Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A planetary boundary for green water

Abstract

Green water — terrestrial precipitation, evaporation and soil moisture — is fundamental to Earth system dynamics and is now extensively perturbed by human pressures at continental to planetary scales. However, green water lacks explicit consideration in the existing planetary boundaries framework that demarcates a global safe operating space for humanity. In this Perspective, we propose a green water planetary boundary and estimate its current status. The green water planetary boundary can be represented by the percentage of ice-free land area on which root-zone soil moisture deviates from Holocene variability for any month of the year. Provisional estimates of departures from Holocene-like conditions, alongside evidence of widespread deterioration in Earth system functioning, indicate that the green water planetary boundary is already transgressed. Moving forward, research needs to address and account for the role of root-zone soil moisture for Earth system resilience in view of ecohydrological, hydroclimatic and sociohydrological interactions.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: The conceptual framework of a green water planetary boundary.
Fig. 2: Green water and associated non-linear relationships.
Fig. 3: Departure from the envelope of baseline variability.
Fig. 4: Balance between green-water-driven stabilizing and amplifying feedbacks.
Fig. 5: Current status and boundary position of the green water planetary boundary.

Data availability

The LPJmL model outputs and data in Fig. 3 can be accessed at https://doi.org/10.5281/zenodo.6339619. The MPI-ESM1.2-LR data can be downloaded at https://esgf-node.llnl.gov/projects/cmip6/.

References

  1. Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    Article  Google Scholar 

  2. Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015). Revises and updates the planetary boundaries framework, including a regional-scale planetary boundary for freshwater use based on environmental flow requirements.

    Article  Google Scholar 

  3. Steffen, W. et al. Trajectories of the Earth System in the Anthropocene. Proc. Natl Acad. Sci. USA 115, 8252–8259 (2018).

    Article  Google Scholar 

  4. Gerten, D. et al. Towards a revised planetary boundary for consumptive freshwater use: role of environmental flow requirements. Curr. Opin. Environ. Sustain. 5, 551–558 (2013).

    Article  Google Scholar 

  5. Gleeson, T. et al. Illuminating water cycle modifications and Earth system resilience in the Anthropocene. Water Resour. Res. 56, e2019WR024957 (2020). Provides an overview of the many roles of the water cycle for Earth system functioning and evidence-based justification for a water planetary boundary that represents more than blue water.

    Article  Google Scholar 

  6. Gleeson, T. et al. The water planetary boundary: interrogation and revision. One Earth 2, 223–234 (2020).

    Article  Google Scholar 

  7. Karlberg, L., Rockström, J., Falkenmark, M. & Others. in Rainfed Agriculture: Unlocking the Potential (eds Wani, S. P., Rockström, J. & Oweis, T.) 44–57 (CABI, 2009).

  8. Levy, M. C., Lopes, A. V., Cohn, A., Larsen, L. G. & Thompson, S. E. Land use change increases streamflow across the arc of deforestation in Brazil. Geophys. Res. Lett. 45, 3520–3530 (2018).

    Article  Google Scholar 

  9. Falkenmark, M., Wang-Erlandsson, L. & Rockström, J. Understanding of water resilience in the Anthropocene. J. Hydrol. X 2, 100009 (2019).

    Article  Google Scholar 

  10. Staal, A. et al. Hysteresis of tropical forests in the 21st century. Nat. Commun. 11, 4978 (2020).

    Article  Google Scholar 

  11. Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).

    Article  Google Scholar 

  12. Gordon, L. J., Peterson, G. D. & Bennett, E. M. Agricultural modifications of hydrological flows create ecological surprises. Trends Ecol. Evol. 23, 211–219 (2008).

    Article  Google Scholar 

  13. Liu, J., Wang, B., Cane, M. A., Yim, S.-Y. & Lee, J.-Y. Divergent global precipitation changes induced by natural versus anthropogenic forcing. Nature 493, 656–659 (2013).

    Article  Google Scholar 

  14. Miralles, D. G., Brutsaert, W., Dolman, A. J. & Gash, J. H. On the use of the term ‘evapotranspiration’. Water Resour. Res. 56, e2020WR028055 (2020).

    Article  Google Scholar 

  15. Berg, A., Lintner, B. R., Findell, K. & Giannini, A. Uncertain soil moisture feedbacks in model projections of Sahel precipitation. Geophys. Res. Lett. 44, 6124–6133 (2017).

    Article  Google Scholar 

  16. Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev. 99, 125–161 (2010).

    Article  Google Scholar 

  17. Tuinenburg, O. A. Atmospheric Effects of Irrigation in Monsoon Climate: The Indian Subcontinent. PhD thesis, Wageningen Univ. (2013).

  18. Green, T. R. et al. Beneath the surface of global change: Impacts of climate change on groundwater. J. Hydrol. 405, 532–560 (2011).

    Article  Google Scholar 

  19. Del Grosso, S. et al. Global potential net primary production predicted from vegetation class, precipitation, and temperature. Ecology 89, 2117–2126 (2008).

    Article  Google Scholar 

  20. Shi, P. et al. Urbanization and air quality as major drivers of altered spatiotemporal patterns of heavy rainfall in China. Landsc. Ecol. 32, 1723–1738 (2017).

    Article  Google Scholar 

  21. Runyan, C. W., D’Odorico, P. & Lawrence, D. Physical and biological feedbacks of deforestation. Rev. Geophys. 50, RG4006 (2012).

    Article  Google Scholar 

  22. Wang-Erlandsson, L. et al. Remote land use impacts on river flows through atmospheric teleconnections. Hydrol. Earth Syst. Sci. 22, 4311–4328 (2018).

    Article  Google Scholar 

  23. Lo, M.-H. & Famiglietti, J. S. Irrigation in California’s Central Valley strengthens the southwestern U.S. water cycle. Geophys. Res. Lett. 40, 301–306 (2013).

    Article  Google Scholar 

  24. Lawrence, D. & Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 5, 27–36 (2015).

    Article  Google Scholar 

  25. Pitman, A. J. et al. Effects of land cover change on temperature and rainfall extremes in multi-model ensemble simulations. Earth Syst. Dyn. 3, 213–231 (2012).

    Article  Google Scholar 

  26. Sillmann, J. et al. Extreme wet and dry conditions affected differently by greenhouse gases and aerosols. NPJ Clim. Atmos. Sci. 2, 24 (2019).

    Article  Google Scholar 

  27. Pascale, S., Lucarini, V., Feng, X., Porporato, A. & ul Hasson, S. Projected changes of rainfall seasonality and dry spells in a high greenhouse gas emissions scenario. Clim. Dyn. 46, 1331–1350 (2016).

    Article  Google Scholar 

  28. Rosenfeld, D. et al. Flood or drought: how do aerosols affect precipitation? Science 321, 1309–1313 (2008).

    Article  Google Scholar 

  29. Fowler, H. J. et al. Anthropogenic intensification of short-duration rainfall extremes. Nat. Rev. Earth Environ. 2, 107–122 (2021).

    Article  Google Scholar 

  30. Zhang, W. et al. Increasing precipitation variability on daily-to-multiyear time scales in a warmer world. Sci. Adv. 7, eabf8021 (2021).

    Article  Google Scholar 

  31. Chiang, F., Mazdiyasni, O. & AghaKouchak, A. Evidence of anthropogenic impacts on global drought frequency, duration, and intensity. Nat. Commun. 12, 2754 (2021).

    Article  Google Scholar 

  32. Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).

    Article  Google Scholar 

  33. Hirota, M., Holmgren, M., Van Nes, E. H. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).

    Article  Google Scholar 

  34. Staver, C. A., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).

    Article  Google Scholar 

  35. Vico, G., Dralle, D., Feng, X., Thompson, S. & Manzoni, S. How competitive is drought deciduousness in tropical forests? A combined eco-hydrological and eco-evolutionary approach. Environ. Res. Lett. 12, 065006 (2017).

    Article  Google Scholar 

  36. Duke, N. C., Field, C., Mackenzie, J. R., Meynecke, J.-O. & Wood, A. L. Rainfall and its possible hysteresis effect on the proportional cover of tropical tidal-wetland mangroves and saltmarsh–saltpans. Mar. Freshw. Res. 70, 1047–1055 (2019).

    Article  Google Scholar 

  37. Neves, D. M. et al. Evolutionary diversity in tropical tree communities peaks at intermediate precipitation. Sci. Rep. 10, 1188 (2020).

    Article  Google Scholar 

  38. Liu, Z. et al. Precipitation thresholds regulate net carbon exchange at the continental scale. Nat. Commun. 9, 3596 (2018).

    Article  Google Scholar 

  39. Guan, K. et al. Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat. Geosci. 8, 284–289 (2015).

    Article  Google Scholar 

  40. Souza, R. et al. Vegetation response to rainfall seasonality and interannual variability in tropical dry forests. Hydrol. Process. 30, 3583–3595 (2016).

    Article  Google Scholar 

  41. Rohr, T., Manzoni, S., Feng, X., Menezes, R. S. C. & Porporato, A. Effect of rainfall seasonality on carbon storage in tropical dry ecosystems. J. Geophys. Res. Biogeosci. 118, 1156–1167 (2013).

    Article  Google Scholar 

  42. Vezzoli, R., De Michele, C., Pavlopoulos, H. & Scholes, R. J. Dryland ecosystems: The coupled stochastic dynamics of soil water and vegetation and the role of rainfall seasonality. Phys. Rev. E 77, 051908 (2008).

    Article  Google Scholar 

  43. Li, C. et al. Drivers and impacts of changes in China’s drylands. Nat. Rev. Earth Environ. 2, 858–873 (2021).

    Article  Google Scholar 

  44. Aguirre-Gutiérrez, J. et al. Long-term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetic homogeneity. Nat. Commun. 11, 3346 (2020).

    Article  Google Scholar 

  45. Anderson, L. O. et al. Vulnerability of Amazonian forests to repeated droughts. Philos. Trans. R. Soc. B: Biol. Sci. 373, 20170411 (2018).

    Article  Google Scholar 

  46. Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020). Extensive observation-based analyses show that net carbon uptake has peaked in the Amazon, and, more recently, also in African rainforests.

    Article  Google Scholar 

  47. Dannenberg, M. P., Wise, E. K. & Smith, W. K. Reduced tree growth in the semiarid United States due to asymmetric responses to intensifying precipitation extremes. Sci. Adv. 5, eaaw0667 (2019).

    Article  Google Scholar 

  48. Gherardi, L. A. & Sala, O. E. Enhanced precipitation variability decreases grass- and increases shrub-productivity. Proc. Natl Acad. Sci. USA 112, 12735–12740 (2015).

    Article  Google Scholar 

  49. Eekhout, J. P. C., Hunink, J. E., Terink, W. & de Vente, J. Why increased extreme precipitation under climate change negatively affects water security. Hydrol. Earth Syst. Sci. 22, 5935–5946 (2018).

    Article  Google Scholar 

  50. Sharma, A., Wasko, C. & Lettenmaier, D. P. If precipitation extremes are increasing, why aren’t floods? Water Resour. Res. 54, 8545–8551 (2018).

    Article  Google Scholar 

  51. Merz, B. et al. Causes, impacts and patterns of disastrous river floods. Nat. Rev. Earth Environ. 2, 592–609 (2021).

    Article  Google Scholar 

  52. Sterling, S. M., Ducharne, A. & Polcher, J. The impact of global land-cover change on the terrestrial water cycle. Nat. Clim. Change 3, 385–390 (2013).

    Article  Google Scholar 

  53. Gordon, L. J. et al. Human modification of global water vapor flows from the land surface. Proc. Natl Acad. Sci. USA 102, 7612–7617 (2005).

    Article  Google Scholar 

  54. Rost, S., Gerten, D. & Heyder, U. Human alterations of the terrestrial water cycle through land management. Adv. Geosci. 18, 43–50 (2008).

    Article  Google Scholar 

  55. Zhang, K. et al. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Sci. Rep. 5, 15956 (2015).

    Article  Google Scholar 

  56. Cheng, L. et al. Recent increases in terrestrial carbon uptake at little cost to the water cycle. Nat. Commun. 8, 110 (2017).

    Article  Google Scholar 

  57. Ainsworth, E. A. & Rogers, A. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant. Cell Environ. 30, 258–270 (2007).

    Article  Google Scholar 

  58. Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).

    Article  Google Scholar 

  59. Keys, P. W., Wang-Erlandsson, L. & Gordon, L. J. Revealing invisible water: moisture recycling as an ecosystem service. PLoS One 11, e0151993 (2016).

    Article  Google Scholar 

  60. Thiery, W. et al. Present-day irrigation mitigates heat extremes. J. Geophys. Res. Atmos. 122, 1403–1422 (2017).

    Article  Google Scholar 

  61. Thiery, W. et al. Warming of hot extremes alleviated by expanding irrigation. Nat. Commun. 11, 290 (2020).

    Article  Google Scholar 

  62. Kang, S. & Eltahir, E. A. B. North China Plain threatened by deadly heatwaves due to climate change and irrigation. Nat. Commun. 9, 2894 (2018).

    Article  Google Scholar 

  63. Raymond, C., Matthews, T. & Horton, R. M. The emergence of heat and humidity too severe for human tolerance. Sci. Adv. 6, eaaw1838 (2020).

    Article  Google Scholar 

  64. Zemp, D. C. et al. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nat. Commun. 8, 14681 (2017).

    Article  Google Scholar 

  65. Staal, A. et al. Forest-rainfall cascades buffer against drought across the Amazon. Nat. Clim. Change 8, 539–543 (2018).

    Article  Google Scholar 

  66. Lee, J.-E., Lintner, B. R., Kevin Boyce, C. & Lawrence, P. J. Land use change exacerbates tropical South American drought by sea surface temperature variability. Geophys. Res. Lett. 38, L19706 (2011).

    Google Scholar 

  67. Boers, N., Marwan, N., Barbosa, H. M. J. & Kurths, J. A deforestation-induced tipping point for the South American monsoon system. Sci. Rep. 7, 41489 (2017).

    Article  Google Scholar 

  68. Bruijnzeel, L. A. Hydrological functions of tropical forests: not seeing the soil for the trees? Agric. Ecosyst. Environ. 104, 185–228 (2004).

    Article  Google Scholar 

  69. van Luijk, G., Cowling, R. M., Riksen, M. J. P. M. & Glenday, J. Hydrological implications of desertification: Degradation of South African semi-arid subtropical thicket. J. Arid Environ. 91, 14–21 (2013).

    Article  Google Scholar 

  70. Robinson, D. A. et al. Experimental evidence for drought induced alternative stable states of soil moisture. Sci. Rep. 6, 20018 (2016). Manipulation experiments demonstrate the presence of drought-driven irreversible tipping points of soil moisture states, in support of previous modelling and observation-based studies.

    Article  Google Scholar 

  71. Borrelli, P. et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 8, 2013 (2017).

    Article  Google Scholar 

  72. Panagos, P. et al. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 54, 438–447 (2015).

    Article  Google Scholar 

  73. Bonfils, C. J. W. et al. Human influence on joint changes in temperature, rainfall and continental aridity. Nat. Clim. Change 10, 726–731 (2020).

    Article  Google Scholar 

  74. Samaniego, L. et al. Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Change 8, 421–426 (2018).

    Article  Google Scholar 

  75. Budyko, M. I. Climate and Life (Academic Press, 1974).

  76. Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA 106, 20610–20615 (2009).

    Article  Google Scholar 

  77. Saatchi, S. et al. Persistent effects of a severe drought on Amazonian forest canopy. Proc. Natl Acad. Sci. USA 110, 565–570 (2013).

    Article  Google Scholar 

  78. Murray-Tortarolo, G. et al. The dry season intensity as a key driver of NPP trends. Geophys. Res. Lett. 43, 2632–2639 (2016).

    Article  Google Scholar 

  79. Nepstad, D. C., Tohver, I. M., Ray, D., Moutinho, P. & Cardinot, G. Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88, 2259–2269 (2007).

    Article  Google Scholar 

  80. Meir, P. et al. Threshold responses to soil moisture deficit by trees and soil in tropical rain forests: insights from field experiments. Bioscience 65, 882–892 (2015).

    Article  Google Scholar 

  81. Brookshire, E. N. J. & Weaver, T. Long-term decline in grassland productivity driven by increasing dryness. Nat. Commun. 6, 7148 (2015).

    Article  Google Scholar 

  82. Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2019).

    Article  Google Scholar 

  83. Berg, A. & McColl, K. A. No projected global drylands expansion under greenhouse warming. Nat. Clim. Change 11, 331–337 (2021).

    Article  Google Scholar 

  84. Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019). Shows that soil moisture variability substantially reduces the carbon land uptake due to non-linear ecological responses to water availability and land–atmosphere interactions.

    Article  Google Scholar 

  85. Quan, Q. et al. Water scaling of ecosystem carbon cycle feedback to climate warming. Sci. Adv. 5, eaav1131 (2019).

    Article  Google Scholar 

  86. Stocker, B. D. et al. Quantifying soil moisture impacts on light use efficiency across biomes. New Phytol. 218, 1430–1449 (2018).

    Article  Google Scholar 

  87. Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).

    Article  Google Scholar 

  88. Kerr, D. D. & Ochsner, T. E. Soil organic carbon more strongly related to soil moisture than soil temperature in temperate grasslands. Soil Sci. Soc. Am. J. 84, 587–596 (2020).

    Article  Google Scholar 

  89. Ahlstrom, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).

    Article  Google Scholar 

  90. Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).

    Article  Google Scholar 

  91. Zhang, W. et al. Tundra shrubification and tree-line advance amplify arctic climate warming: results from an individual-based dynamic vegetation model. Environ. Res. Lett. 8, 034023 (2013).

    Article  Google Scholar 

  92. Bragazza, L., Parisod, J., Buttler, A. & Bardgett, R. D. Biogeochemical plant–soil microbe feedback in response to climate warming in peatlands. Nat. Clim. Change 3, 273–277 (2013).

    Article  Google Scholar 

  93. Knoblauch, C., Beer, C., Liebner, S., Grigoriev, M. N. & Pfeiffer, E.-M. Methane production as key to the greenhouse gas budget of thawing permafrost. Nat. Clim. Change 8, 309–312 (2018).

    Article  Google Scholar 

  94. Natali, S. M. et al. Permafrost thaw and soil moisture driving CO2 and CH4 release from upland tundra. J. Geophys. Res. Biogeosci. 120, 525–537 (2015).

    Article  Google Scholar 

  95. Slessarev, E. W. et al. Water balance creates a threshold in soil pH at the global scale. Nature 540, 567–569 (2016). Shows that a bimodal pattern in global soil pH distribution is regulated by annual water balance and suggests that human-driven changes in aridity can result in transitions from alkaline to acid soils, with unknown implications for soil nutrients supply and biomass production.

    Article  Google Scholar 

  96. Moreno-Jiménez, E. et al. Aridity and reduced soil micronutrient availability in global drylands. Nat. Sustain. 2, 371–377 (2019).

    Article  Google Scholar 

  97. Maestre, F. T. et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl Acad. Sci. USA 112, 15684–15689 (2015).

    Article  Google Scholar 

  98. Rabbi, S. M. F. et al. Climate and soil properties limit the positive effects of land use reversion on carbon storage in Eastern Australia. Sci. Rep. 5, 17866 (2015).

    Article  Google Scholar 

  99. Kramer, M. G. & Chadwick, O. A. Climate-driven thresholds in reactive mineral retention of soil carbon at the global scale. Nat. Clim. Change 8, 1104–1108 (2018).

    Article  Google Scholar 

  100. Seneviratne, S. I., Lüthi, D., Litschi, M. & Schär, C. Land–atmosphere coupling and climate change in Europe. Nature 443, 205–209 (2006).

    Article  Google Scholar 

  101. Whan, K. et al. Impact of soil moisture on extreme maximum temperatures in Europe. Weather Clim. Extremes 9, 57–67 (2015).

    Article  Google Scholar 

  102. Hirschi, M. et al. Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat. Geosci. 4, 17–21 (2011).

    Article  Google Scholar 

  103. Hauser, M., Orth, R. & Seneviratne, S. I. Role of soil moisture versus recent climate change for the 2010 heat wave in western Russia. Geophys. Res. Lett. 43, 2819–2826 (2016).

    Article  Google Scholar 

  104. Yang, L., Sun, G., Zhi, L. & Zhao, J. Negative soil moisture-precipitation feedback in dry and wet regions. Sci. Rep. 8, 4026 (2018).

    Article  Google Scholar 

  105. Zhou, S. et al. Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands. Nat. Clim. Change 11, 38–44 (2021).

    Article  Google Scholar 

  106. Miralles, D. G., Teuling, A. J., van Heerwaarden, C. C. & de Arellano, J. V.-G. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci. 7, 345–349 (2014).

    Article  Google Scholar 

  107. Zhang, P. et al. Abrupt shift to hotter and drier climate over inner East Asia beyond the tipping point. Science 370, 1095–1099 (2020). Analyses based on tree-ring data over the past 260 years show an abrupt shift that could potentially be explained by self-amplifying feedbacks of soil moisture deficit and surface warming, which points towards risk for an irreversible tipping point in the East Asian climate system under climate change.

    Article  Google Scholar 

  108. Wang, Y. et al. Detecting the causal effect of soil moisture on precipitation using convergent cross mapping. Sci. Rep. 8, 12171 (2018).

    Article  Google Scholar 

  109. Feng, M. et al. Understanding the resilience of soil moisture regimes. Water Resour. Res. 55, 7541–7563 (2019).

    Article  Google Scholar 

  110. Good, S. P., Moore, G. W. & Miralles, D. G. A mesic maximum in biological water use demarcates biome sensitivity to aridity shifts. Nat. Ecol. Evol. 1, 1883–1888 (2017).

    Article  Google Scholar 

  111. D’Odorico, P. & Porporato, A. Preferential states in soil moisture and climate dynamics. Proc. Natl Acad. Sci. USA 101, 8848–8851 (2004).

    Article  Google Scholar 

  112. Rodriguez-Iturbe, I., Entekhabi, D., Lee, J.-S. & Bras, R. L. Nonlinear dynamics of soil moisture at climate scales: 2. Chaotic analysis. Water Resour. Res. 27, 1907–1915 (1991).

    Article  Google Scholar 

  113. Peterson, T. J., Saft, M., Peel, M. C. & John, A. Watersheds may not recover from drought. Science 372, 745–749 (2021).

    Article  Google Scholar 

  114. Rockström, J. et al. Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc. 14, 32 (2009).

    Article  Google Scholar 

  115. Zhang, Y. et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep. 6, 19124 (2016).

    Article  Google Scholar 

  116. Coenders-Gerrits, A. M. J. et al. Uncertainties in transpiration estimates. Nature 506, E1–E2 (2014).

    Article  Google Scholar 

  117. Wang, L., Good, S. P. & Caylor, K. K. Global synthesis of vegetation control on evapotranspiration partitioning. Geophys. Res. Lett. 41, 6753–6757 (2014).

    Article  Google Scholar 

  118. Heimann, M. & Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289–292 (2008).

    Article  Google Scholar 

  119. Beck, H. E. et al. MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. 21, 589–615 (2017).

    Article  Google Scholar 

  120. Greve, P., Roderick, M. L., Ukkola, A. M. & Wada, Y. The aridity index under global warming. Environ. Res. Lett. 14, 124006 (2019).

    Article  Google Scholar 

  121. Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R. & Donohue, R. J. Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nat. Clim. Change 9, 44–48 (2018).

    Article  Google Scholar 

  122. Ghannam, K. et al. Persistence and memory timescales in root-zone soil moisture dynamics. Water Resour. Res. 52, 1427–1445 (2016).

    Article  Google Scholar 

  123. Entin, J. K. et al. Temporal and spatial scales of observed soil moisture variations in the extratropics. J. Geophys. Res. 105, 11865–11877 (2000).

    Article  Google Scholar 

  124. Famiglietti, C. A., Michalak, A. M. & Konings, A. G. Extreme wet events as important as extreme dry events in controlling spatial patterns of vegetation greenness anomalies. Environ. Res. Lett. 16, 074014 (2021).

    Article  Google Scholar 

  125. Wieners, K.-H. et al. MPI-M MPI-ESM1.2-LR model output prepared for CMIP6 CMIP historical. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.6595 (2019).

  126. Jungclaus, J. et al. MPI-M MPI-ESM1.2-LR model output prepared for CMIP6 PMIP midHolocene. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.6644 (2019).

  127. Winkler, K., Fuchs, R., Rounsevell, M. & Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 12, 2501 (2021).

    Article  Google Scholar 

  128. Kaplan, J. O., Krumhardt, K. M. & Zimmermann, N. The prehistoric and preindustrial deforestation of Europe. Quat. Sci. Rev. 28, 3016–3034 (2009).

    Article  Google Scholar 

  129. Dallmeyer, A. et al. Holocene vegetation transitions and their climatic drivers in MPI-ESM1.2. Clim. Past 17, 2481–2513 (2021).

    Article  Google Scholar 

  130. Persson, L. et al. Outside the safe operating space of the planetary boundary for novel entities. Environ. Sci. Technol. 56, 1510–1521 (2022).

    Article  Google Scholar 

  131. Jaramillo, F. & Destouni, G. Comment on ‘Planetary boundaries: Guiding human development on a changing planet’. Science 348, 1217 (2015).

    Article  Google Scholar 

  132. Campbell, B. M. et al. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecol. Soci. 22, 8 (2017).

    Article  Google Scholar 

  133. Lade, S. J. et al. Human impacts on planetary boundaries amplified by Earth system interactions. Nat. Sustain. 3, 119–128 (2020).

    Article  Google Scholar 

  134. Wang, S. et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370, 1295–1300 (2020).

    Article  Google Scholar 

  135. Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).

    Article  Google Scholar 

  136. Zhu, Z. et al. Comment on ‘Recent global decline of CO2 fertilization effects on vegetation photosynthesis’. Science 373, eabg5673 (2021).

    Article  Google Scholar 

  137. Wang, S. et al. Response to Comments on ‘Recent global decline of CO2 fertilization effects on vegetation photosynthesis’. Science 373, eabg7484 (2021).

    Article  Google Scholar 

  138. Sang, Y. et al. Comment on ‘Recent global decline of CO2 fertilization effects on vegetation photosynthesis’. Science 373, eabg4420 (2021).

    Article  Google Scholar 

  139. Frankenberg, C., Yin, Y., Byrne, B., He, L. & Gentine, P. Comment on ‘Recent global decline of CO2 fertilization effects on vegetation photosynthesis’. Science 373, eabg2947 (2021).

    Article  Google Scholar 

  140. Tagesson, T. et al. Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink. Nat. Ecol. Evol. 4, 202–209 (2020).

    Article  Google Scholar 

  141. Tuinenburg, O. A., Theeuwen, J. J. E. & Staal, A. High-resolution global atmospheric moisture connections from evaporation to precipitation. Earth Syst. Sci. Data 12, 3177–3188 (2020).

    Article  Google Scholar 

  142. Adams, M. A., Buckley, T. N. & Turnbull, T. L. Diminishing CO2-driven gains in water-use efficiency of global forests. Nat. Clim. Change 10, 466–471 (2020).

    Article  Google Scholar 

  143. Ravi, S., Breshears, D. D., Huxman, T. E. & D’Odorico, P. Land degradation in drylands: Interactions among hydrologic–aeolian erosion and vegetation dynamics. Geomorphology 116, 236–245 (2010).

    Article  Google Scholar 

  144. Miralles, D. G. et al. Contribution of water-limited ecoregions to their own supply of rainfall. Environ. Res. Lett. 11, 124007 (2016).

    Article  Google Scholar 

  145. Keys, P. W. et al. Analyzing precipitationsheds to understand the vulnerability of rainfall dependent regions. Biogeosciences 9, 733–746 (2012).

    Article  Google Scholar 

  146. Korell, L., Auge, H., Chase, J. M., Harpole, W. S. & Knight, T. M. Responses of plant diversity to precipitation change are strongest at local spatial scales and in drylands. Nat. Commun. 12, 2489 (2021).

    Article  Google Scholar 

  147. Zhou, S., Zhang, Y., Park Williams, A. & Gentine, P. Projected increases in intensity, frequency, and terrestrial carbon costs of compound drought and aridity events. Sci. Adv. 5, eaau5740 (2019).

    Article  Google Scholar 

  148. Miner, K. R. et al. Permafrost carbon emissions in a changing Arctic. Nat. Rev. Earth Environ. 3, 55–67 (2022).

    Article  Google Scholar 

  149. Ford, T. W. & Frauenfeld, O. W. Surface–atmosphere moisture interactions in the frozen ground regions of Eurasia. Sci. Rep. 6, 19163 (2016).

    Article  Google Scholar 

  150. Chen, J. M. et al. Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink. Nat. Commun. 10, 4259 (2019).

    Article  Google Scholar 

  151. Smith, W. K. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 (2016).

    Article  Google Scholar 

  152. Huntzinger, D. N. et al. Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon-climate feedback predictions. Sci. Rep. 7, 4765 (2017).

    Article  Google Scholar 

  153. Jensen, L., Eicker, A., Dobslaw, H., Stacke, T. & Humphrey, V. Long-term wetting and drying trends in land water storage derived from GRACE and CMIP5 models. J. Geophys. Res. Atmos. 124, 9808–9823 (2019).

    Article  Google Scholar 

  154. Samset, B. H., Fuglestvedt, J. S. & Lund, M. T. Delayed emergence of a global temperature response after emission mitigation. Nat. Commun. 11, 3261 (2020).

    Article  Google Scholar 

  155. te Wierik, S. A., Gupta, J., Cammeraat, E. L. H. & Artzy-Randrup, Y. A. The need for green and atmospheric water governance. Wiley Interdiscip. Rev. Water 7, e1406 (2020). Provides rationales for the need for regulating and governing human interference with green water and atmospheric water.

    Article  Google Scholar 

  156. Young, O. R. Institutional Dynamics: Emergent Patterns in International Environmental Governance (MIT Press, 2010).

  157. Schmidt, F. in Transgovernance: Advancing Sustainability Governance (ed. Meuleman, L.) 215–234 (Springer, 2013).

  158. Lal, R. et al. Soils and sustainable development goals of the United Nations: An International Union of Soil Sciences perspective. Geoderma Reg. 25, e00398 (2021).

    Article  Google Scholar 

  159. Falkenmark, M. & Rockström, J. The new blue and green water paradigm: Breaking new ground for water pesources planning and management. J. Water Resour. Plan. Manag. 132, 129–132 (2006).

    Article  Google Scholar 

  160. Borrelli, P. et al. Land use and climate change impacts on global soil erosion by water (2015-2070). Proc. Natl Acad. Sci. USA 117, 21994–22001 (2020).

    Article  Google Scholar 

  161. Evans, C. D. et al. Overriding water table control on managed peatland greenhouse gas emissions. Nature 593, 548–552 (2021).

    Google Scholar 

  162. Zipper, S. C. et al. Integrating the water planetary boundary with water management from local to global scales. Earths Future 8, e2019EF001377 (2020).

    Article  Google Scholar 

  163. Häyhä, T., Lucas, P. L., van Vuuren, D. P., Cornell, S. E. & Hoff, H. From planetary boundaries to national fair shares of the global safe operating space — How can the scales be bridged? Glob. Environ. Change 40, 60–72 (2016).

    Article  Google Scholar 

  164. Dearing, J. A. et al. Safe and just operating spaces for regional social-ecological systems. Glob. Environ. Change 28, 227–238 (2014).

    Article  Google Scholar 

  165. Bjørn, A. et al. Challenges and opportunities towards improved application of the planetary boundary for land-system change in life cycle assessment of products. Sci. Total. Environ. 696, 133964 (2019).

    Article  Google Scholar 

  166. Bunsen, J., Berger, M. & Finkbeiner, M. Planetary boundaries for water–A review. Ecol. Indic. 121, 107022 (2021).

    Article  Google Scholar 

  167. Link, A., van der Ent, R., Berger, M., Eisner, S. & Finkbeiner, M. The fate of land evaporation–a global dataset. Earth Syst. Sci. Data 12, 1897–1912 (2020).

    Article  Google Scholar 

  168. van der Ent, R. J., Savenije, H. H. G., Schaefli, B. & Steele-Dunne, S. C. Origin and fate of atmospheric moisture over continents. Water Resour. Res. 46, W09525 (2010).

    Google Scholar 

  169. Schyns, J. F., Hoekstra, A. Y. & Booij, M. J. Review and classification of indicators of green water availability and scarcity. Hydrol. Earth Syst. Sci. 19, 4581–4608 (2015).

    Article  Google Scholar 

  170. Stenzel, F., Gerten, D., Werner, C. & Jägermeyr, J. Freshwater requirements of large-scale bioenergy plantations for limiting global warming to 1.5 °C. Environ. Res. Lett. 14, 084001 (2019).

    Article  Google Scholar 

  171. Dalby, S. Framing the Anthropocene: The good, the bad and the ugly. Anthropocene Rev. 3, 33–51 (2016).

    Article  Google Scholar 

  172. Tainter, J. A. in The Way the Wind Blows: Climate, History, and Human Action (eds McIntosh, R. J., Tainter, J. A. & McIntosh, S. K.) 331 (Columbia University Press, 2000).

  173. Ripl, W. Water: the bloodstream of the biosphere. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 1921–1934 (2003).

    Article  Google Scholar 

  174. Dorigo, W. et al. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 203, 185–215 (2017).

    Article  Google Scholar 

  175. Grillakis, M. G., Koutroulis, A. G., Alexakis, D. D., Polykretis, C. & Daliakopoulos, I. N. Regionalizing root-zone soil moisture estimates from ESA CCI soil water index using machine learning and information on soil, vegetation, and climate. Water Resour. Res. 57, e2020WR029249 (2021).

    Article  Google Scholar 

  176. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article  Google Scholar 

  177. Trugman, A. T., Medvigy, D., Mankin, J. S. & Anderegg, W. R. L. Soil moisture stress as a major driver of carbon cycle uncertainty. Geophys. Res. Lett. 45, 6495–6503 (2018). Shows that the simplistic representations of soil moisture stress across global vegetation models cause major uncertainties in estimated land carbon sink under climate change.

    Article  Google Scholar 

  178. Beyer, R. M., Krapp, M. & Manica, A. High-resolution terrestrial climate, bioclimate and vegetation for the last 120,000 years. Sci. Data 7, 236 (2020).

    Article  Google Scholar 

  179. Allen, J. R. M. et al. Global vegetation patterns of the past 140,000 years. J. Biogeogr. 47, 2073–2090 (2020).

    Article  Google Scholar 

  180. Kageyama, M. et al. The PMIP4 contribution to CMIP6–Part 1: Overview and over-arching analysis plan. Geosci. Model Dev. 11, 1033–1057 (2018).

    Article  Google Scholar 

  181. Dorigo, W. et al. The International Soil Moisture Network: serving Earth system science for over a decade. Hydrol. Earth Syst. Sci. 25, 5749–5804 (2021).

    Article  Google Scholar 

  182. Baldocchi, D. et al. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem–scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 82, 2415–2434 (2001).

    Article  Google Scholar 

  183. Bouaziz, L. J. E. et al. Improved understanding of the link between catchment-scale vegetation accessible storage and satellite-derived Soil Water Index. Water Resour. Res. 56, e2019WR026365 (2020).

    Article  Google Scholar 

  184. Martens, B. et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).

    Article  Google Scholar 

  185. Tian, S., Renzullo, L. J., van Dijk, A. I. J. M., Tregoning, P. & Walker, J. P. Global joint assimilation of GRACE and SMOS for improved estimation of root-zone soil moisture and vegetation response. Hydrol. Earth Syst. Sci. 23, 1067–1081 (2019).

    Article  Google Scholar 

  186. Wang-Erlandsson, L. et al. Global root zone storage capacity from satellite-based evaporation. Hydrol. Earth Syst. Sci. 20, 1459–1481 (2016).

    Article  Google Scholar 

  187. Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017). Shows that rooting depths globally are highly adaptive to hydroclimate, topography and soil hydrology, with implications for improving the representation of plant–water interactions in Earth system models.

    Article  Google Scholar 

  188. Kleidon, A. Global datasets of rooting zone depth inferred from inverse methods. J. Clim. 17, 2714–2722 (2004).

    Article  Google Scholar 

  189. McCormick, E. L. et al. Widespread woody plant use of water stored in bedrock. Nature 597, 225–229 (2021).

    Article  Google Scholar 

  190. Vereecken, H. et al. Infiltration from the pedon to global grid scales: An overview and outlook for land surface modelling. Vadose Zone J. 18, 1–53 (2019).

    Article  Google Scholar 

  191. Singh, C., Wang-Erlandsson, L., Fetzer, I., Rockström, J. & van der Ent, R. Rootzone storage capacity reveals drought coping strategies along rainforest-savanna transitions. Environ. Res. Lett. 15, 124021 (2020).

    Article  Google Scholar 

  192. Sakschewski, B. et al. Variable tree rooting strategies improve tropical productivity and evapotranspiration in a dynamic global vegetation model. Biogeosciences 27, 1–35 (2020).

    Google Scholar 

  193. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  Google Scholar 

  194. Biermann, F. & Kim, R. E. The boundaries of the Planetary Boundary framework: A critical appraisal of approaches to define a “safe operating space” for humanity. Annu. Rev. Environ. Resour. 45, 497–521 (2020).

    Article  Google Scholar 

  195. Petschel-Held, G., Schellnhuber, H.-J., Bruckner, T., Tóth, F. L. & Hasselmann, K. The tolerable windows approach: theoretical and methodological foundations. Clim. Change 41, 303–331 (1999).

    Article  Google Scholar 

  196. Ziegler, R., Gerten, D. & Döll, P. in Global Water Ethics (eds Ziegler, R. & Groenfeldt, D.) 109–130 (Routledge, 2017).

  197. Sivapalan, M. & Blöschl, G. Time scale interactions and the coevolution of humans and water. Water Resour. Res. 51, 6988–7022 (2015).

    Article  Google Scholar 

  198. Mueller, B. et al. Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrol. Earth Syst. Sci. 17, 3707–3720 (2013).

    Article  Google Scholar 

  199. Oki, T. & Kanae, S. Global hydrological cycles and world water resources. Science 313, 1068–1072 (2006).

    Article  Google Scholar 

  200. von Bloh, W. et al. Implementing the nitrogen cycle into the dynamic global vegetation, hydrology, and crop growth model LPJmL (version 5.0). Geosci. Model Dev. 11, 2789–2812 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

L.W.-E., A.T., I.F., C.S., J.R. and A.S. acknowledge financial support from the European Research Council through the ‘Earth Resilience in the Anthropocene’ project (no. ERC-2016-ADG 743080). R.J.v.d.E. acknowledges funding from the Netherlands Organization for Scientific Research (NWO), project number 016.Veni.181.015. M.P. acknowledges funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement 819202).

Author information

Authors and Affiliations

Authors

Contributions

L.W.-E. led the writing of the article, produced the visualizations and performed the baseline deviation analyses. A.T. produced Fig. 2a and conducted the LPJmL model runs underlying Fig. 3. L.W.-E., A.T., R.J.v.d.E., I.F., S.t.W., M.P., A.S., F.J., H.D. and J.R. contributed to the writing of the manuscript. L.W.-E., A.T., R.J.v.d.E., I.F., S.t.W., M.P., A.S., F.J., H.D., C.S. and P.W.K. performed the literature review. L.W.-E., A.T., R.J.v.d.E., I.F., M.P., A.S., F.J., H.D., C.S., P.G., D.G. and P.W.K. evaluated the green water variables. L.W.-E., A.T., R.J.v.d.E., I.F., S.t.W., M.P., A.S., F.J., H.D., C.S., P.G., D.G., P.W.K., J.R. and X.B. contributed to the editing and/or reviewing of the manuscript. All authors contributed substantially to the discussion of content. Overall author contributions of A.T., R.J.v.d.E., I.F., S.t.W., M.P., A.S. and F.J. can be considered equal.

Corresponding author

Correspondence to Lan Wang-Erlandsson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Shilong Piao, Navneet Kumar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang-Erlandsson, L., Tobian, A., van der Ent, R.J. et al. A planetary boundary for green water. Nat Rev Earth Environ 3, 380–392 (2022). https://doi.org/10.1038/s43017-022-00287-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00287-8

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing