Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Threshold constraints on the size, shape and stability of alluvial rivers

Abstract

The geometry of alluvial river channels both controls and adjusts to the flow of water and sediment within them. This feedback between flow and form modulates flood risk, and the impacts of climate and land-use change. Considering widely varying hydro-climates, sediment supply, geology and vegetation, it is surprising that rivers follow remarkably consistent hydraulic geometry scaling relations. In this Perspective, we explore the factors governing river channel geometry, specifically how the threshold of sediment motion constrains the size and shape of channels. We highlight the utility of the near-threshold channel model as a suitable framework to explain the average size and stability of river channels, and show how deviations relate to complex higher-order behaviours. Further characterization of the sediment transport threshold and channel adjustment timescales, coupled with probabilistic descriptions of river geometry, promise the development of future models capable of capturing rivers’ natural complexity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proposed orders of river channel behaviour.
Fig. 2: The width of natural and laboratory alluvial rivers follow near-threshold predictions.
Fig. 3: Near-threshold and threshold-limiting models.
Fig. 4: Threshold constraints on channel geometry and fluid stress.
Fig. 5: River channel size responds to changes in hydro-climate.
Fig. 6: Historic land use can alter river geometry over long timescales.

Similar content being viewed by others

Data availability

The data associated with this manuscript are published75 and available through Hydroshare: https://doi.org/10.4211/hs.fa5503b04af343ffbaf33d5a15cb2579.

References

  1. Tanoue, M., Hirabayashi, Y. & Ikeuchi, H. Global-scale river flood vulnerability in the last 50 years. Sci. Rep. 6, 36021 (2016).

    Article  Google Scholar 

  2. Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).

    Article  Google Scholar 

  3. Best, J. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 12, 7–21 (2019).

    Article  Google Scholar 

  4. Opperman, J., Grill, G. & Hartmann, J. The Power of Rivers: Finding Balance Between Energy and Conservation in Hydropower Development (Nature Conservancy, 2015).

  5. Latrubesse, E. M. et al. Damming the rivers of the Amazon basin. Nature 546, 363–369 (2017).

    Article  Google Scholar 

  6. Syvitski, J. P. M., Vörösmarty, C. J., Kettner, A. J. & Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308, 376–380 (2005).

    Article  Google Scholar 

  7. Walter, R. C. & Merritts, D. J. Natural streams and the legacy of water-powered mills. Science 319, 299–304 (2008).

    Article  Google Scholar 

  8. Doyle, M. The Source, How Rivers Made America and America Remade Its Rivers (W. W. Norton, 2018).

  9. Palmer, M. A. et al. Standards for ecologically successful river restoration. J. Appl. Ecol. 42, 208–217 (2005).

    Article  Google Scholar 

  10. Wohl, E., Lane, S. N. & Wilcox, A. C. The science and practice of river restoration. Water Resour. Res. 51, 5974–5997 (2015).

    Article  Google Scholar 

  11. Benson, E. S. Random river: Luna Leopold and the promise of chance in fluvial geomorphology. J. Hist. Geogr. 67, 14–23 (2020).

    Article  Google Scholar 

  12. Leopold, L. B. & Maddock, T. The Hydraulic Geometry of Stream Channels and Some Physiographic Implications Vol. 252 (US Geological Survey, 1953).

  13. Wolman, M. G. & Miller, J. P. Magnitude and frequency of forces in geomorphic processes. J. Geol. 68, 54–74 (1960).

    Article  Google Scholar 

  14. Leopold, L. B. & Wolman, M. G. River channel patterns: braided, meandering, and straight. Tech. Rep. 282, 39–85 (1957).

    Google Scholar 

  15. Leopold, L. B., Wolman, M. G. & Miller, J. P. Fluvial Processes in Geomorphology (W. H. Freeman and Company, 1964).

  16. Lacey, G. in Minutes of the Proceedings of the Institution of Civil Engineers Vol. 229, 259–292 (Thomas Telford-ICE Virtual Library, 1930).

  17. Parker, G., Wilcock, P., Paola, C., Dietrich, W. & Pitlick, J. Physical basis for quasi-universal relations describing bankfull hydraulic geometry of single-thread gravel bed rivers. J. Geophys. Res. Earth Surface 112, F04005 (2007).

    Article  Google Scholar 

  18. Moody, J. A. & Troutman, B. M. Characterization of the spatial variability of channel morphology. Earth Surf. Process. Landf. 27, 1251–1266 (2002).

    Article  Google Scholar 

  19. Andrews, E. D. Bed-material entrainment and hydraulic geometry of gravel-bed rivers in Colorado. Geol. Soc. Am. Bull. 95, 371–378 (1984).

    Article  Google Scholar 

  20. Gleason, C. J. Hydraulic geometry of natural rivers: a review and future directions. Prog. Phys. Geogr. Earth Environ. 39, 337–360 (2015).

    Article  Google Scholar 

  21. Wilkerson, G. V. & Parker, G. Physical basis for quasi-universal relationships describing bankfull hydraulic geometry of sand-bed rivers. J. Hydraulic Eng. 137, 739–753 (2011).

    Article  Google Scholar 

  22. Wohl, E. Limits of downstream hydraulic geometry. Geology 32, 897–900 (2004).

    Article  Google Scholar 

  23. Allmendinger, N. E., Pizzuto, J. E., Potter, N., Johnson, T. E. & Hession, W. C. The influence of riparian vegetation on stream width, eastern Pennsylvania, USA. Geol. Soc. Am. Bull. 117, 229–243 (2005).

    Article  Google Scholar 

  24. Anderson, R. J., Bledsoe, B. P. & Hession, W. C. Width of streams and rivers in response to vegetation, bank material, and other factors. JAWRA 40, 1159–1172 (2004).

    Google Scholar 

  25. Faustini, J. M., Kaufmann, P. R. & Herlihy, A. T. Downstream variation in bankfull width of wadeable streams across the conterminous United States. Geomorphology 108, 292–311 (2009).

    Article  Google Scholar 

  26. Park, C. C. World-wide variations in hydraulic geometry exponents of stream channels: an analysis and some observations. J. Hydrol. 33, 133–146 (1977).

    Article  Google Scholar 

  27. Ferguson, R. Limits to scale invariance in alluvial rivers. Earth Surf. Process. Landf. 46, 173–187 (2021).

    Article  Google Scholar 

  28. Xu, F. et al. Rationalizing the differences among hydraulic relationships using a process-based model. Water Resour. Res. 57, e2020WR029430 (2021).

    Article  Google Scholar 

  29. Métivier, F. et al. Geometry of meandering and braided gravel-bed threads from the Bayanbulak Grassland, Tianshan, P. R. China. Earth Surf. Dyn. 4, 273–283 (2016).

    Article  Google Scholar 

  30. Chezy, A. Thesis on the Velocity of the flow in a Given Ditch. Ph.D. thesis, Ecole des Ponts et Chaussees, Paris (1775).

  31. Glover, R. E. & Florey, Q. L. Stable Channel Profiles (US Bureau of Reclamation, 1951).

  32. Chow, V. T. Open-Channel Hydraulics (McGraw-Hill, 1959).

  33. Henderson, F. M. Stability of alluvial channels. J. Hydraul. Div. 87, 109–138 (1961).

    Article  Google Scholar 

  34. Diplas, P. & Vigilar, G. Hydraulic geometry of threshold channels. J. Hydraul. Eng. 118, 597–614 (1992).

    Article  Google Scholar 

  35. Parker, G. Self-formed straight rivers with equilibrium banks and mobile bed Part 2. The gravel river. J. Fluid Mech. 89, 127–146 (1978).

    Article  Google Scholar 

  36. Abramian, A., Devauchelle, O. & Lajeunesse, E. Laboratory rivers adjust their shape to sediment transport. Phys. Rev. E 102, 053101 (2020).

    Article  Google Scholar 

  37. Dunne, K. B. J. & Jerolmack, D. J. What sets river width? Sci. Adv. 6, eabc1505 (2020).

    Article  Google Scholar 

  38. Métivier, F., Lajeunesse, E. & Devauchelle, O. Laboratory rivers: Lacey’s law, threshold theory, and channel stability. Earth Surf. Dyn. 5, 187–198 (2017).

    Article  Google Scholar 

  39. Dunne, K. B. J. & Jerolmack, D. J. Evidence of, and a proposed explanation for, bimodal transport states in alluvial rivers. Earth Surf. Dyn. 6, 583–583 (2018).

    Article  Google Scholar 

  40. Trampush, S. M., Huzurbazar, S. & McElroy, B. Empirical assessment of theory for bankfull characteristics of alluvial channels. Water Resour. Res. 50, 9211–9220 (2014).

    Article  Google Scholar 

  41. Li, C., Czapiga, M. J., Eke, E. C., Viparelli, E. & Parker, G. Variable Shields number model for river bankfull geometry: bankfull shear velocity is viscosity-dependent but grain size-independent. J. Hydraulic Res. 53, 36–48 (2014).

    Article  Google Scholar 

  42. Czapiga, M. J., McElroy, B. & Parker, G. Bankfull Shields number versus slope and grain size. J. Hydraul. Res. 57, 760–769 (2019).

    Article  Google Scholar 

  43. Millar, R. G. & Quick, M. C. Effect of bank stability on geometry of gravel rivers. J. Hydraul. Eng. 119, 1343–1363 (1993).

    Article  Google Scholar 

  44. Darby, S. E. & Thorne, C. R. Effect of bank stability on geometry of gravel rivers. J. Hydraul. Eng. 121, 382–385 (1995).

    Article  Google Scholar 

  45. Huang, H. Q. & Nanson, G. C. The influence of bank strength on channel geometry: an integrated analysis of some observations. Earth Surf. Process. Landf. 23, 865–876 (1998).

    Article  Google Scholar 

  46. Pfeiffer, A. M., Finnegan, N. J. & Willenbring, J. K. Sediment supply controls equilibrium channel geometry in gravel rivers. Proc. Natl Acad. Sci. USA 114, 3346–3351 (2017).

    Article  Google Scholar 

  47. MacKenzie, L. G. & Eaton, B. C. Large grains matter: contrasting bed stability and morphodynamics during two nearly identical experiments. Earth Surf. Process. Landf. 42, 1287–1295 (2017).

    Article  Google Scholar 

  48. Lanzoni, S., Luchi, R. & Bolla Pittaluga, M. Modeling the morphodynamic equilibrium of an intermediate reach of the Po River (Italy). Adv. Water Resour. 81, 95–102 (2015).

    Article  Google Scholar 

  49. Wolman, M. G. & Gerson, R. Relative scales of time and effectiveness of climate in watershed geomorphology. Earth Surf. Process. 3, 189–208 (1978).

    Article  Google Scholar 

  50. Yu, B. & Wolman, M. G. Some dynamic aspects of river geometry. Water Resour. Res. 23, 501–509 (1987).

    Article  Google Scholar 

  51. Phillips, C. B. & Jerolmack, D. J. Self-organization of river channels as a critical filter on climate signals. Science 352, 694–697 (2016).

    Article  Google Scholar 

  52. Phillips, C. B. & Jerolmack, D. J. Bankfull transport capacity and the threshold of motion in coarse-grained rivers. Water Resour. Res. 55, 11316–11330 (2019).

    Article  Google Scholar 

  53. Garcia, M. Sedimentation Engineering (American Society of Civil Engineers, 2008).

  54. Church, M. Bed material transport and the morphology of alluvial river channels. Annu. Rev. Earth Planet. Sci. 34, 325–354 (2006).

    Article  Google Scholar 

  55. Church, M. & Ferguson, R. I. Morphodynamics: rivers beyond steady state. Water Resour. Res. 51, 1883–1897 (2015).

    Article  Google Scholar 

  56. Bednarek, A. T. Undamming rivers: a review of the ecological impacts of dam removal. Environ. Manag. 27, 803–814 (2001).

    Article  Google Scholar 

  57. Wilcock, P. R. in Gravel-Bed Rivers: Processes, Tools, Environments (eds Church, M. et al.) 135–149 (Wiley, 2012).

  58. Finnegan, N. J., Roe, G., Montgomery, D. R. & Hallet, B. Controls on the channel width of rivers: implications for modeling fluvial incision of bedrock. Geology 33, 229–232 (2005).

    Article  Google Scholar 

  59. Johnson, J. P. L. & Whipple, K. X. Evaluating the controls of shear stress, sediment supply, alluvial cover, and channel morphology on experimental bedrock incision rate. J. Geophys Res. Earth Surf. 59, F02018 (2010).

    Article  Google Scholar 

  60. Wohl, E. & David, G. C. L. Consistency of scaling relations among bedrock and alluvial channels. J. Geophys. Res. Earth Surf. 113, F04013 (2008).

    Article  Google Scholar 

  61. Turowski, J. M., Hovius, N., Wilson, A. & Horng, M.-J. Hydraulic geometry, river sediment and the definition of bedrock channels. Geomorphology 99, 26–38 (2008).

    Article  Google Scholar 

  62. Whipple, K. X. Bedrock rivers and the geomorphology of active orogens. Annu. Rev. Earth Planet. Sci. 32, 151–185 (2004).

    Article  Google Scholar 

  63. Izumi, N. & Parker, G. Linear stability analysis of channel inception: downstream-driven theory. J. Fluid Mech. 419, 239–262 (2000).

    Article  Google Scholar 

  64. Schorghofer, N., Jensen, B., Kudrolli, A. & Rothman, D. H. Spontaneous channelization in permeable ground: theory, experiment, and observation. J. Fluid Mech. 503, 357–374 (2004).

    Article  Google Scholar 

  65. Abramian, A., Devauchelle, O. & Lajeunesse, E. Streamwise streaks induced by bedload diffusion. J. Fluid Mech. 863, 601–619 (2019).

    Article  Google Scholar 

  66. Nikora, V. & Roy, A. G. in Gravel-Bed Rivers: Processes, Tools, Environments (eds Church, M. et al.) 1–22 (Wiley, 2012).

  67. Paola, C. & Seal, R. Grain-size patchiness as a cause of selective deposition and downstream fining. Water Resour. Res. 31, 1395–1407 (1995).

    Article  Google Scholar 

  68. Coulthard, T. J. & Van De Wiel, M. J. Modelling river history and evolution. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 370, 2123–2142 (2012).

    Article  Google Scholar 

  69. Seminara, G. Meanders. J. Fluid Mech. 554, 271–297 (2006).

    Article  Google Scholar 

  70. Zolezzi, G. & Seminara, G. Downstream and upstream influence in river meandering. Part 2. Planimetric development. J. Fluid Mech. 438, 183–211 (2001).

    Article  Google Scholar 

  71. Bogoni, M., Putti, M. & Lanzoni, S. Modeling meander morphodynamics over self-formed heterogeneous floodplains. Water Resour. Res. 53, 5137–5157 (2017).

    Article  Google Scholar 

  72. Frascati, A. & Lanzoni, S. A mathematical model for meandering rivers with varying width. J. Geophys. Res. Earth Surf. 118, 1641–1657 (2013).

    Article  Google Scholar 

  73. Olsen, N. R. B. Three-dimensional CFD modeling of self-forming meandering channel. J. Hydraul. Eng. 129, 366–372 (2003).

    Article  Google Scholar 

  74. Schmeeckle, M. W. Numerical simulation of turbulence and sediment transport of medium sand. J. Geophys. Res. Earth Surf. 119, 1240–1262 (2014).

    Article  Google Scholar 

  75. Phillips, C. B. Alluvial river bankfull hydraulic geometry. HydroShare https://doi.org/10.4211/hs.fa5503b04af343ffbaf33d5a15cb2579 (2021).

    Article  Google Scholar 

  76. Ellis, E. R. & Church, M. Hydraulic geometry of secondary channels of lower Fraser River, British Columbia, from acoustic Doppler profiling. Water Res. Res. 41, W08421 (2005).

    Article  Google Scholar 

  77. Parker, G. et al. Alluvial fans formed by channelized fluvial and sheet flow. II: application. J. Hydraul. Eng. 124, 996–1004 (1998).

    Article  Google Scholar 

  78. Paola, C., Heller, P. L. & Angevine, C. L. The large-scale dynamics of grain-size variation in alluvial basins, 1: theory. Basin Res. 4, 73–90 (1992).

    Article  Google Scholar 

  79. Parker, G. 1D Sediment Transport Morphodynamics with Applications to rivers and Turbidity Currents Vol. 13 (2004); http://hydrolab.illinois.edu/people/parkerg/morphodynamics_e-book.htm.

  80. Lane, E. W. Stable channels in erodible material. Trans. Am. Soc. Civ. Eng. 102, 123–142 (1937).

    Article  Google Scholar 

  81. Zhou, Z. et al. Is “morphodynamic equilibrium” an oxymoron? Earth Sci. Rev. 165, 257–267 (2017).

    Article  Google Scholar 

  82. Hoover Mackin, J. Concept of the graded river. Geol. Soc. Am. Bull. 59, 463–512 (1948).

    Article  Google Scholar 

  83. Seizilles, G., Devauchelle, O., Lajeunesse, E. & Métivier, F. Width of laminar laboratory rivers. Phys. Rev. E 87, 052204 (2013).

    Article  Google Scholar 

  84. Popovic, P., Devauchelle, O., Abramian, A. & Lajeunesse, E. Sediment load determines the shape of rivers. Proc. Natl Acad. Sci. USA 118, e2111215118 (2021).

    Article  Google Scholar 

  85. Stebbings, J. The shapes of self-formed model alluvial channels. Proc. Inst. Civ. Eng. 25, 485–510 (1963).

    Google Scholar 

  86. Parker, G. On the cause and characteristic scales of meandering and braiding in rivers. J. Fluid Mech. 76, 457–480 (1976).

    Article  Google Scholar 

  87. Reitz, M. D. et al. Diffusive evolution of experimental braided rivers. Phys. Rev. E 89, 052809 (2014).

    Article  Google Scholar 

  88. Gaurav, K. et al. Morphology of the Kosi megafan channels. Earth Surf. Dyn. 3, 321–331 (2015).

    Article  Google Scholar 

  89. Jaeger, H. M., Nagel, S. R. & Behringer, R. P. Granular solids, liquids, and gases. Rev. Modern Phys. 68, 1259–1273 (1996).

    Article  Google Scholar 

  90. Shields, A. Application of Similarity Principles and Turbulence Research to Bed-Load Movement (Wasserbau Schiffbau, 1936).

  91. Wiberg, P. L. & Smith, J. D. Calculations of the critical shear stress for motion of uniform and heterogeneous sediments. Water Resour. Res. 23, 1471–1480 (1987).

    Article  Google Scholar 

  92. Lamb, M. P., Brun, F. & Fuller, B. M. Direct measurements of lift and drag on shallowly submerged cobbles in steep streams: implications for flow resistance and sediment transport. Water Resour. Res. 53, 7607–7629 (2017).

    Article  Google Scholar 

  93. Lamb, M. P., Brun, F. & Fuller, B. M. Hydrodynamics of steep streams with planar coarse-grained beds: turbulence, flow resistance, and implications for sediment transport. Water Resour. Res. 53, 2240–2263 (2017).

    Article  Google Scholar 

  94. Seminara, G., Solari, L. & Parker, G. Bed load at low Shields stress on arbitrarily sloping beds: failure of the Bagnold hypothesis. Water Resour. Res. 38, 31-1–31-16 (2002).

    Article  Google Scholar 

  95. Mueller, E. R., Pitlick, J. & Nelson, J. M. Variation in the reference Shields stress for bed load transport in gravel-bed streams and rivers. Water Resour. Res. 41, W04006 (2005).

    Article  Google Scholar 

  96. Lamb, M. P., Dietrich, W. E. & Venditti, J. G. Is the critical Shields stress for incipient sediment motion dependent on channel-bed slope? J. Geophys. Res. 113, F02008 (2008).

    Google Scholar 

  97. Prancevic, J. P. & Lamb, M. P. Unraveling bed slope from relative roughness in initial sediment motion. J. Geophys. Res. Earth Surf. 120, 2014JF003323 (2015).

    Article  Google Scholar 

  98. Recking, A. Theoretical development on the effects of changing flow hydraulics on incipient bed load motion. Water Resour. Res. 45, W04401 (2009).

    Article  Google Scholar 

  99. Church, M., Hassan, M. A. & Wolcott, J. F. Stabilizing self-organized structures in gravel-bed stream channels: field and experimental observations. Water Resour. Res. 34, 3169–3179 (1998).

    Article  Google Scholar 

  100. Masteller, C. C. & Finnegan, N. J. Interplay between grain protrusion and sediment entrainment in an experimental flume. J. Geophys. Res. Earth Surf. 122, 2016JF003943 (2017).

    Article  Google Scholar 

  101. Wilcock, P. R. Two-fraction model of initial sediment motion in gravel-bed rivers. Science 280, 410–412 (1998).

    Article  Google Scholar 

  102. Wilcock, P. R. & Crowe, J. C. Surface-based transport model for mixed-size sediment. J. Hydraul. Eng. 129, 120 (2003).

    Article  Google Scholar 

  103. Kothyari, U. C. & Jain, R. K. Influence of cohesion on the incipient motion condition of sediment mixtures. Water Resour. Res. 44, W04410 (2008).

    Article  Google Scholar 

  104. Aberle, J., Nikora, V. & Walters, R. Effects of bed material properties on cohesive sediment erosion. Mar. Geol. 207, 83–93 (2004).

    Article  Google Scholar 

  105. Grabowski, R. C., Droppo, I. G. & Wharton, G. Erodibility of cohesive sediment: the importance of sediment properties. Earth Sci. Rev. 105, 101–120 (2011).

    Article  Google Scholar 

  106. Zhang, M. & Yu, G. Critical conditions of incipient motion of cohesive sediments. Water Resour. Res. 53, 7798–7815 (2017).

    Article  Google Scholar 

  107. Dallmann, J. et al. Impacts of suspended clay particle deposition on sand-bed morphodynamics. Water Resour. Res. 56, e2019WR027010 (2020).

    Article  Google Scholar 

  108. Parsons, D. R. et al. The role of biophysical cohesion on subaqueous bed form size. Geophys. Res. Lett. 43, 1566–1573 (2016).

    Article  Google Scholar 

  109. Julian, J. P. & Torres, R. Hydraulic erosion of cohesive riverbanks. Geomorphology 76, 193–206 (2006).

    Article  Google Scholar 

  110. Baas, J. H., Davies, A. G. & Malarkey, J. Bedform development in mixed sand–mud: the contrasting role of cohesive forces in flow and bed. Geomorphology 182, 19–32 (2013).

    Article  Google Scholar 

  111. Malarkey, J. et al. The pervasive role of biological cohesion in bedform development. Nat. Commun. 6, 6257 (2015).

    Article  Google Scholar 

  112. Akinola, A. I., Wynn-Thompson, T., Olgun, C. G., Mostaghimi, S. & Eick, M. J. Fluvial erosion rate of cohesive streambanks is directly related to the difference in soil and water temperatures. J. Environ. Qual. 48, 1741–1748 (2019).

    Article  Google Scholar 

  113. Hoomehr, S., Akinola, A. I., Wynn-Thompson, T., Garnand, W. & Eick, M. J. Water temperature, pH, and road salt impacts on the fluvial erosion of cohesive streambanks. Water 10, 302 (2018).

    Article  Google Scholar 

  114. MacKenzie, L. G., Eaton, B. C. & Church, M. Breaking from the average: why large grains matter in gravel-bed streams. Earth Surf. Process. Landf. 43, 3190–3196 (2018).

    Article  Google Scholar 

  115. Bodek, S., Pizzuto, J. E., McCarthy, K. E. & Affinito, R. A. Achieving equilibrium as a semi-alluvial channel: anthropogenic, bedrock, and colluvial controls on the White Clay Creek, PA, USA. J. Geophys. Res. Earth Surf. 126, e2020JF005920 (2021).

    Article  Google Scholar 

  116. Francalanci, S., Lanzoni, S., Solari, L. & Papanicolaou, A. N. Equilibrium cross section of river channels with cohesive erodible banks. J. Geophys. Res. Earth Surf. 125, e2019JF005286 (2020).

    Article  Google Scholar 

  117. Kean, J. W. & Smith, J. D. Form drag in rivers due to small-scale natural topographic features: 1. Regular sequences. J. Geophys. Res. Earth Surf. 111, F04009 (2006).

    Google Scholar 

  118. Nikora, V., Goring, D., McEwan, I. & Griffiths, G. Spatially averaged open-channel flow over rough bed. J. Hydraulic Eng. 127, 123–133 (2001).

    Article  Google Scholar 

  119. Eaton, B. C., Church, M. & Millar, R. G. Rational regime model of alluvial channel morphology and response. Earth Surf. Process. Landf. 29, 511–529 (2004).

    Article  Google Scholar 

  120. Eaton, B. C. & Church, M. Predicting downstream hydraulic geometry: a test of rational regime theory. J. Geophys. Res. Earth Surf. 112, F03025 (2007).

    Article  Google Scholar 

  121. Pelletier, J. D. Controls on the hydraulic geometry of alluvial channels: bank stability to gravitational failure, the critical-flow hypothesis, and conservation of mass and energy. Earth Surf. Dyn. Discuss. 9, 379–391 (2020).

    Article  Google Scholar 

  122. Feynman, R. P., Leighton, R. B. & Sands, M. The New Millennium Edition: Mainly Mechanics, Radiation, and Heat (Basic Books, 2011). [The Feynman Lectures on Physics Vol. I].

  123. Cassel, K. W. Variational Methods with Applications in Science and Engineering (Cambridge Univ. Press, 2013).

  124. Hanc, J. & Taylor, E. F. From conservation of energy to the principle of least action: a story line. Am. J. Phys. 72, 514–521 (2004).

    Article  Google Scholar 

  125. Davies, T. & Sutherland, A. Resistance to flow past deformable boundaries. Earth Surf. Process. 5, 175–179 (1980).

    Article  Google Scholar 

  126. Bonakdari, H. et al. A novel comprehensive evaluation method for estimating the bank profile shape and dimensions of stable channels using the maximum entropy principle. Entropy 22, 1218 (2020).

    Article  Google Scholar 

  127. Kirkby, M. J. in River Channel Changes (ed. Gregory, K. J.) 429–442 (Wiley Interscience, 1977).

  128. White, W. R., Bettess, R. & Paris, E. Analytical approach to river regime. J. Hydraulics Div. 108, 1179–1193 (1982).

    Article  Google Scholar 

  129. Huang, H. Q. & Nanson, G. C. Hydraulic geometry and maximum flow efficiency as products of the principle of least action. Earth Surf. Process. Landf. 25, 1–16 (2000).

    Article  Google Scholar 

  130. Santambrogio, F. Optimal transport for applied mathematicians. Birkauser, NY 55, 94 (2015).

    Google Scholar 

  131. Birnir, B. & Rowlett, J. Mathematical models for erosion and the optimal transportation of sediment. Int. J. Nonlinear Sci. Numer. Simul. https://doi.org/10.1515/ijnsns-2013-0048 (2013).

    Article  Google Scholar 

  132. Buffington, J. M. & Montgomery, D. R. A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers. Water Resour. Res. 33, 1993–2029 (1997).

    Article  Google Scholar 

  133. Pähtz, T., Clark, A. H., Valyrakis, M. & Durán, O. The physics of sediment transport initiation, cessation, and entrainment across aeolian and fluvial environments. Rev. Geophys. 58, e2019RG000679 (2020).

    Article  Google Scholar 

  134. Houssais, M., Ortiz, C. P., Durian, D. J. & Jerolmack, D. J. Onset of sediment transport is a continuous transition driven by fluid shear and granular creep. Nat. Commun. 6, 6527 (2015).

    Article  Google Scholar 

  135. Wilcock, P. R. & McArdell, B. W. Partial transport of a sand/gravel sediment. Water Resour. Res. 33, 235–245 (1997).

    Article  Google Scholar 

  136. van Rijn, L. C. Erodibility of mud–sand bed mixtures. J. Hydraul. Eng. 146, 04019050 (2020).

    Article  Google Scholar 

  137. Blom, A., Arkesteijn, L., Chavarrías, V. & Viparelli, E. The equilibrium alluvial river under variable flow and its channel-forming discharge. J. Geophys. Res. Earth Surf. 122, 1924–1948 (2017).

    Article  Google Scholar 

  138. Naito, K. & Parker, G. Adjustment of self-formed bankfull channel geometry of meandering rivers: modelling study. Earth Surf. Process. Landf. 45, 3313–3322 (2020).

    Article  Google Scholar 

  139. Pitlick, J., Marr, J. & Pizzuto, J. Width adjustment in experimental gravel-bed channels in response to overbank flows. J. Geophys. Res. Earth Surf. 118, 553–570 (2013).

    Article  Google Scholar 

  140. Andrews, E. D. Effective and bankfull discharges of streams in the Yampa River basin, Colorado and Wyoming. J. Hydrol. 46, 311–330 (1980).

    Article  Google Scholar 

  141. Emmett, W. W. & Wolman, M. G. Effective discharge and gravel-bed rivers. Earth Surf. Process. Landf. 26, 1369–1380 (2001).

    Article  Google Scholar 

  142. Torizzo, M. & Pitlick, J. Magnitude-frequency of bed load transport in mountain streams in Colorado. J. Hydrol. 290, 137–151 (2004).

    Article  Google Scholar 

  143. Barry, J. J., Buffington, J. M., Goodwin, P., King, J. G. & Emmett, W. W. Performance of bed-load transport equations relative to geomorphic significance: predicting effective discharge and its transport rate. J. Hydraul Eng. 134, 601–615 (2008).

    Article  Google Scholar 

  144. Molnar, P., Anderson, R. S., Kier, G. & Rose, J. Relationships among probability distributions of stream discharges in floods, climate, bed load transport, and river incision. J. Geophys. Res. Earth Surf. 111, F02001 (2006).

    Article  Google Scholar 

  145. Phillips, C. B., Martin, R. L. & Jerolmack, D. J. Impulse framework for unsteady flows reveals superdiffusive bed load transport. Geophys. Res. Lett. 40, 1328–1333 (2013).

    Article  Google Scholar 

  146. Slater, L. J., Khouakhi, A. & Wilby, R. L. River channel conveyance capacity adjusts to modes of climate variability. Sci. Rep. 9, 1–10 (2019).

    Article  Google Scholar 

  147. Pittaluga, M. B., Luchi, R. & Seminara, G. On the equilibrium profile of river beds. J. Geophys. Res. Earth Surf. 119, 317–332 (2014).

    Article  Google Scholar 

  148. Mason, J. & Mohrig, D. Differential bank migration and the maintenance of channel width in meandering river bends. Geology 47, 1136–1140 (2019).

    Article  Google Scholar 

  149. Lopez Dubon, S. & Lanzoni, S. Meandering evolution and width variations: a physics-statistics-based modeling approach. Water Resour. Res. 55, 76–94 (2019).

    Article  Google Scholar 

  150. Schumm, S. A. The Shape of Alluvial Channels in Relation to Sediment Type Professional Paper 352-B (USGS, 1960).

  151. Tal, M. & Paola, C. Dynamic single-thread channels maintained by the interaction of flow and vegetation. Geology 35, 347–350 (2007).

    Article  Google Scholar 

  152. Braudrick, C. A., Dietrich, W. E., Leverich, G. T. & Sklar, L. S. Experimental evidence for the conditions necessary to sustain meandering in coarse-bedded rivers. Proc. Natl Acad. Sci. USA 106, 16936–16941 (2009).

    Article  Google Scholar 

  153. Dulal, K. P. & Shimizu, Y. Experimental simulation of meandering in clay mixed sediments. J. Hydro-Environ. Res. 4, 329–343 (2010).

    Article  Google Scholar 

  154. Seminara, G. Fluvial sedimentary patterns. Ann. Rev. Fluid Mech. 42, 43–66 (2009).

    Article  Google Scholar 

  155. Jerolmack, D. J. & Mohrig, D. Conditions for branching in depositional rivers. Geology 35, 463–466 (2007).

    Article  Google Scholar 

  156. Davies, N. S. & Gibling, M. R. Cambrian to Devonian evolution of alluvial systems: the sedimentological impact of the earliest land plants. Earth Sci. Rev. 98, 171–200 (2010).

    Article  Google Scholar 

  157. Ganti, V., Whittaker, A. C., Lamb, M. P. & Fischer, W. W. Low-gradient, single-threaded rivers prior to greening of the continents. Proc. Natl Acad. Sci. USA 116, 11652–11657 (2019).

    Article  Google Scholar 

  158. Ielpi, A. & Lapôtre, M. G. A. A tenfold slowdown in river meander migration driven by plant life. Nat. Geosci. 13, 82–86 (2020).

    Article  Google Scholar 

  159. Jerolmack, D. J., Mohrig, D., Zuber, M. T. & Byrne, S. A minimum time for the formation of Holden northeast fan, Mars. Geophys. Res. Lett. 31, L21701 (2004).

    Article  Google Scholar 

  160. Williams, R. M. E. et al. Martian fluvial conglomerates at gale crater. Science 340, 1068–1072 (2013).

    Article  Google Scholar 

  161. Szabó, T., Domokos, G., Grotzinger, J. P. & Jerolmack, D. J. Reconstructing the transport history of pebbles on Mars. Nat. Commun. 6, 8366 (2015).

    Article  Google Scholar 

  162. Kite, E. S. et al. Persistence of intense, climate-driven runoff late in Mars history. Sci. Adv. 5, eaav7710 (2019).

    Article  Google Scholar 

  163. Call, B. C., Belmont, P., Schmidt, J. C. & Wilcock, P. R. Changes in floodplain inundation under nonstationary hydrology for an adjustable, alluvial river channel. Water Resour. Res. 53, 3811–3834 (2017).

    Article  Google Scholar 

  164. James, L. A. Channel incision on the Lower American River, California, from streamflow gage records. Water Resour. Res. 33, 485–490 (1997).

    Article  Google Scholar 

  165. Slater, L. J. & Singer, M. B. Imprint of climate and climate change in alluvial riverbeds: continental United States, 1950–2011. Geology 41, 595–598 (2013).

    Article  Google Scholar 

  166. Stover, S. C. & Montgomery, D. R. Channel change and flooding, Skokomish River, Washington. J. Hydrol. 243, 272–286 (2001).

    Article  Google Scholar 

  167. Slater, L. J., Singer, M. B. & Kirchner, J. W. Hydrologic versus geomorphic drivers of trends in flood hazard. Geophys. Res. Lett. 42, 370–376 (2015).

    Article  Google Scholar 

  168. Fowler, H. J. et al. Anthropogenic intensification of short-duration rainfall extremes. Nat. Rev. Earth Environ. 2, 107–122 (2021).

    Article  Google Scholar 

  169. Hayhoe, K. et al. in Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment Vol. 2 (eds Reidmiller, D. R. et al) 72–144 (US Global Change Research Program, 2018).

  170. Pfeiffer, A. M., Collins, B. D., Anderson, S. W., Montgomery, D. R. & Istanbulluoglu, E. River bed elevation variability reflects sediment supply, rather than peak flows, in the uplands of Washington state. Water Resour. Res. 55, 6795–6810 (2019).

    Article  Google Scholar 

  171. Gurnell, A. M., Bertoldi, W. & Corenblit, D. Changing river channels: the roles of hydrological processes, plants and pioneer fluvial landforms in humid temperate, mixed load, gravel bed rivers. Earth Sci. Rev. 111, 129–141 (2012).

    Article  Google Scholar 

  172. Walker, A. E., Moore, J. N., Grams, P. E., Dean, D. J. & Schmidt, J. C. Channel narrowing by inset floodplain formation of the lower Green River in the Canyonlands region, Utah. GSA Bull. 132, 2333–2352 (2020).

    Article  Google Scholar 

  173. Merritts, D. et al. in The Challenges of Dam Removal and River Restoration (eds De Graff, J. V. & Evans, J. E.) https://doi.org/10.1130/2013.4121(14) (2013).

  174. Merritts, D. et al. Anthropocene streams and base-level controls from historic dams in the unglaciated Mid-Atlantic region, USA. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369, 976–1009 (2011).

    Article  Google Scholar 

  175. Bernhardt, E. S. & Palmer, M. A. River restoration: the fuzzy logic of repairing reaches to reverse catchment scale degradation. Ecol. Appl. 21, 1926–1931 (2011).

    Article  Google Scholar 

  176. Palmer, M. & Ruhi, A. Linkages between flow regime, biota, and ecosystem processes: Implications for river restoration. Science https://doi.org/10.1126/science.aaw2087 (2019).

    Article  Google Scholar 

  177. East, A. E. et al. Geomorphic evolution of a gravel-bed river under sediment-starved versus sediment-rich conditions: river response to the world’s largest dam removal. J. Geophys. Res. Earth Surf. 123, 3338–3369 (2018).

    Article  Google Scholar 

  178. Bellmore, J. R. et al. Conceptualizing ecological responses to dam removal: if you remove it, what’s to come? BioScience 69, 26–39 (2019).

    Article  Google Scholar 

  179. Brayshaw, A. C. Bed microtopography and entrainment thresholds in gravel-bed rivers. GSA Bull. 96, 218–223 (1985).

    Article  Google Scholar 

  180. Kirchner, J. W., Dietrich, W. E., Iseya, F. & Ikeda, H. The variability of critical shear stress, friction angle, and grain protrusion in water worked sediments. Sedimentology 37, 647–672 (1990).

    Article  Google Scholar 

  181. Yager, E. M., Schmeeckle, M. W. & Badoux, A. Resistance is not futile: grain resistance controls on observed critical shields stress variations. J. Geophys. Res. Earth Surf. 123, 3308–3322 (2018).

    Article  Google Scholar 

  182. Hodge, R. A., Voepel, H., Leyland, J., Sear, D. A. & Ahmed, S. X-ray computed tomography reveals that grain protrusion controls critical shear stress for entrainment of fluvial gravels. Geology 48, 149–153 (2020).

    Article  Google Scholar 

  183. Ferdowsi, B., Ortiz, C. P., Houssais, M. & Jerolmack, D. J. River-bed armouring as a granular segregation phenomenon. Nat. Commun. 8, 1363 (2017).

    Article  Google Scholar 

  184. Ockelford, A., Yager, E. & Smith, H. The initiation of motion and formation of armour layers. Treatise Geomorphol. 6, 176–199 (2020).

    Google Scholar 

  185. Nelson, P. A. et al. Response of bed surface patchiness to reductions in sediment supply. J. Geophys. Res. 114, 18 (2009).

    Google Scholar 

  186. Hodge, R. A., Sear, D. A. & Leyland, J. Spatial variations in surface sediment structure in riffle–pool sequences: a preliminary test of the differential sediment entrainment hypothesis (dseh). Earth Surf. Process. Landf. 38, 449–465 (2013).

    Article  Google Scholar 

  187. Recking, A. An analysis of nonlinearity effects on bed load transport prediction. J. Geophys. Res. Earth Surf. 118, 1264–1281 (2013).

    Article  Google Scholar 

  188. Monsalve, A., Yager, E. M., Turowski, J. M. & Rickenmann, D. A probabilistic formulation of bed load transport to include spatial variability of flow and surface grain size distributions. Water Resour. Res. 52, 3579–3598 (2016).

    Article  Google Scholar 

  189. Yager, E. M., Venditti, J. G., Smith, H. J. & Schmeeckle, M. W. The trouble with shear stress. Geomorphology 323, 41–50 (2018).

    Article  Google Scholar 

  190. Laflen, J. M. & Beasley, R. P. Effects of Compaction on Critical Tractive Forces in Cohesive Soils (Univ. of Missouri, 1960).

  191. Wolman, M. G. Factors influencing erosion of a cohesive river bank. Am. J. Sci. 257, 204–216 (1959).

    Article  Google Scholar 

  192. Wynn, T. M., Henderson, M. B. & Vaughan, D. H. Changes in streambank erodibility and critical shear stress due to subaerial processes along a headwater stream, southwestern Virginia, USA. Geomorphology 97, 260–273 (2008).

    Article  Google Scholar 

  193. Dunne, K., Arratia, P. & Jerolmack, D. A new method for in-situ measurement of the erosion threshold of river channels. Preptint at EarthArXiv https://doi.org/10.31223/osf.io/rqcep (2019).

    Article  Google Scholar 

  194. Gray, J., Laronne, J. & Marr, J. D. G. Bedload-Surrogate Monitoring Technologies (USGS, 2010).

  195. Rickenmann, D., Turowski, J. M., Fritschi, B., Klaiber, A. & Ludwig, A. Bedload transport measurements at the Erlenbach stream with geophones and automated basket samplers. Earth Surf. Process. Landf. 37, 1000–1011 (2012).

    Article  Google Scholar 

  196. Wyss, C. R. et al. Measuring bed load transport rates by grain-size fraction using the Swiss plate geophone signal at the Erlenbach. J. Hydraul. Eng. 142, 04016003 (2016).

    Article  Google Scholar 

  197. Beer, A. R., Turowski, J. M., Fritschi, B. & Rieke-Zapp, D. H. Field instrumentation for high-resolution parallel monitoring of bedrock erosion and bedload transport. Earth Surf. Process. Landf. 40, 530–541 (2015).

    Article  Google Scholar 

  198. Hsu, L., Finnegan, N. J. & Brodsky, E. E. A seismic signature of river bedload transport during storm events. Geophys. Res. Lett. 38, L13407 (2011).

    Article  Google Scholar 

  199. Barrière, J., Oth, A., Hostache, R. & Krein, A. Bed load transport monitoring using seismic observations in a low-gradient rural gravel bed stream. Geophys. Res. Lett. 42, 2294–2301 (2015).

    Article  Google Scholar 

  200. Roth, D. L. et al. Bed load sediment transport inferred from seismic signals near a river. J. Geophys. Res. Earth Surf. 121, 725–747 (2016).

    Article  Google Scholar 

  201. Dietze, M., Lagarde, S., Halfi, E., Laronne, J. B. & Turowski, J. M. Joint sensing of bedload flux and water depth by seismic data inversion. Water Resour. Res. 55, 9892–9904 (2019).

    Article  Google Scholar 

  202. Turowski, J. M., Badoux, A. & Rickenmann, D. Start and end of bedload transport in gravel-bed streams. Geophys. Res. Lett. 38, L04401 (2011).

    Article  Google Scholar 

  203. Reid, I., Frostick, L. E. & Layman, J. T. The incidence and nature of bedload transport during flood flows in coarse-grained alluvial channels. Earth Surf. Process. Landf. 10, 33–44 (1985).

    Article  Google Scholar 

  204. Masteller, C. C., Finnegan, N. J., Turowski, J. M., Yager, E. M. & Rickenmann, D. History-dependent threshold for motion revealed by continuous bedload transport measurements in a steep mountain stream. Geophys. Res. Lett. 46, 2583–2591 (2019).

    Article  Google Scholar 

  205. Pretzlav, K. L. G., Johnson, J. P. L. & Bradley, D. N. Smartrock transport in a mountain stream: bedload hysteresis and changing thresholds of motion. Water Resour. Res. 56, e2020WR028150 (2020).

    Article  Google Scholar 

  206. Allen, B. & Kudrolli, A. Granular bed consolidation, creep, and armoring under subcritical fluid flow. Phys. Rev. Fluids 3, 074305 (2018).

    Article  Google Scholar 

  207. Phillips, C. B. & Scatena, F. N. Reduced channel morphological response to urbanization in a flood-dominated humid tropical environment. Earth Surf. Process. Landf. 38, 970–982 (2013).

    Article  Google Scholar 

  208. Phillips, C. B. LCZO — geomorphology — stream channel geomorphology — Puerto Rico (2009–2012). HydroShare http://www.hydroshare.org/resource/b538d75e180a424ca38d54e28500d33e (2020).

  209. USGS. LPC PA South Central B 2017 LAS Lidar Survey (OpenTopography, 2019).

  210. Ferguson, R. I. Flow resistance equations for gravel- and boulder-bed streams. Water Resour. Res. 43, 12 (2007).

    Article  Google Scholar 

  211. Lajeunesse, E., Malverti, L. & Charru, F. Bed load transport in turbulent flow at the grain scale: experiments and modeling. J. Geophys. Res. 115, 16 (2010).

    Google Scholar 

Download references

Acknowledgements

The authors thank G. Parker for inspiring this review, his brilliance and enthusiasm has touched nearly every aspect of this work. The idea for this manuscript developed out of conversations at the River, Coastal and Estuarine Morphodynamics (RCEM) 2019 symposium; the authors are grateful to the organizers H. Friedrich and K. Roisin Bryan for that stimulating forum. Work was supported by Army Research Office (Award Number W911NF2010113) and National Science Foundation (NSF), National Robotics Initiative Grant (Award Number 1734365) to D.J.J.

Author information

Authors and Affiliations

Authors

Contributions

C.B.P. and D.J.J. developed the idea and structure of this Perspective, with input from all authors. All authors contributed to writing, data analysis and interpretation.

Corresponding author

Correspondence to Douglas J. Jerolmack.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth Environment thanks M. Church, R. Hodge, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phillips, C.B., Masteller, C.C., Slater, L.J. et al. Threshold constraints on the size, shape and stability of alluvial rivers. Nat Rev Earth Environ 3, 406–419 (2022). https://doi.org/10.1038/s43017-022-00282-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00282-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing