Abstract
The geometry of alluvial river channels both controls and adjusts to the flow of water and sediment within them. This feedback between flow and form modulates flood risk, and the impacts of climate and land-use change. Considering widely varying hydro-climates, sediment supply, geology and vegetation, it is surprising that rivers follow remarkably consistent hydraulic geometry scaling relations. In this Perspective, we explore the factors governing river channel geometry, specifically how the threshold of sediment motion constrains the size and shape of channels. We highlight the utility of the near-threshold channel model as a suitable framework to explain the average size and stability of river channels, and show how deviations relate to complex higher-order behaviours. Further characterization of the sediment transport threshold and channel adjustment timescales, coupled with probabilistic descriptions of river geometry, promise the development of future models capable of capturing rivers’ natural complexity.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
Data availability
The data associated with this manuscript are published75 and available through Hydroshare: https://doi.org/10.4211/hs.fa5503b04af343ffbaf33d5a15cb2579.
References
Tanoue, M., Hirabayashi, Y. & Ikeuchi, H. Global-scale river flood vulnerability in the last 50 years. Sci. Rep. 6, 36021 (2016).
Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).
Best, J. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 12, 7–21 (2019).
Opperman, J., Grill, G. & Hartmann, J. The Power of Rivers: Finding Balance Between Energy and Conservation in Hydropower Development (Nature Conservancy, 2015).
Latrubesse, E. M. et al. Damming the rivers of the Amazon basin. Nature 546, 363–369 (2017).
Syvitski, J. P. M., Vörösmarty, C. J., Kettner, A. J. & Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308, 376–380 (2005).
Walter, R. C. & Merritts, D. J. Natural streams and the legacy of water-powered mills. Science 319, 299–304 (2008).
Doyle, M. The Source, How Rivers Made America and America Remade Its Rivers (W. W. Norton, 2018).
Palmer, M. A. et al. Standards for ecologically successful river restoration. J. Appl. Ecol. 42, 208–217 (2005).
Wohl, E., Lane, S. N. & Wilcox, A. C. The science and practice of river restoration. Water Resour. Res. 51, 5974–5997 (2015).
Benson, E. S. Random river: Luna Leopold and the promise of chance in fluvial geomorphology. J. Hist. Geogr. 67, 14–23 (2020).
Leopold, L. B. & Maddock, T. The Hydraulic Geometry of Stream Channels and Some Physiographic Implications Vol. 252 (US Geological Survey, 1953).
Wolman, M. G. & Miller, J. P. Magnitude and frequency of forces in geomorphic processes. J. Geol. 68, 54–74 (1960).
Leopold, L. B. & Wolman, M. G. River channel patterns: braided, meandering, and straight. Tech. Rep. 282, 39–85 (1957).
Leopold, L. B., Wolman, M. G. & Miller, J. P. Fluvial Processes in Geomorphology (W. H. Freeman and Company, 1964).
Lacey, G. in Minutes of the Proceedings of the Institution of Civil Engineers Vol. 229, 259–292 (Thomas Telford-ICE Virtual Library, 1930).
Parker, G., Wilcock, P., Paola, C., Dietrich, W. & Pitlick, J. Physical basis for quasi-universal relations describing bankfull hydraulic geometry of single-thread gravel bed rivers. J. Geophys. Res. Earth Surface 112, F04005 (2007).
Moody, J. A. & Troutman, B. M. Characterization of the spatial variability of channel morphology. Earth Surf. Process. Landf. 27, 1251–1266 (2002).
Andrews, E. D. Bed-material entrainment and hydraulic geometry of gravel-bed rivers in Colorado. Geol. Soc. Am. Bull. 95, 371–378 (1984).
Gleason, C. J. Hydraulic geometry of natural rivers: a review and future directions. Prog. Phys. Geogr. Earth Environ. 39, 337–360 (2015).
Wilkerson, G. V. & Parker, G. Physical basis for quasi-universal relationships describing bankfull hydraulic geometry of sand-bed rivers. J. Hydraulic Eng. 137, 739–753 (2011).
Wohl, E. Limits of downstream hydraulic geometry. Geology 32, 897–900 (2004).
Allmendinger, N. E., Pizzuto, J. E., Potter, N., Johnson, T. E. & Hession, W. C. The influence of riparian vegetation on stream width, eastern Pennsylvania, USA. Geol. Soc. Am. Bull. 117, 229–243 (2005).
Anderson, R. J., Bledsoe, B. P. & Hession, W. C. Width of streams and rivers in response to vegetation, bank material, and other factors. JAWRA 40, 1159–1172 (2004).
Faustini, J. M., Kaufmann, P. R. & Herlihy, A. T. Downstream variation in bankfull width of wadeable streams across the conterminous United States. Geomorphology 108, 292–311 (2009).
Park, C. C. World-wide variations in hydraulic geometry exponents of stream channels: an analysis and some observations. J. Hydrol. 33, 133–146 (1977).
Ferguson, R. Limits to scale invariance in alluvial rivers. Earth Surf. Process. Landf. 46, 173–187 (2021).
Xu, F. et al. Rationalizing the differences among hydraulic relationships using a process-based model. Water Resour. Res. 57, e2020WR029430 (2021).
Métivier, F. et al. Geometry of meandering and braided gravel-bed threads from the Bayanbulak Grassland, Tianshan, P. R. China. Earth Surf. Dyn. 4, 273–283 (2016).
Chezy, A. Thesis on the Velocity of the flow in a Given Ditch. Ph.D. thesis, Ecole des Ponts et Chaussees, Paris (1775).
Glover, R. E. & Florey, Q. L. Stable Channel Profiles (US Bureau of Reclamation, 1951).
Chow, V. T. Open-Channel Hydraulics (McGraw-Hill, 1959).
Henderson, F. M. Stability of alluvial channels. J. Hydraul. Div. 87, 109–138 (1961).
Diplas, P. & Vigilar, G. Hydraulic geometry of threshold channels. J. Hydraul. Eng. 118, 597–614 (1992).
Parker, G. Self-formed straight rivers with equilibrium banks and mobile bed Part 2. The gravel river. J. Fluid Mech. 89, 127–146 (1978).
Abramian, A., Devauchelle, O. & Lajeunesse, E. Laboratory rivers adjust their shape to sediment transport. Phys. Rev. E 102, 053101 (2020).
Dunne, K. B. J. & Jerolmack, D. J. What sets river width? Sci. Adv. 6, eabc1505 (2020).
Métivier, F., Lajeunesse, E. & Devauchelle, O. Laboratory rivers: Lacey’s law, threshold theory, and channel stability. Earth Surf. Dyn. 5, 187–198 (2017).
Dunne, K. B. J. & Jerolmack, D. J. Evidence of, and a proposed explanation for, bimodal transport states in alluvial rivers. Earth Surf. Dyn. 6, 583–583 (2018).
Trampush, S. M., Huzurbazar, S. & McElroy, B. Empirical assessment of theory for bankfull characteristics of alluvial channels. Water Resour. Res. 50, 9211–9220 (2014).
Li, C., Czapiga, M. J., Eke, E. C., Viparelli, E. & Parker, G. Variable Shields number model for river bankfull geometry: bankfull shear velocity is viscosity-dependent but grain size-independent. J. Hydraulic Res. 53, 36–48 (2014).
Czapiga, M. J., McElroy, B. & Parker, G. Bankfull Shields number versus slope and grain size. J. Hydraul. Res. 57, 760–769 (2019).
Millar, R. G. & Quick, M. C. Effect of bank stability on geometry of gravel rivers. J. Hydraul. Eng. 119, 1343–1363 (1993).
Darby, S. E. & Thorne, C. R. Effect of bank stability on geometry of gravel rivers. J. Hydraul. Eng. 121, 382–385 (1995).
Huang, H. Q. & Nanson, G. C. The influence of bank strength on channel geometry: an integrated analysis of some observations. Earth Surf. Process. Landf. 23, 865–876 (1998).
Pfeiffer, A. M., Finnegan, N. J. & Willenbring, J. K. Sediment supply controls equilibrium channel geometry in gravel rivers. Proc. Natl Acad. Sci. USA 114, 3346–3351 (2017).
MacKenzie, L. G. & Eaton, B. C. Large grains matter: contrasting bed stability and morphodynamics during two nearly identical experiments. Earth Surf. Process. Landf. 42, 1287–1295 (2017).
Lanzoni, S., Luchi, R. & Bolla Pittaluga, M. Modeling the morphodynamic equilibrium of an intermediate reach of the Po River (Italy). Adv. Water Resour. 81, 95–102 (2015).
Wolman, M. G. & Gerson, R. Relative scales of time and effectiveness of climate in watershed geomorphology. Earth Surf. Process. 3, 189–208 (1978).
Yu, B. & Wolman, M. G. Some dynamic aspects of river geometry. Water Resour. Res. 23, 501–509 (1987).
Phillips, C. B. & Jerolmack, D. J. Self-organization of river channels as a critical filter on climate signals. Science 352, 694–697 (2016).
Phillips, C. B. & Jerolmack, D. J. Bankfull transport capacity and the threshold of motion in coarse-grained rivers. Water Resour. Res. 55, 11316–11330 (2019).
Garcia, M. Sedimentation Engineering (American Society of Civil Engineers, 2008).
Church, M. Bed material transport and the morphology of alluvial river channels. Annu. Rev. Earth Planet. Sci. 34, 325–354 (2006).
Church, M. & Ferguson, R. I. Morphodynamics: rivers beyond steady state. Water Resour. Res. 51, 1883–1897 (2015).
Bednarek, A. T. Undamming rivers: a review of the ecological impacts of dam removal. Environ. Manag. 27, 803–814 (2001).
Wilcock, P. R. in Gravel-Bed Rivers: Processes, Tools, Environments (eds Church, M. et al.) 135–149 (Wiley, 2012).
Finnegan, N. J., Roe, G., Montgomery, D. R. & Hallet, B. Controls on the channel width of rivers: implications for modeling fluvial incision of bedrock. Geology 33, 229–232 (2005).
Johnson, J. P. L. & Whipple, K. X. Evaluating the controls of shear stress, sediment supply, alluvial cover, and channel morphology on experimental bedrock incision rate. J. Geophys Res. Earth Surf. 59, F02018 (2010).
Wohl, E. & David, G. C. L. Consistency of scaling relations among bedrock and alluvial channels. J. Geophys. Res. Earth Surf. 113, F04013 (2008).
Turowski, J. M., Hovius, N., Wilson, A. & Horng, M.-J. Hydraulic geometry, river sediment and the definition of bedrock channels. Geomorphology 99, 26–38 (2008).
Whipple, K. X. Bedrock rivers and the geomorphology of active orogens. Annu. Rev. Earth Planet. Sci. 32, 151–185 (2004).
Izumi, N. & Parker, G. Linear stability analysis of channel inception: downstream-driven theory. J. Fluid Mech. 419, 239–262 (2000).
Schorghofer, N., Jensen, B., Kudrolli, A. & Rothman, D. H. Spontaneous channelization in permeable ground: theory, experiment, and observation. J. Fluid Mech. 503, 357–374 (2004).
Abramian, A., Devauchelle, O. & Lajeunesse, E. Streamwise streaks induced by bedload diffusion. J. Fluid Mech. 863, 601–619 (2019).
Nikora, V. & Roy, A. G. in Gravel-Bed Rivers: Processes, Tools, Environments (eds Church, M. et al.) 1–22 (Wiley, 2012).
Paola, C. & Seal, R. Grain-size patchiness as a cause of selective deposition and downstream fining. Water Resour. Res. 31, 1395–1407 (1995).
Coulthard, T. J. & Van De Wiel, M. J. Modelling river history and evolution. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 370, 2123–2142 (2012).
Seminara, G. Meanders. J. Fluid Mech. 554, 271–297 (2006).
Zolezzi, G. & Seminara, G. Downstream and upstream influence in river meandering. Part 2. Planimetric development. J. Fluid Mech. 438, 183–211 (2001).
Bogoni, M., Putti, M. & Lanzoni, S. Modeling meander morphodynamics over self-formed heterogeneous floodplains. Water Resour. Res. 53, 5137–5157 (2017).
Frascati, A. & Lanzoni, S. A mathematical model for meandering rivers with varying width. J. Geophys. Res. Earth Surf. 118, 1641–1657 (2013).
Olsen, N. R. B. Three-dimensional CFD modeling of self-forming meandering channel. J. Hydraul. Eng. 129, 366–372 (2003).
Schmeeckle, M. W. Numerical simulation of turbulence and sediment transport of medium sand. J. Geophys. Res. Earth Surf. 119, 1240–1262 (2014).
Phillips, C. B. Alluvial river bankfull hydraulic geometry. HydroShare https://doi.org/10.4211/hs.fa5503b04af343ffbaf33d5a15cb2579 (2021).
Ellis, E. R. & Church, M. Hydraulic geometry of secondary channels of lower Fraser River, British Columbia, from acoustic Doppler profiling. Water Res. Res. 41, W08421 (2005).
Parker, G. et al. Alluvial fans formed by channelized fluvial and sheet flow. II: application. J. Hydraul. Eng. 124, 996–1004 (1998).
Paola, C., Heller, P. L. & Angevine, C. L. The large-scale dynamics of grain-size variation in alluvial basins, 1: theory. Basin Res. 4, 73–90 (1992).
Parker, G. 1D Sediment Transport Morphodynamics with Applications to rivers and Turbidity Currents Vol. 13 (2004); http://hydrolab.illinois.edu/people/parkerg/morphodynamics_e-book.htm.
Lane, E. W. Stable channels in erodible material. Trans. Am. Soc. Civ. Eng. 102, 123–142 (1937).
Zhou, Z. et al. Is “morphodynamic equilibrium” an oxymoron? Earth Sci. Rev. 165, 257–267 (2017).
Hoover Mackin, J. Concept of the graded river. Geol. Soc. Am. Bull. 59, 463–512 (1948).
Seizilles, G., Devauchelle, O., Lajeunesse, E. & Métivier, F. Width of laminar laboratory rivers. Phys. Rev. E 87, 052204 (2013).
Popovic, P., Devauchelle, O., Abramian, A. & Lajeunesse, E. Sediment load determines the shape of rivers. Proc. Natl Acad. Sci. USA 118, e2111215118 (2021).
Stebbings, J. The shapes of self-formed model alluvial channels. Proc. Inst. Civ. Eng. 25, 485–510 (1963).
Parker, G. On the cause and characteristic scales of meandering and braiding in rivers. J. Fluid Mech. 76, 457–480 (1976).
Reitz, M. D. et al. Diffusive evolution of experimental braided rivers. Phys. Rev. E 89, 052809 (2014).
Gaurav, K. et al. Morphology of the Kosi megafan channels. Earth Surf. Dyn. 3, 321–331 (2015).
Jaeger, H. M., Nagel, S. R. & Behringer, R. P. Granular solids, liquids, and gases. Rev. Modern Phys. 68, 1259–1273 (1996).
Shields, A. Application of Similarity Principles and Turbulence Research to Bed-Load Movement (Wasserbau Schiffbau, 1936).
Wiberg, P. L. & Smith, J. D. Calculations of the critical shear stress for motion of uniform and heterogeneous sediments. Water Resour. Res. 23, 1471–1480 (1987).
Lamb, M. P., Brun, F. & Fuller, B. M. Direct measurements of lift and drag on shallowly submerged cobbles in steep streams: implications for flow resistance and sediment transport. Water Resour. Res. 53, 7607–7629 (2017).
Lamb, M. P., Brun, F. & Fuller, B. M. Hydrodynamics of steep streams with planar coarse-grained beds: turbulence, flow resistance, and implications for sediment transport. Water Resour. Res. 53, 2240–2263 (2017).
Seminara, G., Solari, L. & Parker, G. Bed load at low Shields stress on arbitrarily sloping beds: failure of the Bagnold hypothesis. Water Resour. Res. 38, 31-1–31-16 (2002).
Mueller, E. R., Pitlick, J. & Nelson, J. M. Variation in the reference Shields stress for bed load transport in gravel-bed streams and rivers. Water Resour. Res. 41, W04006 (2005).
Lamb, M. P., Dietrich, W. E. & Venditti, J. G. Is the critical Shields stress for incipient sediment motion dependent on channel-bed slope? J. Geophys. Res. 113, F02008 (2008).
Prancevic, J. P. & Lamb, M. P. Unraveling bed slope from relative roughness in initial sediment motion. J. Geophys. Res. Earth Surf. 120, 2014JF003323 (2015).
Recking, A. Theoretical development on the effects of changing flow hydraulics on incipient bed load motion. Water Resour. Res. 45, W04401 (2009).
Church, M., Hassan, M. A. & Wolcott, J. F. Stabilizing self-organized structures in gravel-bed stream channels: field and experimental observations. Water Resour. Res. 34, 3169–3179 (1998).
Masteller, C. C. & Finnegan, N. J. Interplay between grain protrusion and sediment entrainment in an experimental flume. J. Geophys. Res. Earth Surf. 122, 2016JF003943 (2017).
Wilcock, P. R. Two-fraction model of initial sediment motion in gravel-bed rivers. Science 280, 410–412 (1998).
Wilcock, P. R. & Crowe, J. C. Surface-based transport model for mixed-size sediment. J. Hydraul. Eng. 129, 120 (2003).
Kothyari, U. C. & Jain, R. K. Influence of cohesion on the incipient motion condition of sediment mixtures. Water Resour. Res. 44, W04410 (2008).
Aberle, J., Nikora, V. & Walters, R. Effects of bed material properties on cohesive sediment erosion. Mar. Geol. 207, 83–93 (2004).
Grabowski, R. C., Droppo, I. G. & Wharton, G. Erodibility of cohesive sediment: the importance of sediment properties. Earth Sci. Rev. 105, 101–120 (2011).
Zhang, M. & Yu, G. Critical conditions of incipient motion of cohesive sediments. Water Resour. Res. 53, 7798–7815 (2017).
Dallmann, J. et al. Impacts of suspended clay particle deposition on sand-bed morphodynamics. Water Resour. Res. 56, e2019WR027010 (2020).
Parsons, D. R. et al. The role of biophysical cohesion on subaqueous bed form size. Geophys. Res. Lett. 43, 1566–1573 (2016).
Julian, J. P. & Torres, R. Hydraulic erosion of cohesive riverbanks. Geomorphology 76, 193–206 (2006).
Baas, J. H., Davies, A. G. & Malarkey, J. Bedform development in mixed sand–mud: the contrasting role of cohesive forces in flow and bed. Geomorphology 182, 19–32 (2013).
Malarkey, J. et al. The pervasive role of biological cohesion in bedform development. Nat. Commun. 6, 6257 (2015).
Akinola, A. I., Wynn-Thompson, T., Olgun, C. G., Mostaghimi, S. & Eick, M. J. Fluvial erosion rate of cohesive streambanks is directly related to the difference in soil and water temperatures. J. Environ. Qual. 48, 1741–1748 (2019).
Hoomehr, S., Akinola, A. I., Wynn-Thompson, T., Garnand, W. & Eick, M. J. Water temperature, pH, and road salt impacts on the fluvial erosion of cohesive streambanks. Water 10, 302 (2018).
MacKenzie, L. G., Eaton, B. C. & Church, M. Breaking from the average: why large grains matter in gravel-bed streams. Earth Surf. Process. Landf. 43, 3190–3196 (2018).
Bodek, S., Pizzuto, J. E., McCarthy, K. E. & Affinito, R. A. Achieving equilibrium as a semi-alluvial channel: anthropogenic, bedrock, and colluvial controls on the White Clay Creek, PA, USA. J. Geophys. Res. Earth Surf. 126, e2020JF005920 (2021).
Francalanci, S., Lanzoni, S., Solari, L. & Papanicolaou, A. N. Equilibrium cross section of river channels with cohesive erodible banks. J. Geophys. Res. Earth Surf. 125, e2019JF005286 (2020).
Kean, J. W. & Smith, J. D. Form drag in rivers due to small-scale natural topographic features: 1. Regular sequences. J. Geophys. Res. Earth Surf. 111, F04009 (2006).
Nikora, V., Goring, D., McEwan, I. & Griffiths, G. Spatially averaged open-channel flow over rough bed. J. Hydraulic Eng. 127, 123–133 (2001).
Eaton, B. C., Church, M. & Millar, R. G. Rational regime model of alluvial channel morphology and response. Earth Surf. Process. Landf. 29, 511–529 (2004).
Eaton, B. C. & Church, M. Predicting downstream hydraulic geometry: a test of rational regime theory. J. Geophys. Res. Earth Surf. 112, F03025 (2007).
Pelletier, J. D. Controls on the hydraulic geometry of alluvial channels: bank stability to gravitational failure, the critical-flow hypothesis, and conservation of mass and energy. Earth Surf. Dyn. Discuss. 9, 379–391 (2020).
Feynman, R. P., Leighton, R. B. & Sands, M. The New Millennium Edition: Mainly Mechanics, Radiation, and Heat (Basic Books, 2011). [The Feynman Lectures on Physics Vol. I].
Cassel, K. W. Variational Methods with Applications in Science and Engineering (Cambridge Univ. Press, 2013).
Hanc, J. & Taylor, E. F. From conservation of energy to the principle of least action: a story line. Am. J. Phys. 72, 514–521 (2004).
Davies, T. & Sutherland, A. Resistance to flow past deformable boundaries. Earth Surf. Process. 5, 175–179 (1980).
Bonakdari, H. et al. A novel comprehensive evaluation method for estimating the bank profile shape and dimensions of stable channels using the maximum entropy principle. Entropy 22, 1218 (2020).
Kirkby, M. J. in River Channel Changes (ed. Gregory, K. J.) 429–442 (Wiley Interscience, 1977).
White, W. R., Bettess, R. & Paris, E. Analytical approach to river regime. J. Hydraulics Div. 108, 1179–1193 (1982).
Huang, H. Q. & Nanson, G. C. Hydraulic geometry and maximum flow efficiency as products of the principle of least action. Earth Surf. Process. Landf. 25, 1–16 (2000).
Santambrogio, F. Optimal transport for applied mathematicians. Birkauser, NY 55, 94 (2015).
Birnir, B. & Rowlett, J. Mathematical models for erosion and the optimal transportation of sediment. Int. J. Nonlinear Sci. Numer. Simul. https://doi.org/10.1515/ijnsns-2013-0048 (2013).
Buffington, J. M. & Montgomery, D. R. A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers. Water Resour. Res. 33, 1993–2029 (1997).
Pähtz, T., Clark, A. H., Valyrakis, M. & Durán, O. The physics of sediment transport initiation, cessation, and entrainment across aeolian and fluvial environments. Rev. Geophys. 58, e2019RG000679 (2020).
Houssais, M., Ortiz, C. P., Durian, D. J. & Jerolmack, D. J. Onset of sediment transport is a continuous transition driven by fluid shear and granular creep. Nat. Commun. 6, 6527 (2015).
Wilcock, P. R. & McArdell, B. W. Partial transport of a sand/gravel sediment. Water Resour. Res. 33, 235–245 (1997).
van Rijn, L. C. Erodibility of mud–sand bed mixtures. J. Hydraul. Eng. 146, 04019050 (2020).
Blom, A., Arkesteijn, L., Chavarrías, V. & Viparelli, E. The equilibrium alluvial river under variable flow and its channel-forming discharge. J. Geophys. Res. Earth Surf. 122, 1924–1948 (2017).
Naito, K. & Parker, G. Adjustment of self-formed bankfull channel geometry of meandering rivers: modelling study. Earth Surf. Process. Landf. 45, 3313–3322 (2020).
Pitlick, J., Marr, J. & Pizzuto, J. Width adjustment in experimental gravel-bed channels in response to overbank flows. J. Geophys. Res. Earth Surf. 118, 553–570 (2013).
Andrews, E. D. Effective and bankfull discharges of streams in the Yampa River basin, Colorado and Wyoming. J. Hydrol. 46, 311–330 (1980).
Emmett, W. W. & Wolman, M. G. Effective discharge and gravel-bed rivers. Earth Surf. Process. Landf. 26, 1369–1380 (2001).
Torizzo, M. & Pitlick, J. Magnitude-frequency of bed load transport in mountain streams in Colorado. J. Hydrol. 290, 137–151 (2004).
Barry, J. J., Buffington, J. M., Goodwin, P., King, J. G. & Emmett, W. W. Performance of bed-load transport equations relative to geomorphic significance: predicting effective discharge and its transport rate. J. Hydraul Eng. 134, 601–615 (2008).
Molnar, P., Anderson, R. S., Kier, G. & Rose, J. Relationships among probability distributions of stream discharges in floods, climate, bed load transport, and river incision. J. Geophys. Res. Earth Surf. 111, F02001 (2006).
Phillips, C. B., Martin, R. L. & Jerolmack, D. J. Impulse framework for unsteady flows reveals superdiffusive bed load transport. Geophys. Res. Lett. 40, 1328–1333 (2013).
Slater, L. J., Khouakhi, A. & Wilby, R. L. River channel conveyance capacity adjusts to modes of climate variability. Sci. Rep. 9, 1–10 (2019).
Pittaluga, M. B., Luchi, R. & Seminara, G. On the equilibrium profile of river beds. J. Geophys. Res. Earth Surf. 119, 317–332 (2014).
Mason, J. & Mohrig, D. Differential bank migration and the maintenance of channel width in meandering river bends. Geology 47, 1136–1140 (2019).
Lopez Dubon, S. & Lanzoni, S. Meandering evolution and width variations: a physics-statistics-based modeling approach. Water Resour. Res. 55, 76–94 (2019).
Schumm, S. A. The Shape of Alluvial Channels in Relation to Sediment Type Professional Paper 352-B (USGS, 1960).
Tal, M. & Paola, C. Dynamic single-thread channels maintained by the interaction of flow and vegetation. Geology 35, 347–350 (2007).
Braudrick, C. A., Dietrich, W. E., Leverich, G. T. & Sklar, L. S. Experimental evidence for the conditions necessary to sustain meandering in coarse-bedded rivers. Proc. Natl Acad. Sci. USA 106, 16936–16941 (2009).
Dulal, K. P. & Shimizu, Y. Experimental simulation of meandering in clay mixed sediments. J. Hydro-Environ. Res. 4, 329–343 (2010).
Seminara, G. Fluvial sedimentary patterns. Ann. Rev. Fluid Mech. 42, 43–66 (2009).
Jerolmack, D. J. & Mohrig, D. Conditions for branching in depositional rivers. Geology 35, 463–466 (2007).
Davies, N. S. & Gibling, M. R. Cambrian to Devonian evolution of alluvial systems: the sedimentological impact of the earliest land plants. Earth Sci. Rev. 98, 171–200 (2010).
Ganti, V., Whittaker, A. C., Lamb, M. P. & Fischer, W. W. Low-gradient, single-threaded rivers prior to greening of the continents. Proc. Natl Acad. Sci. USA 116, 11652–11657 (2019).
Ielpi, A. & Lapôtre, M. G. A. A tenfold slowdown in river meander migration driven by plant life. Nat. Geosci. 13, 82–86 (2020).
Jerolmack, D. J., Mohrig, D., Zuber, M. T. & Byrne, S. A minimum time for the formation of Holden northeast fan, Mars. Geophys. Res. Lett. 31, L21701 (2004).
Williams, R. M. E. et al. Martian fluvial conglomerates at gale crater. Science 340, 1068–1072 (2013).
Szabó, T., Domokos, G., Grotzinger, J. P. & Jerolmack, D. J. Reconstructing the transport history of pebbles on Mars. Nat. Commun. 6, 8366 (2015).
Kite, E. S. et al. Persistence of intense, climate-driven runoff late in Mars history. Sci. Adv. 5, eaav7710 (2019).
Call, B. C., Belmont, P., Schmidt, J. C. & Wilcock, P. R. Changes in floodplain inundation under nonstationary hydrology for an adjustable, alluvial river channel. Water Resour. Res. 53, 3811–3834 (2017).
James, L. A. Channel incision on the Lower American River, California, from streamflow gage records. Water Resour. Res. 33, 485–490 (1997).
Slater, L. J. & Singer, M. B. Imprint of climate and climate change in alluvial riverbeds: continental United States, 1950–2011. Geology 41, 595–598 (2013).
Stover, S. C. & Montgomery, D. R. Channel change and flooding, Skokomish River, Washington. J. Hydrol. 243, 272–286 (2001).
Slater, L. J., Singer, M. B. & Kirchner, J. W. Hydrologic versus geomorphic drivers of trends in flood hazard. Geophys. Res. Lett. 42, 370–376 (2015).
Fowler, H. J. et al. Anthropogenic intensification of short-duration rainfall extremes. Nat. Rev. Earth Environ. 2, 107–122 (2021).
Hayhoe, K. et al. in Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment Vol. 2 (eds Reidmiller, D. R. et al) 72–144 (US Global Change Research Program, 2018).
Pfeiffer, A. M., Collins, B. D., Anderson, S. W., Montgomery, D. R. & Istanbulluoglu, E. River bed elevation variability reflects sediment supply, rather than peak flows, in the uplands of Washington state. Water Resour. Res. 55, 6795–6810 (2019).
Gurnell, A. M., Bertoldi, W. & Corenblit, D. Changing river channels: the roles of hydrological processes, plants and pioneer fluvial landforms in humid temperate, mixed load, gravel bed rivers. Earth Sci. Rev. 111, 129–141 (2012).
Walker, A. E., Moore, J. N., Grams, P. E., Dean, D. J. & Schmidt, J. C. Channel narrowing by inset floodplain formation of the lower Green River in the Canyonlands region, Utah. GSA Bull. 132, 2333–2352 (2020).
Merritts, D. et al. in The Challenges of Dam Removal and River Restoration (eds De Graff, J. V. & Evans, J. E.) https://doi.org/10.1130/2013.4121(14) (2013).
Merritts, D. et al. Anthropocene streams and base-level controls from historic dams in the unglaciated Mid-Atlantic region, USA. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369, 976–1009 (2011).
Bernhardt, E. S. & Palmer, M. A. River restoration: the fuzzy logic of repairing reaches to reverse catchment scale degradation. Ecol. Appl. 21, 1926–1931 (2011).
Palmer, M. & Ruhi, A. Linkages between flow regime, biota, and ecosystem processes: Implications for river restoration. Science https://doi.org/10.1126/science.aaw2087 (2019).
East, A. E. et al. Geomorphic evolution of a gravel-bed river under sediment-starved versus sediment-rich conditions: river response to the world’s largest dam removal. J. Geophys. Res. Earth Surf. 123, 3338–3369 (2018).
Bellmore, J. R. et al. Conceptualizing ecological responses to dam removal: if you remove it, what’s to come? BioScience 69, 26–39 (2019).
Brayshaw, A. C. Bed microtopography and entrainment thresholds in gravel-bed rivers. GSA Bull. 96, 218–223 (1985).
Kirchner, J. W., Dietrich, W. E., Iseya, F. & Ikeda, H. The variability of critical shear stress, friction angle, and grain protrusion in water worked sediments. Sedimentology 37, 647–672 (1990).
Yager, E. M., Schmeeckle, M. W. & Badoux, A. Resistance is not futile: grain resistance controls on observed critical shields stress variations. J. Geophys. Res. Earth Surf. 123, 3308–3322 (2018).
Hodge, R. A., Voepel, H., Leyland, J., Sear, D. A. & Ahmed, S. X-ray computed tomography reveals that grain protrusion controls critical shear stress for entrainment of fluvial gravels. Geology 48, 149–153 (2020).
Ferdowsi, B., Ortiz, C. P., Houssais, M. & Jerolmack, D. J. River-bed armouring as a granular segregation phenomenon. Nat. Commun. 8, 1363 (2017).
Ockelford, A., Yager, E. & Smith, H. The initiation of motion and formation of armour layers. Treatise Geomorphol. 6, 176–199 (2020).
Nelson, P. A. et al. Response of bed surface patchiness to reductions in sediment supply. J. Geophys. Res. 114, 18 (2009).
Hodge, R. A., Sear, D. A. & Leyland, J. Spatial variations in surface sediment structure in riffle–pool sequences: a preliminary test of the differential sediment entrainment hypothesis (dseh). Earth Surf. Process. Landf. 38, 449–465 (2013).
Recking, A. An analysis of nonlinearity effects on bed load transport prediction. J. Geophys. Res. Earth Surf. 118, 1264–1281 (2013).
Monsalve, A., Yager, E. M., Turowski, J. M. & Rickenmann, D. A probabilistic formulation of bed load transport to include spatial variability of flow and surface grain size distributions. Water Resour. Res. 52, 3579–3598 (2016).
Yager, E. M., Venditti, J. G., Smith, H. J. & Schmeeckle, M. W. The trouble with shear stress. Geomorphology 323, 41–50 (2018).
Laflen, J. M. & Beasley, R. P. Effects of Compaction on Critical Tractive Forces in Cohesive Soils (Univ. of Missouri, 1960).
Wolman, M. G. Factors influencing erosion of a cohesive river bank. Am. J. Sci. 257, 204–216 (1959).
Wynn, T. M., Henderson, M. B. & Vaughan, D. H. Changes in streambank erodibility and critical shear stress due to subaerial processes along a headwater stream, southwestern Virginia, USA. Geomorphology 97, 260–273 (2008).
Dunne, K., Arratia, P. & Jerolmack, D. A new method for in-situ measurement of the erosion threshold of river channels. Preptint at EarthArXiv https://doi.org/10.31223/osf.io/rqcep (2019).
Gray, J., Laronne, J. & Marr, J. D. G. Bedload-Surrogate Monitoring Technologies (USGS, 2010).
Rickenmann, D., Turowski, J. M., Fritschi, B., Klaiber, A. & Ludwig, A. Bedload transport measurements at the Erlenbach stream with geophones and automated basket samplers. Earth Surf. Process. Landf. 37, 1000–1011 (2012).
Wyss, C. R. et al. Measuring bed load transport rates by grain-size fraction using the Swiss plate geophone signal at the Erlenbach. J. Hydraul. Eng. 142, 04016003 (2016).
Beer, A. R., Turowski, J. M., Fritschi, B. & Rieke-Zapp, D. H. Field instrumentation for high-resolution parallel monitoring of bedrock erosion and bedload transport. Earth Surf. Process. Landf. 40, 530–541 (2015).
Hsu, L., Finnegan, N. J. & Brodsky, E. E. A seismic signature of river bedload transport during storm events. Geophys. Res. Lett. 38, L13407 (2011).
Barrière, J., Oth, A., Hostache, R. & Krein, A. Bed load transport monitoring using seismic observations in a low-gradient rural gravel bed stream. Geophys. Res. Lett. 42, 2294–2301 (2015).
Roth, D. L. et al. Bed load sediment transport inferred from seismic signals near a river. J. Geophys. Res. Earth Surf. 121, 725–747 (2016).
Dietze, M., Lagarde, S., Halfi, E., Laronne, J. B. & Turowski, J. M. Joint sensing of bedload flux and water depth by seismic data inversion. Water Resour. Res. 55, 9892–9904 (2019).
Turowski, J. M., Badoux, A. & Rickenmann, D. Start and end of bedload transport in gravel-bed streams. Geophys. Res. Lett. 38, L04401 (2011).
Reid, I., Frostick, L. E. & Layman, J. T. The incidence and nature of bedload transport during flood flows in coarse-grained alluvial channels. Earth Surf. Process. Landf. 10, 33–44 (1985).
Masteller, C. C., Finnegan, N. J., Turowski, J. M., Yager, E. M. & Rickenmann, D. History-dependent threshold for motion revealed by continuous bedload transport measurements in a steep mountain stream. Geophys. Res. Lett. 46, 2583–2591 (2019).
Pretzlav, K. L. G., Johnson, J. P. L. & Bradley, D. N. Smartrock transport in a mountain stream: bedload hysteresis and changing thresholds of motion. Water Resour. Res. 56, e2020WR028150 (2020).
Allen, B. & Kudrolli, A. Granular bed consolidation, creep, and armoring under subcritical fluid flow. Phys. Rev. Fluids 3, 074305 (2018).
Phillips, C. B. & Scatena, F. N. Reduced channel morphological response to urbanization in a flood-dominated humid tropical environment. Earth Surf. Process. Landf. 38, 970–982 (2013).
Phillips, C. B. LCZO — geomorphology — stream channel geomorphology — Puerto Rico (2009–2012). HydroShare http://www.hydroshare.org/resource/b538d75e180a424ca38d54e28500d33e (2020).
USGS. LPC PA South Central B 2017 LAS Lidar Survey (OpenTopography, 2019).
Ferguson, R. I. Flow resistance equations for gravel- and boulder-bed streams. Water Resour. Res. 43, 12 (2007).
Lajeunesse, E., Malverti, L. & Charru, F. Bed load transport in turbulent flow at the grain scale: experiments and modeling. J. Geophys. Res. 115, 16 (2010).
Acknowledgements
The authors thank G. Parker for inspiring this review, his brilliance and enthusiasm has touched nearly every aspect of this work. The idea for this manuscript developed out of conversations at the River, Coastal and Estuarine Morphodynamics (RCEM) 2019 symposium; the authors are grateful to the organizers H. Friedrich and K. Roisin Bryan for that stimulating forum. Work was supported by Army Research Office (Award Number W911NF2010113) and National Science Foundation (NSF), National Robotics Initiative Grant (Award Number 1734365) to D.J.J.
Author information
Authors and Affiliations
Contributions
C.B.P. and D.J.J. developed the idea and structure of this Perspective, with input from all authors. All authors contributed to writing, data analysis and interpretation.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Earth Environment thanks M. Church, R. Hodge, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
About this article
Cite this article
Phillips, C.B., Masteller, C.C., Slater, L.J. et al. Threshold constraints on the size, shape and stability of alluvial rivers. Nat Rev Earth Environ 3, 406–419 (2022). https://doi.org/10.1038/s43017-022-00282-z
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s43017-022-00282-z