.
- Root exudates
-
A suite of substances that are secreted by the roots of living plants into the surrounding compartment.
- Secondary metabolites
-
Organic compounds produced by organisms that are not directly involved in normal growth, development or reproduction of the organism.
- Soil aggregates
-
A group of primary soil particles that are more cohesive than other surrounding particles and are classified by size into macroaggregates (>250 μm) and microaggregates (<250 μm).
- Soil organic matter
-
The organic component of soil derived from plant and animal detritus at various stages of decomposition as well as soil microorganisms and the organic substances synthesized by these organisms.
- Soil structure
-
The arrangement of soil particles and aggregates into a porous structure that regulates the flow of resources.
- Systemic resistance
-
Resistance mechanism in plants induced by microorganisms or abiotic inducers that present a long-lasting defence function against a broad spectrum of pests and pathogens.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Hartmann, M., Six, J. Soil structure and microbiome functions in agroecosystems. Nat Rev Earth Environ 4, 4–18 (2023). https://doi.org/10.1038/s43017-022-00366-w
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s43017-022-00366-w
This article is cited by
-
Effects of soil on the development, survival, and oviposition of Culex quinquefasciatus (Diptera: Culicidae) mosquitoes
Parasites & Vectors (2024)
-
Response of rhizosphere soil physicochemical properties and microbial community structure to continuous cultivation of tobacco
Annals of Microbiology (2024)
-
Soil pore characteristics and the fate of new switchgrass-derived carbon in switchgrass and prairie bioenergy cropping systems
Scientific Reports (2024)
-
Analysis of microbial communities in solid and liquid pig manure during the fertilization process
Scientific Reports (2024)
-
Global latitudinal patterns in forest ecosystem nitrous oxide emissions are related to hydroclimate
npj Climate and Atmospheric Science (2024)