Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Organophosphate ester pollution in the oceans

Abstract

The large-scale use of organophosphate esters (OPEs) as flame retardants and plasticizers has led to their prevalence in the environment, with still unknown broader impacts. This Review describes the transport and occurrence of OPEs in marine systems and summarizes emerging evidence of their biogeochemical and ecosystem impacts. Long-range environmental transport via the atmosphere and ocean currents distributes OPEs from industrialized regions to the open ocean. OPEs are most prevalent in coastal regions, but notable concentrations are also found in the Arctic and regions far from shore. Air–water interactions are important for the transport of OPEs to remote oceans and polar regions. Processes such as degradation and sinking of particle-bound compounds modulate the properties and fate of OPEs in the water column, where they are potentially a non-accounted source of anthropogenic organic phosphorus for microbial communities. Some OPEs have toxic effects in marine species and are found in measurable quantities in fish and other aquatic organisms. However, there is conflicting evidence on the potential for bioaccumulation and biomagnification of OPEs. Future work must constrain the large-scale impact of OPEs on marine biota and biogeochemistry to support more effective regulation and mitigation.

Key points

  • Higher concentrations of organophosphate esters (OPEs) occur in coastal seas near populated and industrial areas than in the open ocean.

  • OPEs are transported to the ocean from terrestrial sources via both atmospheric transport and riverine discharge. Air–water exchange and atmospheric deposition affect the cycling of OPEs.

  • Transport via ocean currents and, potentially, biodegradation control the vertical distribution and sedimentation of OPEs.

  • Re-emission from melting snow and ice in polar regions can impact OPE levels in the High Arctic and the Southern Ocean water columns.

  • OPEs and their transformation products are emerging concerns for marine ecosystems, especially related to their presence in marine mammals and fish.

  • International strategies are needed to manage their environmental emissions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Major sources and pathways of OPEs in coastal and open oceans.
Fig. 2: OPEs in the ocean air.
Fig. 3: OPEs in seawater.
Fig. 4: OPEs in marine sediments.
Fig. 5: OPE concentrations in organisms.
Fig. 6: BAFs of organophosphate esters in marine organisms.

Similar content being viewed by others

References

  1. van der Veen, I. & de Boer, J. Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis. Chemosphere 88, 1119–1153 (2012).

    Article  Google Scholar 

  2. Suhring, R. et al. Organophosphate esters in Canadian Arctic air: occurrence, levels and trends. Environ. Sci. Technol. 50, 7409–7415 (2016).

    Article  Google Scholar 

  3. Makinen, M. S. E. et al. Respiratory and dermal exposure to organophosphorus flame retardants and tetrabromobisphenol A at five work environments. Environ. Sci. Technol. 43, 941–947 (2009).

    Article  Google Scholar 

  4. Brommer, S., Harrad, S., Van den Eede, N. & Covaci, A. Concentrations of organophosphate esters and brominated flame retardants in German indoor dust samples. J. Environ. Monit. 14, 2482–2487 (2012).

    Article  Google Scholar 

  5. Gravel, S. et al. Halogenated flame retardants and organophosphate esters in the air of electronic waste recycling facilities: evidence of high concentrations and multiple exposures. Environ. Int. 128, 244–253 (2019).

    Article  Google Scholar 

  6. Akram, R. et al. Trends of electronic waste pollution and its impact on the global environment and ecosystem. Environ. Sci. Pollut. Res. 26, 16923–16938 (2019).

    Article  Google Scholar 

  7. Lee, D., Offenhuber, D., Duarte, F., Biderman, A. & Ratti, C. Monitour: tracking global routes of electronic waste. Waste Manag. 72, 362–370 (2018).

    Article  Google Scholar 

  8. Zhang, Y. et al. Distribution of flame retardants in smartphones and identification of current-use organic chemicals including three novel aryl organophosphate esters. Sci. Total Environ. 693, 133654 (2019).

    Article  Google Scholar 

  9. Ghimire, H. & Ariya, P. A. E-wastes: bridging the knowledge gaps in global production budgets, composition, recycling and sustainability implications. Sustain. Chem. 1, 154–182 (2020).

    Article  Google Scholar 

  10. Perkins, D. N., Drisse, M. N. B., Nxele, T. & Sly, P. D. E-waste: a global hazard. Ann. Glob. Health 80, 286–295 (2014).

    Article  Google Scholar 

  11. Marklund, A., Andersson, B. & Haglund, P. Organophosphorus flame retardants and plasticizers in Swedish sewage treatment plants. Environ. Sci. Technol. 39, 7423–7429 (2005).

    Article  Google Scholar 

  12. Meyer, J. & Bester, K. Organophosphate flame retardants and plasticisers in wastewater treatment plants. J. Environ. Monit. 6, 599–605 (2004).

    Article  Google Scholar 

  13. Zeng, X. et al. Occurrence and distribution of organophosphate flame retardants/plasticizers in wastewater treatment plant sludges from the Pearl River Delta, China. Environ. Toxicol. Chem. 33, 1720–1725 (2014).

    Article  Google Scholar 

  14. Kim, U. J. & Kannan, K. Occurrence and distribution of organophosphate flame retardants/plasticizers in surface waters, tap water, and rainwater: implications for human exposure. Environ. Sci. Technol. 52, 5625–5633 (2018).

    Article  Google Scholar 

  15. Fries, E. & Puttmann, W. Monitoring of the three organophosphate esters TBP, TCEP and TBEP in river water and ground water (Oder, Germany). J. Environ. Monit. 5, 346–352 (2003).

    Article  Google Scholar 

  16. Salamova, A., Hermanson, M. H. & Hites, R. A. Organophosphate and halogenated flame retardants in atmospheric particles from a European Arctic site. Environ. Sci. Technol. 48, 6133–6140 (2014).

    Article  Google Scholar 

  17. Moeller, A. et al. Organophosphorus flame retardants and plasticizers in airborne particles over the Northern Pacific and Indian Ocean toward the polar regions: evidence for global occurrence. Environ. Sci. Technol. 46, 3127–3134 (2012).

    Article  Google Scholar 

  18. Rodgers, T. F. M., Truong, J. W., Jantunen, L. M., Helm, P. A. & Diamond, M. L. Organophosphate ester transport, fate, and emissions in Toronto, Canada, estimated using an updated multimedia urban model. Environ. Sci. Technol. 52, 12465–12474 (2018).

    Article  Google Scholar 

  19. Suhring, R., Scheringer, M., Rodgers, T. F. M., Jantunen, L. M. & Diamond, M. L. Evaluation of the OECD POV and LRTP screening tool for estimating the long-range transport of organophosphate esters. Environ. Sci. Processes Impacts 22, 207–216 (2020).

    Article  Google Scholar 

  20. Wei, G. L. et al. Organophosphorus flame retardants and plasticizers: sources, occurrence, toxicity and human exposure. Environ. Pollut. 196, 29–46 (2015).

    Article  Google Scholar 

  21. Nguyen, L. V. et al. Exposure of Canadian electronic waste dismantlers to flame retardants. Environ. Int. 129, 95–104 (2019).

    Article  Google Scholar 

  22. Wang, Y. et al. Measuring exposure of e-waste dismantlers in Dhaka Bangladesh to organophosphate esters and halogenated flame retardants using silicone wristbands and T-shirts. Sci. Total Environ. 720, 137480 (2020).

    Article  Google Scholar 

  23. Zeng, Y. et al. Organophosphate esters (OPEs) in fine particulate matter (PM2.5) in urban, e-waste, and background regions of South China. J. Hazard. Mater. 385, 121583 (2020).

    Article  Google Scholar 

  24. Wang, R. M. et al. Occurrence and spatial distribution of organophosphate ester flame retardants and plasticizers in 40 rivers draining into the Bohai Sea, north China. Environ. Pollut. 198, 172–178 (2015).

    Article  Google Scholar 

  25. Schmidt, N., Castro-Jiménez, J., Fauvelle, V., Ourgaud, M. & Sempéré, R. Occurrence of organic plastic additives in surface waters of the Rhône River (France). Environ. Pollut. 257, 113637 (2020).

    Article  Google Scholar 

  26. Schmidt, N. et al. The Amazon River: a major source of organic plastic additives to the tropical North Atlantic? Environ. Sci. Technol. 53, 7513–7521 (2019).

    Article  Google Scholar 

  27. Fu, L. F. et al. Tracing the occurrence of organophosphate ester along the river flow path and textile wastewater treatment processes by using dissolved organic matters as an indicator. Sci. Total Environ. 722, 137895 (2020).

    Article  Google Scholar 

  28. Li, J. et al. Inference of organophosphate ester emission history from marine sediment cores impacted by wastewater effluents. Environ. Sci. Technol. 53, 8767–8775 (2019).

    Article  Google Scholar 

  29. Li, H. R. et al. Brominated and organophosphate flame retardants along a sediment transect encompassing the Guiyu, China e-waste recycling zone. Sci. Total Environ. 646, 58–67 (2019).

    Article  Google Scholar 

  30. Casal, P., Castro-Jiménez, J., Pizarro, M., Katsoyiannis, A. & Dachs, J. Seasonal soil/snow-air exchange of semivolatile organic pollutants at a coastal Arctic site (Tromsø, 69°N). Sci. Total Environ. 636, 1109–1116 (2018).

    Article  Google Scholar 

  31. Castro-Jiménez, J. & Sempéré, R. Atmospheric particle-bound organophosphate ester flame retardants and plasticizers in a North African Mediterranean coastal city (Bizerte, Tunisia). Sci. Total Environ. 642, 383–393 (2018).

    Article  Google Scholar 

  32. Paluselli, A., Fauvelle, V., Galgani, F. & Sempéré, R. Phthalate release from plastic fragments and degradation in seawater. Environ. Sci. Technol. 53, 166–175 (2019).

    Article  Google Scholar 

  33. Fauvelle, V. et al. Organic additive release from plastic to seawater is lower under deep-sea conditions. Nat. Commun. 12, 4426 (2021).

    Article  Google Scholar 

  34. Castro, V., Montes, R., Quintana, J. B., Rodil, R. & Cela, R. Determination of 18 organophosphorus flame retardants/plasticizers in mussel samples by matrix solid-phase dispersion combined to liquid chromatography-tandem mass spectrometry. Talanta 208, 120470 (2020).

    Article  Google Scholar 

  35. Schmidt, N., Castro-Jiménez, J., Oursel, B. & Sempéré, R. Phthalates and organophosphate esters in surface water, sediments and zooplankton of the NW Mediterranean Sea: Exploring links with microplastic abundance and accumulation in the marine food web. Environ. Pollut. 272, 115970 (2021).

    Article  Google Scholar 

  36. Sutton, R., Chen, D., Sun, J., Greig, D. J. & Wu, Y. Characterization of brominated, chlorinated, and phosphate flame retardants in San Francisco Bay, an urban estuary. Sci. Total Environ. 652, 212–223 (2019).

    Article  Google Scholar 

  37. Ma, Y. X., Xie, Z. Y., Lohmann, R., Mi, W. Y. & Gao, G. P. Organophosphate ester flame retardants and plasticizers in ocean sediments from the North Pacific to the Arctic Ocean. Environ. Sci. Technol. 51, 3809–3815 (2017).

    Article  Google Scholar 

  38. Nigar, A. et al. Environmental occurrence of phthalate and organophosphate esters in sediments across the Gulf of Lion (NW Mediterranean Sea). Sci. Total Environ. 760, 143412 (2021).

    Article  Google Scholar 

  39. Castro-Jiménez, J., González-Fernández, D., Fornier, M., Schmidt, N. & Sempéré, R. Macro-litter in surface waters from the Rhone River: plastic pollution and loading to the NW Mediterranean Sea. Mar. Pollut. Bull. 146, 60–66 (2019).

    Article  Google Scholar 

  40. Lebreton, L. C. M. et al. River plastic emissions to the world’s oceans. Nat. Commun. 8, 15611 (2017).

    Article  Google Scholar 

  41. Bollmann, U. E., Moeler, A., Xie, Z., Ebinghaus, R. & Einax, J. W. Occurrence and fate of organophosphorus flame retardants and plasticizers in coastal and marine surface waters. Water Res. 46, 531–538 (2012).

    Article  Google Scholar 

  42. Wolschke, H. et al. Atmospheric occurrence and fate of organophosphorus flame retardants and plasticizer at the German coast. Atmos. Environ. 137, 1–5 (2016).

    Article  Google Scholar 

  43. Suhring, R. et al. Organophosphate esters in the Canadian Arctic Ocean. Environ. Sci. Technol. 55, 304–312 (2021).

    Article  Google Scholar 

  44. Gong, P. et al. Persistent organic pollutant cycling in forests. Nat. Rev. Earth Environ. 2, 182–197 (2021).

    Article  Google Scholar 

  45. Wania, F., Haugen, J.-E., Lei, Y. D. & Mackay, D. Temperature dependence of atmospheric concentrations of semivolatile organic compounds. Environ. Sci. Technol. 32, 1013–1021 (1998).

    Article  Google Scholar 

  46. Octaviani, M., Stemmler, I., Lammel, G. & Graf, H. F. Atmospheric transport of persistent organic pollutants to and from the Arctic under present-day and future climate. Environ. Sci. Technol. 49, 3593–3602 (2015).

    Article  Google Scholar 

  47. European Communities. Tris(2-chloro-1-methylethyl) phosphate (TCPP): EU risk assessment report (European Communities, 2008).

  48. Zhang, X. et al. Novel flame retardants: estimating the physical-chemical properties and environmental fate of 94 halogenated and organophosphate PBDE replacements. Chemosphere 144, 2401–2407 (2016).

    Article  Google Scholar 

  49. Liu, Y. C. et al. Heterogeneous OH initiated oxidation: a possible explanation for the persistence of organophosphate flame retardants in air. Environ. Sci. Technol. 48, 1041–1048 (2014).

    Article  Google Scholar 

  50. Moeller, A., Xie, Z., Caba, A., Sturm, R. & Ebinghaus, R. Organophosphorus flame retardants and plasticizers in the atmosphere of the North Sea. Environ. Pollut. 159, 3660–3665 (2011).

    Article  Google Scholar 

  51. Salamova, A., Ma, Y., Venier, M. & Hites, R. A. High levels of organophosphate flame retardants in the Great Lakes atmosphere. Environ. Sci. Technol. Lett. 1, 8–14 (2014).

    Article  Google Scholar 

  52. Castro-Jiménez, J., Berrojalbiz, N., Pizarro, M. & Dachs, J. Organophosphate ester (OPE) flame retardants and plasticizers in the open Mediterranean and Black Seas atmosphere. Environ. Sci. Technol. 48, 3203–3209 (2014).

    Article  Google Scholar 

  53. Cheng, W. H. et al. Organophosphorus esters in the oceans and possible relation with ocean gyres. Environ. Pollut. 180, 159–164 (2013).

    Article  Google Scholar 

  54. Li, J. et al. Organophosphate esters in air, snow, and seawater in the North Atlantic and the Arctic. Environ. Sci. Technol. 51, 6887–6896 (2017).

    Article  Google Scholar 

  55. Chokwe, T. B., Abafe, O. A., Mbelu, S. P., Okonkwo, J. O. & Sibali, L. L. A review of sources, fate, levels, toxicity, exposure and transformations of organophosphorus flame-retardants and plasticizers in the environment. Emerg. Contam. 6, 345–366 (2020).

    Article  Google Scholar 

  56. Castro-Jiménez, J. et al. Organophosphate ester flame retardants and plasticizers in the global oceanic atmosphere. Environ. Sci. Technol. 50, 12831–12839 (2016).

    Article  Google Scholar 

  57. Na, G. S. et al. Occurrence, distribution, air-seawater exchange and atmospheric deposition of organophosphate esters (OPEs) from the Northwestern Pacific to the Arctic Ocean. Mar. Pollut. Bull. 157, 111243 (2020).

    Article  Google Scholar 

  58. Jurado, E. et al. Wet deposition of persistent organic pollutants to the global oceans. Environ. Sci. Technol. 39, 2426–2435 (2005).

    Article  Google Scholar 

  59. Jurado, E. et al. Atmospheric dry deposition of persistent organic pollutants to the Atlantic and inferences for the global oceans. Environ. Sci. Technol. 38, 5505–5513 (2004).

    Article  Google Scholar 

  60. Hallanger, I. et al. Organophosphorous flame retardants in biota from Svalbard, Norway. Mar. Pollut. Bull. 101, 442–447 (2015).

    Article  Google Scholar 

  61. McDonough, C. A. et al. Dissolved organophosphate esters and polybrominated diphenyl ethers in remote marine environments: Arctic surface water distributions and net transport through fram strait. Environ. Sci. Technol. 52, 6208–6216 (2018).

    Article  Google Scholar 

  62. Lohmann, R. & Dachs, J. in World Seas: A Environmental Evaluation 2nd edn Vol. III Ch. 15 (ed. Sheppard, C.) 269–282 (Academic, 2019).

  63. Gallban-Malagon, C. J., Del Vento, S., Cabrerizo, A. & Dachs, J. Factors affecting the atmospheric occurrence and deposition of polychlorinated biphenyls in the Southern Ocean. Atmos. Chem. Phys. 13, 12029–12041 (2013).

    Article  Google Scholar 

  64. Wang, Y. et al. Occurrence, distribution, and air-water exchange of organophosphorus flame retardants in a typical coastal area of China. Chemosphere 211, 335–344 (2018).

    Article  Google Scholar 

  65. Li, J. et al. Spatial distribution and seasonal variation of organophosphate esters in air above the Bohai and Yellow Seas, China. Environ. Sci. Technol. 52, 89–97 (2018).

    Article  Google Scholar 

  66. Zhang, L. et al. Atmospheric deposition, seasonal variation, and long-range transport of organophosphate esters on Yongxing Island, South China Sea. Sci. Total Environ. 806, 150673 (2022).

    Article  Google Scholar 

  67. Lai, S. C. et al. Occurrence and dry deposition of organophosphate esters in atmospheric particles over the northern South China Sea. Chemosphere 127, 195–200 (2015).

    Article  Google Scholar 

  68. Regnery, J. & Puttmann, W. Organophosphorus flame retardants and plasticizers in rain and snow from middle Germany. Clean Soil Air Water 37, 334–342 (2009).

    Article  Google Scholar 

  69. Casas, G., Martinez-Varela, A., Vila-Costa, M., Jiménez, B. A. & Dachs, J. Rain amplification of persistent organic pollutants. Environ. Sci. Technol. 55, 12961–12972 (2021).

    Google Scholar 

  70. Casal, P. et al. Snow amplification of persistent organic pollutants at coastal Antarctica. Environ. Sci. Technol. 53, 8872–8882 (2019).

    Article  Google Scholar 

  71. Zhang, Z. G. et al. Occurrence, behavior, and fate of organophosphate esters (OPEs) in subtropical paddy field environment: a case study in Nanning City of South China. Environ. Pollut. 267, 115675 (2020).

    Article  Google Scholar 

  72. Xie, Z. Y. et al. Occurrence of legacy and emerging organic contaminants in snow at Dome C in the Antarctic. Sci. Total Environ. 741, 140200 (2020).

    Article  Google Scholar 

  73. Cheng, W. H. et al. Detection and distribution of Tris(2-chloroethyl) phosphate on the East Antarctic ice sheet. Chemosphere 92, 1017–1021 (2013).

    Article  Google Scholar 

  74. Cabrerizo, A., Muir, D. C. G., Teixeira, C., Lamoureux, S. F. & Lafreniere, M. J. Snow deposition and melting as drivers of polychlorinated biphenyls and organochlorine pesticides in Arctic rivers, lakes, and ocean. Environ. Sci. Technol. 53, 14377–14386 (2019).

    Article  Google Scholar 

  75. Gustafsson, O. et al. Observations of the PCB distribution within and in-between ice, snow, ice-rafted debris, ice-interstitial water, and seawater in the Barents Sea marginal ice zone and the North Pole area. Sci. Total Environ. 342, 261–279 (2005).

    Article  Google Scholar 

  76. Herbert, B. M. J., Halsall, C. J., Villa, S., Jones, K. C. & Kallenborn, R. Rapid changes in PCB and OC pesticide concentrations in Arctic snow. Environ. Sci. Technol. 39, 2998–3005 (2005).

    Article  Google Scholar 

  77. Zhao, Z. et al. Distribution and long-range transport of polyfluoroalkyl substances in the Arctic, Atlantic Ocean and Antarctic coast. Environ. Pollut. 170, 71–77 (2012).

    Article  Google Scholar 

  78. Sun, Y. X. et al. Glacial melt inputs of organophosphate ester flame retardants to the largest High Arctic lake. Environ. Sci. Technol. 54, 2734–2743 (2020).

    Article  Google Scholar 

  79. Zhong, M. et al. Occurrence and spatial distribution of organophosphorus flame retardants and plasticizers in the Bohai, Yellow and East China seas. Sci.Total Environ. 741, 140434 (2020).

    Article  Google Scholar 

  80. Chen, M. et al. Temporal and seasonal variation and ecological risk evaluation of flame retardants in seawater and sediments from Bohai Bay near Tianjin, China during 2014 to 2017. Mar. Pollut. Bull. 146, 874–883 (2019).

    Article  Google Scholar 

  81. Regnery, J. & Puttmann, W. Seasonal fluctuations of organophosphate concentrations in precipitation and storm water runoff. Chemosphere 78, 958–964 (2010).

    Article  Google Scholar 

  82. Regnery, J. & Puttmann, W. Occurrence and fate of organophosphorus flame retardants and plasticizers in urban and remote surface waters in Germany. Water Res. 44, 4097–4104 (2010).

    Article  Google Scholar 

  83. Xiao, K. Y. et al. Occurrence, distribution and risk assessment of organophosphate ester flame retardants and plasticizers in surface seawater of the West Pacific. Mar. Pollut. Bull. 170, 112691 (2021).

    Article  Google Scholar 

  84. Barnes, D. K. A., Galgani, F., Thompson, R. C. & Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Phil. Trans. R. Soc. B 364, 1985–1998 (2009).

    Article  Google Scholar 

  85. Cristale, J. et al. Role of oxygen and DOM in sunlight induced photodegradation of organophosphorous flame retardants in river water. J. Hazard. Mater. 323, 242–249 (2017).

    Article  Google Scholar 

  86. Li, X. M. et al. Organophosphate diesters (Di-OPEs) play a critical role in understanding global organophosphate esters (OPEs) in fishmeal. Environ. Sci. Technol. 54, 12130–12141 (2020).

    Article  Google Scholar 

  87. Strobel, A., Wilimore, W. G., Sonne, C., Dietz, R. & Letcher, R. J. Organophosphate esters in East Greenland polar bears and ringed seals: adipose tissue concentrations and in vitro depletion and metabolite formation. Chemosphere 196, 240–250 (2018).

    Article  Google Scholar 

  88. Liu, Y. X. et al. Organophosphate (OP) diesters and a review of sources, chemical properties, environmental occurrence, adverse effects, and future directions. Environ. Int. 155, 106691 (2021).

    Article  Google Scholar 

  89. Li, Y. et al. Occurrence and ecological implications of organophosphate triesters and diester degradation products in wastewater, river water, and tap water. Environ. Pollut. 259, 113810 (2020).

    Article  Google Scholar 

  90. Xu, L. et al. Occurrence and spatio-seasonal distribution of organophosphate tri- and di-esters in surface water from Dongting Lake and their potential biological risk. Environ. Pollut. 282, 117031 (2021).

    Article  Google Scholar 

  91. Liang, C. et al. Organophosphate diesters in urban river sediment from South China: call for more research on their occurrence and fate in field environment. ACS EST Water 1, 871–880 (2021).

    Article  Google Scholar 

  92. Saeger, V. W. et al. Environmental fate of selected phosphate-esters. Environ. Sci. Technol. 13, 840–844 (1979).

    Article  Google Scholar 

  93. Abe, K. et al. Haloalkylphosphorus hydrolases purified from Sphingomonas sp. strain TDK1 and Sphingobium sp. strain TCM1. Appl. Environ. Microbiol. 80, 5866–5873 (2014).

    Article  Google Scholar 

  94. Takahashi, S., Katanuma, H., Abe, K. & Kera, Y. Identification of alkaline phosphatase genes for utilizing a flame retardant, tris(2-chloroethyl) phosphate, in Sphingobium sp. strain TCM1. Appl. Microbiol. Biotechnol. 101, 2153–2162 (2017).

    Article  Google Scholar 

  95. Takahashi, S., Abe, K. & Kera, Y. in Environmental Biotechnology: New Approaches and Prospective Applications Ch. 5 (IntechOpen, 2013).

  96. Latip, W. et al. Microbial phosphotriesterase: structure, function, and biotechnological applications. Catalysts 9, 671 (2019).

    Article  Google Scholar 

  97. Takahashi, S. et al. Isolation and identification of persistent chlorinated organophosphorus flame retardant-degrading bacteria. Appl. Environ. Microbiol. 76, 5292–5296 (2010).

    Article  Google Scholar 

  98. Kera, Y., Abe, K., Kasai, D., Fukuda, M. & Takahashi, S. Draft genome sequences of Sphingobium sp. strain TCM1 and Sphingomonas sp. strain TDK1, haloalkyl phosphate flame retardant- and plasticizer-degrading bacteria. Microbiol. Res. Announc. 4, e00668-16 (2016).

    Google Scholar 

  99. Liu, Y. et al. Biodegradation of tricresyl phosphate isomers by Brevibacillus brevis: degradation pathway and metabolic mechanism. Chemosphere 232, 195–203 (2019).

    Article  Google Scholar 

  100. Wei, K., Yin, H., Peng, H., Lu, G. N. & Dang, Z. Bioremediation of triphenyl phosphate by Brevibacillus brevis: degradation characteristics and role of cytochrome P450 monooxygenase. Sci. Total Environ. 627, 1389–1395 (2018).

    Article  Google Scholar 

  101. Wang, J. H. et al. Characterization and 16S metagenomic analysis of organophosphorus flame retardants degrading consortia. J. Hazard. Mater. 380, 120881 (2019).

    Article  Google Scholar 

  102. Kawagoshi, Y., Nakamura, S., Nishio, T. & Fukunaga, S. Isolation of aryl-phosphate ester-degrading bacterium from leachate of a sea-based waste disposal site. J. Biosci. Bioeng. 98, 464–469 (2004).

    Article  Google Scholar 

  103. Vila-Costa, M., Cerro-Gálvez, E., Martínez-Varela, A., Casas, G. & Dachs, J. Anthropogenic disolved organic carbon and marine microbiomes. ISME J. 14, 2646–2648 (2020).

    Article  Google Scholar 

  104. Nemergut, D. R. et al. Global patterns in the biogeography of bacterial taxa. Environ. Microbiol. 13, 135–144 (2011).

    Article  Google Scholar 

  105. Thomson, B. et al. Relative importance of phosphodiesterase vs. phosphomonoesterase (alkaline phosphatase) activities for dissolved organic phosphorus hydrolysis in epi- and mesopelagic waters. Front. Earth Sci. 8, 560893 (2020).

    Article  Google Scholar 

  106. Wang, X. et al. A review of organophosphate flame retardants and plasticizers in the environment: analysis, occurrence and risk assessment. Sci. Total Environ. 731, 139071 (2020).

    Article  Google Scholar 

  107. Zhao, J. P. et al. Novel brominated flame retardants in West Antarctic atmosphere (2011–2018): temporal trends, sources and chiral signature. Sci. Total Environ. 720, 137557 (2020).

    Article  Google Scholar 

  108. Cheng, W. et al. Response of polar regions to emerging organic pollutant organophosphorus esters (OPEs), a review. Adv. Polar Sci. 28, 13–22 (2017).

    Google Scholar 

  109. Han, X. et al. Occurrence and distribution of organophosphate esters in the air and soils of Ny-Ålesund and London Island, Svalbard, Arctic. Environ. Pollut. 263, 114495 (2020).

    Article  Google Scholar 

  110. Rohler, L. et al. Non-target and suspect characterisation of organic contaminants in Arctic air – Part 2: application of a new tool for identification and prioritisation of chemicals of emerging Arctic concern in air. Atmos. Chem. Phys. 20, 9031–9049 (2020).

    Article  Google Scholar 

  111. Wang, C. et al. Atmospheric organophosphate esters in the Western Antarctic Peninsula over 2014–2018: occurrence, temporal trend and source implication. Environ. Pollut. 267, 115428 (2020).

    Article  Google Scholar 

  112. Andresen, J. A., Grundmann, A. & Bester, K. Organophosphorus flame retardants and plasticisers in surface waters. Sci. Total Environ. 332, 155–166 (2004).

    Article  Google Scholar 

  113. Bester, K. Comparison of TCPP concentrations in sludge and wastewater in a typical German sewage treatment plant — comparison of sewage sludge from 20 plants. J. Environ. Monit. 7, 509–513 (2005).

    Article  Google Scholar 

  114. Fries, E. & Puttmann, W. Occurrence of organophosphate esters in surface water and ground water in Germany. J. Environ. Monit. 3, 621–626 (2001).

    Article  Google Scholar 

  115. Lian, M. S. et al. Occurrence, spatiotemporal distribution, and ecological risks of organophosphate esters in the water of the Yellow River to the Laizhou Bay, Bohai Sea. Sci. Total Environ. 787, 147528 (2021).

    Article  Google Scholar 

  116. Aznar-Alemany, Ò. et al. Halogenated and organophosphorus flame retardants in European aquaculture samples. Sci. Total Environ. 612, 492–500 (2018).

    Article  Google Scholar 

  117. Hu, M. et al. Regional distribution of halogenated organophosphate flame retardants in seawater samples from three coastal cities in China. Mar. Pollut. Bull. 86, 569–574 (2014).

    Article  Google Scholar 

  118. Lai, N. L. S. et al. Assessment of organophosphorus flame retardants and plasticizers in aquatic environments of China (Pearl River Delta, South China Sea, Yellow River Estuary) and Japan (Tokyo Bay). J. Hazard. Mater. 371, 288–294 (2019).

    Article  Google Scholar 

  119. Zhong, M. et al. Occurrence and spatial distribution of organophosphorus flame retardants and plasticizers in the Bohai and Yellow Seas, China. Mar. Pollut. Bull. 121, 331–338 (2017).

    Article  Google Scholar 

  120. Gao, X. et al. Organophosphorus flame retardants and persistent, bioaccumulative, and toxic contaminants in Arctic seawaters: on-board passive sampling coupled with target and non-target analysis. Environ. Pollut. 253, 1–10 (2019).

    Article  Google Scholar 

  121. Gao, X. Z. et al. Occurrences, sources, and transport of hydrophobic organic contaminants in the waters of Fildes Peninsula, Antarctica. Environ. Pollut. 241, 950–958 (2018).

    Article  Google Scholar 

  122. Esteban, S. et al. Presence of endocrine disruptors in freshwater in the northern Antarctic Peninsula region. Environ. Res. 147, 179–192 (2016).

    Article  Google Scholar 

  123. Zhong, M. et al. Occurrences and distribution characteristics of organophosphate ester flame retardants and plasticizers in the sediments of the Bohai and Yellow Seas, China. Sci. Total Environ. 615, 1305–1311 (2018).

    Article  Google Scholar 

  124. Mo, L. et al. Legacy and emerging contaminants in coastal surface sediments around Hainan Island in South China. Chemosphere 215, 133–141 (2019).

    Article  Google Scholar 

  125. Zeng, X. et al. Occurrence and distribution of organophosphorus flame retardants/plasticizers in coastal sediments from the Taiwan Strait in China. Mar. Pollut. Bull. 151, 110843 (2020).

    Article  Google Scholar 

  126. Brandsma, S. H., Leonards, P. E. G., Leslie, H. A. & de Boer, J. Tracing organophosphorus and brominated flame retardants and plasticizers in an estuarine food web. Sci. Total Environ. 505, 22–31 (2015).

    Article  Google Scholar 

  127. Choi, W., Lee, S., Lee, H.-K. & Moon, H.-B. Organophosphate flame retardants and plasticizers in sediment and bivalves along the Korean coast: occurrence, geographical distribution, and a potential for bioaccumulation. Mar. Pollut. Bull. 156, 111275 (2020).

    Article  Google Scholar 

  128. Wang, Y. et al. Organophosphate esters in sediment cores from coastal Laizhou Bay of the Bohai Sea, China. Sci. Total Environ. 607, 103–108 (2017).

    Article  Google Scholar 

  129. Bekele, T. G., Zhao, H., Wang, Q. & Chen, J. Bioaccumulation and trophic transfer of emerging organophosphate flame retardants in the marine food webs of Laizhou Bay, North China. Environ. Sci. Technol. 53, 13417–13426 (2019).

    Article  Google Scholar 

  130. Zhang, R. et al. Occurrence, phase distribution, and bioaccumulation of organophosphate esters (OPEs) in mariculture farms of the Beibu Gulf, China: a health risk assessment through seafood consumption. Environ. Pollut. 263, 114426 (2020).

    Article  Google Scholar 

  131. Liao, C. Y., Kim, U. J. & Kannan, K. Occurrence and distribution of organophosphate esters in sediment from northern Chinese coastal waters. Sci. Total Environ. 704, 135328 (2020).

    Article  Google Scholar 

  132. Tan, X.-X. et al. Distribution of organophosphorus flame retardants in sediments from the Pearl River Delta in South China. Sci. Total Environ. 544, 77–84 (2016).

    Article  Google Scholar 

  133. Harino, H., Yatsuzuka, E., Yamao, C., Ueno, M. & Ohji, M. Current status of organophosphorus compounds contamination in Maizuru Bay, Japan. J. Mar. Biol. Assoc. U. K. 94, 43–49 (2014).

    Article  Google Scholar 

  134. Gao, X. Z. et al. Distribution, sources and transport of organophosphorus flame retardants in the water and sediment of Ny-Ålesund, Svalbard, the Arctic. Environ. Pollut. 264, 114792 (2020).

    Article  Google Scholar 

  135. Marklund, A., Andersson, B. & Haglund, P. Organophosphorus flame retardants and plasticizers in air from various indoor environments. J. Environ. Monit. 7, 814–819 (2005).

    Article  Google Scholar 

  136. Marklund, A., Andersson, B. & Haglund, P. Traffic as a source of organophosphorus flame retardants and plasticizers in snow. Environ. Sci. Technol. 39, 3555–3562 (2005).

    Article  Google Scholar 

  137. Sundkvist, A. M., Olofsson, U. & Haglund, P. Organophosphorus flame retardants and plasticizers in marine and fresh water biota and in human milk. J. Environ. Monit. 12, 943–951 (2010).

    Article  Google Scholar 

  138. Letcher, R. J. et al. Legacy and new halogenated persistent organic pollutants in polar bears from a contamination hotspot in the Arctic, Hudson Bay Canada. Sci. Total Environ. 610, 121–136 (2018).

    Article  Google Scholar 

  139. Kim, J.-W. et al. Levels and distribution of organophosphorus flame retardants and plasticizers in fishes from Manila Bay, the Philippines. Environ. Pollut. 159, 3653–3659 (2011).

    Article  Google Scholar 

  140. Garcia-Garin, O. et al. Assessment of organophosphate flame retardants in Mediterranean Boops boops and their relationship to anthropization levels and microplastic ingestion. Chemosphere 252, 126569 (2020).

    Article  Google Scholar 

  141. Sala, B. et al. Organophosphate ester plasticizers in edible fish from the Mediterranean Sea: marine pollution and human exposure. Environ. Pollut. 292, 118377 (2022).

    Article  Google Scholar 

  142. Fernie, K. J. et al. Spatiotemporal patterns and relationships among the diet, biochemistry, and exposure to flame retardants in an apex avian predator, the peregrine falcon. Environ. Res. 158, 43–53 (2017).

    Article  Google Scholar 

  143. Papachlimitzou, A. et al. Organophosphorus flame retardants (PFRs) and plasticisers in harbour porpoises (Phocoena phocoena) stranded or bycaught in the UK during 2012. Mar. Pollut. Bull. 98, 328–334 (2015).

    Article  Google Scholar 

  144. Sala, B., Gimenez, J., de Stephanis, R., Barcelo, D. & Eljarrat, E. First determination of high levels of organophosphorus flame retardants and plasticizers in dolphins from Southern European waters. Environ. Res. 172, 289–295 (2019).

    Article  Google Scholar 

  145. Ding, Y. et al. Bioaccumulation and trophic transfer of organophosphate esters in tropical marine food web, South China Sea. Environ. Int. 143, 105919 (2020).

    Article  Google Scholar 

  146. Song, H. et al. Inhibitory effects of tributyl phosphate on algal growth, photosynthesis, and fatty acid synthesis in the marine diatom Phaeodactylum tricornutum. Environ. Sci. Pollut. Res. 23, 24009–24018 (2016).

    Article  Google Scholar 

  147. Liu, Q. et al. Toxic effect and mechanism of tris (1,3-dichloro-2-propyl)phosphate (TDCPP) on the marine alga Phaeodactylum tricornutum. Chemosphere 252, 126467 (2020).

    Article  Google Scholar 

  148. Liu, Q. et al. ROS changes are responsible for tributyl phosphate (TBP)-induced toxicity in the alga Phaeodactylum tricornutum. Aquat. Toxicol. 208, 168–178 (2019).

    Article  Google Scholar 

  149. Wu, H. F. et al. Biological effects of tris (1-chloro-2-propyl) phosphate (TCPP) on immunity in mussel Mytilus galloprovincialis. Environ. Toxicol. Pharmacol. 61, 102–106 (2018).

    Article  Google Scholar 

  150. Noyes, P. D., Haggard, D. E., Gonnerman, G. D. & Tanguay, R. L. Advanced morphological — behavioral test platform reveals neurodevelopmental defects in embryonic zebrafish exposed to comprehensive suite of halogenated and organophosphate flame retardants. Toxicol. Sci. 145, 177–195 (2015).

    Article  Google Scholar 

  151. Sun, L. et al. Developmental exposure of zebrafish larvae to organophosphate flame retardants causes neurotoxicity. Neurotoxicol. Teratol. 55, 16–22 (2016).

    Article  Google Scholar 

  152. Dishaw, L. V., Hunter, D. L., Beth, P., Stephanie, P. & Stapleton, H. M. Developmental exposure to organophosphate flame retardants elicits overt toxicity and alters behavior in early life stage zebrafish (Danio rerio). Toxicol. Sci. 142, 445–454 (2014).

    Article  Google Scholar 

  153. Jarema, K. A., Hunter, D. L., Shaffer, R. M., Behl, M. & Padilla, S. Acute and developmental behavioral effects of flame retardants and related chemicals in zebrafish. Neurotoxicol. Teratol. 52, 194–209 (2015).

    Article  Google Scholar 

  154. Vila-Costa, M. et al. Microbial consumption of organophosphate esters in seawater under phosphorus limited conditions. Sci. Rep. 9, 233 (2019).

    Article  Google Scholar 

  155. Okeme, J. O., Rodgers, T. F. M., Jantunen, L. M. & Diamond, M. L. Examining the gas-particle partitioning of organophosphate esters: how reliable are air measurements? Environ. Sci. Technol. 52, 13834–13844 (2018).

    Article  Google Scholar 

  156. Su, G. Y., Crump, D., Letcher, R. J. & Kennedy, S. W. Rapid in vitro metabolism of the flame retardant triphenyl phosphate and effects on cytotoxicity and mrna expression in chicken embryonic hepatocytes. Environ. Sci. Technol. 48, 13511–13519 (2014).

    Article  Google Scholar 

  157. Zhang, Q., Yu, C., Fu, L. L., Gu, S. J. & Wang, C. New insights in the endocrine disrupting effects of three primary metabolites of organophosphate flame retardants. Environ. Sci. Technol. 54, 4465–4474 (2020).

    Article  Google Scholar 

  158. Blum, A. et al. Organophosphate ester flame retardants: are they a regrettable substitution for polybrominated diphenyl ethers? Environ. Sci. Technol. Lett. 6, 638–649 (2019).

    Article  Google Scholar 

  159. Rao, W. H., Liao, W., Wang, H., Zhao, H. B. & Wang, Y. Z. Flame-retardant and smoke-suppressant flexible polyurethane foams based on reactive phosphorus-containing polyol and expandable graphite. J. Hazard. Mater. 360, 651–660 (2018).

    Article  Google Scholar 

  160. Liu, L., Gao, Y. P., Liu, H. P., Du, J. M. & Xia, N. Electrochemical-chemical-chemical redox cycling triggered by thiocholine and hydroquinone with ferrocenecarboxylic acid as the redox mediator. Electrochim. Acta 139, 323–330 (2014).

    Article  Google Scholar 

  161. Liu, Q. F. et al. Experimental study of OH-initiated heterogeneous oxidation of organophosphate flame retardants: kinetics, mechanism, and toxicity. Environ. Sci. Technol. 53, 14398–14408 (2019).

    Article  Google Scholar 

  162. Wolschke, H., Suhring, R., Massei, R., Tang, J. H. & Ebinghaus, R. Regional variations of organophosphorus flame retardants: fingerprint of large river basin estuaries/deltas in Europe compared with China. Environ. Pollut. 236, 391–395 (2018).

    Article  Google Scholar 

  163. Castro-Jiménez, J. & Ratola, N. An innovative approach for the simultaneous quantitative screening of organic plastic additives in complex matrices in marine coastal areas. Environ. Sci. Pollut. Res. 27, 11450–11457 (2020).

    Article  Google Scholar 

  164. Fu, J. et al. Long-range transport, trophic transfer, and ecological risks of organophosphate esters in remote areas. Environ. Sci. Technol. 55, 10192–10209 (2021).

    Article  Google Scholar 

  165. Fu, J. et al. Occurrence and trophic magnification of organophosphate esters in an Antarctic ecosystem: insights into the shift from legacy to emerging pollutants. J. Hazard. Mater. 396, 122742 (2020).

    Article  Google Scholar 

  166. Evenset, A. et al. Screening of New Contaminants in Samples from the Norwegian Arctic (Akvaplan, 2009).

  167. Zheng, G. et al. Legacy and emerging semi-volatile organic compounds in sentinel fish from an Arctic formerly used defense site in Alaska. Environ. Pollut. 259, 113872 (2020).

    Article  Google Scholar 

  168. Verreault, J., Letcher, R. J., Gentes, M. L. & Braune, B. M. Unusually high Deca-BDE concentrations and new flame retardants in a Canadian Arctic top predator, the glaucous gull. Sci. Total Environ. 639, 977–987 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to D. Muir for his detailed and constructive internal review on the manuscript. They thank W. Cheng and R. Zhang for providing the data on OPEs in air, snow and marine organisms. They thank Q. Meng, L. Mi and J. Li for technical support in creating Figs 1–4. Z.X. acknowledges the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 689443 via project iCUPE (Integrative and Comprehensive Understanding on Polar Environments). They thank the researchers who contributed original research for OPEs in environmental and biological matrices and modelling predictions.

Author information

Authors and Affiliations

Authors

Contributions

Z.X. initiated the project and assembled the authorship team. P.W., X.W., C.L., J.C.-J., M.V.-C., J.D. and Z.X. researched the data and drafted the manuscript and figures. R.K., W.M. and R.L. contributed to writing and editing of the manuscript.

Corresponding author

Correspondence to Zhiyong Xie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Wilhelm Püttmann, Roxana Sühring and Gan Zhang for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Z., Wang, P., Wang, X. et al. Organophosphate ester pollution in the oceans. Nat Rev Earth Environ 3, 309–322 (2022). https://doi.org/10.1038/s43017-022-00277-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00277-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing