Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Microplastics and nanoplastics in the marine-atmosphere environment

Abstract

The discovery of atmospheric micro(nano)plastic transport and ocean–atmosphere exchange points to a highly complex marine plastic cycle, with negative implications for human and ecosystem health. Yet, observations are currently limited. In this Perspective, we quantify the processes and fluxes of the marine-atmospheric micro(nano)plastic cycle, with the aim of highlighting the remaining unknowns in atmospheric micro(nano)plastic transport. Between 0.013 and 25 million metric tons per year of micro(nano)plastics are potentially being transported within the marine atmosphere and deposited in the oceans. However, the high uncertainty in these marine-atmospheric fluxes is related to data limitations and a lack of study intercomparability. To address the uncertainties and remaining knowledge gaps in the marine-atmospheric micro(nano)plastic cycle, we propose a future global marine-atmospheric micro(nano)plastic observation strategy, incorporating novel sampling methods and the creation of a comparable, harmonized and global data set. Together with long-term observations and intensive investigations, this strategy will help to define the trends in marine-atmospheric pollution and any responses to future policy and management actions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Atmospheric microplastic transport, potential annual flux, burdens and current knowledge gaps.
Fig. 2: Summary of published micro(nano)plastics atmospheric and marine research.
Fig. 3: Critical known and unknown atmospheric processes.
Fig. 4: The proposed global observation network.

Similar content being viewed by others

Data availability

The data for Fig. 2 are supplied in the online Supplementary Data file.

References

  1. Association of Plastic Manufacturers. Plastics — the facts 2020 (PlasticEurope, 2020).

  2. Geyer, R., Jambeck, J. R. & Law, K. L. Production, uses, and fate of all plastics ever made. Sci. Adv. 3, 5 (2017).

    Article  Google Scholar 

  3. Zhang, Y. et al. Atmospheric microplastics: a review on current status and perspectives. Earth Sci. Rev. 203, 103118 (2020).

    Article  Google Scholar 

  4. Li, J., Liu, H. & Chen, J. P. Microplastics in freshwater systems: a review on occurrence, environmental effects, and methods for microplastics detection. Water Res. 137, 362–374 (2018).

    Article  Google Scholar 

  5. Campos da Rocha, F. O., Martinez, S. T., Campos, V. P., da Rocha, G. O. & de Andrade, J. B. Microplastic pollution in Southern Atlantic marine waters: review of current trends, sources, and perspectives. Sci. Total Environ. 782, 146541 (2021).

    Article  Google Scholar 

  6. Zhou, Y. et al. Microplastics in soils: a review of methods, occurrence, fate, transport, ecological and environmental risks. Sci. Total Environ. 748, 141368 (2020).

    Article  Google Scholar 

  7. Lau, W. W. Y. et al. Evaluating scenarios toward zero plastic pollution. Science 369, 1455–1461 (2020).

    Article  Google Scholar 

  8. Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518 (2020).

    Article  Google Scholar 

  9. Joint Group of Experts on Scientific Aspects of Marine Environmental Protection. Sources, fate and effects of microplastics in the marine environment: part 2 of a global assessment (GESAMP, 2016). This study describes a systematic and comprehensive methodology to assess ocean and sea MP concentrations, their sources, transport and fate within the aquatic marine environment.

  10. Joint Group of Experts on Scientific Aspects of Marine Environmental Protection. Sources, fate and effects of microplastics in the marine environment: a global assessment (GESAMP, 2015). This is a consolidated and strategic assessment of marine (aquatic) plastic pollution.

  11. Bergmann, M., Tekman, M. & Gutow, L. Sea change for plastic pollution. Nature 544, 297 (2017). This paper presents the findings of LITTERBASE, the global collation of marine (aquatic) plastic pollution research.

    Article  Google Scholar 

  12. Karbalaei, S., Hanachi, P., Walker, T. R. & Cole, M. Occurrence, sources, human health impacts and mitigation of microplastic pollution. Environ. Sci. Pollut. Res. 25, 36046–36063 (2018).

    Article  Google Scholar 

  13. Karbalaei, S. et al. Abundance and characteristics of microplastics in commercial marine fish from Malaysia. Mar. Pollut. Bull. 148, 5–15 (2019).

    Article  Google Scholar 

  14. Wichmann, D., Delandmeter, P. & van Sebille, E. Influence of near-surface currents on the global dispersal of marine microplastic. JGR Ocean 124, 6086–6096 (2018).

    Article  Google Scholar 

  15. Rodrigues, M. O. et al. Impacts of plastic products used in daily life on the environment and human health: what is known? Environ. Toxicol. Pharmacol. 72, 103239 (2019).

    Article  Google Scholar 

  16. Sebille, Evan et al. The physical oceanography of the transport of floating marine debris. Environ. Res. Lett. 15, 023003 (2020).

    Article  Google Scholar 

  17. Allen, S. et al. Evidence of free tropospheric and long-range transport of microplastic at Pic du Midi Observatory. Nat. Commun. 12, 7242 (2021). This is a remote-area atmospheric MP quantification and modelling study, illustrating marine sources relative to the specific study site and duration.

    Article  Google Scholar 

  18. Brahney, J. et al. Constraining the atmospheric limb of the plastic cycle. Proc. Natl Acad. Sci. USA 118, e2020719118 (2021).

    Article  Google Scholar 

  19. Evangeliou, N. et al. Atmospheric transport, a major pathway of microplastics to remote regions. Nat. Commun. 11, 3381 (2020). Together with Brahney et al. (2021), this study models the global atmospheric flux of MP and considers the uncertainty in atmospheric MP flux estimation.

    Article  Google Scholar 

  20. Materić, D., Ludewig, E., Brunner, D., Rochmann, T. & Holzinger, R. Nanoplastics transport to the remote, high-altitude Alps. Environ. Pollut. 288, 117697 (2021).

    Article  Google Scholar 

  21. van der Does, M., Knippertz, P., Zschenderlein, P., Harrison, R. G. & Stuut, J.-B. W. The mysterious long-range transport of giant mineral dust particles. Sci. Adv. 4, eaau2768 (2018).

    Article  Google Scholar 

  22. Ganguly, M. & Ariya, P. A. Ice nucleation of model nano-micro plastics: a novel synthetic protocol and the influence of particle capping at diverse atmospheric. ACS Earth Space Chem. 3, 1729–1739 (2019).

    Article  Google Scholar 

  23. Revell, L. et al. Direct radiative effects of airborne microplastics. Nature 598, 462–467 (2021). This paper presents the first modelling assessment of atmospheric MP on radiative forcing and the potential resultant atmospheric heating and cooling effects.

    Article  Google Scholar 

  24. Zhang, Y. et al. Current status and future perspectives of microplastic pollution in typical cryospheric regions. Earth Sci. Rev. 226, 103924 (2022).

    Article  Google Scholar 

  25. Lebedev, A. T. et al. Detection of semi-volatile compounds in cloud waters by GC×GC-TOF-MS. Evidence of phenols and phthalates as priority pollutants. Environ. Pollut. 241, 616–625 (2018).

    Article  Google Scholar 

  26. Vergara-Temprado, J. et al. Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles. Proc. Natl Acad. Sci. USA 115, 2687–2692 (2018).

    Article  Google Scholar 

  27. Wright, S. L. & Kelly, F. J. Plastic and human health: a micro issue? Environ. Sci. Technol. 51, 6634–6647 (2017). This is a detailed assessment of the human health potential implications associated with MP exposure.

    Article  Google Scholar 

  28. Galloway, T. S. in Marine Anthropogenic Litter (eds Bergmann, M., Gutow, L. & Klages, M.) 343–366 (Springer, 2015).

  29. Huerta Lwanga, E. et al. Field evidence for transfer of plastic debris along a terrestrial food chain. Sci. Rep. 7, 14071 (2017).

    Article  Google Scholar 

  30. Weithmann, N. et al. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci. Adv. 4, eaap8060 (2018).

    Article  Google Scholar 

  31. Amato-Lourenço, L. F. et al. An emerging class of air pollutants: potential effects of microplastics to respiratory human health? Sci. Total Environ. 749, 141676 (2020).

    Article  Google Scholar 

  32. Walker, T. R. (Micro)plastics and the UN Sustainable Development Goals. Curr. Opin. Green Sustain. Chem. 30, 100497 (2021).

    Article  Google Scholar 

  33. Hann, S. et al. Investigating options for reducing releases in the aquatic environment of microplastics emitted by (but not intentionally added in) product (Eunomia, 2018).

  34. Lots, F. A. E., Behrens, P., Vijver, M. G., Horton, A. A. & Bosker, T. A large-scale investigation of microplastic contamination: abundance and characteristics of microplastics in European beach sediment. Mar. Pollut. Bull. 123, 219–226 (2017).

    Article  Google Scholar 

  35. Lehmann, M., Oehlschlägel, L. M., Häusl, F. P., Held, A. & Gekle, S. Ejection of marine microplastics by raindrops: a computational and experimental study. Micropl. Nanopl. 1, 18 (2021).

    Article  Google Scholar 

  36. Ferrero, L. et al. Airborne and marine microplastics from an oceanographic survey at the Baltic Sea: an emerging role of air–sea interaction. Sci. Total Environ. 9, 153709 (2022).

    Article  Google Scholar 

  37. Allen, S. et al. Examination of the ocean as a source for atmospheric microplastics. PLoS ONE 15, e0232746 (2020). This study presents quantitative characterization of MP in coastal atmospheric air mass, considering the ocean as a source of atmospheric MP.

    Article  Google Scholar 

  38. Trainic, M. et al. Airborne microplastic particles detected in the remote marine atmosphere. Commun. Earth Env. 1, 64 (2020).

    Article  Google Scholar 

  39. Bergmann, M. et al. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci. Adv. 5, eaax1157 (2019). This comprehensive study presents MP particle quantitative characterization in snow deposited on Arctic ice floes and remote areas in Europe.

    Article  Google Scholar 

  40. Lusher, A. L., Hollman, P. C. H. & Mendoza-Hill, J. J. Microplastics in fisheries and aquaculture: status of knowledge on their occurrence and implications for aquatic organisms and food safety (FAO, 2017).

  41. Rezaei, M., Riksen, M. J. P. M., Sirjani, E., Sameni, A. & Geissen, V. Wind erosion as a driver for transport of light density microplastics. Sci. Total Environ. 669, 273–281 (2019).

    Article  Google Scholar 

  42. Bullard, J. E., Ockelford, A., O’Brien, P. & McKenna Neuman, C. Preferential transport of microplastics by wind. Atmos. Environ. 245, 118038 (2021).

    Article  Google Scholar 

  43. Richie, H. & Roser, M. Land use. Our World in Data https://ourworldindata.org/land-use (2013).

  44. Vogelsang, C. et al. Microplastics in road dust — characteristics, pathways and measures (Norwegian Institute for Water Research, 2019).

  45. Baensch-Baltruschat, B., Kocher, B., Stock, F. & Reifferscheid, G. Tyre and road wear particles (TRWP) — a review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment. Sci. Total Environ. 733, 137823 (2020).

    Article  Google Scholar 

  46. Verschoor, A., de Poorter, L., Dröge, R., Kuenen, J. & de Valk, E. Emission of microplastics and potential mitigation measures (RIVM, 2016).

  47. Klimont, Z. et al. Global anthropogenic emissions of particulate matter including black carbon. Atmos. Chem. Phys. 17, 8681–8723 (2017).

    Article  Google Scholar 

  48. Kapp, K. J. & Miller, R. Z. Electric clothes dryers: an underestimated source of microfiber pollution. PLoS ONE 15, e0239165 (2020).

    Article  Google Scholar 

  49. Brien, S. O. et al. Airborne emissions of microplastic fibres from domestic laundry dryers. Sci. Total Environ. 747, 141175 (2020).

    Article  Google Scholar 

  50. Vega, G. C., Gross, A. & Birkved, M. The impacts of plastic products on air pollution-a simulation study for advanced life cycle inventories of plastics covering secondary microplastic production. Sustain. Prod. Consum. 28, 848–865 (2021).

    Article  Google Scholar 

  51. He, D. & Luo, Y. Microplastics in Terrestrial Environments: Emerging Contaminants and Major Challenges (Springer, 2020).

  52. Xu, C. et al. Are we underestimating the sources of microplastic pollution in terrestrial environment? J. Hazard. Mater. 400, 123228 (2020).

    Article  Google Scholar 

  53. Thinh, T. Q., Tran, T., Sang, N. & Viet, T. Q. Preliminary assessment on the microplastic contamination in the atmospheric fallout in the Phuoc Hiep landfill, Cu Chi, Ho Chi Minh city. Vietnam J. Sci. Technol. Eng. 62, 83–89 (2020).

    Article  Google Scholar 

  54. Dris, R. et al. A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environ. Pollut. 221, 453–458 (2017).

    Article  Google Scholar 

  55. Li, Y. et al. Airborne fiber particles: types, size and concentration observed in Beijing. Sci. Total Environ. 705, 135967 (2020).

    Article  Google Scholar 

  56. Liu, K. et al. Global inventory of atmospheric fibrous microplastics input into the ocean: an implication from the indoor origin. J. Hazard. Mater. 400, 123223 (2020).

    Article  Google Scholar 

  57. Cabrera, M. et al. A new method for microplastic sampling and isolation in mountain glaciers: a case study of one antisana glacier, Ecuadorian Andes. Case Stud. Chem. Environ. Eng. 2, 100051 (2020).

    Article  Google Scholar 

  58. Ambrosini, R. et al. First evidence of microplastic contamination in the supraglacial debris of an alpine glacier. Environ. Pollut. 253, 297–301 (2019).

    Article  Google Scholar 

  59. Brahney, J., Hallerud, M., Heim, E., Hahnenbergere, M. & Sukumaran, S. Plastic rain in protected areas of the United States. Science 368, 1257–1260 (2020).

    Article  Google Scholar 

  60. Kim, S.-K. et al. Importance of seasonal sea ice in the western Arctic Ocean to the Arctic and global microplastic budgets. J. Hazard. Mater. 418, 125971 (2021).

    Article  Google Scholar 

  61. Huntington, A. et al. A first assessment of microplastics and other anthropogenic particles in Hudson Bay and the surrounding eastern Canadian Arctic waters of Nunavut. Facets 5, 432–454 (2020).

    Article  Google Scholar 

  62. Materić, D. et al. Micro- and nanoplastics in Alpine snow — a new method for chemical identification and quantification in the nanogram range. Environ. Sci. Technol. 54, 2353–2359 (2020). This work presents a novel method for analysis of NP in environmental samples.

    Article  Google Scholar 

  63. Abbasi, S., Turner, A., Hoseini, M. & Amiri, H. Microplastics in the Lut and Kavir Deserts, Iran. Environ. Sci. Technol. 55, 5993–6000 (2021).

    Article  Google Scholar 

  64. Zhang, Y. et al. Microplastics in glaciers of the Tibetan Plateau: evidence for the long-range transport of microplastics. Sci. Total Environ. 758, 143634 (2021).

    Article  Google Scholar 

  65. Bergmann, M., Gutow, L. & Klages, M. Marine Anthropogenic Litter (Springer, 2015).

  66. He, D., Bristow, K., Filipović, V., Lv, J. & He, H. Microplastics in terrestrial ecosystems: a scientometric analysis. Sustainability 12, 8739 (2020).

    Article  Google Scholar 

  67. González-Pleiter, M. et al. Occurrence and transport of microplastics sampled within and above the planetary boundary layer. Sci. Total Environ. 761, 143213 (2021).

    Article  Google Scholar 

  68. Wang, X. et al. Atmospheric microplastic over the South China Sea and East Indian Ocean: abundance, distribution and source. J. Hazard. Mater. 389, 121846 (2020).

    Article  Google Scholar 

  69. Liu, K. et al. Consistent transport of terrestrial microplastics to the ocean through atmosphere. Environ. Sci. Technol. 53, 10612–10619 (2019). This work quantifies marine-atmospheric MP concentrations and models their atmospheric transport from potential terrestrial sources.

    Article  Google Scholar 

  70. Ding, Y. et al. The abundance and characteristics of atmospheric microplastic deposition in the northwestern South China Sea in the fall. Atmos. Environ. 253, 118389 (2021).

    Article  Google Scholar 

  71. Modini, R. L., Harris, B. & Ristovski, Z. The organic fraction of bubble-generated, accumulation mode sea spray aerosol (SSA). Atmos. Chem. Phys. 10, 2867–2877 (2010).

    Article  Google Scholar 

  72. Cornwell, G. C. et al. Ejection of dust from the ocean as a potential source of marine ice nucleating particles. J. Geophys. Res. Atmos. 125, 0–3 (2020).

    Article  Google Scholar 

  73. Lehmann, M. & Gekle, S. in MICRO 2020 (eds Baztan, J. et al.) 334143 (Springer, 2020).

  74. Abbasi, S. et al. Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County, Iran. Environ. Pollut. 244, 153–164 (2019). This paper quantifies atmospheric MP in a city along the coastal environment of the Persian Gulf.

    Article  Google Scholar 

  75. Dris, R., Gasperi, J., Saad, M., Mirande, C. & Tassin, B. Synthetic fibers in atmospheric fallout: a source of microplastics in the environment? Mar. Pollut. Bull. 104, 290–293 (2016). This is seminal research on atmospheric MP, quantifying MP fibre deposition in Paris.

    Article  Google Scholar 

  76. Dris, R., Gasperi, J. & Tassin, B. in Freshwater Microplastics: The Handbook of Environmental Chemistry (eds Lambert, S. & Wagber, M.) 69–83 (Springer, 2018).

  77. Boucher, J. & Friot, D. Primary microplastics in the oceans: a global evaluation of sources (IUCN, 2017).

  78. Liss, P. S. Microplastics: all up in the air? Mar. Pollut. Bull. 153, 110952 (2020).

    Article  Google Scholar 

  79. Garside, M. Production of plastics worldwide from 1950 to 2018 (Statista, 2019).

  80. Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).

    Article  Google Scholar 

  81. Sun, H., Jiao, R. & Wang, D. The difference of aggregation mechanism between microplastics and nanoplastics: role of Brownian motion and structural layer force. Environ. Pollut. 268, 115942 (2021).

    Article  Google Scholar 

  82. Fotopoulou, K. N. & Karapanagioti, H. K. Surface properties of beached plastic pellets. Mar. Environ. Res. 81, 70–77 (2012).

    Article  Google Scholar 

  83. dos Santos Galvão, L., Fernandes, E. M. S., Ferreira, R. R., dos Santos Rosa, D. & Wiebeck, H. Critical steps for microplastics characterization from the atmosphere. J. Hazard. Mater. 424, 127668 (2022).

    Article  Google Scholar 

  84. Chen, G., Fu, Z., Yang, H. & Wang, J. An overview of analytical methods for detecting microplastics in the atmosphere. Trends Anal. Chem. 130, 115981 (2020).

    Article  Google Scholar 

  85. Primpke, S., Fischer, M., Lorenz, C., Gerdts, G. & Scholz-Böttcher, B. M. Comparison of pyrolysis gas chromatography/mass spectrometry and hyperspectral FTIR imaging spectroscopy for the analysis of microplastics. Anal. Bioanal. Chem. 412, 8283–8298 (2020).

    Article  Google Scholar 

  86. Song, Y. K. et al. A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples. Mar. Pollut. Bull. 93, 202–209 (2015).

    Article  Google Scholar 

  87. Knobloch, E. et al. Comparison of deposition sampling methods to collect airborne microplastics in Christchurch, New Zealand. Water Air Soil. Pollut. 232, 1–10 (2021).

    Article  Google Scholar 

  88. Allen, S. et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 12, 339–344 (2019).

    Article  Google Scholar 

  89. Brahney, J. et al. A new sampler for the collection and retrieval of dry dust deposition. Aeolian Res. 45, 100600 (2020).

    Article  Google Scholar 

  90. Goßmann, I., Halbach, M. & Scholz-Böttcher, B. M. Car and truck tire wear particles in complex environmental samples — a quantitative comparison with “traditional” microplastic polymer mass loads. Sci. Total Environ. 773, 145667 (2021).

    Article  Google Scholar 

  91. Youssef, F., Erpul, G., Bogman, P., Cornelis, W. M. & Gabriels, D. Determination of efficiency of Vaseline slide and Wilson and Cooke sediment traps by wind tunnel experiments. Environ. Geol. 55, 741–750 (2008).

    Article  Google Scholar 

  92. Duce, R. A. in Chemical Oceanography Vol. 10 (Academic, 1989).

  93. Berny, A., Deike, L., Séon, T. & Popinet, S. Role of all jet drops in mass transfer from bursting bubbles. Phys. Rev. Fluids 5, 33605 (2020).

    Article  Google Scholar 

  94. Sha, B., Johansson, J. H., Benskin, J. P., Cousins, I. T. & Salter, M. E. Influence of water concentrations of perfluoroalkyl acids (PFAAs) on their size-resolved enrichment in nascent sea spray aerosols. Environ. Sci. Technol. 55, 9489–9497 (2021).

    Article  Google Scholar 

  95. Fasching, J. L., Courant, R. A., Duce, R. A. & Piotrowicz, S. R. A new surface microlayer sampler utilizing the bubble microtome. J. Rech. Atmos. 8, 649–652 (1974). This paper describes a unique methodological design to sample aerosols and particles emitted from the marine surface and the marine microlayer.

    Google Scholar 

  96. Stokes, M. D. et al. A marine aerosol reference tank system as a breaking wave analogue for the production of foam and sea-spray aerosols. Atmos. Meas. Tech. 6, 1085–1094 (2013).

    Article  Google Scholar 

  97. Prather, K. A. et al. Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol. Proc. Natl Acad. Sci. USA 110, 7550–7555 (2013). This is an assessment of ocean sea spray aerosols within a laboratory setting to unravel the complexity of chemical conentrations, flux and exchange.

    Article  Google Scholar 

  98. Schwaferts, C., Niessner, R., Elsner, M. & Ivleva, N. P. Methods for the analysis of submicrometer- and nanoplastic particles in the environment. Trends Anal. Chem. 112, 52–65 (2019).

    Article  Google Scholar 

  99. Mariano, S., Tacconi, S., Fidaleo, M., Rossi, M. & Dini, L. Micro and nanoplastics identification: classic methods and innovative detection techniques. Front. Toxicol. 3, 636640 (2021).

    Article  Google Scholar 

  100. Xu, J. L., Thomas, K. V., Luo, Z. & Gowen, A. A. FTIR and Raman imaging for microplastics analysis: state of the art, challenges and prospects. Trends Anal. Chem. 119, 115629 (2019).

    Article  Google Scholar 

  101. Zheng, Y. et al. Comparative study of three sampling methods for microplastics analysis in seawater. Sci. Total Environ. 765, 144495 (2021).

    Article  Google Scholar 

  102. Cowger, W. Reporting requirements to increase the reproducibility and comparability of research on microplastics. Appl. Spectrosc. 74, 1066–1077 (2020).

    Article  Google Scholar 

  103. Brander, S. M. et al. Sampling and QA/QC: a guide for scientists investigating the occurrence of microplastics across matrices. Appl. Spectrosc. 74, 1099–1125 (2020).

    Article  Google Scholar 

  104. Ivleva, N. P. Chemical analysis of microplastics and nanoplastics: challenges, advanced methods, and perspectives. Chem. Rev. 121, 11886–11936 (2021).

    Article  Google Scholar 

  105. Cai, H. et al. Analysis of environmental nanoplastics: progress and challenges. Chem. Eng. J. 410, 128208 (2021).

    Article  Google Scholar 

  106. Materić, D., Ludewig, E., Xu, K., Röckmann, T. & Holzinger, R. Brief communication: analysis of organic matter in surface snow by PTR-MS — implications for dry deposition dynamics in the Alps. Cryosphere 13, 297–307 (2019).

    Article  Google Scholar 

  107. Joint Group of Experts on Scientific Aspects of Marine Environmental Protection. Guidelines for the monitoring and assessment of plastic litter in the ocean (GESAMP, 2019).

  108. Wright, S. L., Gouin, T., Koelmans, A. A. & Scheuermann, L. Development of screening criteria for microplastic particles in air and atmospheric deposition: critical review and applicability towards assessing human exposure. Micropl. Nanopl. 1, 6 (2021). This is an assessment and comparison of field and laboratory methodologies of atmospheric MP research, considering blanks, sample contamination, preparation and analysis protocols.

    Article  Google Scholar 

  109. Wright, S. L., Ulke, J., Font, A., Chan, K. L. & Kelly, F. J. Atmospheric microplastic deposition in an urban environment and an evaluation of transport. Environ. Int. 136, 105411 (2020).

    Article  Google Scholar 

  110. Miyamoto, K., Taga, H., Akita, T. & Yamashita, C. Simple method to measure the aerodynamic size distribution of porous particles generated on lyophilizate for dry powder inhalation. Pharmaceutics 12, 976 (2020).

    Article  Google Scholar 

  111. Hidalgo-Ruz, V., Gutow, L., Thompson, R. C. & Thiel, M. Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ. Sci. Technol. 46, 3060–3075 (2012).

    Article  Google Scholar 

  112. Zarfl, C. Promising techniques and open challenges for microplastic identification and quantification in environmental matrices. Anal. Bioanal. Chem. 411, 3743–3756 (2019).

    Article  Google Scholar 

  113. Stock, F. et al. in Plastics in the Aquatic Environment — Part I. The Handbook of Environmental Chemistry (eds Stock, F., Reifferscheid, G., Brennholt, N. & Kostianaia, E.) 13–42 (Springer, 2020).

  114. Joint Group of Experts on Scientific Aspects of Marine Environmental Protection. Proceedings of the GESAMP International Workshop on assessing the risks associated with plastics and microplastics in the marine environment (GESAMP, 2020).

  115. Rose, C. et al. Seasonality of the particle number concentration and size distribution: a global analysis retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories. Atmos. Chem. Phys. 21, 17185–17223 (2021).

    Article  Google Scholar 

  116. World Meteorological Organization. WMO Global Atmosphere Watch (GAW) implementation plan: 2016-2023 (WMO, 2017).

  117. Laj, P. et al. A global analysis of climate-relevant aerosol properties retrieved from the network of GAW near-surface observatories. Atmos. Meas. Tech. 13, 4353–4392 (2020). This paper presents GAW programme research, with a comprehensive global assessment and representation of aerosol properties.

    Article  Google Scholar 

  118. Vet, R. et al. A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmos. Environ. 93, 3–100 (2014).

    Article  Google Scholar 

  119. Prospero, J. M., Savoie, D. L. & Duce, R. A. Particulate nitrate and non-sea-salt sulfate in the boundary layer over the Pacific Ocean. Atmos. Environ. 20, 2074–2075 (1986).

    Article  Google Scholar 

  120. Gagosian, R. B., Peltzer, E. T. & Zafiriou, O. C. Atmospheric transport of continentally derived lipids to the tropical North Pacific. Nature 291, 312–314 (1981).

    Article  Google Scholar 

  121. Uematsu, M. et al. Transport of mineral aerosol from Asia over the North Pacific ocean. J. Geophys. Res. 88, 5343–5352 (1983).

    Article  Google Scholar 

  122. Uematsu, M., Duce, R. A. & Prospero, J. M. Deposition of atmospheric mineral particles in the North Pacific Ocean. J. Atmos. Chem. 3, 123–138 (1985). This paper is a presentation of marine-atmospheric particle deposition across the North Pacific Ocean as part of the international SEAREX Asian Dust Study Network.

    Article  Google Scholar 

  123. He, Y. & Mason, R. P. Comparison of reactive gaseous mercury measured by KCl-coated denuders and cation exchange membranes during the Pacific GEOTRACES GP15 expedition. Atmos. Environ. 244, 117973 (2021).

    Article  Google Scholar 

  124. Collaud Coen, M. et al. Multidecadal trend analysis of in situ aerosol radiative properties around the world. Atmos. Chem. Phys. 20, 8867–8908 (2020).

    Article  Google Scholar 

  125. Baker, A. R. & Jickells, T. D. Atmospheric deposition of soluble trace elements along the Atlantic Meridional Transect (AMT). Prog. Oceanogr. 158, 41–51 (2017). This is an assessment of the anthropogenic versus crustal sourced aerosols in the North and South Atlantic Ocean as part of the Atlantic Meridional Transect programme.

    Article  Google Scholar 

  126. Kanitz, T., Ansmann, A., Engelmann, R. & Althausen, D. North–south cross-sections of the vertical aerosol distribution over the Atlantic Ocean from multiwavelength Raman/polarization lidar during Polarstern cruises. J. Geophys. Res. Atmos. 118, 2643–2655 (2013).

    Article  Google Scholar 

  127. West, J. S. & Kimber, R. B. E. Innovations in air sampling to detect plant pathogens. Ann. Appl. Biol. 166, 4–17 (2015).

    Article  Google Scholar 

  128. Brosy, C. et al. Simultaneous multicopter-based air sampling and sensing of meteorological variables. Atmos. Meas. Tech. 10, 2773–2784 (2017).

    Article  Google Scholar 

  129. Weiss, L. et al. The missing ocean plastic sink: gone with the rivers. Science 373, 107–111 (2021).

    Article  Google Scholar 

  130. Sebille, E. V. et al. A global inventory of small floating plastic debris. Environ. Res. Lett. 10, 124006 (2015).

    Article  Google Scholar 

  131. Hartmann, N. B. et al. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ. Sci. Technol. 53, 1039–1047 (2019).

    Article  Google Scholar 

  132. Frias, J. P. G. L. & Nash, R. Microplastics: finding a consensus on the definition. Mar. Pollut. Bull. 138, 145–147 (2019).

    Article  Google Scholar 

  133. Kooi, M. & Koelmans, A. A. Simplifying microplastic via continuous probability distributions for size, shape,and density. Environ. Sci. Technol. Lett. 6, 551–557 (2019).

    Article  Google Scholar 

  134. Horton, A. A. & Dixon, S. J. Microplastics: an introduction to environmental transport processes. Wiley Interdiscip. Rev. Water 5, e1268 (2018).

    Article  Google Scholar 

  135. Hernandez, L. M., Yousefi, N. & Tufenkji, N. Are there nanoplastics in your personal care products? Environ. Sci. Technol. Lett. 4, 280–285 (2017).

    Article  Google Scholar 

  136. Hassan, B., Islam, G. & Anma, H. Applications of nanotechnology in textiles: a review. Adv. Res. Text. Eng. Open 4, 1038 (2019).

    Google Scholar 

  137. Mustafa, K., Kanwal, J. & Musaddiq, S. in Waste Recycling Technologies for Nanomaterials Manufacturing (eds Makhlouf, A. S. H. & Ali, G. A. M.) (Springer, 2021).

  138. Scungio, M., Vitanza, T., Stabile, L., Buonanno, G. & Morawska, L. Characterization of particle emission from laser printers. Sci. Total Environ. 586, 623–630 (2017).

    Article  Google Scholar 

  139. Gigault, J. et al. Nanoplastics are neither microplastics nor engineered nanoparticles. Nat. Nanotechnol. 16, 501–507 (2021).

    Article  Google Scholar 

  140. Kim, D. H., Lu, N., Ghaffari, R. & Rogers, J. A. Inorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics. npg Asia Mater. 4, 1–9 (2012).

    Article  Google Scholar 

  141. Waldman, W. R. & Rillig, M. C. Microplastic research should embrace the complexity of secondary particles. Environ. Sci. Technol. 54, 7751–7753 (2020).

    Article  Google Scholar 

  142. Hadri, H., Gigault, J., Maxit, B., Grassl, B. & Reynard, S. Nanoplastic from mechanically degrated primary and secondary microplastics for environmental assessments. NanoImpact 17, 100206 (2019).

    Article  Google Scholar 

  143. Zhang, W., Dong, Z., Zhu, L., Hou, Y. & Qiu, Y. Direct observation of the release of nanoplastics from commercially recycled plastics with correlative Raman imaging and scanning electron microscopy. ACS Nano 14, 7920–7926 (2020).

    Article  Google Scholar 

  144. Verschoor, A., Poorter, L. de, Roex, E. & Bellert, B. Quick scan and prioritization of microplastic sources and emissions (RIVM, 2014).

  145. Browne, M. A. in Marine Anthropogenic Litter (eds Bergmann, M., Klages, M. & Gutow, L.) 229–244 (Springer, 2015).

  146. Simmerman, C. B. & Coleman Wasik, J. K. The effect of urban point source contamination on microplastic levels in water and organisms in a cold-water stream. Limnol. Oceanogr. Lett. 5, 137–146 (2020).

    Article  Google Scholar 

  147. Su, L., Nan, B., Craig, N. J. & Pettigrove, V. Temporal and spatial variations of microplastics in roadside dust from rural and urban Victoria, Australia: implications for diffuse pollution. Chemosphere 252, 126567 (2020).

    Article  Google Scholar 

  148. Campanale, C. et al. Microplastics pollution in the terrestrial environments: poorly known diffuse sources and implications for plants. Sci. Total Environ. 805, 150431 (2022).

    Article  Google Scholar 

  149. Scheurer, M. & Bigalke, M. Microplastics in Swiss floodplain soils. Environ. Sci. Technol. 52, 3591–3598 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This paper resulted from deliberations at the virtual workshop The Atmospheric Input of Chemicals to the Ocean, organized by the Joint Group of Experts on Scientific Aspects of Marine Environmental Protection (GESAMP; www.gesamp.org) Working Group 38 (led and supported by the World Meteorological Organization, https://public.wmo.int/en), and GESAMP Working Group 40 (co-led and supported by the Intergovernmental Oceanographic Commission of UNESCO, https://ioc.unesco.org, and the United Nations Environment Programme, http://www.unep.org). The authors thank the Global Atmosphere Watch and the World Weather Research Programme of the World Meteorological Organization for their workshop support, and the International Atomic Energy Agency, which is grateful for the support provided to its Marine Environment Laboratories by the Government of the Principality of Monaco. D.A. was supported by the Leverhulme Trust through grant ECF-2019-306 and Carnegie Trust (RIG009318). S.A. was supported by IGI funding through the University of Birmingham and an OFI fellowship. L.E.R. was supported by the Royal Society of New Zealand Marsden Fund (contract MFP-UOC1903). A.G.M. was supported by NERC through the Current and Future Effects of Microplastics on Marine Ecosystems (MINIMISE) grant (NE/S004831/1). W.J.S. was supported by the Ministry of Oceans and Fisheries, Korea (Land/sea-based input and fate of microplastics in the marine environment). S.W. is funded by the Medical Research Council (MRC), MRC Centre for Environment and Health (MR/R026521/1), and this work is in part funded by the MRC, National Institute for Health Research (NIHR) Health Protection Research Unit in Environmental Exposures and Health, a partnership between UK Health Security Agency (UKHSA) and Imperial College London. D.M. acknowledges support from the Dutch Research Council (Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)) project numbers OCENW.XS2.078 and OCENW.XS21.2.042. This work also contributes to the Pollution Observatory of the Helmholtz Association-funded programme FRAM (Frontiers in Arctic Marine Research). This publication is Eprint ID 54444 of the Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung.

Author information

Authors and Affiliations

Authors

Contributions

D.A. and S.A. are the lead authors; they undertook the data research, provided substantial contribution to the discussion of content, and undertook the writing and editing of this article. R.A.D. and J.M.P. substantially contributed to the discussion of the content and writing of this article, T.J. and P. Liss substantially contributed to the discussion of the content, and M.B., P. Laj and L.E.R. substantially contributed to the writing. M.K., S.E. and N.E. performed data research, and all authors contributed to the review and editing of this article.

Corresponding author

Correspondence to Deonie Allen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks J. B. Stuut, A. Horton, T. Walker, and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allen, D., Allen, S., Abbasi, S. et al. Microplastics and nanoplastics in the marine-atmosphere environment. Nat Rev Earth Environ 3, 393–405 (2022). https://doi.org/10.1038/s43017-022-00292-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00292-x

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene