Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Past and future ocean warming

Abstract

Changes in ocean heat content (OHC) provide a measure of ocean warming, with impacts on the Earth system. This Review synthesizes estimates of past and future OHC changes using observations and models. The top 2,000 m of the global ocean has significantly warmed since the 1950s, gaining 351 ± 59.8 ZJ (1 ZJ = 1021 J) from 1958 to 2019. The rate of warming increased from <5 to ~10 ZJ yr−1 from the 1960s to the 2010s. Observed area-averaged warming is largest in the Atlantic Ocean and southern oceans at 1.42 ± 0.09 and 1.40 ± 0.09 × 109 J m2, respectively, for the upper 2,000 m over 1958–2019. These observed patterns of heat gains are dominated by heat redistribution. Observationally constrained projections suggest that historic ocean warming is irreversible this century, with net warming dependent on the emission scenario. By 2100, projected warming in the top 2,000 m is 2–6 times that observed so far, ranging from 1,030 [839–1,228] ZJ for a low-emission scenario to 1,874 [1,637–2,109] ZJ for a high-emission scenario. The Pacific is projected to be the largest heat reservoir owing to its size, but area-averaged warming remains strongest in the Atlantic and southern oceans. Ocean warming has extensive impacts that pose risks to marine ecosystems and society. The projected changes necessitate a continuation and improvement of observations and models, along with better uncertainty estimation.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: The role of ocean warming in the climate system.
Fig. 2: Observed and projected ocean heat content changes.
Fig. 3: Observed and projected regional OHC changes.
Fig. 4: Relationship between transient climate response and the vertical structure of temperature and OHC.
Fig. 5: Simulated past and projected future ocean heat content change.

Data availability

The observation and model data used in this review are available at http://www.ocean.iap.ac.cn/. CMIP6 model data is available at https://esgf-node.llnl.gov/search/cmip6/.

References

  1. Hansen, J., Sato, M., Kharecha, P. & von Schuckmann, K. Earth’s energy imbalance and implications. Atmos. Chem. Phys. 11, 13421–13449 (2011).

    Article  Google Scholar 

  2. Trenberth, K. E., Fasullo, J. T. & Kiehl, J. Earth’s global energy budget. Bull. Am. Meteorol. Soc. 90, 311–324 (2009).

    Article  Google Scholar 

  3. Johnson, G. C. et al. Ocean heat content. State of the Climate in 2020, Global Oceans. Bull. Am. Meteorol. Soc. 102, S156–S159 (2021).

    Google Scholar 

  4. Cheng, L. et al. Another record: ocean warming continues through 2021 despite La Niña conditions. Adv. Atmos. Sci. 39, 373–385 (2022).

    Article  Google Scholar 

  5. Cheng, L., Abraham, J., Hausfather, Z. & Trenberth, K. E. How fast are the oceans warming? Science 363, 128–129 (2019).

    Article  Google Scholar 

  6. Bindoff, N. L. et al. in Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 477–587 (IPCC, Cambridge Univ. Press, 2019).

  7. Loeb, N. G. et al. Satellite and ocean data reveal marked increase in Earth’s heating rate. Geophys. Res. Lett. 48, e2021GL093047 (2021).

    Article  Google Scholar 

  8. Johnson, G. C. & Lyman, J. M. Warming trends increasingly dominate global ocean. Nat. Clim. Change 10, 757–761 (2020).

    Article  Google Scholar 

  9. Solomon, S., Plattner, G.-K., Knutti, R. & Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl Acad. Sci. USA 106, 1704–1709 (2009).

    Article  Google Scholar 

  10. Abraham, J., Cheng, L., Mann, M. E., Trenberth, K. & von Schuckmann, K. The ocean response to climate change guides both adaptation and mitigation efforts. Atmos. Ocean. Sci. Lett. 15, 100221 (2022).

    Article  Google Scholar 

  11. Abram, N. et al. in Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 73–129 (IPCC, Cambridge Univ. Press, 2019).

  12. Cronin, M. F. et al. Air–sea fluxes with a focus on heat and momentum. Front. Mar. Sci. 6, 430 (2019).

    Article  Google Scholar 

  13. Trenberth, K. E. The Changing Flow of Energy Through the Climate System (Cambridge Univ. Press, 2022).

  14. Yu, L. Global air-sea fluxes of heat, fresh water, and momentum: energy budget closure and unanswered questions. Annu. Rev. Mar. Sci. 11, 227–248 (2019).

    Article  Google Scholar 

  15. Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Article  Google Scholar 

  16. Durack, P. J., Wijffels, S. E. & Matear, R. J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336, 455–458 (2012).

    Article  Google Scholar 

  17. Liu et al. Enhanced hydrological cycle increases ocean heat uptake and moderates transient climate change. Nat. Clim. Change 11, 848-853 (2021).

  18. Wild, M. Global dimming and brightening: a review. Geophys. Res. Lett. 114, D00D16 (2009).

  19. Goode, P. R. et al. Earth’s albedo 1998–2017 as measured from earthshine. Geophys. Res. Lett. 48, e2021GL094888 (2021).

    Article  Google Scholar 

  20. Mayer, M. et al. An improved estimate of the coupled arctic energy budget. J. Clim. 32, 7915–7934 (2019).

    Article  Google Scholar 

  21. Rintoul, S. R. et al. Ocean heat drives rapid basal melt of the Totten ice shelf. Sci. Adv. 2, e1601610 (2016).

    Article  Google Scholar 

  22. Wilson, N., Straneo, F. & Heimbach, P. Satellite-derived submarine melt rates and mass balance (2011–2015) for Greenland’s largest remaining ice tongues. Cryosphere 11, 2773–2782 (2017).

    Article  Google Scholar 

  23. Timmermans, M.-L., Toole, J. & Krishfield, R. Warming of the interior Arctic Ocean linked to sea ice losses at the basin margins. Sci. Adv. 4, eaat6773 (2018).

    Article  Google Scholar 

  24. Winton, M., Griffies, S. M., Samuels, B. L., Sarmiento, J. L. & Frölicher, T. L. Connecting changing ocean circulation with changing climate. J. Clim. 26, 2268–2278 (2013).

    Article  Google Scholar 

  25. Exarchou, E., Kuhlbrodt, T., Gregory, J. M. & Smith, R. S. Ocean heat uptake processes: a model intercomparison. J. Clim. 28, 887–908 (2015).

    Article  Google Scholar 

  26. Whalen, C. B. et al. Internal wave-driven mixing: governing processes and consequences for climate. Nat. Rev. Earth Environ. 1, 606–621 (2020).

    Article  Google Scholar 

  27. Bronselaer, B. & Zanna, L. Heat and carbon coupling reveals ocean warming due to circulation changes. Nature 584, 227–233 (2020).

    Article  Google Scholar 

  28. Resplandy, L. et al. Quantification of ocean heat uptake from changes in atmospheric O2 and CO2 composition. Sci. Rep. 9, 20244 (2019).

    Article  Google Scholar 

  29. Gruber, N. Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Phil. Trans. R. Soc. A 369, 1980–1996 (2011).

    Article  Google Scholar 

  30. Frölicher, T. L., Winton, M. & Sarmiento, J. L. Continued global warming after CO2 emissions stoppage. Nat. Clim. Change 4, 40–44 (2013).

    Article  Google Scholar 

  31. Moltmann, T. et al. A global ocean observing system (GOOS), delivered through enhanced collaboration across regions, communities, and new technologies. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00291 (2019).

    Article  Google Scholar 

  32. Abraham, J. P. et al. A review of global ocean temperature observations: implications for ocean heat content estimates and climate change. Rev. Geophys. 51, 450–483 (2013).

    Article  Google Scholar 

  33. Meyssignac, B. et al. Measuring global ocean heat content to estimate the Earth energy imbalance. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00432 (2019).

    Article  Google Scholar 

  34. Argo float data and metadata from global data assembly centre (Argo GDAC, 2000); https://doi.org/10.17882/42182.

  35. Riser, S. C. et al. Fifteen years of ocean observations with the global Argo array. Nat. Clim. Change 6, 145–153 (2016).

    Article  Google Scholar 

  36. Boyer, T. P. et al. World Ocean Database 2018. NOAA Atlas NESDIS 87 (technical ed. Mishonov, A. V.) (NOAA, 2018).

  37. von Schuckmann, K. et al. Consistency of the current global ocean observing systems from an Argo perspective. Ocean. Sci. 10, 547–557 (2014).

    Article  Google Scholar 

  38. von Schuckmann, K., Cheng, L., Palmer, M. D., Hansen, J. & Tassone, C. Heat stored in the Earth system: where does the energy go? Earth Syst. Sci. Data https://doi.org/10.5194/essd-2019-255 (2020).

    Article  Google Scholar 

  39. Savita, A. et al. Quantifying spread in spatiotemporal changes of upper-ocean heat content estimates: an internationally coordinated comparison. J. Clim. 35, 851–875 (2022).

    Article  Google Scholar 

  40. Le Reste, S. et al. ‘Deep-Arvor’: a new profiling float to extend the argo observations down to 4000-m depth. J. Atmos. Ocean. Technol. 33, 1039–1055 (2016).

    Article  Google Scholar 

  41. Wunsch, C. & Heimbach, P. Bidecadal thermal changes in the abyssal ocean. J. Phys. Oceanogr. 44, 2013–2030 (2014).

    Article  Google Scholar 

  42. Chai, F. et al. Monitoring ocean biogeochemistry with autonomous platforms. Nat. Rev. Earth Environ. 1, 315–326 (2020).

    Article  Google Scholar 

  43. Goni, G. J. et al. More than 50 years of successful continuous temperature section measurements by the Global Expendable Bathythermograph Network, its integrability, societal benefits, and future. Front. Mar. Sci. 6, 00452 (2019).

    Article  Google Scholar 

  44. McMahon, C. R. et al. Animal borne ocean sensors — AniBOS — an essential component of the global ocean observing system. Front. Mar. Sci. 8, 751840 (2021).

    Article  Google Scholar 

  45. Boyer, T. et al. Sensitivity of global upper-ocean heat content estimates to mapping methods, XBT bias corrections, and baseline climatologies. J. Clim. 29, 4817–4842 (2016).

    Article  Google Scholar 

  46. Levitus, S., Antonov, J. I., Boyer, T. P. & Stephens, C. Warming of the world ocean. Science 287, 2225–2229 (2000).

    Article  Google Scholar 

  47. Ishii, M., Kimoto, M. & Kachi, M. Historical ocean subsurface temperature analysis with error estimates. Mon. Weather Rev. 131, 51–73 (2003).

    Article  Google Scholar 

  48. Gouretski, V. & Koltermann, K. P. How much is the ocean really warming? Geophys. Res. Lett. https://doi.org/10.1029/2006GL027834 (2007).

    Article  Google Scholar 

  49. Gouretski, V. & Cheng, L. Correction for systematic errors in the global dataset of temperature profiles from mechanical bathythermographs. J. Atmos. Ocean. Technol. 37, 841–855 (2020).

    Article  Google Scholar 

  50. Willis, J. K., Lyman, J. M., Johnson, G. C. & Gilson, J. Correction to “Recent cooling of the upper ocean”. Geophys. Res. Lett. https://doi.org/10.1029/2007GL030323 (2007).

    Article  Google Scholar 

  51. Lyman, J. M. et al. Robust warming of the global upper ocean. Nature 465, 334–337 (2010).

    Article  Google Scholar 

  52. Lyman, J. M. & Johnson, G. C. Estimating global ocean heat content changes in the upper 1800 m since 1950 and the influence of climatology choice. J. Clim. 27, 1945–1957 (2014).

    Article  Google Scholar 

  53. Durack, P. J., Gleckler, P. J., Landerer, F. W. & Taylor, K. E. Quantifying underestimates of long-term upper-ocean warming. Nat. Clim. Change 4, 999–1005 (2014).

    Article  Google Scholar 

  54. Wang, G., Cai, W. & Santoso, A. Assessing the impact of model biases on the projected increase in frequency of extreme positive indian ocean dipole events. J. Clim. 30, 2757–2767 (2017).

    Article  Google Scholar 

  55. Roemmich, D. & Gilson, J. The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Prog. Oceanogr. 82, 81–100 (2009).

    Article  Google Scholar 

  56. Hosoda, S., Ohira, T. & Nakamura, T. Monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations. JAMSTEC Rep. Res. Dev. 8, 47 (2008).

    Article  Google Scholar 

  57. Cheng, L. & Zhu, J. Artifacts in variations of ocean heat content induced by the observation system changes. Geophys. Res. Lett. 41, 7276–7283 (2014).

    Article  Google Scholar 

  58. Rhein, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 255–316 (Cambridge Univ. Press, 2013).

  59. Cheng, L. et al. Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv. 3, e1601545 (2017).

    Article  Google Scholar 

  60. Ishii, M. et al. Accuracy of global upper ocean heat content estimation expected from present observational data sets. SOLA 13, 163–167 (2017).

    Article  Google Scholar 

  61. Willis, J. K. Combining altimetric height with broadscale profile data to estimate steric height, heat storage, subsurface temperature, and sea-surface temperature variability. J. Geophys. Res. Oceans https://doi.org/10.1029/2002JC001755 (2003).

    Article  Google Scholar 

  62. Levitus, S. et al. World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett. 39, L10603 (2012).

    Article  Google Scholar 

  63. Bagnell, A. & DeVries, T. 20th century cooling of the deep ocean contributed to delayed acceleration of Earth’s energy imbalance. Nat. Commun. 12, 4604 (2021).

    Article  Google Scholar 

  64. Domingues, C. M. et al. Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453, 1090–1093 (2008).

    Article  Google Scholar 

  65. Su, H. et al. OPEN: a new estimation of global ocean heat content for upper 2000 meters from remote sensing data. Remote Sens https://doi.org/10.3390/rs12142294 (2020).

    Article  Google Scholar 

  66. Hakuba, M. Z., Frederikse, T. & Landerer, F. W. Earth’s energy imbalance from the ocean perspective (2005–2019). Geophys. Res. Lett. 48, e2021GL093624 (2021).

    Article  Google Scholar 

  67. Marti, F. et al. Monitoring the ocean heat content change and the Earth energy imbalance from space altimetry and space gravimetry. Earth Syst. Sci. Data https://doi.org/10.5194/essd-2021-220 (2021).

    Article  Google Scholar 

  68. Llovel, W., Willis, J. K., Landerer, F. W. & Fukumori, I. Deep-ocean contribution to sea level and energy budget not detectable over the past decade. Nat. Clim. Change 4, 1031–1035 (2014).

    Article  Google Scholar 

  69. Zanna, L., Khatiwala, S., Gregory, J. M., Ison, J. & Heimbach, P. Global reconstruction of historical ocean heat storage and transport. Proc. Natl Acad. Sci. USA 116, 1126–1131 (2019).

    Article  Google Scholar 

  70. Gebbie, G. & Huybers, P. The Little Ice Age and 20th-century deep Pacific cooling. Science 363, 70–74 (2019).

    Article  Google Scholar 

  71. Storto, A. et al. Ocean reanalyses: recent advances and unsolved challenges. Front. Mar. Sci https://doi.org/10.3389/fmars.2019.00418 (2019).

    Article  Google Scholar 

  72. Lellouche, J.-M. et al. The Copernicus global 1/12° oceanic and sea ice GLORYS12 reanalysis. Front. Earth Sci. 9, 698876 (2021).

    Article  Google Scholar 

  73. Balmaseda, M. A. et al. The Ocean Reanalyses Intercomparison Project (ORA-IP). J. Oper. Oceanogr. 8, s80–s97 (2015).

    Google Scholar 

  74. Wunsch, C. Is the ocean speeding up? Ocean surface energy trends. J. Phys. Oceanogr. 50, 3205–3217 (2020).

    Article  Google Scholar 

  75. Palmer, M. D. et al. Ocean heat content variability and change in an ensemble of ocean reanalyses. Clim. Dyn. 49, 909–930 (2017).

    Article  Google Scholar 

  76. Trenberth, K. E., Fasullo, J. T., von Schuckmann, K. & Cheng, L. Insights into Earth’s energy imbalance from multiple sources. J. Clim. 29, 7495–7505 (2016).

    Article  Google Scholar 

  77. Balmaseda, M. A., Trenberth, K. E. & Källén, E. Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett. 40, 1754–1759 (2013).

    Article  Google Scholar 

  78. Penduff, T. et al. Chaotic variability of ocean heat content: climate-relevant features and observational implications. Oceanography. 31, 210 (2018).

    Article  Google Scholar 

  79. Cheng, L. et al. Evolution of ocean heat content related to ENSO. J. Clim. 32, 3529–3556 (2019).

    Article  Google Scholar 

  80. Roemmich, D. & Gilson, J. The global ocean imprint of ENSO. Geophys. Res. Lett. https://doi.org/10.1029/2011GL047992 (2011).

    Article  Google Scholar 

  81. Cheng, L., Foster, G., Hausfather, Z., Trenberth, K. E. & Abraham, J. Improved quantification of the rate of ocean warming. J. Clim. 35, 4827–4840 (2022).

    Article  Google Scholar 

  82. Gulev, S. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 287–422 (Cambridge Univ. Press, 2021).

  83. Johnson, G. C. & Birnbaum, A. N. As El Niño builds, Pacific warm pool expands, ocean gains more heat. Geophys. Res. Lett. 44, 438–445 (2017).

    Article  Google Scholar 

  84. Church, J. A., White, N. J. & Arblaster, J. M. Significant decadal-scale impact of volcanic eruptions on sea level and ocean heat content. Nature 438, 74–77 (2005).

    Article  Google Scholar 

  85. Gleckler, P. J., Durack, P. J., Stouffer, R. J., Johnson, G. C. & Forest, C. E. Industrial-era global ocean heat uptake doubles in recent decades. Nat. Clim. Change 6, 394–398 (2016).

    Article  Google Scholar 

  86. Kramer, R. J. et al. Observational evidence of increasing global radiative forcing. Geophys. Res. Lett. 48, e2020GL091585 (2021).

    Article  Google Scholar 

  87. Eyring, V. et al. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model. Dev. 9, 1937–1958 (2016).

    Article  Google Scholar 

  88. Gleckler, P. J. et al. Human-induced global ocean warming on multidecadal timescales. Nat. Clim. Change 2, 524–529 (2012).

    Article  Google Scholar 

  89. Barnett, T. P. et al. Penetration of human-induced warming into the world’s oceans. Science 309, 284–287 (2005).

    Article  Google Scholar 

  90. Bilbao, R. A. F., Gregory, J. M., Bouttes, N., Palmer, M. D. & Stott, P. Attribution of ocean temperature change to anthropogenic and natural forcings using the temporal, vertical and geographical structure. Clim. Dyn. 53, 5389–5413 (2019).

    Article  Google Scholar 

  91. Tokarska, K. B., Hegerl, G. C., Schurer, A. P., Ribes, A. & Fasullo, J. T. Quantifying human contributions to past and future ocean warming and thermosteric sea level rise. Environ. Res. Lett. 14, 074020 (2019).

    Article  Google Scholar 

  92. Tokarska, K. B. et al. Past warming trend constrains future warming in CMIP6 models. Sci. Adv. 6, eaaz9549 (2020).

    Article  Google Scholar 

  93. Silvy, Y., Guilyardi, E., Sallée, J.-B. & Durack, P. J. Human-induced changes to the global ocean water masses and their time of emergence. Nat. Clim. Change 10, 1030–1036 (2020).

    Article  Google Scholar 

  94. Raghuraman, S. P., Paynter, D. & Ramaswamy, V. Anthropogenic forcing and response yield observed positive trend in Earth’s energy imbalance. Nat. Commun. 12, 4577 (2021).

    Article  Google Scholar 

  95. Gebbie, G. Combining modern and paleoceanographic perspectives on ocean heat uptake. Annu. Rev. Mar. Sci. 13, 255–281 (2021).

    Article  Google Scholar 

  96. Purkey, S. G. & Johnson, G. C. Warming of global abyssal and deep southern ocean waters between the 1990s and 2000s: contributions to global heat and sea level rise budgets. J. Clim. 23, 6336–6351 (2010).

    Article  Google Scholar 

  97. Desbruyères, D., McDonagh, E. L., King, B. A. & Thierry, V. Global and full-depth ocean temperature trends during the early twenty-first century from Argo and repeat hydrography. J. Clim. 30, 1985–1997 (2017).

    Article  Google Scholar 

  98. Storto, A., Cheng, L. & Yang, C. Revisiting the 2003–2018 deep-ocean warming through multi-platform analysis of the global energy budget. J. Clim. 35, 4701–4717 (2022).

    Article  Google Scholar 

  99. Sohail, T., Irving, D. B., Zika, J. D., Holmes, R. M. & Church, J. A. Fifty year trends in global ocean heat content traced to surface heat fluxes in the sub-polar ocean. Geophys. Res. Lett. 48, e2020GL091439 (2021).

    Article  Google Scholar 

  100. Cheng, L. et al. XBT science: assessment of instrumental biases and errors. Bull. Am. Meteorol. Soc. 97, 924–933 (2016).

    Article  Google Scholar 

  101. Cheng, L. et al. How well can we correct systematic errors in historical XBT data? J. Atmos. Ocean. Technol. 35, 1103–1125 (2018).

    Article  Google Scholar 

  102. Dangendorf, S. et al. Data-driven reconstruction reveals large-scale ocean circulation control on coastal sea level. Nat. Clim. Change 11, 514–520 (2021).

    Article  Google Scholar 

  103. Bullister, J. L., Rhein, M. & Mauritzen, C. in International Geophysics Vol. 103 (eds Siedler, G. et al.) 227–253 (Academic, 2013).

  104. Cornwall, W. A new ‘Blob’ menaces Pacific ecosystems. Science 365, 1233–1233 (2019).

    Article  Google Scholar 

  105. Piatt, J. F. et al. Extreme mortality and reproductive failure of common murres resulting from the northeast Pacific marine heatwave of 2014–2016. PLoS One 15, e0226087 (2020).

    Article  Google Scholar 

  106. Mayer, M., Haimberger, L. & Balmaseda, M. A. On the energy exchange between tropical ocean basins related to ENSO. J. Clim. 27, 6393–6403 (2014).

    Article  Google Scholar 

  107. Mayer, M., Alonso Balmaseda, M. & Haimberger, L. Unprecedented 2015/2016 Indo-Pacific heat transfer speeds up tropical pacific heat recharge. Geophys. Res. Lett. 45, 3274–3284 (2018).

    Article  Google Scholar 

  108. Wu, Q., Zhang, X., Church, J. A. & Hu, J. ENSO-related global ocean heat content variations. J. Clim. 32, 45–68 (2019).

    Article  Google Scholar 

  109. Roemmich, D. et al. Unabated planetary warming and its ocean structure since 2006. Nat. Clim. Change 5, 240–245 (2015).

    Article  Google Scholar 

  110. Kosaka, Y. & Xie, S.-P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–407 (2013).

    Article  Google Scholar 

  111. Meehl, G. A., Teng, H., Capotondi, A. & Hu, A. The role of interannual ENSO events in decadal timescale transitions of the interdecadal Pacific oscillation. Clim. Dyn. 57, 1933–1951 (2021).

    Article  Google Scholar 

  112. Wu, B., Lin, X. & Yu, L. North Pacific subtropical mode water is controlled by the Atlantic multidecadal variability. Nat. Clim. Change 10, 238–243 (2020).

    Article  Google Scholar 

  113. Sun, C. et al. Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation. Nat. Commun. 8, 15998 (2017).

    Article  Google Scholar 

  114. Wu, B., Lin, X. & Yu, L. Decadal to multidecadal variability of the mixed layer to the south of the Kuroshio Extension Region. J. Clim. 33, 7697–7714 (2020).

    Article  Google Scholar 

  115. England, M. H. et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Change 4, 222–227 (2014).

    Article  Google Scholar 

  116. Douville, H., Voldoire, A. & Geoffroy, O. The recent global warming hiatus: what is the role of Pacific variability? Geophys. Res. Lett. 42, 880–888 (2015).

    Article  Google Scholar 

  117. Sprintall, J. et al. Detecting change in the Indonesian seas. Front. Mar. Sci. 6, 257 (2019).

    Article  Google Scholar 

  118. England, M. H. & Huang, F. On the interannual variability of the Indonesian throughflow and its linkage with ENSO. J. Clim. 18, 1435–1444 (2005).

    Article  Google Scholar 

  119. Trenberth, K. E. & Zhang, Y. Observed interhemispheric meridional heat transports and the role of the Indonesian throughflow in the Pacific ocean. J. Clim. 32, 8523–8536 (2019).

    Article  Google Scholar 

  120. Maher, N., England, M. H., Gupta, A. S. & Spence, P. Role of Pacific trade winds in driving ocean temperatures during the recent slowdown and projections under a wind trend reversal. Clim. Dyn. 51, 321–336 (2018).

    Article  Google Scholar 

  121. Gong, Z. et al. An inter-basin teleconnection from the North Atlantic to the subarctic North Pacific at multidecadal time scales. Clim. Dyn. 54, 807–822 (2020).

    Article  Google Scholar 

  122. Wu, B., Lin, X. & Qiu, B. Meridional shift of the Oyashio extension front in the past 36 years. Geophys. Res. Lett. 45, 9042–9048 (2018).

    Article  Google Scholar 

  123. Yang, H. et al. Poleward shift of the major ocean gyres detected in a warming climate. Geophys. Res. Lett. 47, e2019GL085868 (2020).

    Article  Google Scholar 

  124. von Schuckmann, K. et al. Copernicus marine service ocean state report. J. Oper. Oceanogr. 11, S1–S142 (2018).

    Google Scholar 

  125. Zika, J. D., Gregory, J. M., McDonagh, E. L., Marzocchi, A. & Clément, L. Recent water mass changes reveal mechanisms of ocean warming. J. Clim. 34, 3461–3479 (2021).

    Article  Google Scholar 

  126. Rahmstorf, S. et al. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Clim. Change 5, 475–480 (2015).

    Article  Google Scholar 

  127. Gregory, J. M. et al. The flux-anomaly-forced model intercomparison project (FAFMIP) contribution to CMIP6: investigation of sea-level and ocean climate change in response to CO2 forcing. Geosci. Model. Dev. 9, 3993–4017 (2016).

    Article  Google Scholar 

  128. Jackson, L. C. et al. The evolution of the North Atlantic Meridional Overturning Circulation since 1980. Nat. Rev. Earth Environ. 3, 241–254 (2022).

    Article  Google Scholar 

  129. Zhang, R. Coherent surface-subsurface fingerprint of the Atlantic Meridional Overturning Circulation. Geophys. Res. Lett. https://doi.org/10.1029/2008GL035463 (2008).

    Article  Google Scholar 

  130. Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556, 191–196 (2018).

    Article  Google Scholar 

  131. Cunningham, S. A. et al. Temporal variability of the Atlantic Meridional Overturning Circulation at 26.5 degrees N. Science 317, 935–938 (2007).

    Article  Google Scholar 

  132. Bryden, H. L. et al. Reduction in ocean heat transport at 26°N since 2008 cools the eastern subpolar gyre of the North Atlantic Ocean. J. Clim. 33, 1677–1689 (2020).

    Article  Google Scholar 

  133. Trenberth, K. E., Zhang, Y., Fasullo, J. T. & Cheng, L. Observation-based estimates of global and basin ocean meridional heat transport time series. J. Clim. 32, 4567–4583 (2019).

    Article  Google Scholar 

  134. Fu, Y., Li, F., Karstensen, J. & Wang, C. A stable Atlantic Meridional Overturning Circulation in a changing north atlantic ocean since the 1990s. Sci. Adv. 6, eabc7836 (2020).

    Article  Google Scholar 

  135. Cimatoribus, A., van Oldenborgh, G. J. & Drijfhout, S. Is a decline of AMOC causing the warming hole above the North Atlantic in observed and modeled warming patterns? J. Clim. 25, 8373–8379 (2012).

    Article  Google Scholar 

  136. Gervais, M., Shaman, J. & Kushnir, Y. Mechanisms governing the development of the North Atlantic warming hole in the CESM-LE future climate simulations. J. Clim. 31, 5927–5946 (2018).

    Article  Google Scholar 

  137. Gu, S., Liu, Z. & Wu, L. Time scale dependence of the meridional coherence of the Atlantic Meridional Overturning Circulation. J. Geophys. Res. Oceans 125, e2019JC015838 (2020).

    Article  Google Scholar 

  138. Clement, A. et al. The Atlantic multidecadal oscillation without a role for ocean circulation. Science 350, 320–324 (2015).

    Article  Google Scholar 

  139. Woollings, T., Gregory, J. M., Pinto, J. G., Reyers, M. & Brayshaw, D. J. Response of the North Atlantic storm track to climate change shaped by ocean–atmosphere coupling. Nat. Geosci. 5, 313–317 (2012).

    Article  Google Scholar 

  140. Feser, F. et al. Storminess over the North Atlantic and northwestern Europe — a review. Q. J. R. Meteorol. Soc. 141, 350–382 (2015).

    Article  Google Scholar 

  141. Li, L., Lozier, M. S. & Li, F. Century-long cooling trend in subpolar North Atlantic forced by atmosphere: an alternative explanation. Clim. Dyn. 58, 2249–2267 (2021).

    Article  Google Scholar 

  142. Josey, S. A. et al. The recent atlantic cold anomaly: causes, consequences, and related phenomena. Annu. Rev. Mar. Sci. 10, 475–501 (2018).

    Article  Google Scholar 

  143. Delworth, T. L. et al. The North Atlantic Oscillation as a driver of rapid climate change in the Northern Hemisphere. Nat. Geosci. 9, 509–512 (2016).

    Article  Google Scholar 

  144. Stepanov, V. N. & Haines, K. Mechanisms of Atlantic Meridional Overturning Circulation variability simulated by the NEMO model. Ocean. Sci. 10, 645–656 (2014).

    Article  Google Scholar 

  145. Hu, S. & Fedorov, A. V. Indian Ocean warming as a driver of the North Atlantic warming hole. Nat. Commun. 11, 4785 (2020).

    Article  Google Scholar 

  146. Li, Y., Han, W., Hu, A., Meehl, G. A. & Wang, F. Multidecadal changes of the Upper Indian Ocean heat content during 1965–2016. J. Clim. 31, 7863–7884 (2018).

    Article  Google Scholar 

  147. Ummenhofer, C. C., Murty, S. A., Sprintall, J., Lee, T. & Abram, N. J. Heat and freshwater changes in the Indian Ocean region. Nat. Rev. Earth Environ. 2, 525–541 (2021).

    Article  Google Scholar 

  148. Lee, S.-K. et al. Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nat. Geosci. 8, 445–449 (2015).

    Article  Google Scholar 

  149. Li, Y., Han, W., Wang, F., Zhang, L. & Duan, J. Vertical structure of the Upper-Indian Ocean thermal variability. J. Clim. 33, 7233–7253 (2020).

    Article  Google Scholar 

  150. Volkov, D. L., Lee, S.-K., Gordon, A. L. & Rudko, M. Unprecedented reduction and quick recovery of the South Indian Ocean heat content and sea level in 2014. Sci. Adv. 6, eabc1151 (2020).

    Article  Google Scholar 

  151. Liu, Q., Feng, M., Wang, D. & Wijffels, S. Interannual variability of the Indonesian throughflow transport: a revisit based on 30 year expendable bathythermograph data. J. Geophys. Res. Oceans 120, 8270–8282 (2015).

    Article  Google Scholar 

  152. Yang, L., Murtugudde, R., Zhou, L. & Liang, P. A potential link between the Southern Ocean warming and the South Indian Ocean heat balance. J. Geophys. Res. Oceans 125, e2020JC016132 (2020).

    Article  Google Scholar 

  153. Duan, J. et al. Rapid sea-level rise in the Southern-Hemisphere subtropical Oceans. J. Clim. https://doi.org/10.1175/JCLI-D-21-0248.1 (2021).

    Article  Google Scholar 

  154. Hong, Y., Du, Y., Qu, T., Zhang, Y. & Cai, W. Variability of the Subantarctic mode water volume in the South Indian Ocean during 2004–2018. Geophys. Res. Lett. 47, e2020GL087830 (2020).

    Article  Google Scholar 

  155. Sallée, J.-B. Southern Ocean warming. Oceanography 31, 52–62 (2018).

    Article  Google Scholar 

  156. Frölicher, T. L. et al. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J. Clim. 28, 862–886 (2015).

    Article  Google Scholar 

  157. Gille, S. T. Warming of the Southern Ocean since the 1950s. Science 295, 1275–1277 (2002).

    Article  Google Scholar 

  158. Purich, A., Cai, W., England, M. H. & Cowan, T. Evidence for link between modelled trends in Antarctic sea ice and underestimated westerly wind changes. Nat. Commun. 7, 10409 (2016).

    Article  Google Scholar 

  159. Meredith, M. et al. in Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) Ch. 3 (IPCC, 2019).

  160. Swart, N. C., Gille, S. T., Fyfe, J. C. & Gillett, N. P. Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nat. Geosci. 11, 836–841 (2018).

    Article  Google Scholar 

  161. Eyring, V. et al. Reflections and projections on a decade of climate science. Nat. Clim. Change 11, 279–285 (2021).

    Article  Google Scholar 

  162. Cai, W., Cowan, T., Godfrey, S. & Wijffels, S. Simulations of processes associated with the fast warming rate of the Southern Midlatitude Ocean. J. Clim. 23, 197–206 (2010).

    Article  Google Scholar 

  163. Armour, K. C., Marshall, J., Scott, J. R., Donohoe, A. & Newsom, E. R. Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci. 9, 549–554 (2016).

    Article  Google Scholar 

  164. Gao, L., Rintoul, S. R. & Yu, W. Recent wind-driven change in Subantarctic mode water and its impact on ocean heat storage. Nat. Clim. Change 8, 58–63 (2017).

    Article  Google Scholar 

  165. Li, Z., England, M. H., Groeskamp, S., Cerovečki, I. & Luo, Y. The origin and fate of Subantarctic mode water in the Southern Ocean. J. Phys. Oceanogr. 51, 2951–2972 (2021).

    Google Scholar 

  166. Huguenin, M. F., Holmes, R. M. & England, M. H. Drivers and distribution of global ocean heat uptake over the last half century. Nat. Commun. 13, 4921 (2022).

    Article  Google Scholar 

  167. Purich, A., England, M. H., Cai, W., Sullivan, A. & Durack, P. J. Impacts of broad-scale surface freshening of the southern ocean in a coupled climate model. J. Clim. 31, 2613–2632 (2018).

    Article  Google Scholar 

  168. Hyder, P. et al. Critical Southern Ocean climate model biases traced to atmospheric model cloud errors. Nat. Commun. 9, 3625 (2018).

    Article  Google Scholar 

  169. Schuddeboom, A. J. & McDonald, A. J. The Southern Ocean radiative bias, cloud compensating errors, and equilibrium climate sensitivity in CMIP6 models. J. Geophys. Res. Atmos. 126, e2021JD035310 (2021).

    Article  Google Scholar 

  170. Munday, D. R., Johnson, H. L. & Marshall, D. P. Eddy saturation of equilibrated circumpolar currents. J. Phys. Oceanogr. 43, 507–532 (2013).

    Article  Google Scholar 

  171. Hogg, A. M. et al. Recent trends in the Southern Ocean eddy field. J. Geophys. Res. Oceans 120, 257–267 (2015).

    Article  Google Scholar 

  172. Patara, L., Böning, C. W. & Biastoch, A. Variability and trends in Southern Ocean eddy activity in 1/12° ocean model simulations. Geophys. Res. Lett. 43, 4517–4523 (2016).

    Article  Google Scholar 

  173. Wu, L., Jing, Z., Riser, S. & Visbeck, M. Seasonal and spatial variations of Southern Ocean diapycnal mixing from Argo profiling floats. Nat. Geosci. 4, 363–366 (2011).

    Article  Google Scholar 

  174. Shi, J.-R., Talley, L. D., Xie, S.-P., Peng, Q. & Liu, W. Ocean warming and accelerating Southern Ocean zonal flow. Nat. Clim. Change 11, 1090–1097 (2021).

    Article  Google Scholar 

  175. Pellichero, V., Sallee, J. B., Chapman, C. C. & Downes, S. M. The southern ocean meridional overturning in the sea-ice sector is driven by freshwater fluxes. Nat. Commun. 9, 1789 (2018).

    Article  Google Scholar 

  176. Haumann, F. A., Gruber, N. & Münnich, M. Sea-ice induced Southern Ocean subsurface warming and surface cooling in a warming climate. AGU Adv. 1, e2019AV000132 (2020).

    Article  Google Scholar 

  177. Meehl, G. A. et al. Sustained ocean changes contributed to sudden Antarctic sea ice retreat in late 2016. Nat. Commun. 10, 14 (2019).

    Article  Google Scholar 

  178. Li, X. et al. Tropical teleconnection impacts on Antarctic climate changes. Nat. Rev. Earth Environ. 2, 680–698 (2021).

    Article  Google Scholar 

  179. Wu, L. et al. Enhanced warming over the global subtropical western boundary currents. Nat. Clim. Change 2, 161–166 (2012).

    Article  Google Scholar 

  180. Duran, E. R., England, M. H. & Spence, P. Surface ocean warming around Australia driven by interannual variability and long-term trends in Southern Hemisphere westerlies. Geophys. Res. Lett. 47, e2019GL086605 (2020).

    Article  Google Scholar 

  181. Lago, V. & England, M. H. Projected slowdown of Antarctic bottom water formation in response to amplified meltwater contributions. J. Clim. 32, 6319–6335 (2019).

    Article  Google Scholar 

  182. MedECC in Climate and Environmental Change in the Mediterranean Basin: Current Situation and Risks for the Future. First Mediterranean Assessment Report (eds Cramer, W., Guiot, J. & Marini, K.) 11–40 (Union for the Mediterranean, Plan Bleu, UNEP/MAP, 2020).

  183. Pinardi, N. et al. Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: a retrospective analysis. Prog. Oceanogr. 132, 318–332 (2015).

    Article  Google Scholar 

  184. Masina, S. et al. The North Atlantic–Mediterranean overturning systems teleconnection. In Copernicus Ocean State Report. J. Oceanogr. (in the press).

  185. Pinardi, N., Cessi, P., Borile, F. & Wolfe, C. L. P. The Mediterranean sea overturning circulation. J. Phys. Oceanogr. 49, 1699–1721 (2019).

    Article  Google Scholar 

  186. Jordà, G. et al. The Mediterranean Sea heat and mass budgets: estimates, uncertainties and perspectives. Prog. Oceanogr. 156, 174–208 (2017).

    Article  Google Scholar 

  187. Lionello, P. et al. The climate of the Mediterranean region: research progress and climate change impacts. Reg. Environ. Change 14, 1679–1684 (2014).

    Article  Google Scholar 

  188. Schroeder, K. et al. Rapid response to climate change in a marginal sea. Sci. Rep. 7, 4065 (2017).

    Article  Google Scholar 

  189. Simoncelli, S., Fratianni, C. & Mattia, G. Monitoring and long-term assessment of the Mediterranean Sea physical state through ocean reanalyses. In INGV Workshop on Marine Environment Abstract Volume (eds. Sagnotti, L. et al.) Misc. INGV, 51: 1126 (INGV, 2019).

  190. Zunino, P. et al. Effects of the Western Mediterranean transition on the resident water masses: pure warming, pure freshening and pure heaving. J. Mar. Syst. 96–97, 15–23 (2012).

    Article  Google Scholar 

  191. Simoncelli, S., Pinardi, N., Fratianni, C., Dubois, C. & Notarstefano, G. Water mass formation processes in the Mediterranean Sea over the past 30 years. In Copernicus Marine Service Ocean State Report, Issue 2. J. Oper. Oceanogr. 11, s1–s142 (2018).

    Google Scholar 

  192. Sammartino, S., Lafuente, J., Naranjo, C. & Simoncelli, S. Ventilation of the western Mediterranean deep water through the strait of Gibraltar. In Copernicus Marine Service Ocean State Report, Issue 2. J. Oper. Oceanogr. 11, s13–s16 (2018).

    Google Scholar 

  193. Cherif, S. et al. in Climate and Environmental Change in the Mediterranean Basin: Current Situation and Risks for the Future. First Mediterranean Assessment Report (eds. Cramer, W., Guiot, J. & Marini, K.) 59–180 (Union for the Mediterranean, Plan Bleu, UNEP/MAP, 2020).

  194. Mayer, M. et al. Atmospheric and oceanic contributions to observed Nordic Seas and Arctic Ocean heat content variations 1993–2020. In Copernicus Marine Service Ocean State Report. J. Oper. Oceanogr. (in the press).

  195. Polyakov, I. V. et al. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science 356, 285–291 (2017).

    Article  Google Scholar 

  196. Ingvaldsen, R. B. et al. Physical manifestations and ecological implications of Arctic Atlantification. Nat. Rev. Earth Environ. 2, 874–889 (2021).

    Article  Google Scholar 

  197. Tesi, T. et al. Rapid Atlantification along the Fram Strait at the beginning of the 20th century. Sci. Adv. 7, eabj2946 (2021).

    Article  Google Scholar 

  198. Spooner, P. T. et al. Exceptional 20th century ocean circulation in the Northeast Atlantic. Geophys. Res. Lett. 47, e2020GL087577 (2020).

    Article  Google Scholar 

  199. Caesar, L., McCarthy, G. D., Thornalley, D. J. R., Cahill, N. & Rahmstorf, S. Current Atlantic Meridional Overturning Circulation weakest in last millennium. Nat. Geosci. 14, 118–120 (2021).

    Article  Google Scholar 

  200. Li, F. et al. Subpolar North Atlantic western boundary density anomalies and the Meridional Overturning Circulation. Nat. Commun. 12, 3002 (2021).

    Article  Google Scholar 

  201. Tsubouchi, T. et al. Increased ocean heat transport into the Nordic Seas and Arctic Ocean over the period 1993–2016. Nat. Clim. Change 11, 21–26 (2021).

    Article  Google Scholar 

  202. Fox-Kemper, B. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1211–1361 (Cambridge Univ. Press, 2021).

  203. Winton, M., Takahashi, K. & Held, I. M. Importance of ocean heat uptake efficacy to transient climate change. J. Clim. 23, 2333–2344 (2010).

    Article  Google Scholar 

  204. Marshall, J. et al. The ocean’s role in the transient response of climate to abrupt greenhouse gas forcing. Clim. Dyn. 44, 2287–2299 (2014).

    Article  Google Scholar 

  205. Lyu, K., Zhang, X. & Church, J. A. Projected ocean warming constrained by the ocean observational record. Nat. Clim. Change 11, 834–839 (2021).

    Article  Google Scholar 

  206. Hansen, J. et al. Climate response times: dependence on climate sensitivity and ocean mixing. Science 229, 857–859 (1985).

    Article  Google Scholar 

  207. Rose, B. E. J. & Rayborn, L. The effects of ocean heat uptake on transient climate sensitivity. Curr. Clim. Change Rep. 2, 190–201 (2016).

    Article  Google Scholar 

  208. Hawkins, E., Smith, R. S., Gregory, J. M. & Stainforth, D. A. Irreducible uncertainty in near-term climate projections. Clim. Dyn. 46, 3807–3819 (2016).

    Article  Google Scholar 

  209. Bonnet, R. et al. Increased risk of near term global warming due to a recent AMOC weakening. Nat. Commun. 12, 6108 (2021).

    Article  Google Scholar 

  210. Nowicki, S. et al. Experimental protocol for sea level projections from ISMIP6 stand-alone ice sheet models. Cryosphere 14, 2331–2368 (2020).

    Article  Google Scholar 

  211. Mann, M. E. Beyond the hockey stick: climate lessons from the Common Era. Proc. Natl Acad. Sci. USA 118, e2112797118 (2021).

    Article  Google Scholar 

  212. Irving, D., Hobbs, W., Church, J. & Zika, J. A mass and energy conservation analysis of drift in the CMIP6 ensemble. J. Clim. 34, 3157–3170 (2020).

    Google Scholar 

  213. Luyten, J., Pedlosky, J. & Stommel, H. The ventilated thermocline. J. Phys. Oceanogr. 13, 292–309 (1983).

    Article  Google Scholar 

  214. Seager, R., Henderson, N. & Cane, M. Persistent discrepancies between observed and modeled trends in the tropical Pacific Ocean. J. Clim. 35, 4571–4584 (2022).

    Article  Google Scholar 

  215. Wengel, C. et al. Future high-resolution El Niño/Southern Oscillation dynamics. Nat. Clim. Change 11, 758–765 (2021).

    Article  Google Scholar 

  216. Shi, J.-R., Xie, S.-P. & Talley, L. D. Evolving relative importance of the Southern Ocean and North Atlantic in Anthropogenic Ocean heat uptake. J. Clim. 31, 7459–7479 (2018).

    Article  Google Scholar 

  217. Irving, D. B., Wijffels, S. & Church, J. A. Anthropogenic aerosols, greenhouse gases, and the uptake, transport, and storage of excess heat in the climate system. Geophys. Res. Lett. 46, 4894–4903 (2019).

    Article  Google Scholar 

  218. Sloyan, B. M. & Rintoul, S. R. Circulation, renewal, and modification of Antarctic mode and intermediate water. J. Phys. Oceanogr. 31, 1005–1030 (2001).

    Article  Google Scholar 

  219. Purkey, S. G. & Johnson, G. C. Antarctic bottom water warming and freshening: contributions to sea level rise, ocean freshwater budgets, and global heat gain. J. Clim. 26, 6105–6122 (2013).

    Article  Google Scholar 

  220. Liu, W., Lu, J., Xie, S.-P. & Fedorov, A. Southern ocean heat uptake, redistribution, and storage in a warming climate: the role of meridional overturning circulation. J. Clim. 31, 4727–4743 (2018).

    Article  Google Scholar 

  221. Soto-Navarro, J. et al. Evolution of Mediterranean sea water properties under climate change scenarios in the Med-CORDEX ensemble. Clim. Dyn. 54, 2135–2165 (2020).

    Article  Google Scholar 

  222. Somot, S., Sevault, F. & Déqué, M. Transient climate change scenario simulation of the Mediterranean Sea for the twenty-first century using a high-resolution ocean circulation model. Clim. Dyn. 27, 851–879 (2006).

    Article  Google Scholar 

  223. Carillo, A. et al. Steric sea level rise over the Mediterranean sea: present climate and scenario simulations. Clim. Dyn. 39, 2167–2184 (2012).

    Article  Google Scholar 

  224. Khosravi, N. et al. The Arctic Ocean in CMIP6 models: biases and projected changes in temperature and salinity. Earths Future 10, e2021EF002282 (2021).

    Google Scholar 

  225. Roberts, C. D. et al. Surface flux and ocean heat transport convergence contributions to seasonal and interannual variations of ocean heat content. J. Geophys. Res. Oceans 122, 726–744 (2017).

    Article  Google Scholar 

  226. Marshall, D. P. & Zanna, L. A conceptual model of ocean heat uptake under climate change. J. Clim. 27, 8444–8465 (2014).

    Article  Google Scholar 

  227. Kostov, Y., Armour, K. C. & Marshall, J. Impact of the Atlantic Meridional Overturning Circulation on ocean heat storage and transient climate change. Geophys. Res. Lett. 41, 2108–2116 (2014).

    Article  Google Scholar 

  228. Todd, A. et al. Ocean‐only FAFMIP: understanding regional patterns of ocean heat content and dynamic sea level change. J. Adv. Model. Earth Syst. 12, e2019MS002027 (2020).

    Article  Google Scholar 

  229. Couldrey, M. et al. What causes the spread of model projections of ocean dynamic sea level change in response to greenhouse gas forcing? Clim. Dyn. 56, 155–187 (2021).

    Article  Google Scholar 

  230. Dias, F. B. et al. Ocean heat storage in response to changing ocean circulation processes. J. Clim. 33, 9065–9082 (2020).

    Article  Google Scholar 

  231. Williams, R. G., Katavouta, A. & Roussenov, V. Regional asymmetries in ocean heat and carbon storage due to dynamic redistribution in climate model projections. J. Clim. 34, 3907–3925 (2021).

    Article  Google Scholar 

  232. Wahl, T. & Plant, N. G. Changes in erosion and flooding risk due to long-term and cyclic oceanographic trends. Geophys. Res. Lett. 42, 2943–2950 (2015).

    Article  Google Scholar 

  233. Irrgang, A. M. et al. Drivers, dynamics and impacts of changing Arctic coasts. Nat. Rev. Earth Environ. 3, 39–54 (2022).

    Article  Google Scholar 

  234. Li, G. et al. Increasing ocean stratification over the past half-century. Nat. Clim. Change 10, 1116–1123 (2020).

    Article  Google Scholar 

  235. Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).

    Article  Google Scholar 

  236. Gruber, N., Boyd, P. W., Frolicher, T. L. & Vogt, M. Biogeochemical extremes and compound events in the ocean. Nature 600, 395–407 (2021).

    Article  Google Scholar 

  237. Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).

    Article  Google Scholar 

  238. Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).

    Article  Google Scholar 

  239. Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).

    Article  Google Scholar 

  240. Steinacher, M. et al. Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences 7, 979–1005 (2010).

    Article  Google Scholar 

  241. Ranasinghe, R. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1767–1926 (Cambridge Univ. Press, 2021).

  242. Lam, V. W. Y. et al. Climate change, tropical fisheries and prospects for sustainable development. Nat. Rev. Earth Environ. 1, 440–454 (2020).

    Article  Google Scholar 

  243. Mignot, A. et al. Decrease in air–sea CO2 fluxes caused by persistent marine heatwaves. Nat. Commun. 13, 4300 (2022).

    Article  Google Scholar 

  244. Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722 (2015).

    Article  Google Scholar 

  245. Ramírez, F., Afán, I., Davis, L. S. & Chiaradia, A. Climate impacts on global hot spots of marine biodiversity. Sci. Adv. 3, e1601198 (2017).

    Article  Google Scholar 

  246. Oliver, E. C. J. et al. The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun. 8, 16101 (2017).

    Article  Google Scholar 

  247. Collins, M. et al. Extremes, abrupt changes and managing risk. In Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 589–632 (IPCC, 2019).

  248. Hoegh-Guldberg, O. et al. in Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) 175–284 (IPCC, WMO, 2018).

  249. Trenberth, K. E., Cheng, L., Jacobs, P., Zhang, Y. & Fasullo, J. Hurricane Harvey links to ocean heat content and climate change adaptation. Earths Future 6, 730–744 (2018).

    Article  Google Scholar 

  250. Barnard, P. L. et al. Coastal vulnerability across the Pacific dominated by El Niño/Southern Oscillation. Nat. Geosci. 8, 801–807 (2015).

    Article  Google Scholar 

  251. Cai, W. et al. Increased variability of eastern Pacific El Nino under greenhouse warming. Nature 564, 201–206 (2018).

    Article  Google Scholar 

  252. Jacobs, S. S., Giulivi, C. F. & Mele, P. A. Freshening of the Ross Sea during the late 20th century. Science 297, 386–389 (2002).

    Article  Google Scholar 

  253. Pritchard, H. D. et al. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484, 502–505 (2012).

    Article  Google Scholar 

  254. Shepherd, A. et al. Mass balance of the Antarctic ice sheet from 1992 to 2017. Nature 558, 219–222 (2018).

    Article  Google Scholar 

  255. Gardner, A. S. et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340, 852–857 (2013).

    Article  Google Scholar 

  256. Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).

    Article  Google Scholar 

  257. Heinze, C. et al. ESD reviews: climate feedbacks in the Earth system and prospects for their evaluation. Earth Syst. Dynam. 10, 379–452 (2019).

    Article  Google Scholar 

  258. Hoegh-Guldberg, O., Kennedy, E. V., Beyer, H. L., McClennen, C. & Possingham, H. P. Securing a long-term future for coral reefs. Trends Ecol. Evol. 33, 936–944 (2018).

    Article  Google Scholar 

  259. Zilberman, N. V., Roemmich, D. H. & Gilson, J. Deep-ocean circulation in the southwest Pacific Ocean interior: estimates of the mean flow and variability using deep argo data. Geophys. Res. Lett. 47, e2020GL088342 (2020).

    Article  Google Scholar 

  260. Roemmich, D. et al. On the future of Argo: a global, full-depth, multi-disciplinary array. Front. Mar. Sci. 6, 439 (2019).

    Article  Google Scholar 

  261. Le Traon, P.-Y. et al. Preparing the new phase of Argo: scientific achievements of the NAOS project. Front. Mar. Sci. 7, 577408 (2020).

    Article  Google Scholar 

  262. Gasparin, F., Hamon, M., Rémy, E. & Le Traon, P.-Y. How Deep Argo will improve the deep ocean in an ocean reanalysis. J. Clim. 33, 77–94 (2020).

    Article  Google Scholar 

  263. Allison, L. C. et al. Towards quantifying uncertainty in ocean heat content changes using synthetic profiles. Environ. Res. Lett. 14, ab2b0b (2019).

    Article  Google Scholar 

  264. Llovel, W. et al. Imprint of intrinsic ocean variability on decadal trends of regional sea level and ocean heat content using synthetic profiles. Environ. Res. Lett. 17, 044063 (2022).

    Article  Google Scholar 

  265. Danabasoglu, G. et al. Variability of the Atlantic Meridional Overturning Circulation in CCSM4. J. Clim. 25, 5153–5172 (2012).

    Article  Google Scholar 

  266. Purich, A. & England, M. H. Historical and future projected warming of Antarctic shelf bottom water in CMIP6 models. Geophys. Res. Lett. 48, e2021GL092752 (2021).

    Article  Google Scholar 

  267. Baggenstos, D. et al. Earth’s radiative imbalance from the Last Glacial Maximum to the present. Proc. Natl Acad. Sci. USA 116, 14881–14886 (2019).

    Article  Google Scholar 

  268. Elderfield, H. et al. Evolution of ocean temperature and ice volume through the mid-Pleistocene climate transition. Science 337, 704–709 (2012).

    Article  Google Scholar 

  269. Li, H. et al. Development of a global gridded Argo data set with Barnes successive corrections. J. Geophys. Res. Oceans 122, 866–889 (2017).

    Article  Google Scholar 

  270. Allen, M. R. et al. in Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) 49–92 (IPCC, WMO, 2018).

  271. Kennedy, J. A review of uncertainty in in situ measurements and data sets of sea surface temperature. Rev. Geophys. 52, 1–32 (2014).

    Article  Google Scholar 

  272. O’Carroll, A. G. et al. Observational needs of sea surface temperature. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00420 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

L.C. acknowledges financial support from the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB42040402), National Natural Science Foundation of China (42122046, 42076202), Youth Innovation Promotion Association, CAS (2020-077). The National Center for Atmospheric Research is sponsored by the US National Science Foundation (NSF). L.Z. is supported by NSF OCE award 2048576. J.F. is supported by NASA awards 80NSSC17K0565 and 80NSSC22K0046, and by the Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program of the US Department of Energy’s Office of Biological & Environmental Research (BER) via NSF IA 1947282. M.E. and J.Z. are supported by the Australian Research Council (SR200100008, LP200100406, DP190100494). Y.Y. is supported by National Natural Science Foundation of China (91958201, 42130608). We thank S. Simoncelli for discussion on the Mediterranean Sea, V. Gouretski and F. Reseghetti for discussion on observations. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups for producing and making available their model output through Earth System Grid Federation. We also acknowledge the International Argo Program and the national programmes that contribute to it. The Argo Program is part of the Global Ocean Observing System.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to writing and editing the article. L.C., K.v.S., J.P., K.T. and M.M led the overall conceptual design and the activity. L.C. led and coordinated the writing. K.v.S. and L.C. led the Introduction section. J.P.A. and K.v.S. led the observations and OHC estimates section. L.C., K.T., J.Z. and M.E. led the past OHC changes section. L.Z., J. F., M.E., L.C. and Y.-Q.Y. led the future projections section. K.T., L.C. and K.v.S led the impacts and consequences section. L.C., M.M. and K.T. led the final section. Y.-Y.P., J.Z., E.N., B.B., L.P. and L.C. contributed to data processing.

Corresponding author

Correspondence to Lijing Cheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Sarah Purkey and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Earth energy imbalance

EEI. The net downwelling radiation at the top of the atmosphere, represented as the balance of absorbed solar radiation (allowing for reflection and scattering) and outgoing longwave radiation.

Ocean heat content

OHC, or ocean heat storage (OHS). A change or anomaly of the thermal energy of the ocean assumed to have a fixed volume (Vx,y,z, in units of J), and vertical integration (Vz, in units of J m−2). Calculated as OHC (x,y,z) = \({C}_{p}{\iiint }_{V(x,y,z)}\rho TdV(x,y,z)\) following TEOS-10 standards, where cp is a constant of ~3,991.9 J (kg K)1, ρ is potential density in kg m3 and T is conservative temperature measured in degrees Celsius.

OHC trend

Or alternatively, OHC rate, or tendency. The time derivative of OHC (dOHC/dt), given in units of J yr1 or W m2.

Representative concentration pathway

RCP. The RCPs are scenarios of concentrations, and thereby emissions, of the full suite of greenhouse gases, aerosols and chemically active gases, as well as land use/land cover. In RCP2.6: radiative forcing peaks at ~3 W m2 and then declines, to be limited at 2.6 W m2 in 2100. In RCP4.5 and RCP8.5: the radiative forcing reaches ~4.5 W m2 and >8.5 W m2 in 2100, respectively.

Ocean heat uptake

OHU. The accumulated contribution of heat added into the ocean (heat gain) or removed from the ocean (heat loss) through heat fluxes at the air–sea, ice–sea and land–sea interfaces (in units of W m2). Globally, it is synonymous with ‘OHC change, trend, rate, tendency’. Regionally, OHU and redistribution contribute to local OHC change.

Ocean heat redistribution

The transport of heat within the ocean without involving any net global ocean warming or cooling through advection, convection, eddy mixing and small-scale diffusion.

Mode water

Formed when winter mixed layers are convectively overturned owing to gravitational instability, and characterized by low potential vorticity and nearly vertically homogeneous temperature, salinity and density.

Shared socioeconomic pathway

The SSPs are a set of plausible trajectories of societal development and radiative forcing. SSP1-2.6 is a relatively low-emission scenario, representing the pathways to limit the global surface warming below 2 °C, which requires immediate, rapid and large-scale reductions in greenhouse gas emissions. SSP5-8.5 is a higher emissions scenario with projected warming >3 °C by 2100.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheng, L., von Schuckmann, K., Abraham, J.P. et al. Past and future ocean warming. Nat Rev Earth Environ 3, 776–794 (2022). https://doi.org/10.1038/s43017-022-00345-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00345-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing