Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Impacts, processes and projections of the quasi-biennial oscillation

Abstract

In the tropical stratosphere, deep layers of eastward and westward winds encircle the globe and descend regularly from the upper stratosphere to the tropical tropopause. With a complete cycle typically lasting almost 2.5 years, this quasi-biennial oscillation (QBO) is arguably the most predictable mode of atmospheric variability that is not linked to the changing seasons. The QBO affects climate phenomena outside the tropical stratosphere, including ozone transport, the North Atlantic Oscillation and the Madden–Julian Oscillation, and its high predictability could enable better forecasts of these phenomena if models can accurately represent the coupling processes. Climate and forecasting models are increasingly able to simulate stratospheric oscillations resembling the QBO, but exhibit common systematic errors such as weak amplitude in the lowermost tropical stratosphere. Uncertainties about the waves that force the oscillation, particularly the momentum fluxes from small-scale gravity waves excited by deep convection, make its simulation challenging. Improved representation of the processes governing the QBO is expected to lead to better forecasts of the oscillation and its impacts, increased understanding of unusual events such as the two QBO disruptions observed since 2016, and more reliable future projections of QBO behaviour under climate change.

Key points

  • The quasi-biennial oscillation (QBO) is a periodic wind variation in the equatorial stratosphere with a timescale of almost 2.5 years.

  • The QBO affects predictability globally owing to its teleconnections to phenomena outside the tropical stratosphere.

  • Many climate models are now able to simulate QBO-like oscillations, but with systematic errors including weak amplitude in the lowermost stratosphere.

  • Improving the representation of the QBO in models is challenging owing to uncertainties in observations and in understanding of the waves that drive the oscillation.

  • Climate models project a future weakening of the QBO amplitude.

  • Although the QBO has historically been very predictable, since 2016 its regular cycling has been disrupted twice, for reasons not yet well understood.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: The QBO in tropical stratospheric zonal wind and global circulation of the stratosphere.
Fig. 2: Global QBO teleconnections and their pathways.
Fig. 3: Model biases in tropical stratospheric wind variability.
Fig. 4: Predictability of QBO evolution affected by model biases.
Fig. 5: QBO changes under future climate change scenarios.

References

  1. Schenzinger, V., Osprey, S., Gray, L. & Butchart, N. Defining metrics of the quasi-biennial oscillation in global climate models. Geosci. Model. Dev. 10, 2157–2168 (2017).

    Article  Google Scholar 

  2. Dunkerton, T. J. & Delisi, D. P. Climatology of the equatorial lower stratosphere. J. Atmos. Sci. 42, 376–396 (1985).

    Article  Google Scholar 

  3. Hoskins, B. The potential for skill across the range of the seamless weather–climate prediction problem: a stimulus for our science. Q. J. R. Meteorol. Soc. 139, 573–584 (2013).

    Article  Google Scholar 

  4. Ebdon, R. A. Notes on the wind flow at 50 mb in tropical and sub-tropical regions in January 1957 and January 1958. Q. J. R. Meteorol. Soc. 86, 540–542 (1960).

    Article  Google Scholar 

  5. Reed, R. J., Campbell, W. J., Rasmussen, L. A. & Rogers, D. G. Evidence of a downward-propagating, annual wind reversal in the equatorial stratosphere. J. Geophys. Res. 66, 813–818 (1961).

    Article  Google Scholar 

  6. Hamilton, K. Sereno Bishop, Rollo Russell, Bishop’s ring and the discovery of the “Krakatoa Easterlies”. Atmos. Ocean 50, 169–175 (2012).

    Article  Google Scholar 

  7. Hamilton, K. & Sakazaki, T. Exploring the ‘prehistory’ of the equatorial stratosphere with observations following major volcanic eruptions. Weather 73, 154–159 (2018).

    Article  Google Scholar 

  8. Lindzen, R. S. & Holton, J. R. A theory of the quasi-biennial oscillation. J. Atmos. Sci. 25, 1095–1107 (1968).

    Article  Google Scholar 

  9. Holton, J. R. & Lindzen, R. S. An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci. 29, 1076–1080 (1972).

    Article  Google Scholar 

  10. Baldwin, M. P. et al. The quasi-biennial oscillation. Rev. Geophys. 39, 179–229 (2001).

    Article  Google Scholar 

  11. Anstey, J. A. & Shepherd, T. G. High-latitude influence of the quasi-biennial oscillation. Q. J. R. Meteorol. Soc. 140, 1–21 (2014).

    Article  Google Scholar 

  12. Garfinkel, C. I. et al. Extratropical atmospheric predictability from the quasi-biennial oscillation in subseasonal forecast models. J. Geophys. Res. Atmos. 123, 7855–7866 (2018).

    Article  Google Scholar 

  13. Rao, J., Garfinkel, C. I. & White, I. P. Impact of the quasi-biennial oscillation on the northern winter stratospheric polar vortex in CMIP5/6 models. J. Clim. 33, 4787–4813 (2020).

    Article  Google Scholar 

  14. Gray, L. J. & Pyle, J. A. A two-dimensional model of the quasi-biennial oscillation of ozone. J. Atmos. Sci. 46, 203–220 (1989).

    Article  Google Scholar 

  15. Randel, W. J. & Wu, F. Isolation of the ozone QBO in SAGE II data by singular-value decomposition. J. Atmos. Sci. 53, 2546–2559 (1996).

    Article  Google Scholar 

  16. Garfinkel, C. I. & Hartmann, D. L. The influence of the quasi-biennial oscillation on the troposphere in winter in a hierarchy of models. Part I. Simplified dry GCMs. J. Atmos. Sci. 68, 1273–1289 (2011).

    Article  Google Scholar 

  17. Wang, J., Kim, H.-M. & Chang, E. K. M. Interannual modulation of northern hemisphere winter storm tracks by the QBO. Geophys. Res. Lett. 45, 2786–2794 (2018).

    Article  Google Scholar 

  18. Collimore, C. C., Martin, D. W., Hitchman, M. H., Huesmann, A. & Waliser, D. E. On the relationship between the QBO and tropical deep convection. J. Clim. 16, 2552–2568 (2003).

    Article  Google Scholar 

  19. Liess, S. & Geller, M. A. On the relationship between QBO and distribution of tropical deep convection. J. Geophys. Res. Atmos. https://doi.org/10.1029/2011JD016317 (2012).

    Article  Google Scholar 

  20. Gray, L. J. et al. Surface impacts of the quasi-biennial oscillation. Atmos. Chem. Phys. 18, 8227–8247 (2018).

    Article  Google Scholar 

  21. Haynes, P. et al. The influence of the stratosphere on the tropical troposphere. J. Meteor. Soc. https://doi.org/10.2151/jmsj.2021-040 (2021).

    Article  Google Scholar 

  22. Martin, Z. et al. The influence of the quasi-biennial oscillation on the Madden–Julian oscillation. Nat. Rev. Earth Environ. 2, 477–489 (2021).

    Article  Google Scholar 

  23. Burrage, M. D. et al. Long-term variability in the equatorial middle atmosphere zonal wind. J. Geophys. Res. Atmos. 101, 12847–12854 (1996).

    Article  Google Scholar 

  24. Smith, A. K., Garcia, R. R., Moss, A. C. & Mitchell, N. J. The semiannual oscillation of the tropical zonal wind in the middle atmosphere derived from satellite geopotential height retrievals. J. Atmos. Sci. 74, 2413–2425 (2017).

    Article  Google Scholar 

  25. Rao, J., Garfinkel, C. I. & White, I. P. How does the quasi-biennial oscillation affect the boreal winter tropospheric circulation in CMIP5/6 models? J. Clim. 33, 8975–8996 (2020).

    Article  Google Scholar 

  26. Boer, G. J. & Hamilton, K. QBO influence on extratropical predictive skill. Clim. Dyn. 31, 987–1000 (2008).

    Article  Google Scholar 

  27. O’Reilly, C. H., Weisheimer, A., Woollings, T., Gray, L. J. & MacLeod, D. The importance of stratospheric initial conditions for winter North Atlantic Oscillation predictability and implications for the signal-to-noise paradox. Q. J. R. Meteorol. Soc. 145, 131–146 (2019).

    Article  Google Scholar 

  28. Baldwin, M. P. et al. Sudden stratospheric warmings. Rev. Geophys. https://doi.org/10.1029/2020RG000708 (2021).

    Article  Google Scholar 

  29. Pawson, S. et al. The GCM–reality intercomparison project for SPARC (GRIPS): scientific issues and initial results. Bull. Am. Meteorol. Soc. 81, 781–796 (2000).

    Article  Google Scholar 

  30. Butchart, N. et al. Overview of experiment design and comparison of models participating in phase 1 of the SPARC quasi-biennial oscillation initiative (QBOi). Geosci. Model. Dev. 11, 1009–1032 (2018).

    Article  Google Scholar 

  31. Anstey, J. A., Butchart, N., Hamilton, K. & Osprey, S. M. The SPARC quasi-biennial oscillation initiative. Q. J. R. Meteorol. Soc. https://doi.org/10.1002/qj.3820 (2020).

    Article  Google Scholar 

  32. Richter, J. H. et al. Progress in simulating the quasi-biennial oscillation in CMIP models. J. Geophys. Res. Atmos. https://doi.org/10.1029/2019JD032362 (2020).

    Article  Google Scholar 

  33. Dunkerton, T. J. The quasi-biennial oscillation of 2015–2016: hiccup or death spiral? Geophys. Res. Lett. 43, 10,547–10,552 (2016).

    Article  Google Scholar 

  34. Newman, P. A., Coy, L., Pawson, S. & Lait, L. R. The anomalous change in the QBO in 2015–2016. Geophys. Res. Lett. 43, 8791–8797 (2016).

    Article  Google Scholar 

  35. Osprey, S. M. et al. An unexpected disruption of the atmospheric quasi-biennial oscillation. Science 353, 1424–1427 (2016).

    Article  Google Scholar 

  36. Kang, M.-J., Chun, H.-Y. & Garcia, R. R. Role of equatorial waves and convective gravity waves in the 2015/16 quasi-biennial oscillation disruption. Atmos. Chem. Phys. 20, 14669–14693 (2020).

    Article  Google Scholar 

  37. Anstey, J. A. et al. Prospect of increased disruption to the QBO in a changing climate. Geophys. Res. Lett. 48, e2021GL093058 (2021).

    Article  Google Scholar 

  38. Kang, M.-J. & Chun, H.-Y. Contributions of equatorial planetary waves and small-scale convective gravity waves to the 2019/20 QBO disruption. Atmos. Chem. Phys. Discuss. 21, 9839–9857 (2021).

    Article  Google Scholar 

  39. Coy, L., Newman, P. A., Pawson, S. & Lait, L. R. Dynamics of the disrupted 2015/16 quasi-biennial oscillation. J. Clim. 30, 5661–5674 (2017).

    Article  Google Scholar 

  40. Brönnimann, S., Annis, J. L., Vogler, C. & Jones, P. D. Reconstructing the quasi-biennial oscillation back to the early 1900s. Geophys. Res. Lett. 34, L22805 (2007).

    Article  Google Scholar 

  41. Brönnimann, S. et al. Multidecadal variations of the effects of the quasi-biennial oscillation on the climate system. Atmos. Chem. Phys. 16, 15529–15543 (2016).

    Article  Google Scholar 

  42. Hitchcock, P. On the value of reanalyses prior to 1979 for dynamical studies of stratosphere–troposphere coupling. Atmos. Chem. Phys. 19, 2749–2764 (2019).

    Article  Google Scholar 

  43. Fujiwara, M., Manney, G. L., Gray, L. J. & Wright, J. S. E. (eds) SPARC Reanalysis Intercomparison Project (S-RIP) Final Report. SPARC Report 10 https://www.sparc-climate.org/sparc-report-no-10/ (SPARC, 2022).

  44. Mann, M. E. & Park, J. Global-scale modes of surface temperature variability on interannual to century timescales. J. Geophys. Res. 99, 25819 (1994).

    Article  Google Scholar 

  45. Coughlin, K. & Tung, K.-K. QBO signal found at the extratropical surface through northern annular modes. Geophys. Res. Lett. 28, 4563–4566 (2001).

    Article  Google Scholar 

  46. Scaife, A. A. et al. Predictability of the quasi-biennial oscillation and its northern winter teleconnection on seasonal to decadal timescales. Geophys. Res. Lett. 41, 1752–1758 (2014).

    Article  Google Scholar 

  47. Stockdale, T. N. et al. Prediction of the quasi-biennial oscillation with a multi-model ensemble of QBO-resolving models. Q. J. R. Meteorol. Soc. https://doi.org/10.1002/qj.3919 (2020).

    Article  Google Scholar 

  48. Hitchman, M. H., Yoden, S., Haynes, P. H., Kumar, V. & Tegtmeier, S. An observational history of the direct influence of the stratospheric quasi-biennial oscillation on the tropical and subtropical upper troposphere and lower stratosphere. J. Meteorol. Soc. Jpn Ser. II https://doi.org/10.2151/jmsj.2021-012 (2021).

    Article  Google Scholar 

  49. Son, S.-W., Lim, Y., Yoo, C., Hendon, H. H. & Kim, J. Stratospheric control of the Madden–Julian oscillation. J. Clim. 30, 1909–1922 (2017).

    Article  Google Scholar 

  50. Marshall, A. G., Hendon, H. H., Son, S.-W. & Lim, Y. Impact of the quasi-biennial oscillation on predictability of the Madden–Julian oscillation. Clim. Dyn. 49, 1365–1377 (2017).

    Article  Google Scholar 

  51. Klotzbach, P. et al. On the emerging relationship between the stratospheric quasi-biennial oscillation and the Madden–Julian oscillation. Sci. Rep. 9, 2981 (2019).

    Article  Google Scholar 

  52. Tegtmeier, S. et al. Zonal asymmetry of the QBO temperature signal in the tropical tropopause region. Geophys. Res. Lett. https://doi.org/10.1029/2020GL089533 (2020).

    Article  Google Scholar 

  53. Giorgetta, M. A., Bengtsson, L. & Arpe, K. An investigation of QBO signals in the east Asian and Indian monsoon in GCM experiments. Clim. Dyn. 15, 435–450 (1999).

    Article  Google Scholar 

  54. Smith, A. K. et al. The equatorial stratospheric semiannual oscillation and time-mean winds in QBOi models. Q. J. R. Meteorol. Soc. 148, 1593–1609 (2020).

    Article  Google Scholar 

  55. de Wit, R. J., Hibbins, R. E., Espy, P. J. & Mitchell, N. J. Interannual variability of mesopause zonal winds over Ascension Island: coupling to the stratospheric QBO. J. Geophys. Res. Atmos. 118, 052–12 (2013).

    Google Scholar 

  56. Plumb, A. R. & Bell, R. C. A model of the quasi-biennial oscillation on an equatorial beta-plane. Q. J. R. Meteorol. Soc. 108, 335–352 (1982).

    Article  Google Scholar 

  57. Chen, W. & Li, T. Modulation of northern hemisphere wintertime stationary planetary wave activity: East Asian climate relationships by the quasi-biennial oscillation. J. Geophys. Res. 112, D20120 (2007).

    Article  Google Scholar 

  58. Seo, J., Choi, W., Youn, D., Park, D.-S. R. & Kim, J. Y. Relationship between the stratospheric quasi-biennial oscillation and the spring rainfall in the western North Pacific. Geophys. Res. Lett. 40, 5949–5953 (2013).

    Article  Google Scholar 

  59. Inoue, M. & Takahashi, M. Connections between the stratospheric quasi-biennial oscillation and tropospheric circulation over Asia in northern autumn. J. Geophys. Res. Atmos. 118, 10740–10753 (2013).

    Article  Google Scholar 

  60. Park, C., Son, S., Lim, Y. & Choi, J. Quasi-biennial oscillation-related surface air temperature change over the western North Pacific in late winter. Int. J. Climatol. 42, 4351–4359 (2021).

    Article  Google Scholar 

  61. Ho, C.-H., Kim, H.-S., Jeong, J.-H. & Son, S.-W. Influence of stratospheric quasi-biennial oscillation on tropical cyclone tracks in the western North Pacific. Geophys. Res. Lett. 36, L06702 (2009).

    Article  Google Scholar 

  62. Gray, W. M. Atlantic seasonal hurricane frequency. Part I. El Niño and 30 mb quasi-biennial oscillation influences. Mon. Weather. Rev. 112, 1649–1668 (1984).

    Article  Google Scholar 

  63. Camargo, S. J. & Sobel, A. H. Revisiting the influence of the quasi-biennial oscillation on tropical cyclone activity. J. Clim. 23, 5810–5825 (2010).

    Article  Google Scholar 

  64. Wang, J., Kim, H.-M., Chang, E. K. M. & Son, S.-W. Modulation of the MJO and North Pacific storm track relationship by the QBO. J. Geophys. Res. Atmos. https://doi.org/10.1029/2017JD027977 (2018).

    Article  Google Scholar 

  65. Toms, B. A., Barnes, E. A., Maloney, E. D. & Heever, S. C. The global teleconnection signature of the Madden–Julian oscillation and its modulation by the quasi-biennial oscillation. J. Geophys. Res. Atmos. https://doi.org/10.1029/2020JD032653 (2020).

    Article  Google Scholar 

  66. Song, L. & Wu, R. Modulation of the QBO on the MJO-related surface air temperature anomalies over Eurasia during boreal winter. Clim. Dyn. 54, 2419–2431 (2020).

    Article  Google Scholar 

  67. Mundhenk, B. D., Barnes, E. A., Maloney, E. D. & Baggett, C. F. Skillful empirical subseasonal prediction of landfalling atmospheric river activity using the Madden–Julian oscillation and quasi-biennial oscillation. npj Clim. Atmos. Sci. 1, 20177 (2018).

    Article  Google Scholar 

  68. Holton, J. R. & Tan, H.-C. The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci. 37, 2200–2208 (1980).

    Article  Google Scholar 

  69. Baldwin, M. P. & Dunkerton, T. J. Stratospheric harbingers of anomalous weather regimes. Science 294, 581–584 (2001).

    Article  Google Scholar 

  70. Kidston, J. et al. Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci. 8, 433–440 (2015).

    Article  Google Scholar 

  71. Thompson, D. W. J., Baldwin, M. P. & Wallace, J. M. Stratospheric connection to northern hemisphere wintertime weather: implications for prediction. J. Clim. 15, 1421–1428 (2002).

    Article  Google Scholar 

  72. Scaife, A. A. et al. Skillful long-range prediction of European and North American winters. Geophys. Res. Lett. 41, 2514–2519 (2014).

    Article  Google Scholar 

  73. Smith, D. M. et al. North Atlantic climate far more predictable than models imply. Nature 583, 796–800 (2020).

    Article  Google Scholar 

  74. Scaife, A. A. & Smith, D. A signal-to-noise paradox in climate science. npj Clim. Atmos. Sci. 1, 28 (2018).

    Article  Google Scholar 

  75. Hitchman, M. H. & Huesmann, A. S. Seasonal influence of the quasi-biennial oscillation on stratospheric jets and Rossby wave breaking. J. Atmos. Sci. 66, 935–946 (2009).

    Article  Google Scholar 

  76. Lu, H., Hitchman, M., Gray, L., Anstey, J. & Osprey, S. On the role of Rossby wave breaking in the quasi-biennial modulation of the stratospheric polar vortex during boreal winter. Q. J. R. Meteorol. Soc. 146, 1939–1959 (2020).

    Article  Google Scholar 

  77. Watson, Pa. G. & Gray, L. J. How does the quasi-biennial oscillation affect the stratospheric polar vortex? J. Atmos. Sci. 71, 391–409 (2014).

    Article  Google Scholar 

  78. Ruzmaikin, A. Extratropical signature of the quasi-biennial oscillation. J. Geophys. Res. 110, D11111 (2005).

    Article  Google Scholar 

  79. Garfinkel, C. I., Shaw, T. A., Hartmann, D. L. & Waugh, D. W. Does the Holton–Tan mechanism explain how the quasi-biennial oscillation modulates the Arctic polar vortex? J. Atmos. Sci. 69, 1713–1733 (2012).

    Article  Google Scholar 

  80. Gray, L. J., Sparrow, S., Juckes, M., O’neill, A. & Andrews, D. G. Flow regimes in the winter stratosphere of the northern hemisphere. Q. J. R. Meteorol. Soc. 129, 925–945 (2003).

    Article  Google Scholar 

  81. Gray, L. J. et al. Forecasting extreme stratospheric polar vortex events. Nat. Commun. 11, 4630 (2020).

    Article  Google Scholar 

  82. Lu, H., Baldwin, M. P., Gray, L. J. & Jarvis, M. J. Decadal-scale changes in the effect of the QBO on the northern stratospheric polar vortex. J. Geophys. Res. 113, D10114 (2008).

    Article  Google Scholar 

  83. Anstey, J. & Shepherd, T. Response of the northern stratospheric polar vortex to the seasonal alignment of QBO phase transitions. Geophys. Res. Lett. https://doi.org/10.1029/2008GL035721 (2008).

    Article  Google Scholar 

  84. Christiansen, B. Stratospheric bimodality: can the equatorial QBO explain the regime behavior of the NH winter vortex? J. Clim. 23, 3953–3966 (2010).

    Article  Google Scholar 

  85. Lu, H., Bracegirdle, T. J., Phillips, T., Bushell, A. & Gray, L. Mechanisms for the Holton–Tan relationship and its decadal variation. J. Geophys. Res. Atmos. 119, 2811–2830 (2014).

    Article  Google Scholar 

  86. Dimdore-Miles, O., Gray, L. & Osprey, S. Origins of multi-decadal variability in sudden stratospheric warmings. Weather. Clim. Dyn. 2, 205–231 (2021).

    Article  Google Scholar 

  87. Baldwin, M. P. & Dunkerton, T. J. Quasi-biennial modulation of the southern hemisphere stratospheric polar vortex. Geophys. Res. Lett. 25, 3343–3346 (1998).

    Article  Google Scholar 

  88. Holton, J. R. & Austin, J. The influence of the equatorial QBO on sudden stratospheric warmings. J. Atmos. Sci. 48, 607–618 (1991).

    Article  Google Scholar 

  89. Gray, L. J. The influence of the equatorial upper stratosphere on stratospheric sudden warmings. Geophys. Res. Lett. 30, 2002GL016430 (2003).

    Article  Google Scholar 

  90. Scott, R. K. Nonlinear latitudinal transfer of wave activity in the winter stratosphere. Q. J. R. Meteorol. Soc. 145, 1933–1946 (2019).

    Article  Google Scholar 

  91. Gray, L. J., Lu, H., Brown, M. J., Knight, J. R. & Andrews, M. B. Mechanisms of influence of the semi-annual oscillation on stratospheric sudden warmings. Q. J. Royal Meteorol. Soc. 148, 1223–1241 (2022).

    Article  Google Scholar 

  92. Hampson, J. & Haynes, P. Influence of the Equatorial QBO on the extratropical stratosphere. J. Atmos. Sci. 63, 936–951 (2006).

    Article  Google Scholar 

  93. Inoue, M., Takahashi, M. & Naoe, H. Relationship between the stratospheric quasi-biennial oscillation and tropospheric circulation in northern autumn. J. Geophys. Res. Atmos. https://doi.org/10.1029/2011JD016040 (2011).

    Article  Google Scholar 

  94. White, I. P., Lu, H. & Mitchell, N. J. Seasonal evolution of the QBO-induced wave forcing and circulation anomalies in the northern winter stratosphere. J. Geophys. Res. Atmos. 121, 411–10 (2016).

    Article  Google Scholar 

  95. Anstey, J. A. et al. Teleconnections of the quasi-biennial oscillation in a multi-model ensemble of QBO-resolving models. Q. J. R. Meteorol. Soc. https://doi.org/10.1002/qj.4048 (2021).

    Article  Google Scholar 

  96. Scaife, A. A. et al. Tropical rainfall, Rossby waves and regional winter climate predictions. Q. J. R. Meteorol. Soc. 143, 1–11 (2017).

    Article  Google Scholar 

  97. Yamazaki, K., Nakamura, T., Ukita, J. & Hoshi, K. A tropospheric pathway of the stratospheric quasi-biennial oscillation (QBO) impact on the boreal winter polar vortex. Atmos. Chem. Phys. 20, 5111–5127 (2020).

    Article  Google Scholar 

  98. Shen, X., Wang, L. & Osprey, S. Tropospheric forcing of the 2019 Antarctic sudden stratospheric warming. Geophys. Res. Lett. https://doi.org/10.1029/2020GL089343 (2020).

    Article  Google Scholar 

  99. Peña-Ortiz, C., Manzini, E. & Giorgetta, M. A. Tropical deep convection impact on southern winter stationary waves and its modulation by the quasi-biennial oscillation. J. Clim. 32, 7453–7467 (2019).

    Article  Google Scholar 

  100. White, I. P., Lu, H., Mitchell, N. J. & Phillips, T. Dynamical response to the QBO in the northern winter stratosphere: signatures in wave forcing and eddy fluxes of potential vorticity. J. Atmos. Sci. 72, 4487–4507 (2015).

    Article  Google Scholar 

  101. Richter, J. H. et al. Response of the quasi-biennial oscillation to a warming climate in global climate models. Q. J. R. Meteorol. Soc. https://doi.org/10.1002/qj.3749 (2020).

    Article  Google Scholar 

  102. Smith, D. M., Scaife, A. A., Eade, R. & Knight, J. R. Seasonal to decadal prediction of the winter North Atlantic oscillation: emerging capability and future prospects. Q. J. R. Meteorol. Soc. 142, 611–617 (2016).

    Article  Google Scholar 

  103. Elsbury, D., Peings, Y. & Magnusdottir, G. CMIP6 models underestimate the Holton–Tan effect. Geophys. Res. Lett. 48, e2021GL094083 (2021).

    Article  Google Scholar 

  104. Kim, H., Caron, J. M., Richter, J. H. & Simpson, I. R. The lack of QBO–MJO connection in CMIP6 models. Geophys. Res. Lett. https://doi.org/10.1029/2020GL087295 (2020).

    Article  Google Scholar 

  105. Boville, B. A. & Randel, W. J. Equatorial waves in a stratospheric GCM: effects of vertical resolution. J. Atmos. Sci. 49, 785–801 (1992).

    Article  Google Scholar 

  106. Hamilton, K., Wilson, R. J. & Hemler, R. S. Middle atmosphere simulated with high vertical and horizontal resolution versions of a GCM: improvements in the cold pole bias and generation of a QBO-like oscillation in the tropics. J. Atmos. Sci. 56, 3829–3846 (1999).

    Article  Google Scholar 

  107. Kawatani, Y. et al. The roles of equatorial trapped waves and internal inertia–gravity waves in driving the quasi-biennial oscillation. Part I: zonal mean wave forcing. J. Atmos. Sci. 67, 963–980 (2010).

    Article  Google Scholar 

  108. Kawatani, Y. et al. The roles of equatorial trapped waves and internal inertia–gravity waves in driving the quasi-biennial oscillation. Part II: three-dimensional distribution of wave forcing. J. Atmos. Sci. 67, 981–997 (2010).

    Article  Google Scholar 

  109. Richter, J. H., Solomon, A. & Bacmeister, J. T. On the simulation of the quasi-biennial oscillation in the Community Atmosphere Model, version 5. J. Geophys. Res. Atmos. 119, 3045–3062 (2014).

    Article  Google Scholar 

  110. Holt, L. A. et al. An evaluation of tropical waves and wave forcing of the QBO in the QBOi models. Q. J. R. Meteorol. Soc. https://doi.org/10.1002/qj.3827 (2020).

    Article  Google Scholar 

  111. Ern, M. & Preusse, P. Wave fluxes of equatorial Kelvin waves and QBO zonal wind forcing derived from SABER and ECMWF temperature space-time spectra. Atmos. Chem. Phys. 9, 3957–3986 (2009).

    Article  Google Scholar 

  112. Ern, M. & Preusse, P. Quantification of the contribution of equatorial Kelvin waves to the QBO wind reversal in the stratosphere. Geophys. Res. Lett. 36, L21801 (2009).

    Article  Google Scholar 

  113. Alexander, M. J. & Ortland, D. A. Equatorial waves in high resolution dynamics limb sounder (HIRDLS) data. J. Geophys. Res. Atmos. https://doi.org/10.1029/2010JD014782 (2010).

    Article  Google Scholar 

  114. Evan, S., Alexander, M. J. & Dudhia, J. WRF simulations of convectively generated gravity waves in opposite QBO phases. J. Geophys. Res. Atmos. https://doi.org/10.1029/2011JD017302 (2012).

    Article  Google Scholar 

  115. Kim, Y.-H. & Chun, H.-Y. Momentum forcing of the quasi-biennial oscillation by equatorial waves in recent reanalyses. Atmos. Chem. Phys. 15, 6577–6587 (2015).

    Article  Google Scholar 

  116. Kim, Y.-H. & Chun, H.-Y. Contributions of equatorial wave modes and parameterized gravity waves to the tropical QBO in HadGEM2. J. Geophys. Res. Atmos. 120, 1065–1090 (2015).

    Article  Google Scholar 

  117. Watanabe, S. et al. General aspects of a T213L256 middle atmosphere general circulation model. J. Geophys. Res. 113, D12110 (2008).

    Article  Google Scholar 

  118. Horinouchi, T. & Yoden, S. Wave–mean flow interaction associated with a QBO-like oscillation simulated in a simplified GCM. J. Atmos. Sci. 55, 502–526 (1998).

    Article  Google Scholar 

  119. Ricciardulli, L. & Garcia, R. R. The excitation of equatorial waves by deep convection in the NCAR community climate model (CCM3). J. Atmos. Sci. 57, 3461–3487 (2000).

    Article  Google Scholar 

  120. Yao, W. & Jablonowski, C. Idealized quasi-biennial oscillations in an ensemble of dry GCM dynamical cores. J. Atmos. Sci. 72, 2201–2226 (2015).

    Article  Google Scholar 

  121. Anstey, J. A., Scinocca, J. F. & Keller, M. Simulating the QBO in an atmospheric general circulation model: sensitivity to resolved and parameterized forcing. J. Atmos. Sci. 73, 1649–1665 (2016).

    Article  Google Scholar 

  122. Holt, L. A. et al. Tropical waves and the quasi-biennial oscillation in a 7-km global climate simulation. J. Atmos. Sci. 73, 3771–3783 (2016).

    Article  Google Scholar 

  123. Geller, M. A. et al. Modeling the QBO-improvements resulting from higher-model vertical resolution. J. Adv. Model. Earth Syst. 8, 1092–1105 (2016).

    Article  Google Scholar 

  124. Vincent, R. A. & Alexander, M. J. Balloon-borne observations of short vertical wavelength gravity waves and interaction with QBO winds. J. Geophys. Res. Atmos. 125, e2020JD032779 (2020).

    Article  Google Scholar 

  125. Richter, J. H., Solomon, A. & Bacmeister, J. T. Effects of vertical resolution and nonorographic gravity wave drag on the simulated climate in the Community Atmosphere Model, version 5. J. Adv. Model. Earth Syst. 6, 357–383 (2014).

    Article  Google Scholar 

  126. Garfinkel, C. I. et al. A QBO cookbook: sensitivity of the quasi-biennial oscillation to resolution, resolved waves, and parameterized gravity waves. J. Adv. Model. Earth Syst. 14, e2021MS002568 (2022).

    Article  Google Scholar 

  127. Osprey, S. M., Gray, L. J., Hardiman, S. C., Butchart, N. & Hinton, T. J. Stratospheric variability in twentieth-century CMIP5 simulations of the Met Office climate model: high top versus low top. J. Clim. 26, 1595–1606 (2013).

    Article  Google Scholar 

  128. Giorgetta, M. A., Manzini, E., Roeckner, E., Esch, M. & Bengtsson, L. Climatology and forcing of the quasi-biennial oscillation in the MAECHAM5 model. J. Clim. 19, 3882–3901 (2006).

    Article  Google Scholar 

  129. Bushell, A. C. et al. Evaluation of the quasi-biennial oscillation in global climate models for the SPARC QBO-initiative. Q. J. R. Meteorol. Soc. https://doi.org/10.1002/qj.3765 (2020).

    Article  Google Scholar 

  130. Coy, L., Newman, P. A., Strahan, S. & Pawson, S. Seasonal variation of the quasi-biennial oscillation descent. J. Geophys. Res. Atmos. 125, e2020JD033077 (2020).

    Google Scholar 

  131. Dunkerton, T. J., Delisi, D. P. & Baldwin, M. P. Distribution of major stratospheric warmings in relation to the quasi-biennial oscillation. Geophys. Res. Lett. 15, 136–139 (1988).

    Article  Google Scholar 

  132. Andrews, M. B. et al. Observed and simulated teleconnections between the stratospheric quasi-biennial oscillation and northern hemisphere winter atmospheric circulation. J. Geophys. Res. Atmos. 124, 1219–1232 (2019).

    Article  Google Scholar 

  133. Kim, Y.-H., Bushell, A. C., Jackson, D. R. & Chun, H.-Y. Impacts of introducing a convective gravity-wave parameterization upon the QBO in the Met Office unified model. Geophys. Res. Lett. 40, 1873–1877 (2013).

    Article  Google Scholar 

  134. Kawatani, Y., Takahashi, M., Sato, K., Alexander, S. P. & Tsuda, T. Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere: AGCM simulation of sources and propagation. J. Geophys. Res. Atmos. https://doi.org/10.1029/2008JD010374 (2009).

    Article  Google Scholar 

  135. Kim, Y.-H. et al. Comparison of equatorial wave activity in the tropical tropopause layer and stratosphere represented in reanalyses. Atmos. Chem. Phys. 19, 10027–10050 (2019).

    Article  Google Scholar 

  136. Pahlavan, H. A., Wallace, J. M., Fu, Q. & Kiladis, G. N. Revisiting the quasi-biennial oscillation as seen in ERA5. Part II. Evaluation of waves and wave forcing. J. Atmos. Sci. 78, 693–707 (2021).

    Article  Google Scholar 

  137. Pahlavan, H. A., Fu, Q., Wallace, J. M. & Kiladis, G. N. Revisiting the quasi-biennial oscillation as seen in ERA5. Part I. Description and momentum budget. J. Atmos. Sci. 78, 673–691 (2021).

    Article  Google Scholar 

  138. Kobayashi, C. et al. Preliminary results of the JRA-55C, an atmospheric reanalysis assimilating conventional observations only. SOLA 10, 78–82 (2014).

    Article  Google Scholar 

  139. Kawatani, Y., Hamilton, K., Miyazaki, K., Fujiwara, M. & Anstey, J. A. Representation of the tropical stratospheric zonal wind in global atmospheric reanalyses. Atmos. Chem. Phys. 16, 6681–6699 (2016).

    Article  Google Scholar 

  140. Pawson, S. & Fiorino, M. A comparison of reanalyses in the tropical stratosphere. Part 2. The quasi-biennial oscillation. Clim. Dyn. 14, 645–658 (1998).

    Article  Google Scholar 

  141. Hamilton, K., Hertzog, A., Vial, F. & Stenchikov, G. Longitudinal variation of the stratospheric quasi-biennial oscillation. J. Atmos. Sci. 61, 383–402 (2004).

    Article  Google Scholar 

  142. Beres, J. H. Implementation of a gravity wave source spectrum parameterization dependent on the properties of convection in the whole atmosphere community climate model (WACCM). J. Geophys. Res. 110, D10108 (2005).

    Article  Google Scholar 

  143. Richter, J. H., Sassi, F. & Garcia, R. R. Toward a physically based gravity wave source parameterization in a general circulation model. J. Atmos. Sci. 67, 136–156 (2010).

    Article  Google Scholar 

  144. Lott, F., Guez, L. & Maury, P. A stochastic parameterization of non-orographic gravity waves: formalism and impact on the equatorial stratosphere. Geophys. Res. Lett. https://doi.org/10.1029/2012GL051001 (2012).

    Article  Google Scholar 

  145. Lott, F. & Guez, L. A stochastic parameterization of the gravity waves due to convection and its impact on the equatorial stratosphere. J. Geophys. Res. Atmos. 118, 8897–8909 (2013).

    Article  Google Scholar 

  146. Schirber, S., Manzini, E. & Alexander, M. J. A convection-based gravity wave parameterization in a general circulation model: implementation and improvements on the QBO. J. Adv. Model. Earth Syst. 6, 264–279 (2014).

    Article  Google Scholar 

  147. Hampson, J. & Haynes, P. Phase alignment of the tropical stratospheric QBO in the annual cycle. J. Atmos. Sci. 61, 2627–2637 (2004).

    Article  Google Scholar 

  148. Taguchi, M. Observed connection of the stratospheric quasi-biennial oscillation with El Niño–Southern Oscillation in radiosonde data. J. Geophys. Res. 115, D18120 (2010).

    Article  Google Scholar 

  149. Kawatani, Y. et al. ENSO modulation of the QBO: results from MIROC models with and without nonorographic gravity wave parameterization. J. Atmos. Sci. 76, 3893–3917 (2019).

    Article  Google Scholar 

  150. Serva, F., Cagnazzo, C., Christiansen, B. & Yang, S. The influence of ENSO events on the stratospheric QBO in a multi-model ensemble. Clim. Dyn. 54, 2561–2575 (2020).

    Article  Google Scholar 

  151. Labitzke, K. Stratospheric temperature changes after the Pinatubo eruption. J. Atmos. Terr. Phys. 56, 1027–1034 (1994).

    Article  Google Scholar 

  152. DallaSanta, K., Orbe, C., Rind, D., Nazarenko, L. & Jonas, J. Response of the quasi-biennial oscillation to historical volcanic eruptions. Geophys. Res. Lett. 48, e2021GL095412 (2021).

    Article  Google Scholar 

  153. Aquila, V., Garfinkel, C. I., Newman, P., Oman, L. & Waugh, D. Modifications of the quasi-biennial oscillation by a geoengineering perturbation of the stratospheric aerosol layer. Geophys. Res. Lett. 41, 1738–1744 (2014).

    Article  Google Scholar 

  154. Richter, J. H. et al. Stratospheric dynamical response and ozone feedbacks in the presence of SO2 injections. J. Geophys. Res. Atmos. 122, 12,557–12,573 (2017).

    Article  Google Scholar 

  155. Niemeier, U., Richter, J. H. & Tilmes, S. Differing responses of the quasi-biennial oscillation to artificial SO2 injections in two global models. Atmos. Chem. Phys. 20, 8975–8987 (2020).

    Article  Google Scholar 

  156. Jones, A. et al. The impact of stratospheric aerosol intervention on the North Atlantic and quasi-biennial oscillations in the Geoengineering Model Intercomparison Project (GeoMIP) G6sulfur experiment. Atmos. Chem. Phys. 22, 2999–3016 (2022).

    Article  Google Scholar 

  157. Lin, P., Held, I. & Ming, Y. The early development of the 2015/16 quasi-biennial oscillation disruption. J. Atmos. Sci. 76, 821–836 (2019).

    Article  Google Scholar 

  158. Li, H., Pilch Kedzierski, R. & Matthes, K. On the forcings of the unusual quasi-biennial oscillation structure in February 2016. Atmos. Chem. Phys. 20, 6541–6561 (2020).

    Article  Google Scholar 

  159. O’Sullivan, D. Interaction of extratropical Rossby waves with westerly quasi-biennial oscillation winds. J. Geophys. Res. Atmos. 102, 19461–19469 (1997).

    Article  Google Scholar 

  160. Hitchcock, P., Haynes, P. H., Randel, W. J. & Birner, T. The emergence of shallow easterly jets within QBO westerlies. J. Atmos. Sci. 75, 21–40 (2018).

    Article  Google Scholar 

  161. Watanabe, S., Hamilton, K., Osprey, S., Kawatani, Y. & Nishimoto, E. First successful hindcasts of the 2016 disruption of the stratospheric quasi-biennial oscillation. Geophys. Res. Lett. 45, 1602–1610 (2018).

    Article  Google Scholar 

  162. Pohlmann, H. et al. Improved forecast skill in the tropics in the new MiKlip decadal climate predictions. Geophys. Res. Lett. 40, 5798–5802 (2013).

    Article  Google Scholar 

  163. Coy, L. et al. Seasonal prediction of the quasi-biennial oscillation. J. Geophys. Res. Atmos. 127, e2021JD036124 (2022).

    Article  Google Scholar 

  164. Dunkerton, T. J. Nonlinear propagation of zonal winds in an atmosphere with Newtonian cooling and equatorial wavedriving. J. Atmos. Sci. 48, 236–263 (1991).

    Article  Google Scholar 

  165. Butchart, N., Scaife, A. A., Austin, J., Hare, S. H. E. & Knight, J. R. Quasi-biennial oscillation in ozone in a coupled chemistry–climate model. J. Geophys. Res. 108, 4486 (2003).

    Article  Google Scholar 

  166. Shibata, K. & Deushi, M. Radiative effect of ozone on the quasi-biennial oscillation in the equatorial stratosphere. Geophys. Res. Lett. 32, L24802 (2005).

    Article  Google Scholar 

  167. Shibata, K. Simulations of ozone feedback effects on the equatorial quasi-biennial oscillation with a chemistry–climate model. Climate 9, 123 (2021).

    Article  Google Scholar 

  168. DallaSanta, K., Orbe, C., Rind, D., Nazarenko, L. & Jonas, J. Dynamical and trace gas responses of the quasi-biennial oscillation to increased CO2. J. Geophys. Res. Atmos. 126, e2020JD034151 (2021).

    Article  Google Scholar 

  169. Pohlmann, H. et al. Realistic quasi-biennial oscillation variability in historical and decadal hindcast simulations using CMIP6 forcing. Geophys. Res. Lett. 46, 14118–14125 (2019).

    Article  Google Scholar 

  170. Schirber, S., Manzini, E., Krismer, T. & Giorgetta, M. The quasi-biennial oscillation in a warmer climate: sensitivity to different gravity wave parameterizations. Clim. Dyn. 45, 825–836 (2015).

    Article  Google Scholar 

  171. Giorgetta, M. A. Sensitivity of the quasi-biennial oscillation to CO2 doubling. Geophys. Res. Lett. 32, L08701 (2005).

    Article  Google Scholar 

  172. Kawatani, Y., Hamilton, K. & Watanabe, S. The quasi-biennial oscillation in a double CO2 climate. J. Atmos. Sci. 68, 265–283 (2011).

    Article  Google Scholar 

  173. Watanabe, S. & Kawatani, Y. Sensitivity of the QBO to mean tropical upwelling under a changing climate simulated with an Earth system model. J. Meteorol. Soc. Jpn. 90A, 351–360 (2012).

    Article  Google Scholar 

  174. Kawatani, Y. & Hamilton, K. Weakened stratospheric quasibiennial oscillation driven by increased tropical mean upwelling. Nature 497, 478–481 (2013).

    Article  Google Scholar 

  175. Butchart, N. et al. QBO changes in CMIP6 climate projections. Geophys. Res. Lett. https://doi.org/10.1029/2019GL086903 (2020).

    Article  Google Scholar 

  176. Match, A. & Fueglistaler, S. Large internal variability dominates over global warming signal in observed lower stratospheric QBO amplitude. J. Clim. 34, 9823–9836 (2021).

    Google Scholar 

  177. Rao, J., Garfinkel, C. I. & White, I. P. Projected strengthening of the extratropical surface impacts of the stratospheric quasi-biennial oscillation. Geophys. Res. Lett. 47, e2020GL089149 (2020).

    Article  Google Scholar 

  178. van Vuuren, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5–31 (2011).

    Article  Google Scholar 

  179. O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model. Dev. 9, 3461–3482 (2016).

    Article  Google Scholar 

  180. Bushell, A. C. et al. Parameterized gravity wave momentum fluxes from sources related to convection and large-scale precipitation processes in a global atmosphere model. J. Atmos. Sci. 72, 4349–4371 (2015).

    Article  Google Scholar 

  181. Raghavendra, A., Roundy, P. E. & Zhou, L. Trends in tropical wave activity from the 1980s to 2016. J. Clim. 32, 1661–1676 (2019).

    Article  Google Scholar 

  182. Naoe, H. & Shibata, K. Future changes in the influence of the quasi-biennial oscillation on the northern polar vortex simulated with an MRI chemistry climate model. J. Geophys. Res. Atmos. https://doi.org/10.1029/2011JD016255 (2012).

    Article  Google Scholar 

  183. Naoe, H. & Yoshida, K. Influence of quasi-biennial oscillation on the boreal winter extratropical stratosphere in QBOi experiments. Q. J. R. Meteorol. Soc. 145, 2755–2771 (2019).

    Article  Google Scholar 

  184. Ayarzagüena, B. et al. Uncertainty in the response of sudden stratospheric warmings and stratosphere-troposphere coupling to quadrupled CO2 concentrations in CMIP6 models. J. Geophys. Res. Atmos. 125, e2019JD032345 (2020).

    Article  Google Scholar 

  185. Stevens, B. et al. DYAMOND: the dynamics of the atmospheric general circulation modeled on non-hydrostatic domains. Prog. Earth Planet. Sci. 6, 61 (2019).

    Article  Google Scholar 

  186. Hertzog, A. How can we improve the driving of the quasi-biennial oscillation in climate models? J. Geophys. Res. Atmos. https://doi.org/10.1029/2020JD033411 (2020).

    Article  Google Scholar 

  187. Witschas, B. et al. First validation of Aeolus wind observations by airborne Doppler wind lidar measurements. Atmos. Meas. Tech. 13, 2381–2396 (2020).

    Article  Google Scholar 

  188. Karpechko, A. Y., Tyrrell, N. L. & Rast, S. Sensitivity of QBO teleconnection to model circulation biases. Q. J. R. Meteorol. Soc. 147, 2147–2159 (2021).

    Article  Google Scholar 

  189. Kobayashi, S. et al. The JRA-55 reanalysis: general specifications and basic characteristics. J. Meteorol. Soc. Japan. Ser. II 93, 5–48 (2015).

    Article  Google Scholar 

  190. Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  191. Naujokat, B. An update of the observed quasi-biennial oscillation of the stratospheric winds over the tropics. J. Atmos. Sci. 43, 1873–1877 (1986).

    Article  Google Scholar 

  192. Match, A. & Fueglistaler, S. Anomalous dynamics of QBO disruptions explained by 1D theory with external triggering. J. Atmos. Sci. 78, 373–383 (2021).

    Article  Google Scholar 

  193. Ern, M. et al. Interaction of gravity waves with the QBO: a satellite perspective. J. Geophys. Res. Atmos. 119, 2329–2355 (2014).

    Article  Google Scholar 

  194. Alexander, S. P., Tsuda, T., Kawatani, Y. & Takahashi, M. Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere: COSMIC observations of wave mean flow interactions. J. Geophys. Res. 113, D24115 (2008).

    Article  Google Scholar 

  195. World Meteorological Organization Executive Summary: Scientific Assessment of Ozone Depletion: 2018. (WMO, 2018); https://public.wmo.int/en/resources/library/scientific-assessment-of-ozone-depletion-2018

  196. Li, D., Shine, K. P. & Gray, L. J. The role of ozone-induced diabatic heating anomalies in the quasi-biennial oscillation. Q. J. R. Meteorol. Soc. 121, 937–943 (1995).

    Article  Google Scholar 

  197. Zawodny, J. M. & McCormick, M. P. Stratospheric aerosol and gas experiment II measurements of the quasi-biennial oscillations in ozone and nitrogen dioxide. J. Geophys. Res. 96, 9371 (1991).

    Article  Google Scholar 

  198. Chipperfield, M. P., Cariolle, D., Simon, P., Ramaroson, R. & Lary, D. J. A three-dimensional modeling study of trace species in the Arctic lower stratosphere during winter 1989–1990. J. Geophys. Res. Atmos. 98, 7199–7218 (1993).

    Article  Google Scholar 

  199. Schoeberl, M. R. et al. QBO and annual cycle variations in tropical lower stratosphere trace gases from HALOE and Aura MLS observations. J. Geophys. Res. Atmos. https://doi.org/10.1029/2007JD008678 (2008).

    Article  Google Scholar 

  200. Logan, J. A. Quasibiennial oscillation in tropical ozone as revealed by ozonesonde and satellite data. J. Geophys. Res. 108, 4244 (2003).

    Article  Google Scholar 

  201. Tweedy, O. V. et al. Response of trace gases to the disrupted 2015–2016 quasi-biennial oscillation. Atmos. Chem. Phys. 17, 6813–6823 (2017).

    Article  Google Scholar 

  202. Diallo, M. et al. Response of stratospheric water vapor and ozone to the unusual timing of El Niño and the QBO disruption in 2015–2016. Atmos. Chem. Phys. 18, 13055–13073 (2018).

    Article  Google Scholar 

  203. Strahan, S. E., Oman, L. D., Douglass, A. R. & Coy, L. Modulation of Antarctic vortex composition by the quasi-biennial oscillation. Geophys. Res. Lett. 42, 4216–4223 (2015).

    Article  Google Scholar 

  204. Ray, E. A. et al. The influence of the stratospheric quasi-biennial oscillation on trace gas levels at the Earth’s surface. Nat. Geosci. 13, 22–27 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977. Portions of this study were supported by the Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program of the US Department of Energy’s Office of Biological and Environmental Research (BER) (via National Science Foundation grant number IA 1844590). P.A.N. is funded under the Atmospheric Chemistry, Modeling, and Analysis Program (grant number NNH16ZDA001N-ACMAP). M.P.B. was supported by the Natural Environment Research Council (grant number NE/M006123/1). This research has been supported by the Japan Society for Promotion of Science (JSPS) KAKENHI (grant numbers JP18H01286, 19H05702 and 20H01973) and by the Environment Research and Technology Development Fund (grant number JPMEERF20192004) of the Environmental Restoration and Conservation Agency of Japan. N.B. was supported by the Met Office Hadley Centre Programme, funded by BEIS and Defra and the UK-China Research and Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China, as part of the Newton Fund. J. Alexander was supported by the US National Science Foundation (grant numbers 1642644 and 1829373) and NASA (grant number 80NSSC17K0169). S.M.O. and L.G. were supported by the UK National Centre for Atmospheric Science (NCAS) of the Natural Environment Research Council (NERC) and by the NERC North Atlantic Climate System Integrated Study (ACSIS) (grant number NE/N018001) and NERC grant number NE/P006779/1.

Author information

Authors and Affiliations

Authors

Contributions

S.M.O. led the writing of the first draft. J.A.A. led the revisions and reviewer responses. All authors individually led the compilation of specific sections, figures and boxes within the manuscript. All authors contributed to researching data for the article, discussion of content, writing the article and reviewing/editing the article before submission.

Corresponding authors

Correspondence to James A. Anstey or Scott M. Osprey.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Hye-Yeong Chun, who co-reviewed with Min-Jee Kang; Chaim Garfinkel; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anstey, J.A., Osprey, S.M., Alexander, J. et al. Impacts, processes and projections of the quasi-biennial oscillation. Nat Rev Earth Environ 3, 588–603 (2022). https://doi.org/10.1038/s43017-022-00323-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00323-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing