Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stability of the Antarctic Ice Sheet during the pre-industrial Holocene

Abstract

The rate and magnitude of the Antarctic Ice Sheet (AIS) contribution to global sea-level rise beyond 2100 ce remains highly uncertain. Past changes of the AIS, however, offer opportunities to understand contemporary and future ice sheet behaviour. In this Review, we outline how the AIS evolved through the pre-industrial Holocene, 11,700 years ago to 1850 ce. Three main phases of ice sheet behaviour are identified: a period of rapid ice volume loss across all sectors in the Early and Mid Holocene; a retreat inland of the present-day ice sheet margin in some sectors, followed by readvance; and continued ice volume loss in several sectors during the past few millennia, and in some areas up to and into the industrial era. Global sea levels rose by 2.4–12 m owing to the period of rapid Antarctic ice loss and possibly fell by 0.35–1.2 m owing to subsequent readvance. Changes in the AIS during the Holocene were likely driven by similar processes to those acting today and predicted for the future, which are associated with oceanic and atmospheric conditions as well as bed topography. Further work is required to better understand these processes and to quantify Antarctica’s contribution to past sea-level change.

Key points

  • Multiple lines of evidence indicate that the Antarctic Ice Sheet (AIS) underwent periods of ice volume loss and gain in the Holocene that affected global sea levels.

  • Rapid ice loss occurred in all ice sheet sectors during the Early to Mid Holocene, contributing between 2.4 and 12 m to the rise in global mean sea level (GMSL).

  • Ice sheet readvance occurred in two sectors during the Holocene, which might have caused a fall in global sea levels of 0.35 m, or possibly 1.2 m.

  • The ice sheet was mostly at or near its present-day geometry by the Late Holocene, but ice loss and gain continued in some areas into the industrial era.

  • Ice loss was likely caused by oceanic warming, sea-level rise, retrograde bed topography and atmospheric changes, and ice gain was possibly caused by glacial isostatic adjustment and/or climate variability.

  • Improved understanding of the AIS in the Holocene will be achieved through targeted data collection, and developments in chronological techniques and numerical modelling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Past, present and future sea-level change.
Fig. 2: Records of Holocene ice thickness change.
Fig. 3: Records of grounding line migration and response to ice load change.
Fig. 4: Modelled ice volume change in the Holocene.
Fig. 5: Overview of Antarctic Ice Sheet change in the Holocene.
Fig. 6: Patterns of global sea-level change due to Holocene Antarctic ice volume change.

Similar content being viewed by others

Data availability

The data shown in Figs. 1,2,3,4 and 6 and the code used to analyse the data and generate the figures can be found at https://github.com/rs-jones/antarctica-holocene.

References

  1. Morlighem, M. et al. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic Ice Sheet. Nat. Geosci. 13, 132–137 (2020).

    Article  Google Scholar 

  2. Rignot, E. et al. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proc. Natl Acad. Sci. USA 116, 1095–1103 (2019).

    Article  Google Scholar 

  3. Konrad, H. et al. Net retreat of Antarctic glacier grounding lines. Nat. Geosci. 11, 258 (2018).

    Article  Google Scholar 

  4. McMillan, M. et al. Increased ice losses from Antarctica detected by CryoSat-2. Geophys. Res. Lett. 41, 3899–3905 (2014).

    Article  Google Scholar 

  5. Smith, B. et al. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science 368, 1239–1242 (2020).

    Article  Google Scholar 

  6. Pritchard, H. et al. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484, 502–505 (2012).

    Article  Google Scholar 

  7. Paolo, F. S., Fricker, H. A. & Padman, L. Volume loss from Antarctic ice shelves is accelerating. Science 348, 327–331 (2015).

    Article  Google Scholar 

  8. Alley, R. B. et al. Oceanic forcing of ice-sheet retreat: West Antarctica and more. Annu. Rev. Earth Planet. Sci. 43, 207–231 (2015).

    Article  Google Scholar 

  9. Rosier, S. H. et al. The tipping points and early-warning indicators for Pine Island Glacier, West Antarctica. Cryosphere 15, 1501–1516 (2021).

  10. Meredith, M. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H. O. et al.) 203–320 (IPCC, 2019).

  11. Frederikse, T. et al. The causes of sea-level rise since 1900. Nature 584, 393–397 (2020).

    Article  Google Scholar 

  12. Edwards, T. L. et al. Projected land ice contributions to twenty-first-century sea level rise. Nature 593, 74–82 (2021).

    Article  Google Scholar 

  13. DeConto, R. M. et al. The Paris Climate Agreement and future sea-level rise from Antarctica. Nature 593, 83–89 (2021).

    Article  Google Scholar 

  14. Oppenheimer, M. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H. O. et al.) 321–445 (IPCC, 2019).

  15. Kopp, R. E. et al. Temperature-driven global sea-level variability in the Common Era. Proc. Natl. Acad. Sci. USA 113, E1434–E1441 (2016).

    Article  Google Scholar 

  16. Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl. Acad. Sci. USA 111, 15296–15303 (2014).

    Article  Google Scholar 

  17. Goelzer, H., Coulon, V., Pattyn, F., de Boer, B. & van de Wal, R. Brief communication: on calculating the sea-level contribution in marine ice-sheet models. Cryosphere 14, 833–840 (2020).

    Article  Google Scholar 

  18. Weertman, J. Stability of the junction of an ice sheet and an ice shelf. J. Glaciol. 13, 3–11 (1974).

    Article  Google Scholar 

  19. Bentley, M. J. et al. A community-based geological reconstruction of antarctic ice sheet deglaciation since the Last Glacial Maximum. Quat. Sci. Rev. 100, 1–9 (2014).

    Article  Google Scholar 

  20. Weber, M. et al. Millennial-scale variability in Antarctic ice-sheet discharge during the last deglaciation. Nature 510, 134–138 (2014).

    Article  Google Scholar 

  21. Golledge, N. R. et al. Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning. Nat. Commun. 5, 5107 (2014).

    Article  Google Scholar 

  22. Gomez, N., Weber, M. E., Clark, P. U., Mitrovica, J. X. & Han, H. K. Antarctic ice dynamics amplified by Northern Hemisphere sea-level forcing. Nature 587, 600–604 (2020).

    Article  Google Scholar 

  23. Carlson, A. E. & Clark, P. U. Ice sheet sources of sea level rise and freshwater discharge during the last deglaciation. Rev. Geophys. 50, RG4007 (2012).

    Article  Google Scholar 

  24. Rohling, E. J. et al. Differences between the last two glacial maxima and implications for ice-sheet, δ18O, and sea-level reconstructions. Quat. Sci. Rev. 176, 1–28 (2017).

    Article  Google Scholar 

  25. Pike, J., Swann, G. E. A., Leng, M. J. & Snelling, A. M. Glacial discharge along the west Antarctic Peninsula during the Holocene. Nat. Geosci. 6, 199–202 (2013).

    Article  Google Scholar 

  26. Yokoyama, Y. et al. Widespread collapse of the Ross Ice Shelf during the Late Holocene. Proc. Natl. Acad. Sci. USA 113, 2354–2359 (2016).

    Article  Google Scholar 

  27. Sproson, A. D. et al. Beryllium isotopes in sediments from Lake Maruwan Oike and Lake Skallen, East Antarctica, reveal substantial glacial discharge during the Late Holocene. Quat. Sci. Rev. 256, 106841 (2021).

    Article  Google Scholar 

  28. Brisbourne, A. M. et al. Constraining recent ice flow history at Korff Ice Rise, West Antarctica, using radar and seismic measurements of ice fabric. J. Geophys. Res. Earth Surf. 124, 175–194 (2019).

    Article  Google Scholar 

  29. Kingslake, J. et al. Extensive retreat and re-advance of the West Antarctic ice sheet during the Holocene. Nature 558, 430–434 (2018).

    Article  Google Scholar 

  30. King, C., Hall, B., Hillebrand, T. & Stone, J. Delayed maximum and recession of an East Antarctic outlet glacier. Geology 48, 630–634 (2020).

    Article  Google Scholar 

  31. Albrecht, T., Winkelmann, R. & Levermann, A. Glacial-cycle simulations of the antarctic ice sheet with the parallel ice sheet model (PISM) — part 2: parameter ensemble analysis. Cryosphere 14, 633–656 (2020).

    Article  Google Scholar 

  32. Briggs, R. D., Pollard, D. & Tarasov, L. A data-constrained large ensemble analysis of Antarctic evolution since the Eemian. Quat. Sci. Rev. 103, 91–115 (2014).

    Article  Google Scholar 

  33. Whitehouse, P. L., Bentley, M. J. & Le Brocq, A. M. A deglacial model for Antarctica: geological constraints and glaciological modelling as a basis for a new model of Antarctic glacial isostatic adjustment. Quat. Sci. Rev. 32, 1–24 (2012).

    Article  Google Scholar 

  34. Pollard, D., Gomez, N. & Deconto, R. M. Variations of the Antarctic Ice Sheet in a coupled ice sheet–Earth-sea level model: sensitivity to viscoelastic earth properties. J. Geophys. Res. Earth Surf. 122, 2124–2138 (2017).

    Article  Google Scholar 

  35. Johnson, J. S. et al. Deglaciation of Pope Glacier implies widespread early Holocene ice sheet thinning in the Amundsen Sea sector of Antarctica. Earth Planet. Sci. Lett. 548, 116501 (2020).

    Article  Google Scholar 

  36. Jones, R. S. et al. Regional-scale abrupt Mid-Holocene ice sheet thinning in the western Ross Sea, Antarctica. Geology 49, 278–282 (2020).

    Article  Google Scholar 

  37. Kawamata, M. et al. Abrupt Holocene ice-sheet thinning along the southern Soya Coast, Lützow-Holm Bay, East Antarctica, revealed by glacial geomorphology and surface exposure dating. Quat. Sci. Rev. 247, 106540 (2020).

    Article  Google Scholar 

  38. Spector, P. et al. Rapid Early-Holocene deglaciation in the Ross Sea, Antarctica. Geophys. Res. Lett. 44, 7817–7825 (2017).

    Article  Google Scholar 

  39. Buizert, C. et al. Antarctic surface temperature and elevation during the Last Glacial Maximum. Science 372, 1097–1101 (2021).

    Article  Google Scholar 

  40. Thomas, E. R. et al. Regional Antarctic snow accumulation over the past 1000 years. Clim. Past 13, 1491–1513 (2017).

    Article  Google Scholar 

  41. Prothro, L. O. et al. Timing and pathways of East Antarctic Ice Sheet retreat. Quat. Sci. Rev. 230, 106166 (2020).

    Article  Google Scholar 

  42. Smith, J. A. et al. New constraints on the timing of West Antarctic Ice Sheet retreat in the eastern Amundsen Sea since the Last Glacial Maximum. Glob. Planet. Change 122, 224–237 (2014).

    Article  Google Scholar 

  43. Mackintosh, A. et al. Retreat of the East Antarctic Ice Sheet during the last glacial termination. Nat. Geosci. 4, 195–202 (2011).

    Article  Google Scholar 

  44. Siegert, M. J. et al. Major ice sheet change in the Weddell Sea Sector of West Antarctica over the last 5,000 years. Rev. Geophys. 57, 1197–1223 (2019).

    Article  Google Scholar 

  45. Venturelli, R. A. et al. Mid-Holocene grounding line retreat and readvance at Whillans Ice Stream, West Antarctica. Geophys. Res. Lett. 47, e2020GL088476 (2020).

    Article  Google Scholar 

  46. Whitehouse, P. L., Gomez, N., King, M. A. & Wiens, D. A. Solid Earth change and the evolution of the Antarctic Ice Sheet. Nat. Commun. 10, 503 (2019).

    Article  Google Scholar 

  47. Hall, B. C. & Denton, G. H. Holocene relative sea-level history of the Southern Victoria land coast, Antarctica. Glob. Planet. Change 42, 241–263 (2004).

    Article  Google Scholar 

  48. Hodgson, D. A. et al. Rapid early Holocene sea-level rise in Prydz Bay, East Antarctica. Glob. Planet. Change 139, 128–140 (2016).

    Article  Google Scholar 

  49. Small, D., Bentley, M. J., Jones, R. S., Pittard, M. L. & Whitehouse, P. L. Antarctic Ice Sheet palaeo-thinning rates from vertical transects of cosmogenic exposure ages. Quat. Sci. Rev. 206, 65–80 (2019).

    Article  Google Scholar 

  50. Ackert, R. P. et al. Measurements of past ice sheet elevations in interior West Antarctica. Science 286, 276–280 (1999).

    Article  Google Scholar 

  51. Lindow, J. et al. Glacial retreat in the Amundsen Sea sector, West Antarctica — first cosmogenic evidence from central Pine Island Bay and the Kohler Range. Quat. Sci. Rev. 98, 166–173 (2014).

    Article  Google Scholar 

  52. Johnson, J. S. et al. Rapid thinning of Pine Island Glacier in the Early Holocene. Science 343, 999–1001 (2014).

    Article  Google Scholar 

  53. Stone, J. O. et al. Holocene deglaciation of Marie Byrd Land, West Antarctica. Science 299, 99–102 (2003).

    Article  Google Scholar 

  54. Jones, R. et al. Rapid Holocene thinning of an East Antarctic outlet glacier driven by marine ice sheet instability. Nat. Commun. 6, 8910 (2015).

    Article  Google Scholar 

  55. Goehring, B. M., Balco, G., Todd, C., Moening-Swanson, I. & Nichols, K. Late-glacial grounding line retreat in the northern Ross Sea, Antarctica. Geology 47, 291–294 (2019).

    Article  Google Scholar 

  56. Stutz, J. et al. Mid-Holocene thinning of David Glacier, Antarctica: chronology and controls. Cryosphere 15, 5447–5471 (2021).

    Article  Google Scholar 

  57. White, D. A., Fink, D. & Gore, D. B. Cosmogenic nuclide evidence for enhanced sensitivity of an East Antarctic ice stream to change during the last deglaciation. Geology 39, 23–26 (2011).

    Article  Google Scholar 

  58. Mackintosh, A. et al. Exposure ages from mountain dipsticks in Mac. Robertson Land, East Antarctica, indicate little change in ice-sheet thickness since the Last Glacial Maximum. Geology 35, 551–554 (2007).

    Article  Google Scholar 

  59. Yamane, M. et al. The last deglacial history of Lützow-Holm Bay. East. Antarctica. J. Quat. Sci. 26, 3–6 (2011).

    Article  Google Scholar 

  60. Spector, P., Stone, J. & Goehring, B. Thickness of the divide and flank of the West Antarctic Ice Sheet through the last deglaciation. Cryosphere 13, 3061–3075 (2019).

    Article  Google Scholar 

  61. Bentley, M. J. et al. Deglacial history of the Pensacola Mountains, Antarctica from glacial geomorphology and cosmogenic nuclide surface exposure dating. Quat. Sci. Rev. 158, 58–76 (2017).

    Article  Google Scholar 

  62. Balco, G. et al. Cosmogenic-nuclide exposure ages from the Pensacola Mountains adjacent to the Foundation Ice Stream, Antarctica. Am. J. Sci. 316, 542–577 (2016).

    Article  Google Scholar 

  63. Hein, A. S. et al. Mid-Holocene pulse of thinning in the Weddell Sea sector of the West Antarctic Ice Sheet. Nat. Commun. 7, 12511 (2016).

    Article  Google Scholar 

  64. Bentley, M. J., Fogwill, C. J., Kubik, P. W. & Sugden, D. E. Geomorphological evidence and cosmogenic 10Be/26Al exposure ages for the Last Glacial Maximum and deglaciation of the Antarctic Peninsula Ice Sheet. Geol. Soc. Am. Bull. 118, 1149–1159 (2006).

    Article  Google Scholar 

  65. Jeong, A. et al. Late Quaternary deglacial history across the Larsen B embayment, Antarctica. Quat. Sci. Rev. 189, 134–148 (2018).

    Article  Google Scholar 

  66. Glasser, N. F. et al. Ice-stream initiation, duration and thinning on James Ross Island, northern Antarctic Peninsula. Quat. Sci. Rev. 86, 78–88 (2014).

    Article  Google Scholar 

  67. Balco, G. & Schaefer, J. M. Exposure-age record of Holocene ice sheet and ice shelf change in the northeast Antarctic Peninsula. Quat. Sci. Rev. 59, 101–111 (2013).

    Article  Google Scholar 

  68. Johnson, J. S., Bentley, M. J., Roberts, S. J., Binnie, S. A. & Freeman, S. P. H. T. Holocene deglacial history of the northeast Antarctic Peninsula — a review and new chronological constraints. Quat. Sci. Rev. 30, 3791–3802 (2011).

    Article  Google Scholar 

  69. Bentley, M. J. et al. Rapid deglaciation of Marguerite Bay, western Antarctic Peninsula in the Early Holocene. Quat. Sci. Rev. 30, 3338–3349 (2011).

    Article  Google Scholar 

  70. Johnson, J. S., Nichols, K. A., Goehring, B. M., Balco, G. & Schaefer, J. M. Abrupt mid-Holocene ice loss in the western Weddell Sea embayment of Antarctica. Earth Planet. Sci. Lett. 518, 127–135 (2019).

    Article  Google Scholar 

  71. Stenni, B. et al. The deuterium excess records of EPICA Dome C and Dronning Maud Land ice cores (East Antarctica). Quat. Sci. Rev. 29, 146–159 (2010).

    Article  Google Scholar 

  72. Parrenin, F. et al. 1-D-ice flow modelling at EPICA Dome C and Dome Fuji, East Antarctica. Clim. Past 3, 243–259 (2007).

    Article  Google Scholar 

  73. Delmotte, M., Raynaud, D., Morgan, V. & Jouzel, J. Climatic and glaciological information inferred from air-content measurements of a Law Dome (East Antarctica) ice core. J. Glaciol. 45, 255–263 (1999).

    Article  Google Scholar 

  74. Ommen, T. D. V., Morgan, V. & Curran, M. A. J. Deglacial and Holocene changes in accumulation at Law Dome, East Antarctica. Ann. Glaciol. 39, 359–365 (2004).

    Article  Google Scholar 

  75. Winski, D. A. et al. The SP19 chronology for the South Pole Ice Core — part 1: volcanic matching and annual layer counting. Clim. Past 15, 1793–1808 (2019).

    Article  Google Scholar 

  76. Lilien, D. A. et al. Holocene ice-flow speedup in the vicinity of the South Pole. Geophys. Res. Lett. 45, 6557–6565 (2018).

    Article  Google Scholar 

  77. Fudge, T. J. et al. Variable relationship between accumulation and temperature in West Antarctica for the past 31,000 years. Geophys. Res. Lett. 43, 3795–3803 (2016).

    Article  Google Scholar 

  78. Koutnik, M. R. et al. Holocene accumulation and ice flow near the West Antarctic Ice Sheet divide ice core site. J. Geophys. Res. Earth Surf. 121, 907–924 (2016).

    Article  Google Scholar 

  79. Stenni, B. et al. Expression of the bipolar see-saw in Antarctic climate records during the last deglaciation. Nat. Geosci. 4, 46–49 (2011).

    Article  Google Scholar 

  80. Hillenbrand, C.-D. et al. Grounding-line retreat of the West Antarctic Ice Sheet from inner Pine Island Bay. Geology 41, 35–38 (2013).

    Article  Google Scholar 

  81. Bart, P. J., DeCesare, M., Rosenheim, B. E., Majewski, W. & McGlannan, A. A centuries-long delay between a paleo-ice-shelf collapse and grounding-line retreat in the Whales Deep Basin, eastern Ross Sea, Antarctica. Sci. Rep. 8, 12392 (2018).

    Article  Google Scholar 

  82. McKay, R. et al. Antarctic marine ice-sheet retreat in the Ross Sea during the Early Holocene. Geology 44, 7–10 (2016).

    Article  Google Scholar 

  83. Neuhaus, S. U. et al. Did Holocene climate changes drive West Antarctic grounding line retreat and re-advance? Cryosphere 15, 4655–4673 (2021).

    Article  Google Scholar 

  84. Baroni, C. & Hall, B. L. A new Holocene relative sea-level curve for Terra Nova Bay, Victoria Land, Antarctica. J. Quat. Sci. 19, 377–396 (2004).

    Article  Google Scholar 

  85. Hemer, M. A. & Harris, P. T. Sediment core from beneath the Amery Ice Shelf, East Antarctica, suggests Mid-Holocene ice-shelf retreat. Geology 31, 127–130 (2003).

    Article  Google Scholar 

  86. Hemer, M. A. et al. Sedimentological signatures of the sub-Amery Ice Shelf circulation. Antarct. Sci. 19, 497–506 (2007).

    Article  Google Scholar 

  87. Zwartz, D., Bird, M., Stone, J. & Lambeck, K. Holocene sea-level change and ice-sheet history in the Vestfold Hills, East Antarctica. Earth Planet. Sci. Lett. 155, 131–145 (1998).

    Article  Google Scholar 

  88. Verleyen, E., Hodgson, D. A., Milne, G. A., Sabbe, K. & Vyverman, W. Relative sea-level history from the Lambert Glacier region, East Antarctica, and its relation to deglaciation and Holocene glacier readvance. Quat. Res. 63, 45–52 (2005).

    Article  Google Scholar 

  89. Goodwin, I. D. & Zweck, C. Glacio-isostasy and glacial ice load at Law Dome, Wilkes Land, East Antarctica. Quat. Res. 53, 285–293 (2000).

    Article  Google Scholar 

  90. Mackintosh, A. N. et al. Retreat history of the East Antarctic Ice Sheet since the Last Glacial Maximum. Quat. Sci. Rev. 100, 10–30 (2014).

    Article  Google Scholar 

  91. Miura, H., Maemoku, H., Seto, K. & Moriwaki, K. Late quaternary East Antarctic melting event in the Soya Coast region based on stratigraphy and oxygen isotopic ratio of fossil molluscs. Polar Geosci. 11, 260–274 (1998).

    Google Scholar 

  92. Arndt, J. E., Hillenbrand, C.-D., Grobe, H., Kuhn, G. & Wacker, L. Evidence for a dynamic grounding line in outer Filchner Trough, Antarctica, until the early Holocene. Geology 45, 1035–1038 (2017).

    Article  Google Scholar 

  93. Hodgson, D. A. et al. Deglaciation and future stability of the Coats Land ice margin, Antarctica. Cryosphere 12, 2383–2399 (2018).

    Article  Google Scholar 

  94. Arndt, J. E. et al. Past ice sheet–seabed interactions in the northeastern Weddell Sea embayment, Antarctica. Cryosphere 14, 2115–2135 (2020).

    Article  Google Scholar 

  95. Crawford, K., Kuhn, G. & Hambrey, M. J. Changes in the character of glaciomarine sedimentation in the southwestern Weddell Sea, Antarctica: evidence from the core PS1423-2. Ann. Glaciol. 22, 200–204 (1996).

    Article  Google Scholar 

  96. Hillenbrand, C.-D. et al. Reconstruction of changes in the Weddell Sea sector of the Antarctic Ice Sheet since the Last Glacial Maximum. Quat. Sci. Rev. 100, 111–136 (2014).

    Article  Google Scholar 

  97. Cofaigh, C. Ó. et al. Reconstruction of ice-sheet changes in the Antarctic Peninsula since the Last Glacial Maximum. Quat. Sci. Rev. 100, 87–110 (2014).

    Article  Google Scholar 

  98. Smith, J. A. et al. History of the Larsen C Ice Shelf reconstructed from sub-ice shelf and offshore sediments. Geology 49, 978–982 (2021).

    Article  Google Scholar 

  99. Peck, V. L., Allen, C. S., Kender, S., McClymont, E. L. & Hodgson, D. A. Oceanographic variability on the West Antarctic Peninsula during the Holocene and the influence of upper circumpolar deep water. Quat. Sci. Rev. 119, 54–65 (2015).

    Article  Google Scholar 

  100. Bentley, M. J., Hodgson, D. A., Smith, J. A. & Cox, N. J. Relative sea level curves for the South Shetland Islands and Marguerite Bay, Antarctic Peninsula. Quat. Sci. Rev. 24, 1203–1216 (2005).

    Article  Google Scholar 

  101. Watcham, E. P. et al. A new Holocene relative sea level curve for the South Shetland Islands, Antarctica. Quat. Sci. Rev. 30, 3152–3170 (2011).

    Article  Google Scholar 

  102. Pollard, D., Gomez, N., DeConto, R. & Han, H. Estimating modern elevations of pliocene shorelines using a coupled ice sheet–Earth-sea level model. J. Geophys. Res. Earth Surf. 123, 2279–2291 (2018).

    Article  Google Scholar 

  103. Tigchelaar, M., Timmermann, A., Pollard, D., Friedrich, T. & Heinemann, M. Local insolation changes enhance Antarctic interglacials: insights from an 800,000-year ice sheet simulation with transient climate forcing. Earth Planet. Sci. Lett. 495, 69–78 (2018).

    Article  Google Scholar 

  104. Lowry, D. P., Golledge, N. R., Bertler, N. A., Jones, R. S. & McKay, R. Deglacial grounding-line retreat in the Ross Embayment, Antarctica, controlled by ocean and atmosphere forcing. Sci. Adv. 5, eaav8754 (2019).

    Article  Google Scholar 

  105. Johnson, J. S. et al. Comparing glacial–geological evidence and model simulations of ice sheet change since the last glacial period in the Amundsen sea sector of Antarctica. J. Geophys. Res. Earth Surf. 126, e2020JF005827 (2021).

    Article  Google Scholar 

  106. Lowry, D. P. et al. Geologic controls on ice sheet sensitivity to deglacial climate forcing in the Ross Embayment, Antarctica. Quat. Sci. Adv. 1, 100002 (2020).

    Article  Google Scholar 

  107. Albrecht, T., Winkelmann, R. & Levermann, A. Glacial-cycle simulations of the Antarctic ice sheet with the parallel ice sheet model (PISM) — part 1: boundary conditions and climatic forcing. Cryosphere 14, 599–632 (2020).

    Article  Google Scholar 

  108. Jones, R., Whitehouse, P., Bentley, M., Small, D. & Dalton, A. Impact of glacial isostatic adjustment on cosmogenic surface-exposure dating. Quat. Sci. Rev. 212, 206–212 (2019).

    Article  Google Scholar 

  109. Hillenbrand, C.-D. et al. West Antarctic Ice Sheet retreat driven by Holocene warm water incursions. Nature 547, 43–48 (2017).

    Article  Google Scholar 

  110. Shevenell, A. E., Ingalls, A. E., Domack, E. W. & Kelly, C. Holocene southern ocean surface temperature variability west of the Antarctic Peninsula. Nature 470, 250–254 (2011).

    Article  Google Scholar 

  111. Etourneau, J. et al. Ocean temperature impact on ice shelf extent in the eastern Antarctic Peninsula. Nat. Commun. 10, 304 (2019).

    Article  Google Scholar 

  112. Kim, J. et al. Holocene subsurface temperature variability in the eastern Antarctic continental margin. Geophys. Res. Lett. 39, L06705 (2012).

    Article  Google Scholar 

  113. Jones, R. S., Gudmundsson, G. H., Mackintosh, A., McCormack, F. & Whitmore, R. J. Ocean-driven and topography-controlled nonlinear glacier retreat during the Holocene: southwestern Ross Sea, Antarctica. Geophys. Res. Lett. 48, e2020GL091454 (2021).

    Article  Google Scholar 

  114. Whitehouse, P. L. et al. Controls on Last Glacial Maximum ice extent in the Weddell Sea embayment, Antarctica. J. Geophys. Res. Earth Surf. 122, 371–397 (2017).

    Article  Google Scholar 

  115. Jamieson, S. S. et al. Ice-stream stability on a reverse bed slope. Nat. Geosci. 5, 799–802 (2012).

    Article  Google Scholar 

  116. Johnson, J. S. et al. Review article: Existing and potential evidence for Holocene grounding-line retreat and readvance in Antarctica. Cryosphere 16, 1543–1562 (2022).

    Article  Google Scholar 

  117. Siegert, M., Ross, N., Corr, H., Kingslake, J. & Hindmarsh, R. Late Holocene ice-flow reconfiguration in the Weddell Sea sector of West Antarctica. Quat. Sci. Rev. 78, 98–107 (2013).

    Article  Google Scholar 

  118. Bingham, R. G. et al. Ice-flow structure and ice dynamic changes in the Weddell Sea sector of West Antarctica from radar-imaged internal layering. J. Geophys. Res. Earth Surf. 120, 655–670 (2015).

    Article  Google Scholar 

  119. Winter, K. et al. Airborne radar evidence for tributary flow switching in Institute Ice Stream, West Antarctica: implications for ice sheet configuration and dynamics. J. Geophys. Res. Earth Surf. 120, 1611–1625 (2015).

    Article  Google Scholar 

  120. Kingslake, J., Martín, C., Arthern, R. J., Corr, H. F. J. & King, E. C. Ice-flow reorganization in West Antarctica 2.5 kyr ago dated using radar-derived englacial flow velocities. Geophys. Res. Lett. 43, 9103–9112 (2016).

    Article  Google Scholar 

  121. Bradley, S. L., Hindmarsh, R. C., Whitehouse, P. L., Bentley, M. J. & King, M. A. Low post-glacial rebound rates in the Weddell Sea due to Late Holocene ice-sheet readvance. Earth Planet. Sci. Lett. 413, 79–89 (2015).

    Article  Google Scholar 

  122. Wearing, M. G. & Kingslake, J. Holocene formation of Henry Ice Rise, West Antarctica, inferred from ice-penetrating radar. J. Geophys. Res. Earth Surf. 124, 2224–2240 (2019).

    Article  Google Scholar 

  123. Ashmore, D. W. et al. Englacial architecture and age-depth constraints across the West Antarctic Ice Sheet. Geophys. Res. Lett. 47, e2019GL086663 (2020).

    Article  Google Scholar 

  124. Bentley, M. J. et al. Early Holocene retreat of the George VI Ice Shelf, Antarctic peninsula. Geology 33, 173 (2005).

    Article  Google Scholar 

  125. Domack, E. W., Jull, A. T. & Nakao, S. Advance of East Antarctic outlet glaciers during the hypsithermal: implications for the volume state of the Antarctic Ice Sheet under global warming. Geology 19, 1059–1062 (1991).

    Article  Google Scholar 

  126. Goodwin, I. D. A Mid to Late Holocene readvance of the Law Dome Ice Margin, Budd Coast, East Antarctica. Antarct. Sci. 8, 395–406 (1996).

    Article  Google Scholar 

  127. Hall, B. L. Holocene glacial history of Antarctica and the sub-Antarctic islands. Quat. Sci. Rev. 28, 2213–2230 (2009).

    Article  Google Scholar 

  128. Kaplan, M. R. et al. Holocene glacier behavior around the northern Antarctic Peninsula and possible causes. Earth Planet. Sci. Lett. 534, 116077 (2020).

    Article  Google Scholar 

  129. Simms, A. R. et al. Evidence for a “Little Ice Age” glacial advance within the Antarctic Peninsula — examples from glacially-overrun raised beaches. Quat. Sci. Rev. 271, 107195 (2021).

    Article  Google Scholar 

  130. King, M. A., Watson, C. S. & White, D. GPS rates of vertical bedrock motion suggest Late Holocene ice-sheet readvance in a critical sector of East Antarctica. Geophys. Res. Lett. 49, e2021GL097232 (2022).

    Article  Google Scholar 

  131. Larour, E. et al. Slowdown in Antarctic mass loss from solid Earth and sea-level feedbacks. Science 364, eaav7908 (2019).

    Article  Google Scholar 

  132. Das, S. B. & Alley, R. B. Rise in frequency of surface melting at Siple Dome through the Holocene: evidence for increasing marine influence on the climate of West Antarctica. J. Geophys. Res. Atmos. 113, D02112 (2008).

    Article  Google Scholar 

  133. Hillebrand, T. R. et al. Holocene thinning of Darwin and Hatherton glaciers, Antarctica, and implications for grounding-line retreat in the Ross Sea. Cryosphere 15, 3329–3354 (2021).

    Article  Google Scholar 

  134. Crespin, J. et al. Holocene glacial discharge fluctuations and recent instability in East Antarctica. Earth Planet. Sci. Lett. 394, 38–47 (2014).

    Article  Google Scholar 

  135. Crosta, X. et al. Ocean as the main driver of Antarctic Ice Sheet retreat during the Holocene. Glob. Planet. Change 166, 62–74 (2018).

    Article  Google Scholar 

  136. Bakker, P., Clark, P. U., Golledge, N. R., Schmittner, A. & Weber, M. E. Centennial-scale Holocene climate variations amplified by Antarctic Ice Sheet discharge. Nature 541, 72–76 (2017).

    Article  Google Scholar 

  137. Dickens, W. A. et al. Enhanced glacial discharge from the eastern Antarctic Peninsula since the 1700s associated with a positive Southern Annular Mode. Sci. Rep. 9, 14606 (2019).

    Article  Google Scholar 

  138. Christ, A. J. et al. Late Holocene glacial advance and ice shelf growth in Barilari Bay, Graham Land, west Antarctic Peninsula. Geol. Soc. Am. Bull. 127, 297–315 (2015).

    Article  Google Scholar 

  139. Domack, E. W. & Mcclennen, C. E. Accumulation of glacial marine sediments in fjords of the Antarctic Peninsula and their use as late Holocene paleoenvironmental indicators. Found. Ecol. Res. West. Antarct. Penins. 70, 135–154 (1996).

    Article  Google Scholar 

  140. Simms, A. R. et al. Late Holocene relative sea levels near Palmer Station, northern Antarctic Peninsula, strongly controlled by Late Holocene ice-mass changes. Quat. Sci. Rev. 199, 49–59 (2018).

    Article  Google Scholar 

  141. Zurbuchen, J. & Simms, A. R. Late Holocene ice-mass changes recorded in a relative sea-level record from Joinville Island, Antarctica. Geology 47, 1064–1068 (2019).

    Article  Google Scholar 

  142. Ashley, K. E. et al. Mid-Holocene Antarctic sea-ice increase driven by marine ice sheet retreat. Clim. Past 17, 1–19 (2021).

    Article  Google Scholar 

  143. Minzoni, R. T. et al. Oceanographic influences on the stability of the Cosgrove Ice Shelf, Antarctica. Holocene 27, 1645–1658 (2017).

    Article  Google Scholar 

  144. Abram, N. J. et al. Evolution of the Southern Annular Mode during the past millennium. Nat. Clim. Chang. 4, 564–569 (2014).

    Article  Google Scholar 

  145. Mulvaney, R. et al. Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history. Nature 489, 141–144 (2012).

    Article  Google Scholar 

  146. Frezzotti, M., Scarchilli, C., Becagli, S., Proposito, M. & Urbini, S. A synthesis of the Antarctic surface mass balance during the last 800 yr. Cryosphere 7, 303–319 (2013).

    Article  Google Scholar 

  147. Bertler, N. A. N., Mayewski, P. A. & Carter, L. Cold conditions in Antarctica during the Little Ice Age — implications for abrupt climate change mechanisms. Earth Planet. Sci. Lett. 308, 41–51 (2011).

    Article  Google Scholar 

  148. Medley, B. & Thomas, E. R. Increased snowfall over the Antarctic Ice Sheet mitigated twentieth-century sea-level rise. Nat. Clim. Chang. 9, 34–39 (2019).

    Article  Google Scholar 

  149. Jones, J. M. et al. Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nat. Clim. Chang. 6, 917–926 (2016).

    Article  Google Scholar 

  150. Jones, R. et al. Cosmogenic nuclides constrain surface fluctuations of an East Antarctic outlet glacier since the Pliocene. Earth Planet. Sci. Lett. 480, 75–86 (2017).

    Article  Google Scholar 

  151. Bockheim, J. G., Wilson, S. C., Denton, G. H., Andersen, B. G. & Stuiver, M. Late Quaternary ice-surface fluctuations of Hatherton Glacier, Transantarctic Mountains. Quat. Res. 31, 229–254 (1989).

    Article  Google Scholar 

  152. Bentley, M. J. et al. Deglacial history of the West Antarctic Ice Sheet in the Weddell Sea embayment: constraints on past ice volume change. Geology 38, 411–414 (2010).

    Article  Google Scholar 

  153. Todd, C., Stone, J., Conway, H., Hall, B. & Bromley, G. Late quaternary evolution of Reedy Glacier, Antarctica. Quat. Sci. Rev. 29, 1328–1341 (2010).

    Article  Google Scholar 

  154. Brachfeld, S. et al. Holocene history of the Larsen — a ice shelf constrained by geomagnetic paleointensity dating. Geology 31, 749–752 (2003).

    Article  Google Scholar 

  155. Hulbe, C. & Fahnestock, M. Century-scale discharge stagnation and reactivation of the Ross ice streams, West Antarctica. J. Geophys. Res. 112, F03S27 (2007).

    Google Scholar 

  156. Smith, J. A. et al. Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier. Nature 541, 77–80 (2017).

    Article  Google Scholar 

  157. Ullman, D. J. et al. Final Laurentide ice-sheet deglaciation and Holocene climate-sea level change. Quat. Sci. Rev. 152, 49–59 (2016).

    Article  Google Scholar 

  158. Larsen, N. K. et al. The response of the southern Greenland Ice Sheet to the Holocene thermal maximum. Geology 43, 291–294 (2015).

    Article  Google Scholar 

  159. Briner, J. P. et al. Rate of mass loss from the Greenland Ice Sheet will exceed Holocene values this century. Nature 586, 70–74 (2020).

    Article  Google Scholar 

  160. Hughes, A. L., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J. & Svendsen, J. I. The last Eurasian ice sheets — a chronological database and time-slice reconstruction, DATED-1. Boreas 45, 1–45 (2016).

    Article  Google Scholar 

  161. Cuzzone, J. K. et al. Final deglaciation of the Scandinavian Ice Sheet and implications for the Holocene global sea-level budget. Earth Planet. Sci. Lett. 448, 34–41 (2016).

    Article  Google Scholar 

  162. Simms, A. R., Lisiecki, L., Gebbie, G., Whitehouse, P. L. & Clark, J. F. Balancing the Last Glacial Maximum (LGM) sea-level budget. Quat. Sci. Rev. 205, 143–153 (2019).

    Article  Google Scholar 

  163. Gowan, E. J. et al. A new global ice sheet reconstruction for the past 80000 years. Nat. Commun. 12, 1199 (2021).

    Article  Google Scholar 

  164. Chua, S. et al. A new Holocene sea-level record for Singapore. Holocene 31, 1376–1390 (2021).

    Article  Google Scholar 

  165. Engelhart, S. E. & Horton, B. P. Holocene sea level database for the Atlantic coast of the United States. Quat. Sci. Rev. 54, 12–25 (2012).

    Article  Google Scholar 

  166. Khan, N. S. et al. Drivers of Holocene sea-level change in the Caribbean. Quat. Sci. Rev. 155, 13–36 (2017).

    Article  Google Scholar 

  167. Hijma, M. P. & Cohen, K. M. Holocene sea-level database for the Rhine–Meuse Delta, The Netherlands: implications for the pre-8.2 ka sea-level jump. Quat. Sci. Rev. 214, 68–86 (2019).

    Article  Google Scholar 

  168. García-Artola, A. et al. Holocene sea-level database from the Atlantic coast of Europe. Quat. Sci. Rev. 196, 177–192 (2018).

    Article  Google Scholar 

  169. Cooper, J. A. G., Green, A. N. & Compton, J. S. Sea-level change in southern Africa since the Last Glacial Maximum. Quat. Sci. Rev. 201, 303–318 (2018).

    Article  Google Scholar 

  170. Bard, E., Hamelin, B. & Delanghe-Sabatier, D. Deglacial meltwater pulse 1B and Younger Dryas sea levels revisited with boreholes at Tahiti. Science 327, 1235–1237 (2010).

    Article  Google Scholar 

  171. Nakada, M. & Lambeck, K. Late Pleistocene and Holocene sea-level change in the Australian region and mantle rheology. Geophys. J. Int. 96, 497–517 (1989).

    Article  Google Scholar 

  172. Clement, A. J. H., Whitehouse, P. L. & Sloss, C. R. An examination of spatial variability in the timing and magnitude of Holocene relative sea-level changes in the New Zealand archipelago. Quat. Sci. Rev. 131, 73–101 (2016).

    Article  Google Scholar 

  173. Mauz, B., Ruggieri, G. & Spada, G. Terminal Antarctic melting inferred from a far-field coastal site. Quat. Sci. Rev. 116, 122–132 (2015).

    Article  Google Scholar 

  174. Milne, G., Long, A. & Bassett, S. Modelling Holocene relative sea-level observations from the Caribbean and South America. Quat. Sci. Rev. 24, 1183–1202 (2005).

    Article  Google Scholar 

  175. Horton, B. P. et al. Holocene sea levels and palaeoenvironments, Malay–Thai Peninsula, southeast Asia. Holocene 15, 1199–1213 (2005).

    Article  Google Scholar 

  176. Nunn, P. D. & Peltier, W. R. Far-field test of the ICE-4G model of global isostatic response to deglaciation using empirical and theoretical holocene sea-level reconstructions for the Fiji Islands, Southwestern Pacific. Quat. Res. 55, 203–214 (2001).

    Article  Google Scholar 

  177. Peltier, W. R. On eustatic sea level history: Last Glacial Maximum to Holocene. Quat. Sci. Rev. 21, 377–396 (2002).

    Article  Google Scholar 

  178. Roy, K. & Peltier, W. R. Relative sea level in the Western Mediterranean basin: a regional test of the ICE-7G_NA (VM7) model and a constraint on late Holocene Antarctic deglaciation. Quat. Sci. Rev. 183, 76–87 (2018).

    Article  Google Scholar 

  179. Yokoyama, Y. et al. Holocene sea-level change and Antarctic melting history derived from geological observations and geophysical modeling along the Shimokita Peninsula, northern Japan. Geophys. Res. Lett. 39, L13502 (2012).

    Article  Google Scholar 

  180. Yokoyama, Y. et al. Holocene Indian Ocean sea level, Antarctic melting history and past Tsunami deposits inferred using sea level reconstructions from the Sri Lankan, Southeastern Indian and Maldivian coasts. Quat. Sci. Rev. 206, 150–161 (2019).

    Article  Google Scholar 

  181. Bradley, S. L., Milne, G. A., Horton, B. P. & Zong, Y. Modelling sea level data from China and Malay–Thailand to estimate Holocene ice-volume equivalent sea level change. Quat. Sci. Rev. 137, 54–68 (2016).

    Article  Google Scholar 

  182. Tam, C.-Y. et al. A below-the-present late Holocene relative sea level and the glacial isostatic adjustment during the Holocene in the Malay Peninsula. Quat. Sci. Rev. 201, 206–222 (2018).

    Article  Google Scholar 

  183. Kemp, A. C. et al. Relative sea-level change in Newfoundland, Canada during the past 3000 years. Quat. Sci. Rev. 201, 89–110 (2018).

    Article  Google Scholar 

  184. Törnqvist, T. E., Jankowski, K. L., Li, Y.-X. & González, J. L. Tipping points of Mississippi delta marshes due to accelerated sea-level rise. Sci. Adv. 6, eaaz5512 (2020).

    Article  Google Scholar 

  185. Shennan, I., Bradley, S. L. & Edwards, R. Relative sea-level changes and crustal movements in Britain and Ireland since the Last Glacial Maximum. Quat. Sci. Rev. 188, 143–159 (2018).

    Article  Google Scholar 

  186. Vacchi, M. et al. Multiproxy assessment of Holocene relative sea-level changes in the western Mediterranean: sea-level variability and improvements in the definition of the isostatic signal. Earth Sci. Rev. 155, 172–197 (2016).

    Article  Google Scholar 

  187. Hallmann, N. et al. Ice volume and climate changes from a 6000 year sea-level record in French Polynesia. Nat. Commun. 9, 285 (2018).

    Article  Google Scholar 

  188. Woodroffe, S. A., Long, A. J., Milne, G. A., Bryant, C. L. & Thomas, A. L. New constraints on Late Holocene eustatic sea-level changes from Mahé, Seychelles. Quat. Sci. Rev. 115, 1–16 (2015).

    Article  Google Scholar 

  189. Sloss, C. R., Murray-Wallace, C. V. & Jones, B. G. Holocene sea-level change on the southeast coast of Australia: a review. Holocene 17, 999–1014 (2007).

    Article  Google Scholar 

  190. Mann, T. et al. Holocene sea levels in Southeast Asia, Maldives, India and Sri Lanka: the SEAMIS database. Quat. Sci. Rev. 219, 112–125 (2019).

    Article  Google Scholar 

  191. Mitrovica, J. X. & Milne, G. A. On the origin of Late Holocene sea-level highstands within equatorial ocean basins. Quat. Sci. Rev. 21, 2179–2190 (2002).

    Article  Google Scholar 

  192. Meltzner, A. J. et al. Half-metre sea-level fluctuations on centennial timescales from mid-Holocene corals of Southeast Asia. Nat. Commun. 8, 14387 (2017).

    Article  Google Scholar 

  193. Fox-Kemper, B. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1211–1362 (Cambridge Univ. Press, 2021).

  194. Church, J. A., Gregory, J. M., White, N. J., Platten, S. M. & Mitrovica, J. X. Understanding and projecting sea level change. Oceanography 24, 130–143 (2011).

    Article  Google Scholar 

  195. Walker, J. S., Kopp, R. E., Little, C. M. & Horton, B. P. Timing of emergence of modern rates of sea-level rise by 1863. Nat. Commun. 13, 966 (2022).

    Article  Google Scholar 

  196. Schmidtko, S., Heywood, K. J., Thompson, A. F. & Aoki, S. Multidecadal warming of Antarctic waters. Science 346, 1227–1231 (2014).

    Article  Google Scholar 

  197. Joughin, I., Smith, B. E. & Medley, B. Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science 344, 735–738 (2014).

    Article  Google Scholar 

  198. Favier, L. et al. Retreat of Pine Island Glacier controlled by marine ice-sheet instability. Nat. Clim. Chang. 2, 117 (2014).

    Article  Google Scholar 

  199. Robel, A. A., Seroussi, H. & Roe, G. H. Marine ice sheet instability amplifies and skews uncertainty in projections of future sea-level rise. Proc. Natl Acad. Sci. USA 116, 14887–14892 (2019).

    Article  Google Scholar 

  200. Scambos, T. A., Bohlander, J., Shuman, C. U. & Skvarca, P. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett. 31, L18402 (2004).

    Article  Google Scholar 

  201. Hogg, A. E. & Gudmundsson, G. H. Impacts of the Larsen-C ice shelf calving event. Nat. Clim. Chang. 7, 540–542 (2017).

    Article  Google Scholar 

  202. Domack, E. et al. Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch. Nature 436, 681–685 (2005).

    Article  Google Scholar 

  203. Seroussi, H. et al. ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century. Cryosphere 14, 3033–3070 (2020).

    Article  Google Scholar 

  204. Sutter, J., Fischer, H. & Eisen, O. Investigating the internal structure of the Antarctic Ice Sheet: the utility of isochrones for spatiotemporal ice-sheet model calibration. Cryosphere 15, 3839–3860 (2021).

    Article  Google Scholar 

  205. Spector, P. et al. West Antarctic sites for subglacial drilling to test for past ice-sheet collapse. Cryosphere 12, 2741–2757 (2018).

    Article  Google Scholar 

  206. Stone, J. O. Air pressure and cosmogenic isotope production. J. Geophys. Res. Solid Earth 105, 23753–23759 (2000).

    Article  Google Scholar 

  207. Rosenheim, B. E., Santoro, J. A., Gunter, M. & Domack, E. W. Improving Antarctic sediment 14C dating using ramped pyrolysis: an example from the Hugo Island Trough. Radiocarbon 55, 115–126 (2013).

    Article  Google Scholar 

  208. Hall, B. L., Henderson, G. M., Baroni, C. & Kellogg, T. B. Constant Holocene Southern-Ocean 14C reservoir ages and ice-shelf flow rates. Earth Planet. Sci. Lett. 296, 115–123 (2010).

    Article  Google Scholar 

  209. Subt, C., Fangman, K. A., Wellner, J. S. & Rosenheim, B. E. Sediment chronology in Antarctic deglacial sediments: reconciling organic carbon 14C ages to carbonate 14C ages using ramped PyrOx. Holocene 26, 265–273 (2016).

    Article  Google Scholar 

  210. Lifton, N. A., Jull, A. J. T. & Quade, J. A new extraction technique and production rate estimate for in situ cosmogenic 14C in quartz. Geochim. Cosmochim. Acta 65, 1953–1969 (2001).

    Article  Google Scholar 

  211. Nichols, K. A. et al. New Last Glacial Maximum ice thickness constraints for the Weddell Sea Embayment, Antarctica. Cryosphere 13, 2935–2951 (2019).

    Article  Google Scholar 

  212. Pattyn, F., Favier, L., Sun, S. & Durand, G. Progress in numerical modeling of Antarctic ice-sheet dynamics. Curr. Clim. Change Rep. 3, 174–184 (2017).

    Article  Google Scholar 

  213. Yokoyama, Y. & Purcell, A. On the geophysical processes impacting palaeo-sea-level observations. Geosci. Lett. 8, 13 (2021).

    Article  Google Scholar 

  214. Powell, E., Gomez, N., Hay, C., Latychev, K. & Mitrovica, J. X. Viscous effects in the solid earth response to modern Antarctic ice mass flux: implications for geodetic studies of WAIS stability in a warming world. J. Clim. 33, 443–459 (2020).

    Article  Google Scholar 

  215. Bracegirdle, T. J. et al. Back to the future: using long-term observational and paleo-proxy reconstructions to improve model projections of Antarctic climate. Geosciences 9, 255 (2019).

    Article  Google Scholar 

  216. Nield, G. A. et al. Rapid bedrock uplift in the Antarctic Peninsula explained by viscoelastic response to recent ice unloading. Earth Planet. Sci. Lett. 397, 32–41 (2014).

    Article  Google Scholar 

  217. Lloyd, A. J. et al. Seismic structure of the Antarctic upper mantle imaged with adjoint tomography. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2019JB017823 (2020).

    Article  Google Scholar 

  218. Balco, G. Technical note: A prototype transparent-middle-layer data management and analysis infrastructure for cosmogenic-nuclide exposure dating. Geochronology 2, 169–175 (2020).

    Article  Google Scholar 

  219. Larter, R. D. et al. Reconstruction of changes in the Amundsen Sea and Bellingshausen Sea sector of the West Antarctic Ice Sheet since the Last Glacial Maximum. Quat. Sci. Rev. 100, 55–86 (2014).

    Article  Google Scholar 

  220. Anderson, J. B. et al. Ross Sea paleo-ice sheet drainage and deglacial history during and since the LGM. Quat. Sci. Rev. 100, 31–54 (2014).

    Article  Google Scholar 

  221. Subt, C. et al. Sub-ice shelf sediment geochronology utilizing novel radiocarbon methodology for highly detrital sediments. Geochem. Geophys. Geosyst. 18, 1404–1418 (2017).

    Article  Google Scholar 

  222. Minzoni, R. T., Anderson, J. B., Fernandez, R. & Wellner, J. S. Marine record of Holocene climate, ocean, and cryosphere interactions: Herbert Sound, James Ross Island, Antarctica. Quat. Sci. Rev. 129, 239–259 (2015).

    Article  Google Scholar 

  223. Berg, S., Melles, M., Gore, D. B., Verkulich, S. & Pushina, Z. V. Postglacial evolution of marine and lacustrine water bodies in Bunger Hills. Antarct. Sci. 32, 107–129 (2020).

    Article  Google Scholar 

  224. Braddock, S. et al. Relative sea-level data preclude major late Holocene ice-mass change in Pine Island Bay. Nat. Geosci. https://doi.org/10.1038/s41561-022-00961-y (2022).

    Article  Google Scholar 

  225. Balco, G. Glacier change and paleoclimate applications of cosmogenic-nuclide exposure dating. Annu. Rev. Earth Planet. Sci. 48, 21–48 (2020).

    Article  Google Scholar 

  226. Helsen, M. M. et al. Elevation changes in Antarctica mainly determined by accumulation variability. Science 320, 1626–1629 (2008).

    Article  Google Scholar 

  227. Werner, M., Jouzel, J., Masson-Delmotte, V. & Lohmann, G. Reconciling glacial Antarctic water stable isotopes with ice sheet topography and the isotopic paleothermometer. Nat. Commun. 9, 3537 (2018).

    Article  Google Scholar 

  228. Simkins, L. M., Greenwood, S. L. & Anderson, J. B. Diagnosing ice sheet grounding line stability from landform morphology. Cryosphere 12, 2707–2726 (2018).

    Article  Google Scholar 

  229. Roberts, S. J. et al. Holocene relative sea-level change and deglaciation on Alexander Island, Antarctic Peninsula, from elevated lake deltas. Geomorphology 112, 122–134 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

R.S.J. is supported by the Australian Research Council (ARC) under grant number DE210101923. J.S.J. is supported by Natural Environment Research Council (NERC) grants NE/K012088/1 and NE/S006710/1. Y.L. is supported by China Scholarship Council–Durham University joint scholarship. J.A.S. is supported by NERC grant NE/M013081/1. This work was supported by ARC SRIEAS Grant SR200100005 Securing Antarctica’s Environmental Future, Australia, and forms part of the British Antarctic Survey programme ‘Polar Science for Planet Earth’ funded by the NERC, UK.

Author information

Authors and Affiliations

Authors

Contributions

R.S.J. conceptualized the article, drafted the manuscript and produced the figures. J.S.J., Y.L., A.N.M., J.P.S., J.A.S., E.R.T. and P.L.W. contributed to the assessment of literature, interpretation of data and discussion of section content, and Y.L. carried out the sea-level modelling for Fig. 6. All authors reviewed the manuscript prior to submission.

Corresponding author

Correspondence to Richard S. Jones.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer reviewer information

Nature Reviews Earth & Environment thanks Bethan Davies, who co-reviewed with Holly Jenkins; Yusuke Yokoyama; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, R.S., Johnson, J.S., Lin, Y. et al. Stability of the Antarctic Ice Sheet during the pre-industrial Holocene. Nat Rev Earth Environ 3, 500–515 (2022). https://doi.org/10.1038/s43017-022-00309-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00309-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing