Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The imbalance of the Asian water tower

Abstract

The Hindu Kush–Karakoram–Himalayan system, named the Third Pole because it is the largest global store of frozen water after the polar regions, provides a reliable water supply to almost 2 billion people. Marked atmospheric warming has changed the balance of this so-called Asian water tower and altered water resources in downstream countries. In this Review, we synthesize observational evidence and model projections that describe an imbalance in the Asian water tower caused by accelerated transformation of ice and snow into liquid water. This phase change is associated with a south–north disparity due to the spatio-temporal interaction between the westerlies and the Indian monsoon. A corresponding spatial imbalance is exhibited by alterations in freshwater resources in endorheic or exorheic basins. Global warming is expected to amplify this imbalance, alleviating water scarcity in the Yellow and Yangtze River basins and increasing scarcity in the Indus and Amu Darya River basins. However, the future of the Asian water tower remains highly uncertain. Accurate predictions of future water supply require the establishment of comprehensive monitoring stations in data-scarce regions and the development of advanced coupled atmosphere–cryosphere–hydrology models. Such models are needed to inform the development of actionable policies for sustainable water resource management.

Key points

  • During 1980–2018, warming of the Asian Water Tower (AWT) was 0.42 °C per decade, twice the global average rate.

  • Annual precipitation in the AWT increased by 11 mm per decade in endorheic basins and 12 mm per decade in exorheic basins, despite decreased precipitation in some large river basins.

  • From 2000 to 2018, total glacier mass in the AWT decreased by about 340 Gt whereas total water mass in lakes increased by 166 Gt.

  • Changes in the westerlies and the Indian monsoon led the AWT to develop an imbalance characterized by water gains in endorheic basins and water losses in exorheic basins.

  • Ubiquitous increases in precipitation and river run-off are projected in the future of the AWT; however, these changes cannot meet the accelerating water demands of downstream regions and countries.

  • Comprehensive monitoring systems, advanced modelling capacity and sustainable water management are needed to develop adaptation policies for the AWT through collaboration between upstream and downstream regions and countries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis of observed changes in different components of the Asian water tower.
Fig. 2: Projected changes in precipitation, glaciers and river run-off in the Asian water tower.
Fig. 3: Projected changes in anthropogenic water resource demand in the Asian water tower.
Fig. 4: Projected changes in water resources for the Asian water tower and its downstream dependent areas.
Fig. 5: Schematic of the status of the Asian water tower in the past, present and future.

Similar content being viewed by others

References

  1. Immerzeel, W. W. et al. Importance and vulnerability of the world’s water towers. Nature 577, 364–369 (2020).This work addresses the importance and vulnerability of the AWT compared with other global water towers.

    Article  Google Scholar 

  2. Yao, T. et al. Recent Third Pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysis. B Am. Meteorol. Soc. 100, 423–444 (2019). This paper proposes a multidisciplinary framework from the viewpoint of Earth system science for addressing Third Pole environmental changes under the current unprecedented warming.

    Article  Google Scholar 

  3. Chen, D. et al. Assessment of past, present and future environmental changes on the Tibetan Plateau. Chin. Sci. Bull. 60, 3025–3035 (2015).

    Google Scholar 

  4. Yang, K. et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review. Glob. Planet. Change 112, 79–91 (2014).

    Article  Google Scholar 

  5. Yao, T. et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Change 2, 663–667 (2012). This report provides the first evidence of glacier changes driven by the Indian monsoon and westerlies: intensive retreat in the monsoon-dominant region, advance in the westerlies-dominant region and stable in between over the Third Pole.

    Article  Google Scholar 

  6. Yao, R. & Shi, J. Precipitation differences cause contrast patterns of glacier-melt water supplied discharge of two glacier basins between northern and southern Third Pole. Sci. Bull. 64, 431–434 (2019).

    Article  Google Scholar 

  7. Pritchard, H. D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 569, 649–654 (2019).

    Article  Google Scholar 

  8. Kraaijenbrink, P. D. A., Stigter, E. E., Yao, T. & Immerzeel, W. W. Climate change decisive for Asia’s snow meltwater supply. Nat. Clim. Change 11, 591–597 (2021).

    Article  Google Scholar 

  9. Pulliainen, J. et al. Patterns and trends of northern hemisphere snow mass from 1980 to 2018. Nature 581, 294–298 (2020).

    Article  Google Scholar 

  10. Nie, Y. et al. Glacial change and hydrological implications in the Himalaya and Karakoram. Nat. Rev. Earth Environ. 2, 91–106 (2021).

    Article  Google Scholar 

  11. Zhang, G. et al. Response of Tibetan Plateau lakes to climate change: trends, patterns, and mechanisms. Earth Sci. Rev. 208, 103269 (2020).

    Article  Google Scholar 

  12. Woolway, R. I. et al. Global lake responses to climate change. Nat. Rev. Earth Environ. 1, 388–403 (2020).

    Article  Google Scholar 

  13. Shugar, D. H. et al. Rapid worldwide growth of glacial lakes since 1990. Nat. Clim. Change 10, 939–945 (2020).

    Article  Google Scholar 

  14. Yang, K. et al. Recent dynamics of alpine lakes on the endorheic Changtang Plateau from multi-mission satellite data. J. Hydrol. 552, 633–645 (2017).

    Article  Google Scholar 

  15. Wan, W. et al. Monitoring lake changes of Qinghai–Tibetan Plateau over the past 30 years using satellite remote sensing data. Chin. Sci. Bull. 59, 1021–1035 (2014).

    Article  Google Scholar 

  16. Wang, X. et al. Glacial lake inventory of high-mountain Asia in 1990 and 2018 derived from Landsat images. Earth Syst. Sci. Data 12, 2169–2182 (2020).

    Article  Google Scholar 

  17. Chen, F. et al. Annual 30 m dataset for glacial lakes in High Mountain Asia from 2008 to 2017. Earth Syst. Sci. Data 13, 741–766 (2021).

    Article  Google Scholar 

  18. Zhang, G. et al. Extensive and drastically different alpine lake changes on Asia’s high plateaus during the past four decades. Geophys. Res. Lett. 44, 252–260 (2017). This report addresses the lake expansion caused by increased precipitation and cryosphere melt in the past four decades over the Tibetan Plateau.

    Article  Google Scholar 

  19. Lutz, A. F., Immerzeel, W. W., Shrestha, A. B. & Bierkens, M. F. P. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Change 4, 587–592 (2014).

    Article  Google Scholar 

  20. Wang, L. et al. TP-River: monitoring and quantifying total river runoff from the Third Pole. B. Am. Meteorol. Soc. 102, E948–E965 (2021). This report quantifies the annual total run-off in the Third Pole region, mostly on the basis of ground-based gauge discharge observations.

    Article  Google Scholar 

  21. Azam, M. F. et al. Glaciohydrology of the Himalaya–Karakoram. Science 373, eabf3668 (2021).

    Article  Google Scholar 

  22. Wang, Y. et al. Warming-induced shrubline advance stalled by moisture limitation on the Tibetan Plateau. Ecography 44, 1631–1641 (2021).

    Article  Google Scholar 

  23. Lamsal, P., Kumar, L., Shabani, F. & Atreya, K. The greening of the Himalayas and Tibetan Plateau under climate change. Glob. Planet. Change 159, 77–92 (2017).

    Article  Google Scholar 

  24. Teng, H. et al. Climate change-induced greening on the Tibetan Plateau modulated by mountainous characteristics. Environ. Res. Lett. 16, 064064 (2021).

    Article  Google Scholar 

  25. Zhang, W. X., Zhou, T. J. & Zhang, L. X. Wetting and greening Tibetan Plateau in early summer in recent decades. J. Geophys. Res.-At. 122, 5808–5822 (2017).

    Article  Google Scholar 

  26. Wang, T. et al. Atmospheric dynamic constraints on Tibetan Plateau freshwater under Paris climate targets. Nat. Clim. Change 11, 219–225 (2021). This study reveals worsening water scarcity for the Indus and Ganges River basins using a model-data constrained approach.

    Article  Google Scholar 

  27. Immerzeel, W. W., Beek, L. P. H. & Bierkens, M. F. P. Climate change will affect the Asian water towers. Science 328, 1382–1385 (2010).

    Article  Google Scholar 

  28. Zhang, Y. et al. Water resources assessment in the Minqin basin: an arid inland river basin under intensive irrigation in northwest China. Environ. Earth Sci. 65, 1831–1839 (2011).

    Article  Google Scholar 

  29. Tan, Y. & Liu, X. Water shortage and inequality in arid Minqin oasis of northwest China: adaptive policies and farmers’ perceptions. Local. Environ. 22, 934–951 (2017).

    Article  Google Scholar 

  30. Liu, W. et al. Dynamic changes in lakes in the Hoh Xil region before and after the 2011 outburst of Zonag Lake. J. Mt. Sci. 16, 1098–1110 (2019).

    Article  Google Scholar 

  31. Ali, S., Haider, R., Abbas, W., Basharat, M. & Reicherter, K. Empirical assessment of rockfall and debris flow risk along the Karakoram Highway, Pakistan. Nat. Hazards 106, 2437–2460 (2021).

    Article  Google Scholar 

  32. Shugar, D. H. et al. A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science 373, 300–306 (2021).

    Article  Google Scholar 

  33. Su, B. et al. Mismatch between the population and meltwater changes creates opportunities and risks for global glacier-fed basins. Sci. Bull. 67, 9–12 (2022).

    Article  Google Scholar 

  34. Zhao, X., Ma, X., Chen, B., Shang, Y. & Song, M. Challenges toward carbon neutrality in China: strategies and countermeasures. Resour. Conserv. Recycl. 176, 105959 (2022).

    Article  Google Scholar 

  35. Liu, X. D. & Chen, B. D. Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol. 20, 1729–1742 (2000).

    Article  Google Scholar 

  36. Guo, D. & Wang, H. The significant climate warming in the northern Tibetan Plateau and its possible causes. Int. J. Climatol. 32, 1775–1781 (2012).

    Article  Google Scholar 

  37. You, Q., Cai, Z., Pepin, N., Chen, D. & Ahrens, B. Warming amplification over the Arctic Pole and Third Pole. Earth Sci. Rev. 217, 103625 (2021).

    Article  Google Scholar 

  38. Yan, Y., You, Q., Wu, F., Pepin, N. & Kang, S. Surface mean temperature from the observational stations and multiple reanalyses over the Tibetan Plateau. Clim. Dyn. 55, 2405–2419 (2020).

    Article  Google Scholar 

  39. Chylek, P., Folland, C. K., Lesins, G., Dubey, M. K. & Wang, M. Arctic air temperature change amplification and the Atlantic Multidecadal Oscillation. Geophys. Res. Lett. 36, L14801 (2009).

    Article  Google Scholar 

  40. Ren, Y.-Y. et al. Observed changes in surface air temperature and precipitation in the Hindu Kush Himalayan region over the last 100-plus years. Adv. Clim. Change Res. 8, 148–156 (2017).

    Article  Google Scholar 

  41. Wester, P., Mishra, A., Mukherji, A. & Shrestha, A. B. The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People (Springer Nature, 2019).

  42. Wang, B., Bao, Q., Hoskins, B., Wu, G. & Liu, Y. Tibetan Plateau warming and precipitation changes in East Asia. Geophys. Res. Lett. 35, L14702 (2008).

    Article  Google Scholar 

  43. Yu, H., Luedeling, E. & Xu, J. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc. Natl Acad. Sci. USA 107, 22151–22156 (2010).

    Article  Google Scholar 

  44. Libin, Y. & Liu, X. Has climatic warming over the Tibetan Plateau paused or continued in recent years. J. Earth Ocean. Atmos. Sci. 1, 13–28 (2014).

    Google Scholar 

  45. You, Q. L. et al. Revisiting the relationship between observed warming and surface pressure in the Tibetan Plateau. J. Clim. 30, 1721–1737 (2017).

    Article  Google Scholar 

  46. Kang, S. et al. Review of climate and cryospheric change in the Tibetan Plateau. Environ. Res. Lett. 5, 015101 (2010).

    Article  Google Scholar 

  47. You, Q., Min, J., Jiao, Y., Sillanpää, M. & Kang, S. Observed trend of diurnal temperature range in the Tibetan Plateau in recent decades. Int. J. Climatol. 36, 2633–2643 (2016).

    Article  Google Scholar 

  48. Chen, H. et al. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai–Tibetan Plateau. Glob. Change Biol. 19, 2940–2955 (2013).

    Article  Google Scholar 

  49. Liu, X. & Hou, P. Relationship between the climatic warming over the Qinghai–Xizang Plateau and its surrounding areas in recent 30 years and the elevation. Plateau Meteorol. 17, 245–249 (1998).

    Google Scholar 

  50. You, Q. et al. Elevation dependent warming over the Tibetan Plateau: patterns, mechanisms and perspectives. Earth Sci. Rev. 210, 103349 (2020).

    Article  Google Scholar 

  51. Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424–430 (2015).

    Article  Google Scholar 

  52. Zhang, H. et al. Snow cover persistence reverses the altitudinal patterns of warming above and below 5000 m on the Tibetan Plateau. Sci. Total. Env. 803, 149889 (2022).

    Article  Google Scholar 

  53. Liu, W. et al. Monsoon clouds control the summer surface energy balance on East Rongbuk Glacier (6,523 m above sea level), the northern of Mt. Qomolangma (Everest). J. Geophys. Res. Atmos. 126, e2020JD033998 (2021).

    Google Scholar 

  54. Niu, X. et al. The performance of CORDEX-EA-II simulations in simulating seasonal temperature and elevation-dependent warming over the Tibetan Plateau. Clim. Dynam 57, 1135–1153 (2021).

    Article  Google Scholar 

  55. Shen, M. et al. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc. Natl Acad. Sci. USA 112, 9299–9304 (2015).

    Article  Google Scholar 

  56. Zou, M., Xiong, X., Wu, Z. & Yu, C. Ozone trends during 1979–2019 over Tibetan Plateau derived from satellite observations. Front. Earth Sci 8, 579624 (2020).

    Article  Google Scholar 

  57. Kuang, X. & Jiao, J. J. Review on climate change on the Tibetan Plateau during the last half century. J. Geophys. Res. Atmos. 121, 3979–4007 (2016).

    Article  Google Scholar 

  58. Sun, J. et al. Why has the Inner Tibetan Plateau become wetter since the mid-1990s? J. Clim. 33, 8507–8522 (2020).

    Article  Google Scholar 

  59. Wang, X., Pang, G. & Yang, M. Precipitation over the Tibetan Plateau during recent decades: a review based on observations and simulations. Int. J. Climatol. 38, 1116–1131 (2018).

    Article  Google Scholar 

  60. You, Q. et al. Inconsistencies of precipitation in the eastern and central Tibetan Plateau between surface adjusted data and reanalysis. Theor. Appl. Climatol. 109, 485–496 (2012).

    Article  Google Scholar 

  61. You, Q., Min, J., Zhang, W., Pepin, N. & Kang, S. Comparison of multiple datasets with gridded precipitation observations over the Tibetan Plateau. Clim. Dyn. 45, 791–806 (2014).

    Article  Google Scholar 

  62. Yao, T. et al. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: observations and simulations. Rev. Geophys 51, 525–548 (2013). This work proposes a conceptual framework of three distinct modes that control moisture transport over the Tibetan Plateau.

    Article  Google Scholar 

  63. Gao, J., Yao, T., Masson-Delmotte, V., Steen-Larsen, H. C. & Wang, W. Collapsing glaciers threaten Asia’s water supplies. Nature 365, 19–21 (2019).

    Article  Google Scholar 

  64. Wang, Z., Duan, A., Yang, S. & Ullah, K. Atmospheric moisture budget and its regulation on the variability of summer precipitation over the Tibetan Plateau. J. Geophys. Res. Atmos. 122, 614–630 (2017).

    Article  Google Scholar 

  65. Gao, J., He, Y., Masson-Delmotte, V. & Yao, T. ENSO effects on annual variations of summer precipitation stable isotopes in Lhasa, southern Tibetan Plateau. J. Clim. 31, 1173–1182 (2018).

    Article  Google Scholar 

  66. Turner, A. G. & Annamalai, H. Climate change and the South Asian summer monsoon. Nat. Clim. Change 2, 587–595 (2012).

    Article  Google Scholar 

  67. Zhang, H. et al. East Asian hydroclimate modulated by the position of the westerlies during Termination I. Science 362, 580–583 (2018).

    Article  Google Scholar 

  68. Gao, J., Masson-Delmotte, V., Risi, C., He, Y. & Yao, T. What controls precipitation δ18O in the southern Tibetan Plateau at seasonal and intra-seasonal scales? A case study at Lhasa and Nyalam. Tellus B 65, 21043 (2013).

    Article  Google Scholar 

  69. Dong, W. et al. Summer rainfall over the southwestern Tibetan Plateau controlled by deep convection over the Indian subcontinent. Nat. Commun. 7, 10925 (2016).

    Article  Google Scholar 

  70. Kong, W. & Chiang, J. C. H. Southward shift of westerlies intensifies the East Asian early summer rainband following El Niño. Geophys. Res. Lett. 47, e2020GL088631 (2020).

    Article  Google Scholar 

  71. Mölg, T., Maussion, F. & Scherer, D. Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia. Nat. Clim. Change 4, 68–73 (2014).

    Article  Google Scholar 

  72. Bolch, T. et al. The state and fate of Himalayan glaciers. Science 336, 310–314 (2012).

    Article  Google Scholar 

  73. Azam, M. F. et al. Review of the status and mass changes of Himalayan–Karakoram glaciers. J. Glaciol. 64, 61–74 (2018).

    Article  Google Scholar 

  74. Brun, F., Berthier, E., Wagnon, P., Kääb, A. & Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 10, 668–673 (2017).

    Article  Google Scholar 

  75. Shean, D. E. et al. A systematic, regional assessment of High Mountain Asia glacier mass balance. Front. Earth Sci. 7, 363 (2020). This work presents a comprehensive assessment of glacier mass balance in the High Mountain Asia from 2000 to 2018.

    Article  Google Scholar 

  76. Hugonnet, R. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 592, 726–731 (2021).

    Article  Google Scholar 

  77. Dehecq, A. et al. Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia. Nat. Geosci. 12, 22–27 (2019).

    Article  Google Scholar 

  78. Miles, E. et al. Health and sustainability of glaciers in High Mountain Asia. Nat. Commun. 12, 2868 (2021).

    Article  Google Scholar 

  79. Forsythe, N., Fowler, H. J., Li, X.-F., Blenkinsop, S. & Pritchard, D. Karakoram temperature and glacial melt driven by regional atmospheric circulation variability. Nat. Clim. Change 7, 664–670 (2017).

    Article  Google Scholar 

  80. Bhattacharya, A. et al. High Mountain Asian glacier response to climate revealed by multi-temporal satellite observations since the 1960s. Nat. Commun. 12, 4133 (2021).

    Article  Google Scholar 

  81. Farinotti, D., Immerzeel, W. W., de Kok, R. J., Quincey, D. J. & Dehecq, A. Manifestations and mechanisms of the Karakoram glacier anomaly. Nat. Geosci. 13, 8–16 (2020).

    Article  Google Scholar 

  82. Zhang, G., Xie, H., Kang, S., Yi, D. & Ackley, S. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003−2009). Remote. Sens. Env. 115, 1733–1742 (2011).

    Article  Google Scholar 

  83. Lei, Y. et al. Response of inland lake dynamics over the Tibetan Plateau to climate change. Climatic Change 125, 281–290 (2014).

    Article  Google Scholar 

  84. Zhang, G., Chen, W. & Xie, H. Tibetan Plateau’s lake level and volume changes from NASA’s ICESat/ICESat-2 and Landsat missions. Geophys. Res. Lett. 46, 13107–13118 (2019).

    Article  Google Scholar 

  85. Zhang, G., Luo, W., Chen, W. & Zheng, G. A robust but variable lake expansion on the Tibetan Plateau. Sci. Bull. 64, 1306–1309 (2019).

    Article  Google Scholar 

  86. Biskop, S., Maussion, F., Krause, P. & Fink, M. Differences in the water-balance components of four lakes in the southern-central Tibetan Plateau. Hydrol. Earth Syst. Sci. 20, 209–225 (2016).

    Article  Google Scholar 

  87. Zhang, G. et al. Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin. Geophys. Res. Lett. 44, 5550–5560 (2017).

    Article  Google Scholar 

  88. Zhou, J. et al. Exploring the water storage changes in the largest lake (Selin Co) over the Tibetan Plateau during 2003–2012 from a basin-wide hydrological modeling. Water Resour. Res. 51, 8060–8086 (2015).

    Article  Google Scholar 

  89. Brun, F., Treichler, D., Shean, D. & Immerzeel, W. W. Limited contribution of glacier mass loss to the recent increase in Tibetan Plateau lake volume. Front. Earth Sci. 8, 582060 (2020).

    Article  Google Scholar 

  90. Song, C. et al. Impact of amplified evaporation due to lake expansion on the water budget across the inner Tibetan Plateau. Int. J. Climatol. 40, 2091–2105 (2020).

    Article  Google Scholar 

  91. Crétaux, J. F. et al. Lake volume monitoring from space. Surv. Geophys. 37, 269–305 (2016).

    Article  Google Scholar 

  92. Yang, R. et al. Spatiotemporal variations in volume of closed lakes on the Tibetan Plateau and their climatic responses from 1976 to 2013. Climatic Change 140, 621–633 (2017).

    Article  Google Scholar 

  93. Song, C., Huang, B. & Ke, L. Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data. Remote. Sens. Env. 135, 25–35 (2013).

    Article  Google Scholar 

  94. Zhang, G., Bolch, T., Chen, W. & Crétaux, J. F. Comprehensive estimation of lake volume changes on the Tibetan Plateau during 1976–2019 and basin-wide glacier contribution. Sci. Total. Environ. 772, 145463 (2021).

    Article  Google Scholar 

  95. Qiao, B., Zhu, L. & Yang, R. Temporal–spatial differences in lake water storage changes and their links to climate change throughout the Tibetan Plateau. Remote. Sens. Env. 222, 232–243 (2019).

    Article  Google Scholar 

  96. Liu, Y., Chen, H., Li, H., Zhang, G. & Wang, H. What induces the interdecadal shift of the dipole patterns of summer precipitation trends over the Tibetan Plateau? Int. J. Climatol. 41, 5159–5177 (2021).

    Article  Google Scholar 

  97. Zhang, G., Yao, T., Xie, H., Kang, S. & Lei, Y. Increased mass over the Tibetan Plateau: from lakes or glaciers? Geophys. Res. Lett. 40, 2125–2130 (2013).

    Article  Google Scholar 

  98. Yao, F. et al. Lake storage variation on the endorheic Tibetan Plateau and its attribution to climate change since the new millennium. Environ. Res. Lett. 13, 064011 (2018).

    Article  Google Scholar 

  99. Latif, Y., Ma, Y. & Ma, W. Climatic trends variability and concerning flow regime of Upper Indus Basin, Jehlum, and Kabul River basins Pakistan. Theor. Appl. Climatol. 144, 447–468 (2021).

    Article  Google Scholar 

  100. Zhong, D. et al. Trend and change points of streamflow in the Yellow River and their attributions. J. Water Clim. Change 12, 136–151 (2020).

    Article  Google Scholar 

  101. Cuo, L., Zhang, Y., Zhu, F. & Liang, L. Characteristics and changes of streamflow on the Tibetan Plateau: a review. J. Hydrol. Reg. Stud. 2, 49–68 (2014).

    Article  Google Scholar 

  102. Tang, Q. et al. Streamflow change on the Qinghai–Tibet Plateau and its impacts. Chin. Sci. Bull. 64, 2807–2821 (2019).

    Article  Google Scholar 

  103. Zhang, J. et al. Evolution and trend of water resources in Qinghai–Tibet Plateau. Proc. Chin. Acad. Sci. 34, 1264–1273 (2019).

    Google Scholar 

  104. Bibi, S. et al. Climatic and associated cryospheric, biospheric, and hydrological changes on the Tibetan Plateau: a review. Int. J. Climatol. 38, e1–e17 (2018).

    Article  Google Scholar 

  105. Li, X., Wang, L., Chen, D., Yang, K. & Wang, A. Seasonal evapotranspiration changes (1983–2006) of four large basins on the Tibetan Plateau. J. Geophys. Res. Atmos. 119, 13,079–13,095 (2014).

    Article  Google Scholar 

  106. Hewitt, K. Rock avalanches that travel onto glaciers and related developments, Karakoram Himalaya, Inner Asia. Geomorphology 103, 66–79 (2009).

    Article  Google Scholar 

  107. Farinotti, D. et al. A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nat. Geosci. 12, 168–173 (2019).

    Article  Google Scholar 

  108. O’Neill, B. C. et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model. Dev. 9, 3461–3482 (2016).

    Article  Google Scholar 

  109. Katzenberger, A., Schewe, J., Pongratz, J. & Levermann, A. Robust increase of Indian monsoon rainfall and its variability under future warming in CMIP6 models. Earth Syst. Dynam. 12, 367–386 (2021).

    Article  Google Scholar 

  110. Levy, H. II et al. The roles of aerosol direct and indirect effects in past and future climate change. J. Geophys. Res. Atmos. 118, 4521–4532 (2013).

    Article  Google Scholar 

  111. Sooraj, K. P., Terray, P. & Mujumdar, M. Global warming and the weakening of the Asian summer monsoon circulation: assessments from the CMIP5 models. Clim. Dynam 45, 233–252 (2015).

    Article  Google Scholar 

  112. Pfahl, S., O’Gorman, P. A. & Fischer, E. M. Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Clim. Change 7, 423–427 (2017).

    Article  Google Scholar 

  113. Meng, D. et al. Spatio-temporal variations of water vapor budget over the Tibetan Plateau in summer and its relationship with the Indo-Pacific warm pool. Atmosphere 11, 828 (2020).

    Article  Google Scholar 

  114. Lee, S.-S., Seo, Y.-W., Ha, K.-J. & Jhun, J.-G. Impact of the western North Pacific subtropical high on the East Asian monsoon precipitation and the Indian Ocean precipitation in the boreal summertime. Asia-Pacific J. Atmos. Sci. 49, 171–182 (2013).

    Article  Google Scholar 

  115. Zhang, H., Gao, Y., Xu, J., Xu, Y. & Jiang, Y. Decomposition of future moisture flux changes over the Tibetan Plateau projected by global and regional climate models. J. Clim. 32, 7037–7053 (2019).

    Article  Google Scholar 

  116. Kraaijenbrink, P. D. A., Bierkens, M. F. P., Lutz, A. F. & Immerzeel, W. W. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature 549, 257–260 (2017). This study provides projections of glacier mass loss in High Mountain Asia under different scenarios.

    Article  Google Scholar 

  117. Hock, R. et al. GlacierMIP — a model intercomparison of global-scale glacier mass-balance models and projections. J. Glaciol. 65, 453–467 (2019).

    Article  Google Scholar 

  118. Rounce, D. R., Hock, R. & Shean, D. E. Glacier mass change in High Mountain Asia through 2100 using the open-source Python Glacier Evolution Model (PyGEM). Front. Earth Sci. 7, 331 (2020).

    Article  Google Scholar 

  119. Marzeion, B. et al. Partitioning the uncertainty of ensemble projections of global glacier mass change. Earth’s Future 8, e2019EF001470 (2020).

    Article  Google Scholar 

  120. Kapnick, S. B., Delworth, T. L., Ashfaq, M., Malyshev, S. & Milly, P. C. D. Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle. Nat. Geosci. 7, 834–840 (2014).

    Article  Google Scholar 

  121. Yang, K. et al. Quantifying recent precipitation change and predicting lake expansion in the Inner Tibetan Plateau. Climatic Change 147, 149–163 (2018).

    Article  Google Scholar 

  122. Guo, Y., Zhang, Y., Ma, N., Xu, J. & Zhang, T. Long-term changes in evaporation over Siling Co Lake on the Tibetan Plateau and its impact on recent rapid lake expansion. Atmos. Res. 216, 141–150 (2019).

    Article  Google Scholar 

  123. Su, F. et al. Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau. Glob. Planet. Change 136, 82–95 (2016).

    Article  Google Scholar 

  124. Khanal, S. et al. Variable 21st century climate change response for rivers in High Mountain Asia at seasonal to decadal time scales. Water Resour. Res. 57, e2020WR029266 (2021).

    Article  Google Scholar 

  125. Wijngaard, R. R. et al. Future changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basins. PLoS ONE 12, e0190224 (2017).

    Article  Google Scholar 

  126. Zhao, Q. et al. Projecting climate change impacts on hydrological processes on the Tibetan Plateau with model calibration against the glacier inventory data and observed streamflow. J. Hydrol. 573, 60–81 (2019).

    Article  Google Scholar 

  127. Duethmann, D., Menz, C., Jiang, T. & Vorogushyn, S. Projections for headwater catchments of the Tarim River reveal glacier retreat and decreasing surface water availability but uncertainties are large. Environ. Res. Lett. 11, 054024 (2016).

    Article  Google Scholar 

  128. Luo, Y. et al. Contrasting streamflow regimes induced by melting glaciers across the Tien Shan–Pamir–North Karakoram. Sci. Rep. 8, 16470 (2018).

    Article  Google Scholar 

  129. Yang, K. et al. Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Clim. Change 109, 517–534 (2011).

    Article  Google Scholar 

  130. Ni, J. et al. Simulation of the present and future projection of permafrost on the Qinghai–Tibet Plateau with statistical and machine learning models. J. Geophys. Res. Atmos. 126, e2020JD033402 (2020).

    Google Scholar 

  131. Zou, D. et al. A new map of permafrost distribution on the Tibetan Plateau. Cryosphere 11, 2527–2542 (2017).

    Article  Google Scholar 

  132. Yang, M., Nelson, F. E., Shiklomanov, N. I., Guo, D. & Wan, G. Permafrost degradation and its environmental effects on the Tibetan Plateau: a review of recent research. Earth Sci Rev. 103, 31–44 (2010).

    Article  Google Scholar 

  133. Ran, Y. et al. Mapping the permafrost stability on the Tibetan Plateau for 2005–2015. Sci. China Earth Sci. 64, 62–79 (2021).

    Article  Google Scholar 

  134. Daout, S., Doin, M.-P., Peltzer, G., Socquet, A. & Lasserre, C. Large-scale InSAR monitoring of permafrost freeze–thaw cycles on the Tibetan Plateau. Geophys. Res. Lett. 44, 901–909 (2017).

    Article  Google Scholar 

  135. Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change 8, 135–140 (2018).

    Article  Google Scholar 

  136. Hagg, W., Hoelzle, M., Wagner, S., Mayr, E. & Klose, Z. Glacier and runoff changes in the Rukhk catchment, upper Amu-Darya basin until 2050. Glob. Planet. Change 110, 62–73 (2013).

    Article  Google Scholar 

  137. Pohl, E., Gloaguen, R., Andermann, C. & Knoche, M. Glacier melt buffers river runoff in the Pamir Mountains. Water Resour. Res. 53, 2467–2489 (2017).

    Article  Google Scholar 

  138. Satoh, Y. et al. Multi-model and multi-scenario assessments of Asian water futures: the Water Futures and Solutions (WFaS) initiative. Earth’s Future 5, 823–852 (2017). This work is the first assessment of Asian water futures to use multi-model and multi-scenario approaches.

    Article  Google Scholar 

  139. Food and Agriculture Organization of the United Nations (FAO). FAO AQUASTAT reports: transboundary river basin overview — Salween. FAO https://www.fao.org/3/CA2134EN/ca2134en.pdf (2011).

  140. Laghari, A. N., Vanham, D. & Rauch, W. The Indus basin in the framework of current and future water resources management. Hydrol. Earth Syst. Sci. 16, 1063–1083 (2012).

    Article  Google Scholar 

  141. Rasul, S. et al. A highly selective copper–indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO. Angew. Chem. Int. Ed. 54, 2146–2150 (2015).

    Article  Google Scholar 

  142. Wijngaard, R. R. et al. Climate change vs. socio-economic development: understanding the future South Asian water gap. Hydrol. Earth Syst. Sci. 22, 6297–6321 (2018).

    Article  Google Scholar 

  143. Asoka, A., Gleeson, T., Wada, Y. & Mishra, V. Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India. Nat. Geosci. 10, 109–117 (2017).

    Article  Google Scholar 

  144. Vinca, A. et al. The NExus Solutions Tool (NEST) v1.0: an open platform for optimizing multi-scale energy–water–land system transformations. Geosci. Model. Dev. 13, 1095–1121 (2020).

    Article  Google Scholar 

  145. Yang, Y. C. E., Ringler, C., Brown, C. & Mondal, M. A. H. Modeling the agricultural water–energy–food nexus in the Indus river basin, Pakistan. J. Water Resour. Plan. Manag. 142, 04016062 (2016).

    Article  Google Scholar 

  146. Amjath-Babu, T. S. et al. Integrated modelling of the impacts of hydropower projects on the water–food–energy nexus in a transboundary Himalayan river basin. Appl. Energ. 239, 494–503 (2019).

    Article  Google Scholar 

  147. Babel, M. S. & Shinde, V. R. Identifying prominent explanatory variables for water demand prediction using artificial neural networks: a case study of Bangkok. Water Resour. Manag. 25, 1653–1676 (2011).

    Article  Google Scholar 

  148. Awan, U. K., Tischbein, B., Conrad, C., Martius, C. & Hafeez, M. Remote sensing and hydrological measurements for irrigation performance assessments in a water user association in the lower Amu Darya river basin. Water Resour. Manag. 25, 2467–2485 (2011).

    Article  Google Scholar 

  149. Bergeron, J. et al. Assessing the capabilities of the Surface Water and Ocean Topography (SWOT) mission for large lake water surface elevation monitoring under different wind conditions. Hydrol. Earth Syst. Sc. 24, 5985–6000 (2020).

    Article  Google Scholar 

  150. Shepherd, T. G. Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci. 7, 703–708 (2014).

    Article  Google Scholar 

  151. Risi, C., Bony, S., Vimeux, F. & Jouzel, J. Water-stable isotopes in the LMDZ4 general circulation model: model evaluation for present-day and past climates and applications to climatic interpretations of tropical isotopic records. J. Geophys. Res. Atmos. 115, D12118 (2010).

    Article  Google Scholar 

  152. Trenberth, K. E. Changes in precipitation with climate change. Clim. Res. 47, 123–138 (2011).

    Article  Google Scholar 

  153. Jennings, K. S., Winchell, T. S., Livneh, B. & Molotch, N. P. Spatial variation of the rain–snow temperature threshold across the northern hemisphere. Nat. Commun. 9, 1148 (2018).

    Article  Google Scholar 

  154. Wang, A. et al. Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area. Cryosphere Discuss. 10, 287–306 (2016).

    Article  Google Scholar 

  155. McClelland, J. W., Holmes, R. M., Peterson, B. J. & Stieglitz, M. Increasing river discharge in the Eurasian Arctic: consideration of dams, permafrost thaw, and fires as potential agents of change. J. Geophys. Res. Atmos. 109, D18102 (2004).

    Article  Google Scholar 

  156. Rogger, M. et al. Impact of mountain permafrost on flow path and runoff response in a high alpine catchment. Water Resour. Res. 53, 1288–1308 (2017).

    Article  Google Scholar 

  157. Janke, J. R. & Bolch, T. in Reference Module in Earth Systems and Environmental Sciences 2nd edn, Vol. 4, 75–118 (Elsevier, 2021).

  158. Harrison, S., Jones, D., Anderson, K., Shannon, S. & Betts, R. A. Is ice in the Himalayas more resilient to climate change than we thought? Geografiska Annaler Ser. A Phys. Geogr. 103, 1–7 (2021).

    Article  Google Scholar 

  159. Wang, G., Hu, H. & Li, T. The influence of freeze–thaw cycles of active soil layer on surface runoff in a permafrost watershed. J. Hydrol. 375, 438–449 (2009).

    Article  Google Scholar 

  160. Gao, T., Zhang, T., Cao, L., Kang, S. & Sillanpää, M. Reduced winter runoff in a mountainous permafrost region in the northern Tibetan Plateau. Cold Reg. Sci. Technol. 126, 36–43 (2016).

    Article  Google Scholar 

  161. Wang, J. et al. Recent global decline in endorheic basin water storages. Nat. Geosci. 11, 926–932 (2018).

    Article  Google Scholar 

  162. Li, Y., Su, F., Chen, D. & Tang, Q. Atmospheric water transport to the endorheic tibetan plateau and its effect on the hydrological status in the region. J. Geophys. Res. Atmos. 124, 12864–12881 (2019).

    Article  Google Scholar 

  163. Andresen, C. G. et al. Soil moisture and hydrology projections of the permafrost region — a model intercomparison. Cryosphere 14, 445–459 (2020).

    Article  Google Scholar 

  164. Li, W. et al. Influence of Tibetan Plateau snow cover on East Asian atmospheric circulation at medium-range time scales. Nat. Commun. 9, 4243 (2018).

    Article  Google Scholar 

  165. Zhao, L. et al. Soil organic carbon and total nitrogen pools in permafrost zones of the Qinghai–Tibetan Plateau. Sci. Rep. 8, 3656 (2018).

    Article  Google Scholar 

  166. RGI Consortium. Randolph Glacier Inventory — A Dataset of Global Glacier Outlines: Version 6.0 (Global Land Ice Measurements from Space, 2017).

  167. Veh, G., Korup, O. & Walz, A. Hazard from Himalayan glacier lake outburst floods. Proc. Natl Acad. Sci. USA 117, 907–912 (2019).

    Article  Google Scholar 

  168. Allen, S. K., Zhang, G., Wang, W., Yao, T. & Bolch, T. Potentially dangerous glacial lakes across the Tibetan Plateau revealed using a large-scale automated assessment approach. Sci. Bull. 64, 435–445 (2019).

    Article  Google Scholar 

  169. Kääb, A. et al. Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability. Nat. Geosci. 11, 114–120 (2018).

    Article  Google Scholar 

  170. Li, Y., Su, F., Chen, D. & Tang, Q. Atmospheric water transport to the endorheic Tibetan Plateau and its effect on the hydrological status in the region. J. Geophys. Res. Atmos. 124, 12864–12881 (2020).

    Article  Google Scholar 

  171. Schiemann, R., Lüthi, D. & Schär, C. Seasonality and interannual variability of the westerly jet in the Tibetan Plateau region. J. Clim. 22, 2940–2957 (2009).

    Article  Google Scholar 

  172. Wei, W., Zhang, R., Wen, M., Kim, B.-J. & Nam, J.-C. Interannual variation of the south asian high and its relation with Indian and East Asian summer monsoon rainfall. J. Clim. 28, 2623–2634 (2015).

    Article  Google Scholar 

  173. Zhao, Y. & Zhou, T. Interannual variability of precipitation recycle ratio over the Tibetan Plateau. J. Geophys. Res. Atmos. 126, e2020JD033733 (2021).

    Google Scholar 

  174. Wu, G. et al. Thermal controls on the Asian summer monsoon. Sci. Rep. 2, 404 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The authors’ research work was supported by the Second Tibetan Plateau Scientific Expedition and Research (STEP) programme (2019QZKK0201,2019QZKK0208) and the Strategic Priority Research Program (A) of the Chinese Academy of Sciences (XDA20060201, XDA20100300). The authors are listed in alphabetic order by family name, except for the first author.

Author information

Authors and Affiliations

Authors

Contributions

T.Y. designed the Review. T.Y., S.P., G.Z., T.W., W.Y., J.G., L.W., F.S. and P.Z. wrote the first draft of the manuscript. T.B., D.C., L.T., W.I., W.Y., B.X. and G.W. reviewed and edited the manuscript. All authors made substantial contributions to discussions of its content.

Corresponding authors

Correspondence to Tandong Yao or Guoqing Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Jida Wang, who co-reviewed with Fangfang Yao, Anamika Barua and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, T., Bolch, T., Chen, D. et al. The imbalance of the Asian water tower. Nat Rev Earth Environ 3, 618–632 (2022). https://doi.org/10.1038/s43017-022-00299-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00299-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing