Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review article
  • Published:

Warming-driven erosion and sediment transport in cold regions

Abstract

Rapid atmospheric warming since the mid-twentieth century has increased temperature-dependent erosion and sediment-transport processes in cold environments, affecting food, energy and water security. In this Review, we summarize landscape changes in cold environments and provide a global inventory of increases in erosion and sediment yield driven by cryosphere degradation. Anthropogenic climate change, deglaciation, and thermokarst disturbances are causing increased sediment mobilization and transport processes in glacierized and periglacierized basins. With continuous cryosphere degradation, sediment transport will continue to increase until reaching a maximum (peak sediment). Thereafter, transport is likely to shift from a temperature-dependent regime toward a rainfall-dependent regime roughly between 2100–2200. The timing of the regime shift would be regulated by changes in meltwater, erosive rainfall and landscape erodibility, and complicated by geomorphic feedbacks and connectivity. Further progress in integrating multisource sediment observations, developing physics-based sediment-transport models, and enhancing interdisciplinary and international scientific collaboration is needed to predict sediment dynamics in a warming world.

Key points

  • A global inventory of cryosphere-degradation-driven increases in erosion and sediment yield is presented, with 76 locations from the high Arctic, European mountains, High Mountain Asia and Andes, and 18 Arctic permafrost-coastal sites.

  • Sediment mobilization from glacierized basins is dominated by glacial and paraglacial erosion; transport efficiency is controlled by glaciohydrology and modulated by subglacial, proglacial and supraglacial storage and release, but is interrupted by glacial lakes and moraines.

  • Degraded permafrost mainly mobilizes sediment by eroding thermokarst landscapes in high-latitude terrain and unstable rocky slopes in high-altitude terrain, which is sustained by exposing and melting ground ice and sufficient water supply; transport efficiency is enhanced by hillslope-channel connectivity.

  • The sediment-transport regime will shift in three stages, from a thermal-controlled regime to one jointly controlled by thermal and pluvial processes, and finally to a regime controlled by pluvial processes.

  • Peak sediment yield will be reached with or after peak meltwater.

  • Between the 1950s and 2010s, sediment fluxes have increased two- to eight-fold in many cold regions, and coastal erosion rates have more than doubled along many parts of Arctic permafrost coastlines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Glacier melt.
Fig. 2: Permafrost thaw in the Northern Hemisphere.
Fig. 3: Impacts of glacier dynamics on sediment transport.
Fig. 4: Impacts of permafrost degradation and thermokarst processes on sediment transport.
Fig. 5: Increased sediment fluxes due to modern climate change and cryosphere degradation.
Fig. 6: Peak sediment and transport regime changes.
Fig. 7: Changes in basin-scale sediment source-to-sink processes in response to climate change and human activities.

Similar content being viewed by others

Data availability

The warming-driven changes in erosion and sediment yield inventory is available at: https://zenodo.org/record/7109898.

References

  1. Li, D. et al. Exceptional increases in fluvial sediment fluxes in a warmer and wetter High Mountain Asia. Science 374, 599–603 (2021).

    Article  Google Scholar 

  2. Syvitski, J. et al. Earth’s sediment cycle during the Anthropocene. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00253-w (2022).

    Article  Google Scholar 

  3. Lewkowicz, A. G. & Way, R. G. Extremes of summer climate trigger thousands of thermokarst landslides in a high Arctic environment. Nat. Commun. 10, 1329 (2019).

    Article  Google Scholar 

  4. Bendixen, M. et al. Delta progradation in Greenland driven by increasing glacial mass loss. Nature 550, 101–104 (2017).

    Article  Google Scholar 

  5. Shugar, D. H. et al. River piracy and drainage basin reorganization led by climate-driven glacier retreat. Nat. Geosci. 10, 370–375 (2017).

    Article  Google Scholar 

  6. Knight, J. & Harrison, S. The impacts of climate change on terrestrial Earth surface systems. Nat. Clim. Change 3, 24–29 (2012).

    Article  Google Scholar 

  7. Lane, S. N., Bakker, M., Gabbud, C., Micheletti, N. & Saugy, J.-N. Sediment export, transient landscape response and catchment-scale connectivity following rapid climate warming and alpine glacier recession. Geomo 277, 210–227 (2017).

    Article  Google Scholar 

  8. Zhang, T., Li, D., Kettner, A. J., Zhou, Y. & Lu, X. Constraining dynamic sediment-discharge relationships in cold environments: the sediment-availability-transport (SAT) model. Water Resour. Res. https://doi.org/10.1029/2021wr030690 (2021).

    Article  Google Scholar 

  9. Herman, F. et al. Erosion by an alpine glacier. Science 350, 193–195 (2015).

    Article  Google Scholar 

  10. Lane, S. N. & Nienow, P. W. Decadal-scale climate forcing of alpine glacial hydrological systems. Water Resour. Res. 55, 2478–2492 (2019).

    Article  Google Scholar 

  11. Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change 8, 135–140 (2018).

    Article  Google Scholar 

  12. Delaney, I. & Adhikari, S. Increased subglacial sediment discharge in a warming climate: consideration of ice dynamics, glacial erosion, and fluvial sediment transport. Geophys. Res. Lett. https://doi.org/10.1029/2019gl085672 (2020).

    Article  Google Scholar 

  13. Li, D., Overeem, I., Kettner, A. J., Zhou, Y. & Lu, X. Air temperature regulates erodible landscape, water, and sediment fluxes in the permafrost-dominated catchment on the Tibetan Plateau. Water Resour. Res. 57, e2020WR028193 (2021).

    Article  Google Scholar 

  14. Mancini, D. & Lane, S. N. Changes in sediment connectivity following glacial debuttressing in an alpine valley system. Geomo https://doi.org/10.1016/j.geomorph.2019.106987 (2020).

    Article  Google Scholar 

  15. Koppes, M. et al. Observed latitudinal variations in erosion as a function of glacier dynamics. Nature 526, 100–103 (2015).

    Article  Google Scholar 

  16. Kirschbaum, D., Kapnick, S. B., Stanley, T. & Pascale, S. Changes in extreme precipitation and landslides over High Mountain Asia. Geophys. Res. Lett. 47, e2019GL085347 (2020).

    Article  Google Scholar 

  17. Patton, A. I., Rathburn, S. L., Capps, D. M., McGrath, D. & Brown, R. A. Ongoing landslide deformation in thawing permafrost. Geophys. Res. Lett. https://doi.org/10.1029/2021gl092959 (2021).

    Article  Google Scholar 

  18. Syvitski, J. P. M. Sediment discharge variability in Arctic rivers: implications for a warmer future. Polar Res. 21, 323–330 (2002).

    Article  Google Scholar 

  19. Beel, C. R. et al. Emerging dominance of summer rainfall driving high Arctic terrestrial-aquatic connectivity. Nat. Commun. 12, 1448 (2021).

    Article  Google Scholar 

  20. Patton, A. I., Rathburn, S. L. & Capps, D. M. Landslide response to climate change in permafrost regions. Geomo 340, 116–128 (2019).

    Article  Google Scholar 

  21. East, A. E. & Sankey, J. B. Geomorphic and sedimentary effects of modern climate change: current and anticipated future conditions in the western United States. Rev. Geophys. https://doi.org/10.1029/2019rg000692 (2020).

    Article  Google Scholar 

  22. Li, D. et al. High Mountain Asia hydropower systems threatened by climate-driven landscape instability. Nat. Geosci. https://doi.org/10.1038/s41561-022-00953-y (2022).

    Article  Google Scholar 

  23. Vergara, I., Garreaud, R. & Ayala, Á. Sharp increase of extreme turbidity events due to deglaciation in the subtropical Andes. J. Geophys. Res. Earth Surf. https://doi.org/10.1029/2021jf006584 (2022).

    Article  Google Scholar 

  24. Hopwood, M. J. et al. Non-linear response of summertime marine productivity to increased meltwater discharge around Greenland. Nat. Commun. 9, 3256 (2018).

    Article  Google Scholar 

  25. Yi, Y., Liu, Q., Zhang, J. & Zhang, S. How do the variations of water and sediment fluxes into the estuary influence the ecosystem? J. Hydrol. https://doi.org/10.1016/j.jhydrol.2021.126523 (2021).

    Article  Google Scholar 

  26. Immerzeel, W. W. et al. Importance and vulnerability of the world’s water towers. Nature 577, 364–369 (2020).

    Article  Google Scholar 

  27. Best, J. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 12, 7–21 (2019).

    Article  Google Scholar 

  28. Li, X. et al. Globally elevated chemical weathering rates beneath glaciers. Nat. Commun. https://doi.org/10.1038/s41467-022-28032-1 (2022).

    Article  Google Scholar 

  29. Hilton, R. G. & West, A. J. Mountains, erosion and the carbon cycle. Nat. Rev. Earth Environ. 1, 284–299 (2020).

    Article  Google Scholar 

  30. Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).

    Article  Google Scholar 

  31. Overeem, I. et al. Substantial export of suspended sediment to the global oceans from glacial erosion in Greenland. Nat. Geosci. 10, 859–863 (2017).

    Article  Google Scholar 

  32. Arrigo, K. R. et al. Melting glaciers stimulate large summer phytoplankton blooms in southwest Greenland waters. Geophys. Res. Lett. 44, 6278–6285 (2017).

    Article  Google Scholar 

  33. Lantuit, H. et al. The Arctic coastal dynamics database: a new classification scheme and statistics on Arctic permafrost coastlines. Estuaries Coast. 35, 383–400 (2012).

    Article  Google Scholar 

  34. Hjort, J. et al. Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nat. Commun. 9, 5147 (2018).

    Article  Google Scholar 

  35. Wild, B. et al. Rivers across the Siberian Arctic unearth the patterns of carbon release from thawing permafrost. Proc. Natl Acad. Sci. USA 116, 10280–10285 (2019).

    Article  Google Scholar 

  36. Micheletti, N. & Lane, S. N. Water yield and sediment export in small, partially glaciated alpine watersheds in a warming climate. Water Resour. Res. 52, 4924–4943 (2016).

    Article  Google Scholar 

  37. Beel, C. R. et al. Differential impact of thermal and physical permafrost disturbances on high Arctic dissolved and particulate fluvial fluxes. Sci. Rep. 10, 11836 (2020).

    Article  Google Scholar 

  38. Shugar, D. H. et al. A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science 373, 300–306 (2021).

    Article  Google Scholar 

  39. Farinotti, D., Immerzeel, W. W., de Kok, R., Quincey, D. J. & Dehecq, A. Manifestations and mechanisms of the Karakoram glacier anomaly. Nat. Geosci. 13, 8–16 (2020).

    Article  Google Scholar 

  40. Hock, R. G. et al. in Special Report on the Ocean and Cryosphere in a Changing Climate (eds Portner, H.-O. et al.) 181–202 (IPCC, Cambridge Univ. Press, 2019).

  41. Zemp, M. et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 568, 382–386 (2019).

    Article  Google Scholar 

  42. Hugonnet, R. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 592, 726–731 (2021).

    Article  Google Scholar 

  43. Hock, R. et al. GlacierMIP–a model intercomparison of global-scale glacier mass-balance models and projections. J. Glaciol. 65, 453–467 (2019).

    Article  Google Scholar 

  44. Marzeion, B. et al. Partitioning the uncertainty of ensemble projections of global glacier mass change. Earths Future https://doi.org/10.1029/2019ef001470 (2020).

    Article  Google Scholar 

  45. Huss, M. & Hock, R. A new model for global glacier change and sea-level rise. Front. Earth Sci. https://doi.org/10.3389/feart.2015.00054 (2015).

    Article  Google Scholar 

  46. Ciracì, E., Velicogna, I. & Swenson, S. Continuity of the mass loss of the world’s glaciers and ice caps from the GRACE and GRACE follow-on missions. Geophys. Res. Lett. https://doi.org/10.1029/2019gl086926 (2020).

    Article  Google Scholar 

  47. Truffer, M., Motyka, R. J., Hekkers, M., Howat, I. M. & King, M. A. Terminus dynamics at an advancing glacier: Taku Glacier, Alaska. J. Glaciol. 55, 1052–1060 (2009).

    Article  Google Scholar 

  48. Shugar, D. H. et al. Rapid worldwide growth of glacial lakes since 1990. Nat. Clim. Change 10, 939–945 (2020).

    Article  Google Scholar 

  49. Carrivick, J. L. & Tweed, F. S. A global assessment of the societal impacts of glacier outburst floods. Glob. Planet. Change 144, 1–16 (2016).

    Article  Google Scholar 

  50. Veh, G. et al. Trends, breaks, and biases in the frequency of reported glacier lake outburst floods. Earths Future https://doi.org/10.1029/2021ef002426 (2022).

    Article  Google Scholar 

  51. Li, X. et al. Climate change threatens terrestrial water storage over the Tibetan Plateau. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01443-0 (2022).

    Article  Google Scholar 

  52. Biskaborn, B. K. et al. Permafrost is warming at a global scale. Nat. Commun. 10, 264 (2019).

    Article  Google Scholar 

  53. Gruber, S. et al. Inferring permafrost and permafrost thaw in the mountains of the Hindu Kush Himalaya region. Cryosphere 11, 81–99 (2017).

    Article  Google Scholar 

  54. Smith, S. L., O’Neill, H. B., Isaksen, K., Noetzli, J. & Romanovsky, V. E. The changing thermal state of permafrost. Nat. Rev. Earth Environ. 3, 10–23 (2022).

    Article  Google Scholar 

  55. Chadburn, S. E. et al. An observation-based constraint on permafrost loss as a function of global warming. Nat. Clim. Change 7, 340–344 (2017).

    Article  Google Scholar 

  56. Overeem, I. et al. A modeling toolbox for permafrost landscapes. EOS Trans. Am. Geophys. Un. https://doi.org/10.1029/2018EO105155 (2018).

    Article  Google Scholar 

  57. Farquharson, L. M. et al. Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian high Arctic. Geophys. Res. Lett. 46, 6681–6689 (2019).

    Article  Google Scholar 

  58. Veremeeva, A., Nitze, I., Günther, F., Grosse, G. & Rivkina, E. Geomorphological and climatic drivers of thermokarst lake area increase trend (1999–2018) in the Kolyma Lowland Yedoma region, north-eastern Siberia. Remote Sens. https://doi.org/10.3390/rs13020178 (2021).

    Article  Google Scholar 

  59. Segal, R. A., Lantz, T. C. & Kokelj, S. V. Acceleration of thaw slump activity in glaciated landscapes of the western Canadian Arctic. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/11/3/034025 (2016).

    Article  Google Scholar 

  60. Mu, C. et al. Acceleration of thaw slump during 1997–2017 in the Qilian Mountains of the northern Qinghai-Tibetan Plateau. Landslides 17, 1051–1062 (2020).

    Article  Google Scholar 

  61. Hjort, J. et al. Impacts of permafrost degradation on infrastructure. Nat. Rev. Earth Environ. 3, 24–38 (2022).

    Article  Google Scholar 

  62. Olefeldt, D. et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7, 13043 (2016).

    Article  Google Scholar 

  63. Kanevskiy, M. et al. Patterns and rates of riverbank erosion involving ice-rich permafrost (yedoma) in northern Alaska. Geomo 253, 370–384 (2016).

    Article  Google Scholar 

  64. Jones, B. M. et al. Lake and drained lake basin systems in lowland permafrost regions. Nat. Rev. Earth Environ. 3, 85–98 (2022).

    Article  Google Scholar 

  65. Kokelj, S. V., Lantz, T. C., Tunnicliffe, J., Segal, R. & Lacelle, D. Climate-driven thaw of permafrost preserved glacial landscapes, northwestern Canada. Geology 45, 371–374 (2017).

    Article  Google Scholar 

  66. Cheng, G. et al. Characteristic, changes and impacts of permafrost on Qinghai–Tibet Plateau. Chin. Sci. Bull. 64, 2783–2795 (2019).

    Article  Google Scholar 

  67. Luo, J., Niu, F., Lin, Z., Liu, M. & Yin, G. Recent acceleration of thaw slumping in permafrost terrain of Qinghai-Tibet Plateau: an example from the Beiluhe region. Geomorphology 341, 79–85 (2019).

    Article  Google Scholar 

  68. Irrgang, A. M. et al. Drivers, dynamics and impacts of changing Arctic coasts. Nat. Rev. Earth Environ. 3, 39–54 (2022).

    Article  Google Scholar 

  69. Pörtner, H.-O. et al. The ocean and cryosphere in a changing climate. Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) (IPCC, Cambridge Univ. Press, 2019).

  70. Barnhart, K. R., Miller, C. R., Overeem, I. & Kay, J. E. Mapping the future expansion of Arctic open water. Nat. Clim. Change 6, 280–285 (2015).

    Article  Google Scholar 

  71. Maslakov, A. & Kraev, G. Erodibility of permafrost exposures in the coasts of Eastern Chukotka. Polar Sci. 10, 374–381 (2016).

    Article  Google Scholar 

  72. Jones, B. M. et al. A decade of remotely sensed observations highlight complex processes linked to coastal permafrost bluff erosion in the Arctic. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/aae471 (2018).

  73. Jaeger, J. M. & Koppes, M. N. The role of the cryosphere in source-to-sink systems. Earth Sci. Rev. 153, 43–76 (2016).

    Article  Google Scholar 

  74. Herman, F., De Doncker, F., Delaney, I., Prasicek, G. & Koppes, M. The impact of glaciers on mountain erosion. Nat. Rev. Earth Environ. 2, 422–435 (2021).

    Article  Google Scholar 

  75. Antoniazza, G. & Lane, S. N. Sediment yield over glacial cycles: a conceptual model. Prog. Phys. Geogr. Earth Environ. https://doi.org/10.1177/0309133321997292 (2021).

    Article  Google Scholar 

  76. Hallet, B., Hunter, L. & Bogen, J. Rates of erosion and sediment evacuation by glaciers: a review of field data and their implications. Glob. Planet. Change 12, 213–235 (1996).

    Article  Google Scholar 

  77. Cook, S. J., Swift, D. A., Kirkbride, M. P., Knight, P. G. & Waller, R. I. The empirical basis for modelling glacial erosion rates. Nat. Commun. 11, 759 (2020).

    Article  Google Scholar 

  78. Ugelvig, S. V., Egholm, D. L., Anderson, R. S. & Iverson, N. R. Glacial erosion driven by variations in meltwater drainage. J. Geophys. Res. Earth Surf. 123, 2863–2877 (2018).

    Article  Google Scholar 

  79. Iverson, N. R. A theory of glacial quarrying for landscape evolution models. Geology 40, 679–682 (2012).

    Article  Google Scholar 

  80. Hallet, B. Glacial quarrying: a simple theoretical model. Ann. Glaciol. 22, 1–8 (1996).

    Article  Google Scholar 

  81. Dühnforth, M., Anderson, R. S., Ward, D. & Stock, G. M. Bedrock fracture control of glacial erosion processes and rates. Geology 38, 423–426 (2010).

    Article  Google Scholar 

  82. Bernard, H. A theoretical model of glacial abrasion. J. Glaciol. 23, 39–50 (1979).

    Article  Google Scholar 

  83. Iverson, N. R. Laboratory simulations of glacial abrasion: comparison with theory. J. Glaciol. 36, 304–314 (1990).

    Article  Google Scholar 

  84. Harbor, J. M., Hallet, B. & Raymond, C. F. A numerical model of landform development by glacial erosion. Nature 333, 347–349 (1988).

    Article  Google Scholar 

  85. MacGregor, J. A. et al. A synthesis of the basal thermal state of the Greenland ice sheet. J. Geophys. Res. Earth Surf. 121, 1328–1350 (2016).

    Article  Google Scholar 

  86. Dehecq, A. et al. Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia. Nat. Geosci. 12, 22–27 (2018).

    Article  Google Scholar 

  87. Phillips, T., Rajaram, H. & Steffen, K. Cryo-hydrologic warming: a potential mechanism for rapid thermal response of ice sheets. Geophys. Res. Lett. https://doi.org/10.1029/2010gl044397 (2010).

    Article  Google Scholar 

  88. Carrivick, J. L. & Tweed, F. S. Deglaciation controls on sediment yield: towards capturing spatio-temporal variability. Earth Sci. Rev. https://doi.org/10.1016/j.earscirev.2021.103809 (2021).

    Article  Google Scholar 

  89. Herman, F., Beaud, F., Champagnac, J.-D., Lemieux, J.-M. & Sternai, P. Glacial hydrology and erosion patterns: a mechanism for carving glacial valleys. Earth Planet. Sci. Lett. 310, 498–508 (2011).

    Article  Google Scholar 

  90. Alley, R. B. et al. How glaciers entrain and transport basal sediment: physical constraints. Quat. Sci. Rev. 16, 1017–1038 (1997).

    Article  Google Scholar 

  91. Hartmeyer, I. et al. Current glacier recession causes significant rockfall increase: the immediate paraglacial response of deglaciating cirque walls. Earth Surf. Dyn. 8, 729–751 (2020).

    Article  Google Scholar 

  92. Coe, J. A., Bessette-Kirton, E. K. & Geertsema, M. Increasing rock-avalanche size and mobility in Glacier Bay National Park and Preserve, Alaska detected from 1984 to 2016 Landsat imagery. Landslides 15, 393–407 (2017).

    Article  Google Scholar 

  93. Beylich, A. A. & Laute, K. Sediment sources, spatiotemporal variability and rates of fluvial bedload transport in glacier-connected steep mountain valleys in western Norway (Erdalen and Bødalen drainage basins). Geomorphology 228, 552–567 (2015).

    Article  Google Scholar 

  94. Allen, S. K., Cox, S. C. & Owens, I. F. Rock avalanches and other landslides in the central Southern Alps of New Zealand: a regional study considering possible climate change impacts. Landslides 8, 33–48 (2010).

    Article  Google Scholar 

  95. Chiarle, M., Geertsema, M., Mortara, G. & Clague, J. J. Relations between climate change and mass movement: perspectives from the Canadian Cordillera and the European Alps. Glob. Planet. Change https://doi.org/10.1016/j.gloplacha.2021.103499 (2021).

    Article  Google Scholar 

  96. Matsuoka, N. Frost weathering and rockwall erosion in the southeastern Swiss Alps: long-term (1994–2006) observations. Geomorphology 99, 353–368 (2008).

    Article  Google Scholar 

  97. Murton, J. B., Peterson, R. & Ozouf, J.-C. Bedrock fracture by ice segregation in cold regions. Science 314, 1127–1129 (2006).

    Article  Google Scholar 

  98. Kellerer-Pirklbauer, A. Potential weathering by freeze–thaw action in alpine rocks in the European Alps during a nine year monitoring period. Geomorphology 296, 113–131 (2017).

    Article  Google Scholar 

  99. Scherler, D. & Egholm, D. L. Production and transport of supraglacial debris: insights from cosmogenic 10Be and numerical modeling, Chhota Shigri Glacier, Indian Himalaya. J. Geophys. Res. Earth Surf. https://doi.org/10.1029/2020jf005586 (2020).

    Article  Google Scholar 

  100. Evans, S. G. & Delaney, K. B. in Snow and Ice-Related Hazards, Risks, and Disasters (eds Shroder, J. F., Haeberli, W. & Whiteman, C.) 563–606 (Academic, 2015).

  101. Beaud, F., Flowers, G. E. & Venditti, J. G. Efficacy of bedrock erosion by subglacial water flow. Earth Surf. Dyn. 4, 125–145 (2016).

    Article  Google Scholar 

  102. Gimbert, F., Tsai, V. C., Amundson, J. M., Bartholomaus, T. C. & Walter, J. I. Subseasonal changes observed in subglacial channel pressure, size, and sediment transport. Geophys. Res. Lett. 43, 3786–3794 (2016).

    Article  Google Scholar 

  103. Swift, D. A. et al. The hydrology of glacier-bed overdeepenings: sediment transport mechanics, drainage system morphology, and geomorphological implications. Earth Surf. Process. Landforms 46, 2264–2278 (2021).

    Article  Google Scholar 

  104. Andrews, L. C. et al. Direct observations of evolving subglacial drainage beneath the Greenland ice sheet. Nature 514, 80–83 (2014).

    Article  Google Scholar 

  105. Colgan, W. et al. An increase in crevasse extent, West Greenland: hydrologic implications. Geophys. Res. Lett. https://doi.org/10.1029/2011gl048491 (2011).

    Article  Google Scholar 

  106. Nienow, P., Sharp, M. & Willis, I. Seasonal changes in the morphology of the subglacial drainage system, Haut Glacier d’Arolla, Switzerland. Earth Surf. Process. Landforms 23, 825–843 (1998).

    Article  Google Scholar 

  107. Chudley, T. R. et al. Supraglacial lake drainage at a fast-flowing Greenlandic outlet glacier. Proc. Natl Acad. Sci. USA 116, 25468–25477 (2019).

    Article  Google Scholar 

  108. Smith, L. C. et al. Efficient meltwater drainage through supraglacial streams and rivers on the southwest Greenland ice sheet. Proc. Natl Acad. Sci. USA 112, 1001–1006 (2015).

    Article  Google Scholar 

  109. Livingstone, S. J. et al. Subglacial lakes and their changing role in a warming climate. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00246-9 (2022).

    Article  Google Scholar 

  110. Livingstone, S. J. et al. Brief communication: subglacial lake drainage beneath Isunguata Sermia, West Greenland: geomorphic and ice dynamic effects. Cryosphere 13, 2789–2796 (2019).

    Article  Google Scholar 

  111. Gabet, E., Burbank, D., Prattsitaula, B., Putkonen, J. & Bookhagen, B. Modern erosion rates in the High Himalayas of Nepal. Earth Planet. Sci. Lett. 267, 482–494 (2008).

    Article  Google Scholar 

  112. Tsyplenkov, A., Vanmaercke, M., Collins, A. L., Kharchenko, S. & Golosov, V. Elucidating suspended sediment dynamics in a glacierized catchment after an exceptional erosion event: the Djankuat catchment, Caucasus Mountains, Russia. Catena https://doi.org/10.1016/j.catena.2021.105285 (2021).

    Article  Google Scholar 

  113. Beylich, A. A., Laute, K. & Storms, J. E. A. Contemporary suspended sediment dynamics within two partly glacierized mountain drainage basins in western Norway (Erdalen and Bødalen, inner Nordfjord). Geomorphology 287, 126–143 (2017).

    Article  Google Scholar 

  114. Comiti, F. et al. Glacier melt runoff controls bedload transport in alpine catchments. Earth Planet. Sci. Lett. 520, 77–86 (2019).

    Article  Google Scholar 

  115. Williams, H. B. & Koppes, M. N. A comparison of glacial and paraglacial denudation responses to rapid glacial retreat. Ann. Glaciol. 60, 151–164 (2019).

    Article  Google Scholar 

  116. Bogen, J., Xu, M. & Kennie, P. The impact of pro-glacial lakes on downstream sediment delivery in Norway. Earth Surf. Process. Landforms 40, 942–952 (2014).

    Article  Google Scholar 

  117. Steffen, T., Huss, M., Estermann, R., Hodel, E. & Farinotti, D. Volume, evolution, and sedimentation of future glacier lakes in Switzerland over the 21st century. Earth Surf. Dyn. 10, 723–741 (2022).

    Article  Google Scholar 

  118. Cook, K. L., Andermann, C., Gimbert, F., Adhikari, B. R. & Hovius, N. Glacial lake outburst floods as drivers of fluvial erosion in the Himalaya. Science 362, 53–57 (2018).

    Article  Google Scholar 

  119. Cenderelli, D. A. & Wohl, E. E. Flow hydraulics and geomorphic effects of glacial-lake outburst floods in the Mount Everest region, Nepal. Earth Surf. Process. Landforms 28, 385–407 (2003).

    Article  Google Scholar 

  120. Heckmann, T., McColl, S. & Morche, D. Retreating ice: research in pro-glacial areas matters. Earth Surf. Process. Landforms 41, 271–276 (2016).

    Article  Google Scholar 

  121. Tomczyk, A. M., Ewertowski, M. W. & Carrivick, J. L. Geomorphological impacts of a glacier lake outburst flood in the high Arctic Zackenberg River, NE Greenland. J. Hydrol. https://doi.org/10.1016/j.jhydrol.2020.125300 (2020).

    Article  Google Scholar 

  122. Russell, A. J. et al. Icelandic jökulhlaup impacts: implications for ice-sheet hydrology, sediment transfer and geomorphology. Geomorphology 75, 33–64 (2006).

    Article  Google Scholar 

  123. Wilson, R. et al. The 2015 Chileno Valley glacial lake outburst flood, Patagonia. Geomorphology 332, 51–65 (2019).

    Article  Google Scholar 

  124. IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  125. de Winter, I. L., Storms, J. E. A. & Overeem, I. Numerical modeling of glacial sediment production and transport during deglaciation. Geomorphology 167–168, 102–114 (2012).

    Article  Google Scholar 

  126. Lai, J. & Anders, A. M. Climatic controls on mountain glacier basal thermal regimes dictate spatial patterns of glacial erosion. Earth Surf. Dyn. 9, 845–859 (2021).

    Article  Google Scholar 

  127. Hirschberg, J. et al. Climate change impacts on sediment yield and debris-flow activity in an alpine catchment. J. Geophys. Res. Earth Surf. 126, e2020JF005739 (2021).

    Article  Google Scholar 

  128. Kokelj, S. V. et al. Thawing of massive ground ice in mega slumps drives increases in stream sediment and solute flux across a range of watershed scales. J. Geophys. Res. Earth Surf. 118, 681–692 (2013).

    Article  Google Scholar 

  129. Rudy, A. C. A., Lamoureux, S. F., Kokelj, S. V., Smith, I. R. & England, J. H. Accelerating thermokarst transforms ice-cored terrain triggering a downstream cascade to the ocean. Geophys. Res. Lett. https://doi.org/10.1002/2017gl074912 (2017).

    Article  Google Scholar 

  130. Lafrenière, M. J. & Lamoureux, S. F. Effects of changing permafrost conditions on hydrological processes and fluvial fluxes. Earth Sci. Rev. 191, 212–223 (2019).

    Article  Google Scholar 

  131. Lamoureux, S. F., Lafrenière, M. J. & Favaro, E. A. Erosion dynamics following localized permafrost slope disturbances. Geophys. Res. Lett. 41, 5499–5505 (2014).

    Article  Google Scholar 

  132. Godin, E., Fortier, D. & Coulombe, S. Effects of thermo-erosion gullying on hydrologic flow networks, discharge and soil loss. Environ. Res. Lett. 9, 105010 (2014).

    Article  Google Scholar 

  133. Obu, J. et al. Effect of terrain characteristics on soil organic carbon and total nitrogen stocks in soils of Herschel Island, Western Canadian Arctic. Permafr. Periglac. Process. 28, 92–107 (2017).

    Article  Google Scholar 

  134. Lewkowicz, A. G. Dynamics of active-layer detachment failures, Fosheim Peninsula, Ellesmere Island, Nunavut, Canada. Permafr. Periglac. Process. 18, 89–103 (2007).

    Article  Google Scholar 

  135. Gooseff, M. N., Balser, A., Bowden, W. B. & Jones, J. B. Effects of hillslope thermokarst in Northern Alaska. Eos, Trans. Am. Geophys. Union. 90, 29–30 (2009).

    Article  Google Scholar 

  136. Paquette, M., Rudy, A. C. A., Fortier, D. & Lamoureux, S. F. Multi-scale site evaluation of a relict active layer detachment in a high Arctic landscape. Geomorphology https://doi.org/10.1016/j.geomorph.2020.107159 (2020).

    Article  Google Scholar 

  137. Balser, A. W., Jones, J. B. & Gens, R. Timing of retrogressive thaw slump initiation in the Noatak Basin, northwest Alaska, USA. J. Geophys. Res. Earth Surf. 119, 1106–1120 (2014).

    Article  Google Scholar 

  138. Godin, E. & Fortier, D. Geomorphology of a thermo-erosion gully, Bylot Island, Nunavut, Canada. Can. J. Earth Sci. 49, 979–986 (2012).

    Article  Google Scholar 

  139. Perreault, N., Lévesque, E., Fortier, D., Gratton, D. & Lamarque, L. J. Remote sensing evaluation of high Arctic wetland depletion following permafrost disturbance by thermo-erosion gullying processes. Arct. Sci. 3, 237–253 (2017).

    Article  Google Scholar 

  140. Kokelj, S. V. et al. Thaw-driven mass wasting couples slopes with downstream systems, and effects propagate through Arctic drainage networks. Cryosphere 15, 3059–3081 (2021).

    Article  Google Scholar 

  141. Zheng, L., Overeem, I., Wang, K. & Clow, G. D. Changing Arctic river dynamics cause localized permafrost thaw. J. Geophys. Res. Earth Surf. 124, 2324–2344 (2019).

    Article  Google Scholar 

  142. Lantuit, H. & Pollard, W. H. Fifty years of coastal erosion and retrogressive thaw slump activity on Herschel Island, southern Beaufort Sea, Yukon Territory, Canada. Geomorphology 95, 84–102 (2008).

    Article  Google Scholar 

  143. Costard, F., Dupeyrat, L., Gautier, E. & Carey-Gailhardis, E. Fluvial thermal erosion investigations along a rapidly eroding river bank: application to the Lena River (central Siberia). Earth Surf. Process. Landforms 28, 1349–1359 (2003).

    Article  Google Scholar 

  144. Payne, C., Panda, S. & Prakash, A. Remote sensing of river erosion on the Colville River, North Slope Alaska. Remote Sens. https://doi.org/10.3390/rs10030397 (2018).

    Article  Google Scholar 

  145. Costard, F. et al. Impact of the global warming on the fluvial thermal erosion over the Lena River in Central Siberia. Geophys. Res. Lett. https://doi.org/10.1029/2007gl030212 (2007).

    Article  Google Scholar 

  146. Gautier, E. et al. Fifty-year dynamics of the Lena River islands (Russia): spatio-temporal pattern of large periglacial anabranching river and influence of climate change. Sci. Total Environ. 783, 147020 (2021).

    Article  Google Scholar 

  147. Shur, Y. et al. Fluvio-thermal erosion and thermal denudation in the yedoma region of northern Alaska: revisiting the Itkillik River exposure. Permafr. Periglac. Process. 32, 277–298 (2021).

    Article  Google Scholar 

  148. Chassiot, L., Lajeunesse, P. & Bernier, J.-F. Riverbank erosion in cold environments: review and outlook. Earth Sci. Rev. https://doi.org/10.1016/j.earscirev.2020.103231 (2020).

    Article  Google Scholar 

  149. Vandermause, R., Harvey, M., Zevenbergen, L. & Ettema, R. River-ice effects on bank erosion along the middle segment of the Susitna River, Alaska. Cold Reg. Sci. Technol. https://doi.org/10.1016/j.coldregions.2021.103239 (2021).

    Article  Google Scholar 

  150. Costard, F., Gautier, E., Fedorov, A., Konstantinov, P. & Dupeyrat, L. An assessment of the erosion potential of the fluvial thermal process during ice breakups of the Lena River (Siberia). Permafr. Periglac. Process. 25, 162–171 (2014).

    Article  Google Scholar 

  151. Beltaos, S., Carter, T., Rowsell, R. & DePalma, S. G. S. Erosion potential of dynamic ice breakup in Lower Athabasca River. Part I: field measurements and initial quantification. Cold Reg. Sci. Technol. 149, 16–28 (2018).

    Article  Google Scholar 

  152. Rowland, J. C. et al. Arctic landscapes in transition: responses to thawing permafrost. Eos Trans. Am. Geophys. Union. 91, 229–230 (2010).

    Article  Google Scholar 

  153. Wohl, E. et al. Connectivity as an emergent property of geomorphic systems. Earth Surf. Process. Landforms 44, 4–26 (2019).

    Article  Google Scholar 

  154. Walvoord, M. A. & Kurylyk, B. L. Hydrologic impacts of thawing permafrost — a review. Vadose Zone J. 15, 1–20 (2016).

    Article  Google Scholar 

  155. Zhang, T., Li, D. & Lu, X. Response of runoff components to climate change in the source-region of the Yellow River on the Tibetan plateau. Hydrol. Process. https://doi.org/10.1002/hyp.14633 (2022).

    Article  Google Scholar 

  156. Farquharson, L. M., Romanovsky, V. E., Kholodov, A. & Nicolsky, D. Sub-aerial talik formation observed across the discontinuous permafrost zone of Alaska. Nat. Geosci. 15, 475–481 (2022).

    Article  Google Scholar 

  157. Nitzbon, J. et al. Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate. Nat. Commun. 11, 2201 (2020).

    Article  Google Scholar 

  158. Jones, B. M. et al. Arctic Report Card 2020: Coastal Permafrost Erosion. https://doi.org/10.25923/e47w-dw52 (NOAA Institutional Repository, 2020).

  159. Günther, F., Overduin, P. P., Sandakov, A. V., Grosse, G. & Grigoriev, M. N. Short- and long-term thermo-erosion of ice-rich permafrost coasts in the Laptev Sea region. Biogeosciences 10, 4297–4318 (2013).

    Article  Google Scholar 

  160. Lim, M. et al. Massive ice control on permafrost coast erosion and sensitivity. Geophys. Res. Lett. https://doi.org/10.1029/2020gl087917 (2020).

    Article  Google Scholar 

  161. Frederick, J. M., Thomas, M. A., Bull, D. L., Jones, C. A. & Roberts, J. D. The Arctic Coastal Erosion Problem. Sandia Report No. SAND2016-9762 (Sandia National Laboratories, 2016).

  162. Overeem, I. et al. Sea ice loss enhances wave action at the Arctic coast. Geophys. Res. Lett. 38, L17503 (2011).

    Article  Google Scholar 

  163. Radosavljevic, B. et al. Erosion and flooding — threats to coastal infrastructure in the arctic: a case study from Herschel Island, Yukon Territory, Canada. Estuaries Coasts 39, 900–915 (2015).

    Article  Google Scholar 

  164. Couture, N. J., Irrgang, A., Pollard, W., Lantuit, H. & Fritz, M. Coastal erosion of permafrost soils along the Yukon coastal plain and fluxes of organic carbon to the Canadian Beaufort Sea. J. Geophys. Res. Biogeosci. 123, 406–422 (2018).

    Article  Google Scholar 

  165. Delaney, I., Bauder, A., Werder, M. A. & Farinotti, D. Regional and annual variability in subglacial sediment transport by water for two glaciers in the Swiss Alps. Front. Earth Sci. https://doi.org/10.3389/feart.2018.00175 (2018).

    Article  Google Scholar 

  166. Comte, J., Monier, A., Crevecoeur, S., Lovejoy, C. & Vincent, W. F. Microbial biogeography of permafrost thaw ponds across the changing northern landscape. Ecography 39, 609–618 (2016).

    Article  Google Scholar 

  167. Fuchs, M. et al. Rapid fluvio-thermal erosion of a Yedoma permafrost cliff in the Lena River delta. Front. Earth Sci. https://doi.org/10.3389/feart.2020.00336 (2020).

    Article  Google Scholar 

  168. Li, D., Li, Z., Zhou, Y. & Lu, X. Substantial increases in the water and sediment fluxes in the headwater region of the Tibetan Plateau in response to global warming. Geophys. Res. Lett. 47, e2020GL087745 (2020).

    Article  Google Scholar 

  169. Zhang, F. et al. Controls on seasonal erosion behavior and potential increase in sediment evacuation in the warming Tibetan Plateau. Catena https://doi.org/10.1016/j.catena.2021.105797 (2022).

    Article  Google Scholar 

  170. Singh, A. et al. Counter-intuitive influence of Himalayan river morphodynamics on Indus Civilisation urban settlements. Nat. Commun. 8, 1617 (2017).

    Article  Google Scholar 

  171. Gabbud, C., Robinson, C. T. & Lane, S. N. Summer is in winter: disturbance-driven shifts in macroinvertebrate communities following hydroelectric power exploitation. Sci. Total Environ. 650, 2164–2180 (2019).

    Article  Google Scholar 

  172. Fischer, L., Huggel, C., Kääb, A. & Haeberli, W. Slope failures and erosion rates on a glacierized high-mountain face under climatic changes. Earth Surf. Process. Landforms 38, 836–846 (2013).

    Article  Google Scholar 

  173. Bogen, J. The impact of climate change on glacial sediment delivery to rivers. IAHS Publ. 325, 432–439 (2008).

    Google Scholar 

  174. Singh, A. T. et al. Water discharge and suspended sediment dynamics in the Chandra River, Western Himalaya. J. Earth Syst. Sci. https://doi.org/10.1007/s12040-020-01455-4 (2020).

    Article  Google Scholar 

  175. Brooke, S. et al. Where rivers jump course. Science 376, 987–990 (2022).

    Article  Google Scholar 

  176. Church, M. & Ryder, J. M. Paraglacial sedimentation: a consideration of fluvial processes conditioned by glaciation. GSA Bull. 83, 3059–3072 (1972).

    Article  Google Scholar 

  177. Ballantyne, C. K. Paraglacial geomorphology. Quat. Sci. Rev. 21, 1935–2017 (2002).

    Article  Google Scholar 

  178. Mariotti, A. et al. Nonlinear forcing of climate on mountain denudation during glaciations. Nat. Geosci. https://doi.org/10.1038/s41561-020-00672-2 (2021).

    Article  Google Scholar 

  179. Moon, S. et al. Climatic control of denudation in the deglaciated landscape of the Washington Cascades. Nat. Geosci. 4, 469–473 (2011).

    Article  Google Scholar 

  180. Terhaar, J., Lauerwald, R., Regnier, P., Gruber, N. & Bopp, L. Around one third of current Arctic Ocean primary production sustained by rivers and coastal erosion. Nat. Commun. 12, 169 (2021).

    Article  Google Scholar 

  181. Ogorodov, S., Aleksyutina, D., Baranskaya, A., Shabanova, N. & Shilova, O. Coastal erosion of the Russian Arctic: an overview. J. Coast. Res. 95, 599–604 (2020).

    Article  Google Scholar 

  182. Guégan, E. Erosion of Permafrost Affected Coasts: Rates, Mechanisms and Modelling. PhD thesis, Norwegian Univ. Science and Technology (2015).

  183. Jones, B. M. et al. Increase in the rate and uniformity of coastline erosion in Arctic Alaska. Geophys. Res. Lett. 36, L03503 (2009).

    Article  Google Scholar 

  184. Hasholt, B., van As, D., Mikkelsen, A. B., Mernild, S. H. & Yde, J. C. Observed sediment and solute transport from the Kangerlussuaq sector of the Greenland Ice Sheet (2006–2016). Arct. Antarct. Alp. Res. https://doi.org/10.1080/15230430.2018.1433789 (2018).

    Article  Google Scholar 

  185. Hudson, B. et al. MODIS observed increase in duration and spatial extent of sediment plumes in Greenland fjords. Cryosphere 8, 1161–1176 (2014).

    Article  Google Scholar 

  186. Overeem, I., Nienhuis, J. H. & Piliouras, A. Ice-dominated Arctic deltas. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-022-00268-x (2022).

    Article  Google Scholar 

  187. Fritz, M., Vonk, J. E. & Lantuit, H. Collapsing Arctic coastlines. Nat. Clim. Change 7, 6–7 (2017).

    Article  Google Scholar 

  188. Huss, M. et al. Toward mountains without permanent snow and ice. Earths Future 5, 418–435 (2017).

    Article  Google Scholar 

  189. Schaefer, K., Zhang, T., Bruhwiler, L. & Barrett, A. P. Amount and timing of permafrost carbon release in response to climate warming. Tellus B 63, 165–180 (2011).

    Article  Google Scholar 

  190. Sadai, S., Condron, A., DeConto, R. & Pollard, D. Future climate response to Antarctic ice sheet melt caused by anthropogenic warming. Sci. Adv. 6, eaaz1169 (2020).

    Article  Google Scholar 

  191. Aschwanden, A. et al. Contribution of the Greenland ice sheet to sea level over the next millennium. Sci. Adv. 5, eaav9396 (2019).

    Article  Google Scholar 

  192. Knight, J. & Harrison, S. Mountain glacial and paraglacial environments under global climate change: lessons from the past, future directions and policy implications. Geogr. Ann. Ser. A 96, 245–264 (2014).

    Article  Google Scholar 

  193. Costa, A. et al. Temperature signal in suspended sediment export from an alpine catchment. Hydrol. Earth Syst. Sci. 22, 509–528 (2018).

    Article  Google Scholar 

  194. Church, M. & Slaymaker, O. Disequilibrium of Holocene sediment yield in glaciated British Columbia. Nature 337, 452–454 (1989).

    Article  Google Scholar 

  195. Slosson, J. R., Kelleher, C. & Hoke, G. D. Contrasting impacts of a hotter and drier future on streamflow and catchment scale sediment flux in the High Andes. J. Geophys. Res. Earth Surf. https://doi.org/10.1029/2021jf006182 (2021).

    Article  Google Scholar 

  196. Walling, D. E. Human impact on land–ocean sediment transfer by the world’s rivers. Geomorphology 79, 192–216 (2006).

    Article  Google Scholar 

  197. Li, L. et al. Global trends in water and sediment fluxes of the world’s large rivers. Sci. Bull. 65, 62–69 (2020).

    Article  Google Scholar 

  198. Pandey, A., Himanshu, S. K., Mishra, S. K. & Singh, V. P. Physically based soil erosion and sediment yield models revisited. Catena 147, 595–620 (2016).

    Article  Google Scholar 

  199. de Vente, J. et al. Predicting soil erosion and sediment yield at regional scales: where do we stand. Earth Sci. Rev. 127, 16–29 (2013).

    Article  Google Scholar 

  200. Walling, D. E. The sediment delivery problem. J. Hydrol. 65, 209–237 (1983).

    Article  Google Scholar 

  201. Vercruysse, K., Grabowski, R. C. & Rickson, R. J. Suspended sediment transport dynamics in rivers: multi-scale drivers of temporal variation. Earth Sci. Rev. 166, 38–52 (2017).

    Article  Google Scholar 

  202. Harrison, S. et al. Uncertainty in geomorphological responses to climate change. Clim. Change 156, 69–86 (2019).

    Article  Google Scholar 

  203. Qin, D. & Ding, Y. Key issues on cryospheric changes, trends and their impacts. Adv. Clim. Change Res. 1, 1–10 (2010).

    Article  Google Scholar 

  204. Thackeray, C. W. & Hall, A. An emergent constraint on future Arctic sea-ice albedo feedback. Nat. Clim. Change 9, 972–978 (2019).

    Article  Google Scholar 

  205. Fang, H.-W. & Wang, G.-Q. Three-dimensional mathematical model of suspended-sediment transport. J. Hydraul. Eng. 126, 578–592 (2000).

    Article  Google Scholar 

  206. Syvitski, James, P. M. & Milliman, J. D. Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. J. Geol. 115, 1–19 (2007).

    Article  Google Scholar 

  207. Koppes, M. N. & Montgomery, D. R. The relative efficacy of fluvial and glacial erosion over modern to orogenic timescales. Nat. Geosci. 2, 644–647 (2009).

    Article  Google Scholar 

  208. Hinderer, M., Kastowski, M., Kamelger, A., Bartolini, C. & Schlunegger, F. River loads and modern denudation of the Alps — a review. Earth Sci. Rev. 118, 11–44 (2013).

    Article  Google Scholar 

  209. Wolman, M. G. & Miller, J. P. Magnitude and frequency of forces in geomorphic processes. J. Geol. 68, 54–74 (1960).

    Article  Google Scholar 

  210. Gariano, S. L. & Guzzetti, F. Landslides in a changing climate. Earth Sci. Rev. 162, 227–252 (2016).

    Article  Google Scholar 

  211. McMillan, S. K. et al. Before the storm: antecedent conditions as regulators of hydrologic and biogeochemical response to extreme climate events. Biogeochemistry 141, 487–501 (2018).

    Article  Google Scholar 

  212. Schumm, S. A. Geomorphic thresholds: the concept and its applications. Trans. Inst. Br. Geogr. 4, 485–515 (1979).

    Article  Google Scholar 

  213. Phillips, J. D. Evolutionary geomorphology: thresholds and nonlinearity in landform response to environmental change. Hydrol. Earth Syst. Sci. 10, 731–742 (2006).

    Article  Google Scholar 

  214. Katzenberger, A., Schewe, J., Pongratz, J. & Levermann, A. Robust increase of Indian monsoon rainfall and its variability under future warming in CMIP6 models. Earth Syst. Dyn. 12, 367–386 (2021).

    Article  Google Scholar 

  215. Rao, M. P. et al. Seven centuries of reconstructed Brahmaputra River discharge demonstrate underestimated high discharge and flood hazard frequency. Nat. Commun. 11, 6017 (2020).

    Article  Google Scholar 

  216. Heckmann, T. et al. Indices of sediment connectivity: opportunities, challenges and limitations. Earth Sci. Rev. 187, 77–108 (2018).

    Article  Google Scholar 

  217. Syvitski, J. P. M., Vörösmarty, C. J., Kettner, A. J. & Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308, 376 (2005).

    Article  Google Scholar 

  218. Piliouras, A. & Rowland, J. C. Arctic river delta morphologic variability and implications for riverine fluxes to the coast. J. Geophys. Res. Earth Surf. https://doi.org/10.1029/2019jf005250 (2020).

    Article  Google Scholar 

  219. Valenza, J. M., Edmonds, D. A., Hwang, T. & Roy, S. Downstream changes in river avulsion style are related to channel morphology. Nat. Commun. 11, 2116 (2020).

    Article  Google Scholar 

  220. Liu, K. et al. Ongoing drainage reorganization driven by rapid lake growths on the Tibetan Plateau. Geophys. Res. Lett. https://doi.org/10.1029/2021gl095795 (2021).

    Article  Google Scholar 

  221. Richardson, P. W., Perron, J. T. & Schurr, N. D. Influences of climate and life on hillslope sediment transport. Geology 47, 423–426 (2019).

    Article  Google Scholar 

  222. Zhou, Y. et al. Distinguishing the multiple controls on the decreased sediment flux in the Jialing River basin of the Yangtze River, southwestern China. Catena https://doi.org/10.1016/j.catena.2020.104593 (2020).

    Article  Google Scholar 

  223. Zhang, S., Fan, W., Li, Y. & Yi, Y. The influence of changes in land use and landscape patterns on soil erosion in a watershed. Sci. Total Environ. 574, 34–45 (2017).

    Article  Google Scholar 

  224. Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).

    Article  Google Scholar 

  225. Miao, C., Ni, J., Borthwick, A. G. L. & Yang, L. A preliminary estimate of human and natural contributions to the changes in water discharge and sediment load in the Yellow River. Glob. Planet. Change 76, 196–205 (2011).

    Article  Google Scholar 

  226. Mouyen, M. et al. Assessing modern river sediment discharge to the ocean using satellite gravimetry. Nat. Commun. 9, 3384 (2018).

    Article  Google Scholar 

  227. Dethier, E. N., Renshaw, C. E. & Magilligan, F. J. Rapid changes to global river suspended sediment flux by humans. Science 376, 1447–1452 (2022).

    Article  Google Scholar 

  228. Huntley, D. et al. Field testing innovative differential geospatial and photogrammetric monitoring technologies in mountainous terrain near Ashcroft, British Columbia, Canada. J. Mt Sci. 18, 1–20 (2021).

    Article  Google Scholar 

  229. Piret, L. et al. High-resolution fjord sediment record of a receding glacier with growing intermediate proglacial lake (Steffen Fjord, Chilean Patagonia). Earth Surf. Process. Landforms 46, 239–251 (2020).

    Article  Google Scholar 

  230. Deino, A. L. et al. Chronostratigraphic model of a high-resolution drill core record of the past million years from the Koora Basin, south Kenya Rift: overcoming the difficulties of variable sedimentation rate and hiatuses. Quat. Sci. Rev. 215, 213–231 (2019).

    Article  Google Scholar 

  231. Cook, K. L. et al. Detection and potential early warning of catastrophic flow events with regional seismic networks. Science 374, 87–92 (2021).

    Article  Google Scholar 

  232. Cohen, S., Kettner, A. J., Syvitski, J. P. M. & Fekete, B. M. WBMsed, a distributed global-scale riverine sediment flux model: model description and validation. Comput. Geosci. 53, 80–93 (2013).

    Article  Google Scholar 

  233. Kettner, A. J. & Syvitski, J. P. M. HydroTrend v.3.0: a climate-driven hydrological transport model that simulates discharge and sediment load leaving a river system. Comput. Geosci. 34, 1170–1183 (2008).

    Article  Google Scholar 

  234. Nearing, M. A., Foster, G. R., Lane, L. & Finkner, S. A process-based soil erosion model for USDA-Water Erosion Prediction Project technology. Trans. ASAE 32, 1587–1593 (1989).

    Article  Google Scholar 

  235. Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).

    Article  Google Scholar 

  236. Huang, L., Luo, J., Lin, Z., Niu, F. & Liu, L. Using deep learning to map retrogressive thaw slumps in the Beiluhe region (Tibetan Plateau) from CubeSat images. Remote Sens. Environ. https://doi.org/10.1016/j.rse.2019.111534 (2020).

    Article  Google Scholar 

  237. Tan, Z., Leung, L. R., Li, H. Y. & Tesfa, T. Modeling sediment yield in land surface and Earth System models: model comparison, development, and evaluation. J. Adv. Model. Earth Syst. 10, 2192–2213 (2018).

    Article  Google Scholar 

  238. Pfeffer, W. T. et al. The Randolph Glacier inventory: a globally complete inventory of glaciers. J. Glaciol. 60, 537–552 (2014).

    Article  Google Scholar 

  239. Obu, J. et al. ESA Permafrost Climate Change Initiative (Permafrost_cci): Permafrost active layer thickness for the Northern Hemisphere, v3.0 (NERC EDS Centre for Environmental Data Analysis, 2021); https://catalogue.ceda.ac.uk/uuid/67a3f8c8dc914ef99f7f08eb0d997e23

  240. Strauss, J. et al. Database of ice-rich Yedoma permafrost (IRYP). PANGAEA https://doi.org/10.1594/PANGAEA.861733 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Singapore MOE (A-0003626-00-00; D.L., X.L.), the Intergovernmental Panel on Climate Change and the Cuomo Foundation (D.L.). The authors acknowledge comments provided by M. Church. We thank O. Jaroslav, R. MacLeod, J. Comte, L. Huang and W. Pollard for providing field photos. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Contributions

T.Z. and D.L. conceived the study and assembled the authorship team. T.Z. and D.L. drafted the paper. All authors contributed to the discussion and editing of the manuscript prior to submission.

Corresponding author

Correspondence to Dongfeng Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Greta Wells, Joel Rowland and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Active layer

The top layer of soil or rock overlying the permafrost that experiences seasonal freeze (in winter) and thaw (in summer).

Basal sliding velocity

The speed of slip of a glacier over its bed, which is facilitated by lubricating meltwater and limited by frictional resistance between the glacier sole and its bed.

Cold regions

High-altitude and/or high-latitude low-temperature environments, where hydrogeomorphic processes are influenced by glacier, permafrost, snow, or river, lake and sea ice.

Cryosphere

The portion of the Earth’s surface where water exists in solid form, including glaciers, ice sheets, permafrost, snowpack, and river, lake and sea ice.

Cryospheric basins

Basins where hydrological and geomorphic processes are influenced or even dominated by the cryosphere.

Glacial lake outburst floods

A flood caused by the rapid draining of an ice-marginal or moraine-dammed glacial lake, or supraglacial lake.

Glacier equilibrium line altitudes

The elevation on a glacier where the accumulation of snow is balanced by ablation over a 1-year period.

Ice-free erodible landscapes

Landscapes that are not covered by glaciers and contain no ground ice, where erosion is controlled neither by glacial processes nor by other ice processes and is characterized as pluvial and fluvial processes.

Paraglacial erosion

Erosional processes directly conditioned by (de)glaciation, characterized by fluvial erosion and mass movements, including landslides, debris flows and avalanches.

Peak meltwater

The maximum of the meltwater in flux from the glacierized drainage basin; the meltwater flux initially increases with atmospheric warming and glacier melting, and then peaks, followed by a decline as glaciers shrink below a critical size.

Periglacial

Refers to cold and non-glacial landforms on the margin of past glaciers or geomorphic processes occurring in cold environments.

Permafrost

Ground, consisting of ground ice, frozen sediments, biomass and decomposed biomass, that remains at or below 0 °C for at least two consecutive years.

Talik

A layer of soil or sediment in permafrost that remains unfrozen year-round, usually formed beneath surface water bodies.

Thermally controlled erodible landscapes

Landscapes covered by glaciers and/or containing ground ice where erosion is dominated by glacial erosion and/or thermokarst erosion.

Thermokarst landscapes

Landscapes with a variety of topographic depressions or collapses of unstable ground surface arising from ground-ice thawing, including active-layer detachment, thermal erosion gullies, retrogressive thaw slumps and ice-rich riverbank collapse.

Yedoma permafrost

A type of Pleistocene-age permafrost that contains a substantial amount of organic material (2% carbon by mass) and ground ice (ice content of 50–90% by volume).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Li, D., East, A.E. et al. Warming-driven erosion and sediment transport in cold regions. Nat Rev Earth Environ 3, 832–851 (2022). https://doi.org/10.1038/s43017-022-00362-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00362-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing