Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Grassland changes and adaptive management on the Qinghai–Tibetan Plateau

Abstract

Grasslands on the Qinghai–Tibetan Plateau (QTP) foster biodiversity, store carbon, maintain productivity and support pastoral livelihoods. These systems are being altered by climate change and anthropogenic activities, but the relative importance of these drivers are still debated. This Review examines QTP grassland changes since the 1980s and discusses the impacts of global change on plant communities and soil properties. The normalized difference vegetation index (NDVI) (which can be used to track vegetation greenness) has generally increased since the 1980s, but with substantial spatial variability and some local decreases. Rising temperatures were key in driving the NDVI increases, but also likely exacerbated water deficiency in areas with little precipitation (<100 mm year–1), accounting for some of the spatial variability in trends. Intense livestock grazing negatively affects vegetation and soil when stocking rates are higher than grassland carrying capacity, causing grassland degradation. Degraded grassland can be effectively restored by management policies that minimize or exclude grazing and by adaptive management; these practices became important drivers of net primary production increases after 2000. However, better management of grasslands under a future of increasing temperatures and settlement requires a deeper understanding of the large-scale plant species composition shifts and the combined effects of climate change and anthropogenic activities.

Key points

  • Grasslands on the Qinghai–Tibetan Plateau (QTP) account for 54–70% of the total area of the QTP.

  • The normalized difference vegetation index (NDVI) of grasslands increased at a rate of ~0.0008 year–1 during 1981–2000, decreased at ~0.0010 year–1 during 2000–2015 and increased again at ~0.0053 year–1 during 2015–2020.

  • Climate drove spatial variability of NDVI changes during 2000–2015 as NDVI decline was ameliorated by high July temperature with precipitation >100 mm, but exacerbated by lower precipitation.

  • There were climate-influenced increases in soil temperature over 1983–2013, in soil carbon stock over 2002–2011 and in soil nutrients over the 1980s–2010s.

  • Precipitation, temperature and grazing have the largest impacts on above-ground net primary productivity (ANPP).

  • The relative contributions of climate change and anthropogenic activities to grassland changes vary across spatio-temporal scales.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Drivers of alpine grassland changes on the QTP.
Fig. 2: Experimental warming across climate gradients.
Fig. 3: NDVI changes across the QTP.
Fig. 4: Influences of climate-related factors on soil properties and plant communities.
Fig. 5: Influences of anthropogenic activities on soil properties and plant communities.
Fig. 6: Direct and indirect effects of different factors on ANPP based on manipulation studies.

Similar content being viewed by others

References

  1. Editorial Committee of Vegetation Map China. Vegetation Map of China (1:1000 000) (Geology Press, 2007).

  2. Fu, B. et al. Current condition and protection strategies of Qinghai–Tibet Plateau ecological security barrier. Bull. Chin. Acad. Sci. 36, 1298–1306 (2021).

    Google Scholar 

  3. Zhang, Y. et al. Spatial and temporal variability in the net primary production (NPP) of alpine grassland on Tibetan Plateau from 1982 to 2009. Acta Geogr. Sin. 68, 1197–1211 (2013).

    Google Scholar 

  4. Bao, C. & Liu, R. Spatiotemporal evolution of the urban system in the Tibetan Plateau. J. Geoinf. Sci. 21, 1330–1340 (2019).

    Google Scholar 

  5. Miehe, G. et al. The Kobresia pygmaea ecosystem of the Tibetan highlands — origin, functioning and degradation of the world’s largest pastoral alpine ecosystem: Kobresia pastures of Tibet. Sci. Total Environ. 648, 754–771 (2019). This work describes features of K. pygmaea grassland and reveals that overstocking has caused pasture degradation and soil deterioration.

    Article  Google Scholar 

  6. Liu, Y. et al. Grassland dynamics in responses to climate variation and human activities in China from 2000 to 2013. Sci. Total Environ. 690, 27–39 (2019).

    Article  Google Scholar 

  7. Cao, J. et al. Grassland degradation on the Qinghai–Tibetan Plateau: reevaluation of causative factors. Rangel. Ecol. Manag. 72, 988–995 (2019).

    Article  Google Scholar 

  8. Zhao, X. Restoration and Sustainable Management of Degradaded Grassland in the Three Rivers Headwater (Science Press, 2011).

  9. Gao, Q. Exploration and Study on Eoclogical Revelization Fuatures in Qiangtang Plateau (China Agriculture Press, 2015).

  10. Gu, X. et al. Soil extractable organic C and N contents, methanotrophic activity under warming and degradation in a Tibetan alpine meadow. Agric. Ecosyst. Environ. 278, 6–14 (2019).

    Article  Google Scholar 

  11. Li, Y. et al. Changes of soil microbial community under different degraded gradients of alpine meadow. Agric. Ecosyst. Environ. 222, 213–222 (2016).

    Article  Google Scholar 

  12. Wang, W., Wang, Q. & Wang, H. The effect of land management on plant community composition, species diversity, and productivity of alpine Kobersia steppe meadow. Ecol. Res. 21, 181–187 (2005).

    Article  Google Scholar 

  13. Xu, H., Wang, X. & Zhang, X. Alpine grasslands response to climatic factors and anthropogenic activities on the Tibetan Plateau from 2000 to 2012. Ecol. Eng. 92, 251–259 (2016).

    Article  Google Scholar 

  14. Yu, L., Tang, L., Wei, D., Mei, M. & Zhou, H. Characteristics and causes of changes of alpine grassland productivity in the source region of Yellow River. Int. Conf. Geoinformatics https://doi.org/10.1109/GEOINFORMATICS.2010.5567879 (2010).

    Article  Google Scholar 

  15. Yang, Y. et al. Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland. Glob. Chang. Biol. 19, 637–648 (2013). This work shows that soil microbial community functional structure is very sensitive to livestock grazing.

    Article  Google Scholar 

  16. Gao, Y. Z. et al. Belowground net primary productivity and biomass allocation of a grassland in Inner Mongolia is affected by grazing intensity. Plant Soil 307, 41–50 (2008).

    Article  Google Scholar 

  17. Dlamini, A. P. et al. Controlling factors of sheet erosion under degraded grasslands in the sloping lands of KwaZulu-Natal, South Africa. Agric. Water Manag. 98, 1711–1718 (2011).

    Article  Google Scholar 

  18. Niemandt, C. & Greve, M. Fragmentation metric proxies provide insights into historical biodiversity loss in critically endangered grassland. Agric. Ecosyst. Environ. 235, 172–181 (2016).

    Article  Google Scholar 

  19. Kang, S. C. et al. Review of climate and cryospheric change in the Tibetan Plateau. Environ. Res. Lett. 5, 15101–15101 (2010).

    Article  Google Scholar 

  20. Shen, H. et al. Effects of simulated N deposition on photosynthesis and productivity of key plants from different functional groups of alpine meadow on Qinghai–Tibetan Plateau. Environ. Pollut. 251, 731–737 (2019).

    Article  Google Scholar 

  21. Yu, G. R. et al. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nat. Geosci. 12, 424 (2019).

    Article  Google Scholar 

  22. Lu, C. & Tian, H. Spatial and temporal patterns of nitrogen deposition in China: synthesis of observational data. J. Geophys. Res. 112, D22S05 (2007).

    Google Scholar 

  23. National Bureau of Statistics of China. China Statistics Yearbook (China Statistics Press, 2020).

  24. Mo, X. Sustainable livestock carring capacity and overgrazing rate of grassland over Qinghai–Tibet plateau since 1980. Natl Tibetan Plateau Data Center https://doi.org/10.11888/Socioeco.tpdc.270347 (2020).

    Article  Google Scholar 

  25. Tian, Y. Y., Jiang, G. H., Zhou, D. Y. & Li, G. Y. Systematically addressing the heterogeneity in the response of ecosystem services to agricultural modernization, industrialization and urbanization in the Qinghai–Tibetan Plateau from 2000 to 2018. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2020.125323 (2021).

    Article  Google Scholar 

  26. Yao, Y. et al. Spatiotemporal pattern of gross primary productivity and its covariation with climate in China over the last thirty years. Glob. Chang. Biol. 24, 184–196 (2018).

    Article  Google Scholar 

  27. Li, L. et al. Current challenges in distinguishing climatic and anthropogenic contributions to alpine grassland variation on the Tibetan Plateau. Ecol. Evol. 8, 5949–5963 (2018). This work finds that large inconsistencies exist in distinguishing the respective contribution of climatic and anthropogenic forces to grassland dynamics.

    Article  Google Scholar 

  28. Zhong, L., Ma, Y. M., Xue, Y. K. & Piao, S. L. Climate change trends and impacts on vegetation greening over the Tibetan Plateau. J. Geophys. Res. Atmos. 124, 7540–7552 (2019). This work demonstrates that the general increasing trends in vegetation density and greening of the QTP are mainly caused by climate factors, using satellite-derived climate and vegetation data from 1999 to 2014.

    Article  Google Scholar 

  29. Yang, K. & He, J. China meteorological forcing dataset (1979–2018). Natl Tibetan Plateau Data Center https://doi.org/10.11888/AtmosphericPhysics.tpe.249369.file (2019).

    Article  Google Scholar 

  30. Xiong, Q. et al. Monitoring the impact of climate change and human activities on grassland vegetation dynamics in the northeastern Qinghai–Tibet Plateau of China during 2000–2015. J. Arid. Land 11, 637–651 (2019).

    Article  Google Scholar 

  31. Pan, T., Zou, X. T., Liu, Y. J., Wu, S. H. & He, G. M. Contributions of climatic and non-climatic drivers to grassland variations on the Tibetan Plateau. Ecol. Eng. 108, 307–317 (2017).

    Article  Google Scholar 

  32. Hou, X. 1:1 Million vegetation map of China (National Tibetan Plateau Data Center, 2019).

  33. Peng, S. S. et al. Recent change of vegetation growth trend in China. Environ. Res. Lett. 6, 044027 (2011).

    Article  Google Scholar 

  34. Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).

    Article  Google Scholar 

  35. Zhu, Z. C. et al. Greening of the earth and its drivers. Nat. Clim. Chang. 6, 791 (2016).

    Article  Google Scholar 

  36. Vermote, E. et al. NOAA climate data record (CDR) of normalized difference vegetation index (NDVI), version 4. NOAA Natl Cent. Environ. Inf. https://doi.org/10.7289/V5PZ56R6 (2014).

    Article  Google Scholar 

  37. Chen, H. et al. Attribution analyses of changes in alpine grasslands on the Qinghai–Tibetan Plateau. Chin. Sci. Bull. 65, 2406–2418 (2020). This work demonstrates that human activities play an increasingly important role in the restoration of degraded grasslands.

    Article  Google Scholar 

  38. Shen, M. et al. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc. Natl Acad. Sci. USA 112, 9299–9304 (2015).

    Article  Google Scholar 

  39. Cai, D. et al. Vegetation dynamics on the Tibetan Plateau (1982–2006): an attribution by ecohydrological diagnostics. J. Clim. 28, 4576–4584 (2015).

    Article  Google Scholar 

  40. Zhou, W. et al. Grassland degradation remote sensing monitoring and driving factors quantitative assessment in China from 1982 to 2010. Ecol. Indic. 83, 303–313 (2017).

    Article  Google Scholar 

  41. Liu, Z. et al. Patterns of plant species diversity along an altitudinal gradient and its effect on above-ground biomass in alpine meadows in Qinghai–Tibet Plateau. Biodivers. Sci. 23, 451–462 (2015).

    Article  Google Scholar 

  42. Harris, R. B. Rangeland degradation on the Qinghai–Tibetan Plateau: a review of the evidence of its magnitude and causes. J. Arid. Environ. 74, 1–12 (2010).

    Article  Google Scholar 

  43. Lu, S. et al. Basic characteristics of Stipa sareptana var. krylovii communities in China. Chin. J. Plant. Ecol. 44, 1087–1094 (2020).

    Article  Google Scholar 

  44. Qiao, X. et al. Distribution, community characteristics and classification of Stipa tianschanica var. klemenzii steppe in China. Chin. J. Plant. Ecol. 41, 231–237 (2017).

    Article  Google Scholar 

  45. Qiao, X., Guo, K., Zhao, L., Yang, Y. & Zhao, H. Distribution, community characteristics and classification of Stipa basiplumosa steppe on Tibetan Plateau. Geogr. Res. 36, 2432–2440 (2017).

    Google Scholar 

  46. Qiao, X., Guo, K., Zhao, L., Wang, Z. & Liu, C. Community characteristics of Stipa bungeana alliance in China. Chin. J. Plant Ecol. 44, 986–994 (2020).

    Article  Google Scholar 

  47. Zhu, Y., Qiao, X., Guo, K., Xu, R. & Zhao, L. Distribution, community characteristics and classification of Stipa tianschanica var. gobica steppe in China. Chin. J. Plant Ecol. 42, 785–792 (2018).

    Article  Google Scholar 

  48. Li, X. R., Jia, X. H. & Dong, G. R. Influence of desertification on vegetation pattern variations in the cold semi-arid grasslands of Qinghai–Tibet plateau, north-west China. J. Arid. Environ. 64, 505–522 (2006).

    Article  Google Scholar 

  49. Tang, L. et al. Changes in vegetation composition and plant diversity with rangeland degradation in the alpine region of Qinghai–Tibet Plateau. Rangel. J. 37, 107–115 (2015).

    Article  Google Scholar 

  50. Zhou, X. Chinese Kobresia Meadow (Science Press, 2001).

  51. Wang, B. Z. et al. Potential distribution patterns of Stipa bungeana in China and the major factors influencing distribution. Acta Prataculturae Sinica 28, 3–13 (2019).

    Google Scholar 

  52. Sun, H., Li, W., Zhang, M. & Han, Y. A comprehensive scientific expedition to the Qinghai–Tibet Plateau. Resour. Sci. 8, 22–30 (1986).

    Google Scholar 

  53. Zhu, F. X. et al. Spatiotemporal variations of annual shallow soil temperature on the Tibetan Plateau during 1983–2013. Clim. Dyn. 51, 2209–2227 (2018).

    Article  Google Scholar 

  54. Chen, L. T. et al. Changes of carbon stocks in alpine grassland soils from 2002 to 2011 on the Tibetan Plateau and their climatic causes. Geoderma 288, 166–174 (2017).

    Article  Google Scholar 

  55. Ding, J. et al. Decadal soil carbon accumulation across Tibetan permafrost regions. Nat. Geosci. 10, 420–424 (2017).

    Article  Google Scholar 

  56. Tian, L. M. et al. Variations in soil nutrient availability across Tibetan grassland from the 1980s to 2010s. Geoderma 338, 197–205 (2019).

    Article  Google Scholar 

  57. Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 5, 424–430 (2015).

    Article  Google Scholar 

  58. Chen, H. et al. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai–Tibetan Plateau. Glob. Chang. Biol. 19, 2940–2955 (2013). This work suggests that warming enhanced NPP and soil respiration but many uncertainties remain.

    Article  Google Scholar 

  59. Shen, M. G. et al. Plant phenological responses to climate change on the Tibetan Plateau: research status and challenges. Natl Sci. Rev. 2, 454–467 (2015).

    Article  Google Scholar 

  60. Liu, X. D., Yin, Z. Y., Shao, X. M. & Qin, N. S. Temporal trends and variability of daily maximum and minimum, extreme temperature events, and growing season length over the eastern and central Tibetan Plateau during 1961–2003. J. Geophys. Res. Atmos. https://doi.org/10.1029/2005jd006915 (2006).

    Article  Google Scholar 

  61. Yang, K. et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review. Glob. Planet. Change 112, 79–91 (2014). This work reviews the main spatio-temporal characteristics of climate change on the QTP.

    Article  Google Scholar 

  62. Klein, J. A., Harte, J. & Zhao, X. Q. Experimental warming, not grazing, decreases rangeland quality on the Tibetan Plateau. Ecol. Appl. 17, 541–557 (2007).

    Article  Google Scholar 

  63. Li, C. et al. Productivity and quality of alpine grassland vary with soil water availability under experimental warming. Front. Plant. Sci. 9, 1790 (2018).

    Article  Google Scholar 

  64. Peng, A. H. et al. Plant community responses to warming modified by soil moisture in the Tibetan Plateau. Arct. Antarct. Alp. Res. 52, 60–69 (2020).

    Article  Google Scholar 

  65. Li, F. et al. Leaf area rather than photosynthetic rate determines the response of ecosystem productivity to experimental warming in an alpine steppe. J. Geophys. Res. Biogeosci. 124, 2277–2287 (2019).

    Article  Google Scholar 

  66. Zong, N. et al. Responses of ecosystem CO2 fluxes to short-term experimental warming and nitrogen enrichment in an alpine meadow, northern Tibet Plateau. Sci. World J. 2013, 415318 (2013).

    Article  Google Scholar 

  67. Chen, Q., Niu, B., Hu, Y., Luo, T. & Zhang, G. Warming and increased precipitation indirectly affect the composition and turnover of labile-fraction soil organic matter by directly affecting vegetation and microorganisms. Sci. Total Environ. 714, 136787 (2020).

    Article  Google Scholar 

  68. Wang, X. X. et al. Effects of short-term and long-term warming on soil nutrients, microbial biomass and enzyme activities in an alpine meadow on the Qinghai–Tibet Plateau of China. Soil. Biol. Biochem. 76, 140–142 (2014).

    Article  Google Scholar 

  69. Jiang, L. L. et al. Plant organic N uptake maintains species dominance under long-term warming. Plant Soil 433, 243–255 (2018).

    Article  Google Scholar 

  70. Li, N. et al. Short-term effects of temperature enhancement on community structure and biomass of alpine meadow in the Qinghai–Tibet Plateau. Acta Ecol. Sin. 31, 895–905 (2011).

    Google Scholar 

  71. Jiang, Y., Fan, M. & Zhang, Y. Effect of short-term warming on plant community features of alpine meadow in northern Tibet. Chin. J. Ecol. 36, 616–622 (2017).

    Google Scholar 

  72. Wang, S. et al. Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow. Ecology 93, 2365–2376 (2012). This work shows the effects of asymmetric warming and moderate grazing on plant composition, diversity, productivity and their relationships.

    Article  Google Scholar 

  73. Liu, P. et al. Ambient climate determines the directional trend of community stability under warming and grazing. Glob. Change Biol. 27, 5198–5210 (2021). This work finds that the negative effect of warming on plant diversity disappears with experimental duration, and ambient climate modulates the effects of warming and grazing on productivity stability.

    Article  Google Scholar 

  74. Zhang, B. et al. Responses of soil microbial communities to experimental warming in alpine grasslands on the Qinghai–Tibet Plateau. PLoS ONE 9, e103859 (2014).

    Article  Google Scholar 

  75. Chen, X. et al. Effects of warming and nitrogen fertilization on GHG flux in the permafrost region of an alpine meadow. Atmos. Environ. 157, 111–124 (2017).

    Article  Google Scholar 

  76. Zhang, Y. et al. Effects of grazing and climate warming on plant diversity, productivity and living state in the alpine rangelands and cultivated grasslands of the Qinghai–Tibetan Plateau. Rangel. J. 37, 57–65 (2015).

    Article  Google Scholar 

  77. Quan, Q. et al. High-level rather than low-level warming destabilizes plant community biomass production. J. Ecol. 109, 1607–1617 (2021).

    Article  Google Scholar 

  78. Wang, X. et al. Response of greenhouse gases emission fluxes to long-term warming in alpine meadow of northern Tibet. Chin. J. Agrometeorol. 39, 152–161 (2018).

    Google Scholar 

  79. Klein, J. A., Harte, J. & Zhao, X. Q. Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecol. Lett. 7, 1170–1179 (2004).

    Article  Google Scholar 

  80. Zhang, C. H. et al. Recovery of plant species diversity during long-term experimental warming of a species-rich alpine meadow community on the Qinghai–Tibet Plateau. Biol. Conserv. 213, 218–224 (2017).

    Article  Google Scholar 

  81. Li, X. et al. Responses of biotic interactions of dominant and subordinate species to decadal warming and simulated rotational grazing in Tibetan alpine meadow. Sci. China Life Sci. 61, 849–859 (2018).

    Article  Google Scholar 

  82. Klein, J. A., Harte, J. & Zhao, X. Q. Dynamic and complex microclimate responses to warming and grazing manipulations. Glob. Chang. Biol. 11, 1440–1451 (2005).

    Article  Google Scholar 

  83. Chen, J. et al. Warming effects on ecosystem carbon fluxes are modulated by plant functional types. Ecosystems 20, 515–526 (2017).

    Article  Google Scholar 

  84. Zhang, Y. Q. & Welker, J. M. Tibetan alpine tundra responses to simulated changes in climate: aboveground biomass and community responses. Arct. Alp. Res. 28, 203–209 (1996).

    Article  Google Scholar 

  85. Liu, H. et al. Shifting plant species composition in response to climate change stabilizes grassland primary production. Proc. Natl Acad. Sci. USA 115, 4051–4056 (2018). This work demonstrates that shifting plant species composition in response to climate change may have stabilized primary production in this high-elevation ecosystem, but also causes a shift from above-ground to below-ground productivity.

    Article  Google Scholar 

  86. Ganjurjav, H. et al. Differential response of alpine steppe and alpine meadow to climate warming in the central Qinghai–Tibetan Plateau. Agric. For. Meteorol. 223, 233–240 (2016).

    Article  Google Scholar 

  87. Jiang, F., Wei, X., Kang, B. & Shao, X. Effects of warming on alpine meadow diversity and primary productivity. Acta Agrestia Sin. 27, 298–305 (2019).

    Google Scholar 

  88. Zong, N. et al. Responses of plant community structure and species composition to warming and N addition in an alpine meadow, northern Tibetan Plateau, China. Chin. J. Appl. Ecol. 27, 3739–3748 (2016).

    Google Scholar 

  89. Peng, F. et al. Warming-induced shift towards forbs and grasses and its relation to the carbon sequestration in an alpine meadow. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/aa6508 (2017).

    Article  Google Scholar 

  90. Dorji, T. et al. Grazing and spring snow counteract the effects of warming on an alpine plant community in Tibet through effects on the dominant species. Agric. For. Meteorol. 263, 188–197 (2018).

    Article  Google Scholar 

  91. Xue, X., Peng, F., You, Q., Xu, M. & Dong, S. Belowground carbon responses to experimental warming regulated by soil moisture change in an alpine ecosystem of the Qinghai–Tibet Plateau. Ecol. Evol. 5, 4063–4078 (2015).

    Article  Google Scholar 

  92. Jing, X. et al. No temperature acclimation of soil extracellular enzymes to experimental warming in an alpine grassland ecosystem on the Tibetan Plateau. Biogeochemistry 117, 39–54 (2014).

    Article  Google Scholar 

  93. Yu, C. Q., Shen, Z. X., Zhang, X. Z., Sun, W. & Fu, G. Response of soil C and N, dissolved organic C and N, and inorganic N to short-term experimental warming in an alpine meadow on the Tibetan Plateau. Sci. World J. 2014, 152576 (2014).

    Article  Google Scholar 

  94. Zhang, Y. et al. Simulated warming enhances the responses of microbial N transformations to reactive N input in a Tibetan alpine meadow. Environ. Int. 141, 105795 (2020).

    Article  Google Scholar 

  95. Jia, J. et al. Climate warming alters subsoil but not topsoil carbon dynamics in alpine grassland. Glob. Chang. Biol. 25, 4383–4393 (2019).

    Article  Google Scholar 

  96. Ding, X. L. et al. Warming increases microbial residue contribution to soil organic carbon in an alpine meadow. Soil. Biol. Biochem. 135, 13–19 (2019).

    Article  Google Scholar 

  97. Guan, S. et al. Climate warming impacts on soil organic carbon fractions and aggregate stability in a Tibetan alpine meadow. Soil. Biol. Biochem. 116, 224–236 (2018).

    Article  Google Scholar 

  98. Rui, Y. C. et al. Warming and grazing affect soil labile carbon and nitrogen pools differently in an alpine meadow of the Qinghai–Tibet Plateau in China. J. Soils Sediment. 11, 903–914 (2011).

    Article  Google Scholar 

  99. Heng, T., Wu, J., Xie, S. & Wu, M. The responses of soil C and N, microbial biomass C or N under alpine meadow of Qinghai–Tibet Plateau to the change of temperature and precipitation. Chin. Agric. Sci. Bull. 27, 425–430 (2011).

    Google Scholar 

  100. Li, N., Wang, G., Yang, Y., Gao, Y. & Liu, G. Plant production, and carbon and nitrogen source pools, are strongly intensified by experimental warming in alpine ecosystems in the Qinghai–Tibet Plateau. Soil. Biol. Biochem. 43, 942–953 (2011).

    Article  Google Scholar 

  101. Zhao, J. X. et al. Increased precipitation offsets the negative effect of warming on plant biomass and ecosystem respiration in a Tibetan alpine steppe. Agric. For. Meteorol. https://doi.org/10.1016/j.agrformet.2019.107761 (2019). This work shows that increased precipitation offsets the negative effect of warming on plant biomass and ecosystem respiration in a Tibetan alpine steppe.

    Article  Google Scholar 

  102. Wu, H. et al. Effects of increased precipitation combined with nitrogen addition and increased temperature on methane fluxes in alpine meadows of the Tibetan Plateau. Sci. Total Environ. 705, 135818 (2020).

    Article  Google Scholar 

  103. Shi, F. S., Chen, H., Chen, H. F., Wu, Y. & Wu, N. The combined effects of warming and drying suppress CO2 and N2O emission rates in an alpine meadow of the eastern Tibetan Plateau. Ecol. Res. 27, 725–733 (2012).

    Article  Google Scholar 

  104. Fu, G., Zhang, H. R. & Sun, W. Response of plant production to growing/non-growing season asymmetric warming in an alpine meadow of the northern Tibetan Plateau. Sci. Total Environ. 650, 2666–2673 (2019).

    Article  Google Scholar 

  105. Xiong, Q. L. et al. Warming and nitrogen deposition are interactive in shaping surface soil microbial communities near the alpine timberline zone on the eastern Qinghai–Tibet Plateau, southwestern China. Appl. Soil. Ecol. 101, 72–83 (2016).

    Article  Google Scholar 

  106. Wang, C. et al. Responses of plant leaf traits to simulated rainfall changes in alpine region. Acta Ecol. Sin. 41, 1–13 (2021).

    Google Scholar 

  107. Zhang, K. et al. Effects of short-term warming and altered precipitation on soil microbial communities in alpine grassland of the Tibetan Plateau. Front. Microbiol. 7, 1032 (2016).

    Google Scholar 

  108. Evans, R. D. & Ehleringer, J. R. Water and nitrogen dynamics in an arid woodland. Oecologia 99, 233–242 (1994).

    Article  Google Scholar 

  109. Swap, R. J., Aranibar, J. N., Dowty, P. R., Gilhooly, W. P. III & Macko, S. A. Natural abundance of 13C and 15N in C3 and C4 vegetation of southern Africa: patterns and implications. Glob. Chang. Biol. 10, 350–358 (2004).

    Article  Google Scholar 

  110. Jia, Y. et al. Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity. Sci. Rep. 4, 3763–3763 (2014).

    Article  Google Scholar 

  111. Liu, Y. W., Xu, R., Wang, Y. S., Pan, Y. P. & Piao, S. L. Wet deposition of atmospheric inorganic nitrogen at five remote sites in the Tibetan Plateau. Atmos. Chem. Phys. 15, 11683–11700 (2015).

    Article  Google Scholar 

  112. Wang, W. et al. Atmospheric nitrogen deposition to a southeast Tibetan forest ecosystem. Atmosphere https://doi.org/10.3390/atmos11121331 (2020).

    Article  Google Scholar 

  113. Zou, X. et al. Ice-core based assessment of nitrogen deposition in the central Tibetan Plateau over the last millennium. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2021.152692 (2022).

    Article  Google Scholar 

  114. Aerts, R., Wallen, B. & Malmer, N. Growth-limiting nutrients in sphagnum-dominated bogs subject to low and high amospheric nitrogen supply. J. Ecol. 80, 131–140 (1992).

    Article  Google Scholar 

  115. Bai, Y. F. et al. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from Inner Mongolia grasslands. Glob. Chang. Biol. 16, 358–372 (2010).

    Article  Google Scholar 

  116. Du, Y. Population statistics of Qinghai–Tibet Plateau (1952–2016) (National Tibetan Plateau Data Center, 2019).

  117. Zhang, Y. J., Zhang, X. Q., Wang, X. Y., Liu, N. & Kan, H. M. Establishing the carrying capacity of the grasslands of China: a review. Rangel. J. 36, 1–9 (2014).

    Article  Google Scholar 

  118. Bardgett, R. D. et al. Combatting global grassland degradation. Nat. Rev. Earth Environ. 2, 720–735 (2021). This work shows that socio-ecological solutions are needed to combat degradation and promote restoration.

    Article  Google Scholar 

  119. Liu, M. et al. Effects of rotational and continuous overgrazing on newly assimilated C allocation. Biol. Fertil. Soils 57, 193–202 (2021).

    Article  Google Scholar 

  120. Yang, X. X. et al. Different responses of soil element contents and their stoichiometry (C:N:P) to yak grazing and Tibetan sheep grazing in an alpine grassland on the eastern Qinghai–Tibetan Plateau. Agric. Ecosyst. Environ. https://doi.org/10.1016/j.agee.2019.106628 (2019).

    Article  Google Scholar 

  121. Lin, B., Zhao, X. R., Zheng, Y., Qi, S. & Liu, X. Z. Effect of grazing intensity on protozoan community, microbial biomass, and enzyme activity in an alpine meadow on the Tibetan Plateau. J. Soils Sediment. 17, 2752–2762 (2017).

    Article  Google Scholar 

  122. Ma, W. M., Ding, K. Y. & Li, Z. W. Comparison of soil carbon and nitrogen stocks at grazing-excluded and yak grazed alpine meadow sites in Qinghai–Tibetan Plateau, China. Ecol. Eng. 87, 203–211 (2016).

    Article  Google Scholar 

  123. Li, W. et al. Effects of grazing regime on vegetation structure, productivity, soil quality, carbon and nitrogen storage of alpine meadow on the Qinghai–Tibetan Plateau. Ecol. Eng. 98, 123–133 (2017).

    Article  Google Scholar 

  124. Sun, J. et al. Effects of grazing regimes on plant traits and soil nutrients in an alpine steppe, northern Tibetan Plateau. PLoS ONE 9, e108821 (2014).

    Article  Google Scholar 

  125. Niu, K. C., He, J. S. & Lechowicz, M. J. Grazing-induced shifts in community functional composition and soil nutrient availability in Tibetan alpine meadows. J. Appl. Ecol. 53, 1554–1564 (2016).

    Article  Google Scholar 

  126. Luan, J. W. et al. Different grazing removal exclosures effects on soil C stocks among alpine ecosystems in east Qinghai–Tibet Plateau. Ecol. Eng. 64, 262–268 (2014).

    Article  Google Scholar 

  127. Wei, D. et al. Responses of CO2, CH4 and N2O fluxes to livestock exclosure in an alpine steppe on the Tibetan Plateau, China. Plant Soil 359, 45–55 (2012).

    Article  Google Scholar 

  128. Shen, H. et al. Grazing enhances plant photosynthetic capacity by altering soil nitrogen in alpine grasslands on the Qinghai–Tibetan Plateau. Agric. Ecosyst. Environ. 280, 161–168 (2019).

    Article  Google Scholar 

  129. Jiang, L. et al. Grazing modifies inorganic and organic nitrogen uptake by coexisting plant species in alpine grassland. Biol. Fertil. Soils 52, 211–221 (2016).

    Article  Google Scholar 

  130. Sun, Y., Schleuss, P. M., Pausch, J., Xu, X. L. & Kuzyakov, Y. Nitrogen pools and cycles in Tibetan Kobresia pastures depending on grazing. Biol. Fertil. Soils 54, 569–581 (2018).

    Article  Google Scholar 

  131. Chen, B. et al. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai–Tibet Plateau. Agric. For. Meteorol. 189-190, 11–18 (2014).

    Article  Google Scholar 

  132. Wang, Z. Q. et al. Quantitative assess the driving forces on the grassland degradation in the Qinghai–Tibet Plateau, in China. Ecol. Inform. 33, 32–44 (2016).

    Article  Google Scholar 

  133. Huang, K. et al. The influences of climate change and human activities on vegetation dynamics in the Qinghai–Tibet Plateau. Remote Sens. 8, 876 (2016).

    Article  Google Scholar 

  134. Li, L. et al. Increasing sensitivity of alpine grasslands to climate variability along an elevational gradient on the Qinghai–Tibet Plateau. Sci. Total Environ. 678, 21–29 (2019).

    Article  Google Scholar 

  135. Wang, Z. et al. Vegetation expansion on the Tibetan Plateau and its relationship with climate change. Remote. Sens. https://doi.org/10.3390/rs12244150 (2020).

    Article  Google Scholar 

  136. Wu, J. et al. Disentangling climatic and anthropogenic contributions to nonlinear dynamics of alpine grassland productivity on the Qinghai–Tibetan Plateau. J. Environ. Manag. 281, 111875 (2021).

    Article  Google Scholar 

  137. Fu, G., Shen, Z. X. & Zhang, X. Z. Increased precipitation has stronger effects on plant production of an alpine meadow than does experimental warming in the northern Tibetan Plateau. Agric. For. Meteorol. 249, 11–21 (2018).

    Article  Google Scholar 

  138. Hu, Y. et al. Effect of increasing precipitation and warming on microbial community in Tibetan alpine steppe. Environ. Res. 189, 109917 (2020).

    Article  Google Scholar 

  139. Ma, Z. et al. Climate warming reduces the temporal stability of plant community biomass production. Nat. Commun. 8, 15378 (2017).

    Article  Google Scholar 

  140. Bai, W., Xi, J. & Wang, G. Effects of short-term warming and nitrogen addition on CO2 emission during growing season in an alpine swamp meadow ecosystem of Qinghai–Tibetan Plateau. Chin. J. Ecol. 38, 927–936 (2019).

    Google Scholar 

  141. Bai, W., Wang, G. X., Xi, J. Y., Liu, Y. W. & Yin, P. S. Short-term responses of ecosystem respiration to warming and nitrogen addition in an alpine swamp meadow. Eur. J. Soil Biol. 92, 16–23 (2019).

    Article  Google Scholar 

  142. Ge, Y. et al. Effects of warming and nitrogen addition on plant community structure and species diversity of alpine meadow in northern Tibet. Ecol. Environ. Sci. 28, 2185–2191 (2019).

    Google Scholar 

  143. Zong, N. et al. Effects of warming and nitrogen addition on community production and biomass allocation in an alpine meadow. Chin. J. Appl. Ecol. 29, 59–67 (2018).

    Google Scholar 

  144. Zhu, X. X. et al. Effects of warming, grazing/cutting and nitrogen fertilization on greenhouse gas fluxes during growing seasons in an alpine meadow on the Tibetan Plateau. Agric. For. Meteorol. 214, 506–514 (2015).

    Article  Google Scholar 

  145. Fu, G. et al. Clipping alters the response of biomass production to experimental warming: a case study in an alpine meadow on the Tibetan Plateau, China. J. Mt. Sci. 12, 935–942 (2015).

    Article  Google Scholar 

  146. Chen, S. P. et al. Plant diversity enhances productivity and soil carbon storage. Proc. Natl Acad. Sci. USA. 115, 4027–4032 (2018).

    Article  Google Scholar 

  147. Wu, J. S. et al. Effects of livestock exclusion and climate change on aboveground biomass accumulation in alpine pastures across the northern Tibetan Plateau. Chin. Sci. Bull. 59, 4332–4340 (2014).

    Article  Google Scholar 

  148. Sun, J., Cheng, G. W., Li, W. P., Sha, Y. K. & Yang, Y. C. On the variation of NDVI with the principal climatic elements in the Tibetan Plateau. Remote Sens. 5, 1894–1911 (2013).

    Article  Google Scholar 

  149. Sun, J. et al. Reconsidering the efficiency of grazing exclusion using fences on the Tibetan Plateau. Sci. Bull. 65, 1405–1414 (2020). This work finds that fencing enclosures lead to some negative impacts, such as hindering wildlife movement.

    Article  Google Scholar 

  150. Yu, C. et al. Grazing exclusion to recover degraded alpine pastures needs scientific assessments across the northern Tibetan Plateau. Sustainability https://doi.org/10.3390/su8111162 (2016).

    Article  Google Scholar 

  151. Wu, J. & Wang, X. Effect of enclosure ages on community characters and biomas of the degraded alpine steppe at the northern Tibet. Acta Agrestia Sin. 25, 261–266 (2017).

    Google Scholar 

  152. Zhao, J. X., Luo, T. X., Li, R. C., Li, X. & Tian, L. H. Grazing effect on growing season ecosystem respiration and its temperature sensitivity in alpine grasslands along a large altitudinal gradient on the central Tibetan Plateau. Agric. For. Meteorol. 218, 114–121 (2016).

    Article  Google Scholar 

  153. Deng, L., Sweeney, S. & Shangguan, Z. P. Grassland responses to grazing disturbance: plant diversity changes with grazing intensity in a desert steppe. Grass Forage Sci. 69, 524–533 (2014).

    Article  Google Scholar 

  154. Yuan, Z., Epstein, H. & Li, G. Grazing exclusion did not affect soil properties in alpine meadows in the Tibetan permafrost region. Ecol. Eng. https://doi.org/10.1016/j.ecoleng.2019.105657 (2020).

    Article  Google Scholar 

  155. Zhang, W. et al. Effects of banning grazing and delaying grazing on species diversity and biomass of alpine meadow in northern Tibet. J. Agric. Sci. Technol. 15, 143–149 (2013).

    Google Scholar 

  156. Miao, F., Guo, Y., Miao, P., Guo, Z. & Shen, Y. The northeast edge of Qinghai–Tibet Plateau area of alpine meadow community characteristics respond to nurture. Acta Prataculture Sin. 21, 11–16 (2012).

    Google Scholar 

  157. Lu, X. et al. Short-term grazing exclusion has no impact on soil properties and nutrients of degraded alpine grassland in Tibet, China. Solid Earth 6, 1195–1205 (2015).

    Article  Google Scholar 

  158. Gao, Y. H., Zeng, X. Y., Schumann, M. & Chen, H. Effectiveness of exclosures on restoration of degraded alpine meadow in the eastern Tibetan Plateau. Arid. Land. Res. Manag. 25, 164–175 (2011).

    Article  Google Scholar 

  159. Yao, X. X. et al. Effects of long term fencing on biomass, coverage, density, biodiversity and nutritional values of vegetation community in an alpine meadow of the Qinghai–Tibet Plateau. Ecol. Eng. 130, 80–93 (2019).

    Article  Google Scholar 

  160. Chen, W., Chang, H. & Liu, R. Fractal features of soil particle size distributions and their implications for indicating enclosure management in a semiarid grassland ecosystem. Pol. J. Ecol. 68, 132–144 (2020).

    Google Scholar 

  161. Smith, D., King, R. & Allen, B. L. Impacts of exclusion fencing on target and non-target fauna: a global review. Biol. Rev. 95, 1590–1606 (2020).

    Article  Google Scholar 

  162. Zhang, Y. et al. Assessment of effectiveness of nature reserves on the Tibetan Plateau based on net primary production and the large sample comparison method. J. Geogr. Sci. 26, 27–44 (2016).

    Article  Google Scholar 

  163. Hu, J. Research on the status quo and problems of natural reserve construction in Qinghai–Tibet Plateau. Environ. Dev. 32, 204–206 (2020).

    Google Scholar 

  164. Shao, Q., Fan, J., Liu, J., Cao, W. & Liu, L. Target-based assessment on effects of first-stage ecological conservation and restoration project in three-river source region, China and policy recommendations. Bull. Chin. Acad. Sci. 32, 35–44 (2017).

    Google Scholar 

  165. Liu, F. & Zeng, Y. N. Spatial–temporal change in vegetation net primary productivity and its response to climate and human activities in Qinghai Plateau in the past 16 years. Acta Ecol. Sin. 39, 1528–1540 (2019).

    Google Scholar 

  166. Zhang, Y., Wu, X., Qi, W., Li, S. & Bai, W. Characteristics and protection effectiveness of nature reserves on the Tibetan Plateau, China. Resources. Science 37, 1455–1464 (2015).

    Google Scholar 

  167. Buckley, M. C. & Crone, E. E. Negative off-site impacts of ecological restoration: understanding and addressing the conflict. Conserv. Biol. 22, 1118–1124 (2008).

    Article  Google Scholar 

  168. Cao, S. X. & Zhang, J. Political risks arising from the impacts of large-scale afforestation on water resources of the Tibetan Plateau. Gondwana Res. 28, 898–903 (2015).

    Article  Google Scholar 

  169. Li, Y. & Li, W. Why “Balance of Forage and Livestock” system failed to reach sustainable grassland utilization. China Agric. Univ. J. Soc. Sci. Ed. 29, 124–131 (2012).

    Google Scholar 

  170. Du, S. A Study on the Satisfaction Degree of Herdsmen’s Income and Grassland Ecological Compensation Policy. Master thesis, Lanzhou Univ. (2019).

  171. Yu, H., Wang, G., Yang, Y. & Lü, Y. Concept of grassland green carrying capacity and its application framework in national park. Acta Ecol. Sin. 40, 7248–7254 (2020).

    Google Scholar 

  172. Deng, Y. & Li, C. The investigation and research about the Farmland Retirement and Environment Project in the Yangtze River headwaters area. Ecol. Econ. 2, 77–80 (2006).

    Google Scholar 

  173. Zhou, Q. et al. Analysis on the relationship between grassland area and forage-livestock balance in Qinghai–Tibet Plateau. Chin. J. Grassl. 41, 110–117 (2019).

    Google Scholar 

  174. Li, Y. et al. Awareness and reaction of herdsmen to the policy of returning grazing land to grasslands in the Changtang Plateau,Tibet. Pratacultural Sci. 30, 788–794 (2013).

    Google Scholar 

  175. Fan, J. et al. Third pole national park group construction is scientific choice for implementing strategy of major function zoning and green development in Tibet, China. Bull. Chin. Acad. Sci. 32, 932–944 (2017).

    Google Scholar 

  176. Xu, Z., Cheng, S. & Gao, L. Impacts of herders sedentarization on regional spatial heterogeneity and grassland ecosystem change in pastoral area. J. Arid. Land. Resour. Environ. 31, 8–13 (2017).

    Google Scholar 

  177. Ptackova, J. Sedentarisation of Tibetan nomads in China: implementation of the Nomadic settlement project in the Tibetan Amdo area; Qinghai and Sichuan Provinces. Pastoralism https://doi.org/10.1186/2041-7136-1-4 (2011).

    Article  Google Scholar 

  178. Weber, K. T. & Horst, S. Desertification and livestock grazing: the roles of sedentarization, mobility and rest. Pastoralism https://doi.org/10.1186/2041-7136-1-19 (2011).

    Article  Google Scholar 

  179. Zhang, J. et al. Ecological consequence of nomad settlement policy in the pasture area of Qinghai–Tibetan Plateau: from plant and soil perspectives. J. Environ. Manage. https://doi.org/10.1016/j.jenvman.2020.110114 (2020).

    Article  Google Scholar 

  180. Li, C. X., de Jong, R., Schmid, B., Wulf, H. & Schaepman, M. E. Spatial variation of human influences on grassland biomass on the Qinghai–Tibetan Plateau. Sci. Total Environ. 665, 678–689 (2019).

    Article  Google Scholar 

  181. Kuang, W. Dataset of Urban Distribution, Urban Population and Built-up Area in Tibetan Plateau (2000–2015) (National Tibetan Plateau Data Center, 2021).

  182. Tian, L. & Chen, J. Urban expansion inferenced by ecosystem production on the Qinghai–Tibet plateau. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ac3178 (2022).

    Article  Google Scholar 

  183. Liu, Y. & Lu, C. Quantifying grass coverage trends to identify the hot plots of grassland degradation in the Tibetan Plateau during 2000–2019. Int. J. Environ. Res. Public Health https://doi.org/10.3390/ijerph18020416 (2021).

    Article  Google Scholar 

  184. Tang, L. et al. Warming counteracts grazing effects on the functional structure of the soil microbial community in a Tibetan grassland. Soil. Biol. Biochem. 134, 113–121 (2019).

    Article  Google Scholar 

  185. Zhong, L. Tourism Planning Case in Tibetan Plateau (China Tourism Press, 2018).

  186. La, M. Discussion of the coordinated development of tourism development and ecological Environment Protection in Tibetan. Soc. Sci. Res. 6, 118–120, (2013).

    Google Scholar 

  187. Zhuang, M. et al. Opportunities for household energy on the Qinghai–Tibet Plateau in line with United Nations’ Sustainable Development Goals. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2021.110982 (2021).

    Article  Google Scholar 

  188. Ruess, R. W. & Mcnaughton, S. J. Grazing and the dynamics of nutrient and energy regulated microbial processes in the serengeti grasslands. Oikos 49, 101–110 (1987).

    Article  Google Scholar 

  189. Li, M. et al. Changes in plant species richness distribution in Tibetan alpine grasslands under different precipitation scenarios. Glob. Ecol. Conserv. 21, 13 (2020).

    Google Scholar 

  190. Wang, Z. et al. Quantitative assess the driving forces on the grassland degradation in the Qinghai–Tibet Plateau, in China. Ecol. Inform. 33, 32–44 (2016).

    Article  Google Scholar 

  191. Muñoz Sabater, J. ERA5-Land monthly averaged data from 1981 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.68d2bb30 (2019).

  192. Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. Terraclimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The authors were supported by the following funding: National Natural Science Foundation of China (41731175), the Second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0304), National Natural Science Foundation of China (41988101), the Strategic Priority Research Program A of the Chinese Academy of Sciences (XDA20050101), and the National Natural Science Foundation of China (31770524, 31872994 and 42041005).

Author information

Authors and Affiliations

Authors

Contributions

Y.W. and S.W formulated the Review. W.L., K.X., L.Z., R.H., H.N., H.Z. and J.S. performed the analyses and drafted the figures. Y.W., W.L., S.W., K.X., L.Z., R.H., H.N., X.X., Y.L., L.J., C.W., M.Z., W.A, T.W., A.W. and X.Z. wrote the first draft. Y.W., S.W., K.X., R.H., H.N., X.X., Y.L., J.D., L.J., S.P., S.D., X.Z., Q.G., A.W., G.M., Y. Hao, Y. Hu, T.D., C.L., Z.Z., X.C., J.W., B.L., P.L., Y.Z., H.Z., M.S. and X.Z. reviewed and edited the manuscript. All authors contributed to the discussion of content.

Corresponding author

Correspondence to Shiping Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Xuyang Lu, Shuli Niu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Lv, W., Xue, K. et al. Grassland changes and adaptive management on the Qinghai–Tibetan Plateau. Nat Rev Earth Environ 3, 668–683 (2022). https://doi.org/10.1038/s43017-022-00330-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00330-8

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene