Abstract
Anthropogenic mercury (Hg) emissions have driven marked increases in Arctic Hg levels, which are now being impacted by regional warming, with uncertain ecological consequences. This Review presents a comprehensive assessment of the present-day total Hg mass balance in the Arctic. Over 98% of atmospheric Hg is emitted outside the region and is transported to the Arctic via long-range air and ocean transport. Around two thirds of this Hg is deposited in terrestrial ecosystems, where it predominantly accumulates in soils via vegetation uptake. Rivers and coastal erosion transfer about 80 Mg year−1 of terrestrial Hg to the Arctic Ocean, in approximate balance with modelled net terrestrial Hg deposition in the region. The revised Arctic Ocean Hg mass balance suggests net atmospheric Hg deposition to the ocean and that Hg burial in inner-shelf sediments is underestimated (up to >100%), needing seasonal observations of sediment-ocean Hg exchange. Terrestrial Hg mobilization pathways from soils and the cryosphere (permafrost, ice, snow and glaciers) remain uncertain. Improved soil, snowpack and glacial Hg inventories, transfer mechanisms of riverine Hg releases under accelerated glacier and soil thaw, coupled atmosphere–terrestrial modelling and monitoring of Hg in sensitive ecosystems such as fjords can help to anticipate impacts on downstream Arctic ecosystems.
Key points
-
Arctic terrestrial mercury (Hg) emissions from anthropogenic activities (14 Mg year−1), wildfires (8.8 ± 6.4 Mg year−1) and soil and vegetation re-volatilization (24 (7–59) Mg year−1) are low compared with deposition (118 ± 20 Mg year−1). Estimates suggest that atmospheric Hg input on land is balanced by riverine and erosional exports.
-
Large pools of Hg (~597,000 Mg, 0–3 m depth) have accumulated in permafrost soils. Permafrost thaw is ubiquitous, but impacts Hg mobilization variably across the Arctic, and its future impact is presently uncertain.
-
Melt releases ~0.4 Mg year−1 of deposited Hg stored in Arctic glaciers (2,415 Mg), which is dwarfed by ~40 Mg year−1 of geogenic particulate Hg exported by glacial rivers into adjacent seas. Coastal erosion mobilizes an estimated 39 (18–52) Mg year−1 of soil-bound Hg into the Arctic Ocean.
-
Pan-Arctic rivers export 41 ± 4 Mg year−1 of dissolved and particulate Hg (~50% each) to the Arctic Ocean, predominantly during the spring freshet, likely derived from seasonal snowpacks (≤50%) and active-layer surface soils (≥50%) of the watershed portion north of 60°N.
-
Arctic Ocean Hg deposition (65 ± 20 Mg year−1) exceeds evasion (32 (23–45) Mg year−1). The revised Arctic Ocean Hg budget (~1,870 Mg) is lower than previous estimates (2,847–7,920 Mg) and implies higher sensitivity to changes in climate and emissions.
-
Shelf-region particulate Hg settling (122 ± 55 Mg year−1) from surface waters is the largest Hg removal mechanism in the ocean. The revised Arctic Ocean Hg mass balance suggests that Hg burial in shelf sediments (42 ± 31 Mg year−1) is underestimated by up to 52.2 ± 43.5 Mg year−1.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Arctic Monitoring and Assessment Programme. AMAP assessment 2011: mercury in the Arctic (AMAP, 2011).
Chen, L. et al. A decline in Arctic Ocean mercury suggested by differences in decadal trends of atmospheric mercury between the Arctic and northern midlatitudes. Geophys. Res. Lett. 42, 6076–6083 (2015).
Dietz, R. et al. Current state of knowledge on biological effects from contaminants on arctic wildlife and fish. Sci. Total Environ. 696, 133792 (2019).
UN Environment Programme. Global mercury assessment 2018 (UNEP, 2019).
Basu, N. et al. A state-of-the-science review of mercury biomarkers in human populations worldwide between 2000 and 2018. Environ. Health Perspect. 126, 106001 (2018).
Soerensen, A. L. et al. A mass budget for mercury and methylmercury in the Arctic Ocean. Glob. Biogeochem. Cycles 30, 560–575 (2016).
Sonke, J. E. et al. Eurasian river spring flood observations support net Arctic Ocean mercury export to the atmosphere and Atlantic Ocean. Proc. Natl Acad. Sci. USA 115, E11586 (2018).
Qureshi, A., O’Driscoll, N. J., MacLeod, M., Neuhold, Y.-M. & Hungerbühler, K. Photoreactions of mercury in surface ocean water: gross reaction kinetics and possible pathways. Environ. Sci. Technol. 44, 644–649 (2010).
O’Driscoll, N. J. et al. Dissolved gaseous mercury production at a marine aquaculture site in the mercury-contaminated Marano and Grado Lagoon, Italy. Bull. Environ. Contam. Toxicol. 103, 218–224 (2019).
Mason, R. P., Reinfelder, J. R. & Morel, F. M. M. Bioaccumulation of mercury and methylmercury. Water Air Soil Pollut. 80, 915–921 (1995).
Arctic Monitoring and Assessment Programme. 2021 AMAP mercury assessment: summary for policy-makers (AMAP, 2021).
Clem, K. R. et al. Record warming at the South Pole during the past three decades. Nat. Clim. Chang. 10, 762–770 (2020).
Kumar, A. & Wu, S. Mercury pollution in the Arctic from wildfires: source attribution for the 2000s. Environ. Sci. Technol. 53, 11269–11275 (2019).
St. Pierre, K. A. et al. Unprecedented increases in total and methyl mercury concentrations downstream of retrogressive thaw slumps in the western Canadian Arctic. Environ. Sci. Technol. 52, 14099–14109 (2018).
Schaefer, K. et al. Potential impacts of mercury released from thawing permafrost. Nat. Commun. 11, 4650 (2020).
St. Pierre, K. A. et al. Drivers of mercury cycling in the rapidly changing watershed of the High Arctic’s largest lake by volume (Lake Hazen, Nunavut, Canada). Environ. Sci. Technol. 53, 1175–1185 (2019).
Søndergaard, J. et al. Mercury exports from a High-Arctic river basin in Northeast Greenland (74°N) largely controlled by glacial lake outburst floods. Sci. Total Environ. 514, 83–91 (2015).
DiMento, B. P., Mason, R. P., Brooks, S. & Moore, C. The impact of sea ice on the air-sea exchange of mercury in the Arctic Ocean. Deep Sea Res. Part I 144, 28–38 (2019).
Petrova, M. V. et al. Mercury species export from the Arctic to the Atlantic Ocean. Mar. Chem. 225, 103855 (2020).
Wang, K. et al. Subsurface seawater methylmercury maximum explains biotic mercury concentrations in the Canadian Arctic. Sci. Rep. 8, 14465 (2018).
Agather, A. M., Bowman, K. L., Lamborg, C. H. & Hammerschmidt, C. R. Distribution of mercury species in the Western Arctic Ocean (US GEOTRACES GN01). Mar. Chem. 216, 103686 (2019).
Schartup, A. T., Soerensen, A. L. & Heimbürger-Boavida, L.-E. Influence of the arctic sea-ice regime shift on sea-ice methylated mercury trends. Environ. Sci. Technol. Lett. 7, 708–713 (2020).
Kim, J. et al. Mass budget of methylmercury in the East Siberian Sea: the importance of sediment sources. Environ. Sci. Technol. 54, 9949–9957 (2020).
Jiskra, M., Sonke, J. E., Agnan, Y., Helmig, D. & Obrist, D. Insights from mercury stable isotopes on terrestrial–atmosphere exchange of Hg(0) in the Arctic tundra. Biogeosciences 16, 4051–4064 (2019).
Blum, J. D., Sherman, L. S. & Johnson, M. W. Mercury isotopes in earth and environmental sciences. Annu. Rev. Earth Planet. Sci. 42, 249–269 (2014).
Štrok, M., Baya, P. A. & Hintelmann, H. The mercury isotope composition of Arctic coastal seawater. C. R. Geosci. 347, 368–376 (2015).
Zdanowicz, C. M. et al. Historical variations of mercury stable isotope ratios in Arctic glacier firn and ice cores. Glob. Biogeochem. Cycles 30, 1324–1347 (2016).
Obrist, D. et al. A review of global environmental mercury processes in response to human and natural perturbations: changes of emissions, climate, and land use. Ambio 47, 116–140 (2018).
Dibble, T. S., Tetu, H. L., Jiao, Y., Thackray, C. P. & Jacob, D. J. Modeling the OH-initiated oxidation of mercury in the global atmosphere without violating physical laws. J. Phys. Chem. A 124, 444–453 (2020).
Saiz-Lopez, A. et al. Photochemistry of oxidized Hg(I) and Hg(II) species suggests missing mercury oxidation in the troposphere. Proc. Natl Acad. Sci. USA 117, 30949 (2020).
Zhang, Y. et al. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions. Proc. Natl Acad. Sci. USA 113, 526–531 (2016).
Angot, H. et al. Chemical cycling and deposition of atmospheric mercury in polar regions: review of recent measurements and comparison with models. Atmos. Chem. Phys. 16, 10735–10763 (2016).
Fisher, J. A. et al. Riverine source of Arctic Ocean mercury inferred from atmospheric observations. Nat. Geosci. 5, 499–504 (2012).
Fisher, J. A. et al. Factors driving mercury variability in the Arctic atmosphere and ocean over the past 30 years. Glob. Biogeochem. Cycles 27, 1226–1235 (2013).
Tesán Onrubia, J. A. et al. Mercury export flux in the Arctic Ocean estimated from 234Th/238U disequilibria. ACS Earth Space Chem. 4, 795–801 (2020).
Heimbürger, L.-E. et al. Shallow methylmercury production in the marginal sea ice zone of the central Arctic Ocean. Sci. Rep. 5, 10318 (2015).
Cossa, D. et al. Mercury distribution and transport in the North Atlantic Ocean along the GEOTRACES-GA01 transect. Biogeosciences 15, 2309–2323 (2018).
Charette, M. A. et al. The transpolar drift as a source of riverine and shelf-derived trace elements to the Central Arctic Ocean. J. Geophys. Res. Oceans 125, e2019JC015920 (2020).
Schuster, P. F. et al. Permafrost stores a globally significant amount of mercury. Geophys. Res. Lett. 45, 1463–1471 (2018).
Lim, A. G. et al. A revised northern soil Hg pool, based on western Siberia permafrost peat Hg and carbon observations. Biogeosciences 17, 3083–3097 (2020).
Obrist, D. et al. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution. Nature 547, 201–204 (2017).
Zhou, J., Obrist, D., Dastoor, A., Jiskra, M. & Ryjkov, A. Vegetation uptake of mercury and impacts on global cycling. Nat. Rev. Earth Environ. 2, 269–284 (2021).
Arctic Monitoring and Assessment Programme & UN Environment Programme. Technical background report to the global mercury assessment 2018 (AMAP/UN Environment, 2019).
Outridge, P. M., Mason, R. P., Wang, F., Guerrero, S. & Heimbürger-Boavida, L. E. Updated global and oceanic mercury budgets for the United Nations Global Mercury Assessment 2018. Environ. Sci. Technol. 52, 11466–11477 (2018).
De Simone, F. et al. Particulate-phase mercury emissions from biomass burning and impact on resulting deposition: a modelling assessment. Atmos. Chem. Phys. 17, 1881–1899 (2017).
Kumar, A., Wu, S., Huang, Y., Liao, H. & Kaplan, J. O. Mercury from wildfires: global emission inventories and sensitivity to 2000–2050 global change. Atmos. Environ. 173, 6–15 (2018).
Friedli, H. R., Arellano, A. F., Cinnirella, S. & Pirrone, N. Initial estimates of mercury emissions to the atmosphere from global biomass burning. Environ. Sci. Technol. 43, 3507–3513 (2009).
Bozem, H. et al. Characterization of transport regimes and the polar dome during Arctic spring and summer using in situ aircraft measurements. Atmos. Chem. Phys. 19, 15049–15071 (2019).
Law, K. S. et al. Arctic air pollution: new insights from POLARCAT-IPY. Bull. Am. Meteorol. Soc. 95, 1873–1895 (2014).
Monks, P. S. et al. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys. 15, 8889–8973 (2015).
Weiss-Penzias, P. et al. Quantifying Asian and biomass burning sources of mercury using the Hg/CO ratio in pollution plumes observed at the Mount Bachelor Observatory. Atmos. Environ. 41, 4366–4379 (2007).
Durnford, D., Dastoor, A., Figuera-Nieto, D. & Ryjkov, A. Long range transport of mercury to the Arctic and across Canada. Atmos. Chem. Phys. 10, 6063–6086 (2010).
Pithan, F. et al. Role of air-mass transformations in exchange between the Arctic and mid-latitudes. Nat. Geosci. 11, 805–812 (2018).
Lee, M.-Y., Hong, C.-C. & Hsu, H.-H. Compounding effects of warm sea surface temperature and reduced sea ice on the extreme circulation over the extratropical North Pacific and North America during the 2013–2014 boreal winter. Geophys. Res. Lett. 42, 1612–1618 (2015).
Dastoor, A. et al. Atmospheric mercury in the Canadian Arctic. Part II: insight from modeling. Sci. Total Environ. 509–510, 16–27 (2015).
Steenhuisen, F. & Wilson, S. J. Development and application of an updated geospatial distribution model for gridding 2015 global mercury emissions. Atmos. Environ. 211, 138–150 (2019).
Friedli, H. R. et al. Mercury emissions from burning of biomass from temperate North American forests: laboratory and airborne measurements. Atmos. Environ. 37, 253–267 (2003).
Webster, J. P., Kane, T. J., Obrist, D., Ryan, J. N. & Aiken, G. R. Estimating mercury emissions resulting from wildfire in forests of the Western United States. Sci. Total Environ. 568, 578–586 (2016).
McLagan, D. S., Stupple, G. W., Darlington, A., Hayden, K. & Steffen, A. Where there is smoke there is mercury: assessing boreal forest fire mercury emissions using aircraft and highlighting uncertainties associated with upscaling emissions estimates. Atmos. Chem. Phys. 21, 5635–5653 (2021).
Giglio, L., Schroeder, W. & Justice, C. O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 178, 31–41 (2016).
Giglio, L., Randerson, J. T. & van der Werf, G. R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. Biogeosci. 118, 317–328 (2013).
Lizundia-Loiola, J., Otón, G., Ramo, R. & Chuvieco, E. A spatio-temporal active-fire clustering approach for global burned area mapping at 250 m from MODIS data. Remote Sens. Environ. 236, 111493 (2020).
Amiro, B. D. et al. Direct carbon emissions from Canadian forest fires, 1959-1999. Can. J. For. Res. 31, 512–525 (2001).
Arctic Monitoring and Assessment Programme. Impacts of short-lived climate forcers on Arctic climate, air quality, and human health: summary for policy-makers (AMAP, 2021).
Veira, A., Lasslop, G. & Kloster, S. Wildfires in a warmer climate: emission fluxes, emission heights, and black carbon concentrations in 2090–2099. J. Geophys. Res. Atmos. 121, 3195–3223 (2016).
Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).
Turetsky, M. R. et al. Wildfires threaten mercury stocks in northern soils. Geophys. Res. Lett. 33, L16403 (2006).
Kohlenberg, A. J., Turetsky, M. R., Thompson, D. K., Branfireun, B. A. & Mitchell, C. P. J. Controls on boreal peat combustion and resulting emissions of carbon and mercury. Environ. Res. Lett. 13, 035005 (2018).
Steffen, A. et al. Atmospheric mercury in the Canadian Arctic. Part I: a review of recent field measurements. Sci. Total Environ. 509–510, 3–15 (2015).
Steffen, A. et al. A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow. Atmos. Chem. Phys. 8, 1445–1482 (2008).
Wang, S. et al. Direct detection of atmospheric atomic bromine leading to mercury and ozone depletion. Proc. Natl Acad. Sci. USA 116, 14479 (2019).
Abbatt, J. P. D. et al. Halogen activation via interactions with environmental ice and snow in the polar lower troposphere and other regions. Atmos. Chem. Phys. 12, 6237–6271 (2012).
Pratt, K. A. et al. Photochemical production of molecular bromine in Arctic surface snowpacks. Nat. Geosci. 6, 351–356 (2013).
Toyota, K., McConnell, J. C., Staebler, R. M. & Dastoor, A. P. Air–snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS - Part 1: In-snow bromine activation and its impact on ozone. Atmos. Chem. Phys. 14, 4101–4133 (2014).
Marelle, L. et al. Implementation and impacts of surface and blowing snow sources of Arctic bromine activation within WRF-Chem 4.1.1. J. Adv. Model. Earth Syst. 13, e2020MS002391 (2021).
Durnford, D. & Dastoor, A. The behavior of mercury in the cryosphere: a review of what we know from observations. J. Geophys. Res. Atmos. 116, D06305 (2011).
Agnan, Y., Douglas, T. A., Helmig, D., Hueber, J. & Obrist, D. Mercury in the Arctic tundra snowpack: temporal and spatial concentration patterns and trace gas exchanges. Cryosphere 12, 1939–1956 (2018).
Travnikov, O. et al. Multi-model study of mercury dispersion in the atmosphere: atmospheric processes and model evaluation. Atmos. Chem. Phys. 17, 5271–5295 (2017).
Travnikov, O. & Ilyin, I. in Mercury Fate and Transport in the Global Atmosphere: Emissions, Measurements and Models (eds Mason, R. & Pirrone, N.) 571–587 (Springer, 2009).
Holmes, C. D. et al. Global atmospheric model for mercury including oxidation by bromine atoms. Atmos. Chem. Phys. 10, 12037–12057 (2010).
Dastoor, A. P. & Durnford, D. A. Arctic Ocean: is it a sink or a source of atmospheric mercury? Environ. Sci. Technol. 48, 1707–1717 (2014).
Fraser, A., Dastoor, A. & Ryjkov, A. How important is biomass burning in Canada to mercury contamination? Atmos. Chem. Phys. 18, 7263–7286 (2018).
Durnford, D. et al. How relevant is the deposition of mercury onto snowpacks? – Part 2: a modeling study. Atmos. Chem. Phys. 12, 9251–9274 (2012).
Christensen, J. H., Brandt, J., Frohn, L. M. & Skov, H. Modelling of mercury in the Arctic with the Danish Eulerian Hemispheric Model. Atmos. Chem. Phys. 4, 2251–2257 (2004).
Skov, H. et al. Variability in gaseous elemental mercury at Villum Research Station, Station Nord, in North Greenland from 1999 to 2017. Atmos. Chem. Phys. 20, 13253–13265 (2020).
Cole, A. S. et al. Ten-year trends of atmospheric mercury in the high Arctic compared to Canadian sub-Arctic and mid-latitude sites. Atmos. Chem. Phys. 13, 1535–1545 (2013).
Gay, D. A. et al. The Atmospheric Mercury Network: measurement and initial examination of an ongoing atmospheric mercury record across North America. Atmos. Chem. Phys. 13, 11339–11349 (2013).
Tørseth, K. et al. Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009. Atmos. Chem. Phys. 12, 5447–5481 (2012).
Steffen, A. et al. Atmospheric mercury speciation and mercury in snow over time at Alert, Canada. Atmos. Chem. Phys. 14, 2219–2231 (2014).
Toyota, K., Dastoor, A. P. & Ryzhkov, A. Air–snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS - Part 2: Mercury and its speciation. Atmos. Chem. Phys. 14, 4135–4167 (2014).
Sanei, H. et al. Wet deposition mercury fluxes in the Canadian sub-Arctic and southern Alberta, measured using an automated precipitation collector adapted to cold regions. Atmos. Environ. 44, 1672–1681 (2010).
Pearson, C., Howard, D., Moore, C. & Obrist, D. Mercury and trace metal wet deposition across five stations in Alaska: controlling factors, spatial patterns, and source regions. Atmos. Chem. Phys. 19, 6913–6929 (2019).
Sprovieri, F. et al. Five-year records of mercury wet deposition flux at GMOS sites in the Northern and Southern hemispheres. Atmos. Chem. Phys. 17, 2689–2708 (2017).
Zhou, H., Zhou, C., Hopke, P. K. & Holsen, T. M. Mercury wet deposition and speciated mercury air concentrations at rural and urban sites across New York state: Temporal patterns, sources and scavenging coefficients. Sci. Total Environ. 637-638, 943–953 (2018).
Qin, C., Wang, Y., Peng, Y. & Wang, D. Four-year record of mercury wet deposition in one typical industrial city in southwest China. Atmos. Environ. 142, 442–451 (2016).
Douglas, T. A. & Blum, J. D. Mercury isotopes reveal atmospheric gaseous mercury deposition directly to the Arctic coastal snowpack. Environ. Sci. Technol. Lett. 6, 235–242 (2019).
Galloway, J. N. & Likens, G. E. The collection of precipitation for chemical analysis. Tellus 30, 71–82 (1978).
Kochendorfer, J. et al. Testing and development of transfer functions for weighing precipitation gauges in WMO-SPICE. Hydrol. Earth Syst. Sci. 22, 1437–1452 (2018).
Rasmussen, R. et al. How well are we measuring snow: the NOAA/FAA/NCAR winter precipitation test bed. Bull. Am. Meteorol. Soc. 93, 811–829 (2012).
Yang, D., Goodison, B. E., Ishida, S. & Benson, C. S. Adjustment of daily precipitation data at 10 climate stations in Alaska: application of World Meteorological Organization intercomparison results. Water Resour. Res. 34, 241–256 (1998).
Yang, D. An improved precipitation climatology for the Arctic Ocean. Geophys. Res. Lett. 26, 1625–1628 (1999).
Wang, X., Bao, Z., Lin, C.-J., Yuan, W. & Feng, X. Assessment of global mercury deposition through litterfall. Environ. Sci. Technol. 50, 8548–8557 (2016).
Kirk, J. L. et al. Climate change and mercury accumulation in Canadian high and subarctic lakes. Environ. Sci. Technol. 45, 964–970 (2011).
Lehnherr, I. et al. The world’s largest High Arctic lake responds rapidly to climate warming. Nat. Commun. 9, 1290 (2018).
Muir, D. C. G. et al. Spatial trends and historical deposition of mercury in eastern and northern Canada inferred from lake sediment cores. Environ. Sci. Technol. 43, 4802–4809 (2009).
Korosi, J. B. et al. Long-term changes in organic matter and mercury transport to lakes in the sporadic discontinuous permafrost zone related to peat subsidence. Limnol. Oceanogr. 60, 1550–1561 (2015).
Douglas, T. A. et al. A pulse of mercury and major ions in snowmelt runoff from a small arctic Alaska watershed. Environ. Sci. Technol. 15, 11145–11155 (2017).
Dommergue, A. et al. Deposition of mercury species in the Ny-Ålesund area (79°N) and their transfer during snowmelt. Environ. Sci. Technol. 44, 901–907 (2010).
Steffen, A. et al. Atmospheric mercury over sea ice during the OASIS-2009 campaign. Atmos. Chem. Phys. 13, 7007–7021 (2013).
Zhang, Y. et al. Biogeochemical drivers of the fate of riverine mercury discharged to the global and Arctic oceans. Glob. Biogeochem. Cycles 29, 854–864 (2015).
Andersson, M. E., Sommar, J., Gårdfeldt, K. & Lindqvist, O. Enhanced concentrations of dissolved gaseous mercury in the surface waters of the Arctic Ocean. Mar. Chem. 110, 190–194 (2008).
Kalinchuk, V. V., Lopatnikov, E. A., Astakhov, A. S., Ivanov, M. V. & Hu, L. Distribution of atmospheric gaseous elemental mercury (Hg(0)) from the Sea of Japan to the Arctic, and Hg(0) evasion fluxes in the Eastern Arctic Seas: Results from a joint Russian-Chinese cruise in fall 2018. Sci. Total Environ. 753, 142003 (2021).
Berg, T., Pfaffhuber, K. A., Cole, A. S., Engelsen, O. & Steffen, A. Ten-year trends in atmospheric mercury concentrations, meteorological effects and climate variables at Zeppelin, Ny-Ålesund. Atmos. Chem. Phys. 13, 6575–6586 (2013).
Wang, X. et al. Underestimated sink of atmospheric mercury in a deglaciated forest chronosequence. Environ. Sci. Technol. 54, 8083–8093 (2020).
Overland, J. E. Less climatic resilience in the Arctic. Weather Clim. Extremes 30, 100275 (2020).
Bougoudis, I. et al. Long-term time series of Arctic tropospheric BrO derived from UV–VIS satellite remote sensing and its relation to first-year sea ice. Atmos. Chem. Phys. 20, 11869–11892 (2020).
Goodsite, M. E., Plane, J. M. C. & Skov, H. A theoretical study of the oxidation of Hg0 to HgBr2 in the troposphere. Environ. Sci. Technol. 38, 1772–1776 (2004).
Goodsite, M. E., Plane, J. M. C. & Skov, H. Correction to A theoretical study of the oxidation of Hg0 to HgBr2 in the troposphere. Environ. Sci. Technol. 46, 5262 (2012).
Shah, V. et al. Improved mechanistic model of the atmospheric redox chemistry of mercury. Environ. Sci. Technol. 55, 14445–14456 (2021).
Moore, C. W. et al. Convective forcing of mercury and ozone in the Arctic boundary layer induced by leads in sea ice. Nature 506, 81–84 (2014).
Douglas, T. A. et al. Elevated mercury measured in snow and frost flowers near Arctic sea ice leads. Geophys. Res. Lett. 32, L04502 (2005).
Bishop, K. et al. Recent advances in understanding and measurement of mercury in the environment: terrestrial Hg cycling. Sci. Total Environ. 721, 137647 (2020).
Olson, C. L., Jiskra, M., Sonke, J. E. & Obrist, D. Mercury in tundra vegetation of Alaska: spatial and temporal dynamics and stable isotope patterns. Sci. Total Environ. 660, 1502–1512 (2019).
St. Pierre, K. A. et al. Importance of open marine waters to the enrichment of total mercury and monomethylmercury in lichens in the Canadian High Arctic. Environ. Sci. Technol. 49, 5930–5938 (2015).
Landers, D. H. et al. Mercury in vegetation and lake sediments from the US Arctic. Water Air Soil Pollut. 80, 591–601 (1995).
Drbal, K., Elster, J. & Komarek, J. Heavy metals in water, ice and biological material from Spitsbergen, Svalbard. Polar Res. 11, 99–101 (1992).
Zhou, J. & Obrist, D. Global mercury assimilation by vegetation. Environ. Sci. Technol. 55, 14245–14257 (2021).
Wohlgemuth, L. et al. A bottom-up quantification of foliar mercury uptake fluxes across Europe. Biogeosciences 17, 6441–6456 (2020).
Olson, C., Jiskra, M., Biester, H., Chow, J. & Obrist, D. Mercury in active-layer tundra soils of Alaska: concentrations, pools, origins, and spatial distribution. Glob. Biogeochem. Cycles 32, 1058–1073 (2018).
Halbach, K., Mikkelsen, Ø., Berg, T. & Steinnes, E. The presence of mercury and other trace metals in surface soils in the Norwegian Arctic. Chemosphere 188, 567–574 (2017).
Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014).
Hoyer, M., Burke, J. & Keeler, G. Atmospheric sources, transport and deposition of mercury in Michigan: two years of event precipitation. Water Air Soil Pollut. 80, 199–208 (1995).
Keeler, G. J., Gratz, L. E. & Al-wali, K. Long-term atmospheric mercury wet deposition at Underhill, Vermont. Ecotoxicology 14, 71–83 (2005).
Nelson, S. J. et al. A comparison of winter mercury accumulation at forested and no-canopy sites measured with different snow sampling techniques. Appl. Geochem. 23, 384–398 (2008).
Bargagli, R., Agnorelli, C., Borghini, F. & Monaci, F. Enhanced deposition and bioaccumulation of mercury in Antarctic terrestrial ecosystems facing a coastal polynya. Environ. Sci. Technol. 39, 8150–8155 (2005).
Sherman, L. S., Blum, J. D., Douglas, T. A. & Steffen, A. Frost flowers growing in the Arctic ocean-atmosphere–sea ice–snow interface: 2. Mercury exchange between the atmosphere, snow, and frost flowers. J. Geophys. Res. Atmos. 117, D00R10 (2012).
Douglas, T. A. et al. Influence of snow and ice crystal formation and accumulation on mercury deposition to the Arctic. Environ. Sci. Technol. 42, 1542–1551 (2008).
Domine, F. et al. The specific surface area and chemical composition of diamond dust near Barrow, Alaska. J. Geophys. Res. Atmos. 116, D00R06 (2011).
Xu, W., Tenuta, M. & Wang, F. Bromide and chloride distribution across the snow-sea ice-ocean interface: a comparative study between an Arctic coastal marine site and an experimental sea ice mesocosm. J. Geophys. Res. Oceans 121, 5535–5548 (2016).
Lalonde, J. D., Poulain, A. J. & Amyot, M. The role of mercury redox reactions in snow on snow-to-air mercury transfer. Environ. Sci. Technol. 36, 174–178 (2002).
Poulain, A. J. et al. Redox transformations of mercury in an Arctic snowpack at springtime. Atmos. Environ. 38, 6763–6774 (2004).
Faïn, X. et al. Mercury in the snow and firn at Summit Station, Central Greenland, and implications for the study of past atmospheric mercury levels. Atmos. Chem. Phys. 8, 3441–3457 (2008).
St. Louis, V. L. et al. Some sources and sinks of monomethyl and inorganic mercury on Ellesmere Island in the Canadian High Arctic. Environ. Sci. Technol. 39, 2686–2701 (2005).
Ferrari, C. P. et al. Snow-to-air exchanges of mercury in an Arctic seasonal snow pack in Ny-Ålesund, Svalbard. Atmos. Environ. 39, 7633–7645 (2005).
Kamp, J., Skov, H., Jensen, B. & Sørensen, L. L. Fluxes of gaseous elemental mercury (GEM) in the High Arctic during atmospheric mercury depletion events (AMDEs). Atmos. Chem. Phys. 18, 6923–6938 (2018).
Mann, E. A. et al. Photoreducible mercury loss from Arctic snow is influenced by temperature and snow age. Environ. Sci. Technol. 49, 12120–12126 (2015).
Dommergue, A. et al. The fate of mercury species in a sub-arctic snowpack during snowmelt. Geophys. Res. Lett. 30, 1621 (2003).
Boutron, C. F., Vandal, G. M., Fitzgerald, W. F. & Ferrari, C. P. A forty year record of mercury in central Greenland snow. Geophys. Res. Lett. 25, 3315–3318 (1998).
Brooks, S. et al. Temperature and sunlight controls of mercury oxidation and deposition atop the Greenland ice sheet. Atmos. Chem. Phys. 11, 8295–8306 (2011).
Zheng, J. Archives of total mercury reconstructed with ice and snow from Greenland and the Canadian High Arctic. Sci. Total Environ. 509-510, 133–144 (2015).
Farinotti, D. et al. A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nat. Geosci. 12, 168–173 (2019).
Forsberg, R., Sørensen, L. & Simonsen, S. in Integrative Study of the Mean Sea Level and its Components (eds Cazenave, A., Champollion, N., Paul, F. & Benveniste, J.) 91–106 (Springer, 2017).
Ciracì, E., Velicogna, I. & Swenson, S. Continuity of the mass loss of the world’s glaciers and ice caps from the GRACE and GRACE follow-on missions. Geophys. Res. Lett. 47, e2019GL086926 (2020).
Friske, P. W. B. et al. Regional stream sediment and water geochemical reconnaissance data, southwestern Yukon. GEOSCAN https://doi.org/10.4095/194140 (1994).
Nagorski, S. A., Vermilyea, A. W. & Lamborg, C. H. Mercury export from glacierized Alaskan watersheds as influenced by bedrock geology, watershed processes, and atmospheric deposition. Geochim. Cosmochim. Acta 304, 32–49 (2021).
Søndergaard, J., Riget, F., Tamstorf, M. P. & Larsen, M. M. Mercury transport in a low-Arctic river in Kobbefjord, West Greenland (64A degrees N). Water Air Soil Pollut. 223, 4333–4342 (2012).
Overeem, I. et al. Substantial export of suspended sediment to the global oceans from glacial erosion in Greenland. Nat. Geosci. 10, 859–863 (2017).
Hawkings, J. R. et al. Large subglacial source of mercury from the southwestern margin of the Greenland Ice Sheet. Nat. Geosci. 14, 496–502 (2021).
Pfeffer, W. T. et al. The Randolph Glacier Inventory: a globally complete inventory of glaciers. J. Glaciol. 60, 537–552 (2014).
Zolkos, S. et al. Mercury export from Arctic great rivers. Environ. Sci. Technol. 54, 4140–4148 (2020).
Leitch, D. R. et al. The delivery of mercury to the Beaufort Sea of the Arctic Ocean by the Mackenzie River. Sci. Total Environ. 373, 178–195 (2007).
Lim, A. G. et al. Enhanced particulate Hg export at the permafrost boundary, western Siberia. Environ. Pollut. 254, 113083 (2019).
Walvoord, M. A. & Striegl, R. G. Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: potential impacts on lateral export of carbon and nitrogen. Geophys. Res. Lett. 34, L12402 (2007).
Tank, S. E. et al. Landscape matters: predicting the biogeochemical effects of permafrost thaw on aquatic networks with a state factor approach. Permafr. Periglac. Process. 31, 358–370 (2020).
Vonk, J. E. et al. Reviews and syntheses: effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences 12, 7129–7167 (2015).
Halm, D. R. & Dornblaser, M. M. Water and sediment quality in the Yukon River and its tributaries between Atlin, British Columbia, Canada, and Eagle, Alaska, USA, 2004 (US Geological Survey, 2007).
Sukhenko, S. A., Papina, T. S. & Pozdnjakov, S. R. Transport of mercury by the Katun river, West Siberia. Hydrobiologia 228, 23–28 (1992).
Fedorov, Y. A. et al. Patterns of mercury distribution in bottom sediments along the Severnaya Dvina-White Sea section. Dokl. Earth Sci. 436, 51–54 (2011).
Delaney, I. & Adhikari, S. Increased subglacial sediment discharge in a warming climate: consideration of ice dynamics, glacial erosion, and fluvial sediment transport. Geophys. Res. Lett. 47, e2019GL085672 (2020).
van Pelt, W. J. J., Schuler, T. V., Pohjola, V. A. & Pettersson, R. Accelerating future mass loss of Svalbard glaciers from a multi-model ensemble. J. Glaciol. 67, 485–499 (2021).
Muntjewerf, L. et al. Accelerated Greenland ice sheet mass loss under high greenhouse gas forcing as simulated by the coupled CESM2.1-CISM2.1. J. Adv. Model. Earth Syst. 12, e2019MS002031 (2020).
Bliss, A., Hock, R. & Radić, V. Global response of glacier runoff to twenty-first century climate change. J. Geophys. Res. Earth Surf. 119, 717–730 (2014).
Mu, C. et al. Carbon and mercury export from the Arctic rivers and response to permafrost degradation. Water Res. 161, 54–60 (2019).
Gibbs, A. E., Ohman, K. A. & Richmond, B. M. National assessment of shoreline change:a GIS 11639 compilation of vector shorelines and associated shoreline change data for the north coast of Alaska, US-Canadian border to Icy Cape. Open-file report 2015-1030 (US Geological Survey, 2015).
Couture, N. J., Irrgang, A., Pollard, W., Lantuit, H. & Fritz, M. Coastal erosion of permafrost soils along the Yukon Coastal Plain and fluxes of organic carbon to the Canadian Beaufort Sea. J. Geophys. Res. Biogeosci. 123, 406–422 (2018).
Overduin, P. P. et al. Coastal changes in the Arctic. Geol. Soc. Lond. Spec. Publ. 388, 103–129 (2014).
Outridge, P. M. & Sanei, H. Does organic matter degradation affect the reconstruction of pre-industrial atmospheric mercury deposition rates from peat cores? — A test of the hypothesis using a permafrost peat deposit in northern Canada. Int. J. Coal Geol. 83, 73–81 (2010).
Leitch, D. R. Mercury Distribution in Water and Permafrost of the Lower Mackenzie Basin, Their Contribution to the Mercury Contamination in the Beaufort Sea Marine Ecosystem, and Potential Effects of Climate Variation. Thesis, Univ. Manitoba (2006).
Lantuit, H. et al. The Arctic coastal dynamics database: a new classification scheme and statistics on Arctic permafrost coastlines. Estuaries Coasts 35, 383–400 (2012).
Irrgang, A. M. et al. Variability in rates of coastal change along the Yukon coast, 1951 to 2015. J. Geophys. Res. Earth Surf. 123, 779–800 (2018).
Bowman, K. L., Lamborg, C. H. & Agather, A. M. A global perspective on mercury cycling in the ocean. Sci. Total Environ. 710, 136166 (2020).
Lehnherr, I., St Louis, V. L., Hintelmann, H. & Kirk, J. L. Methylation of inorganic mercury in polar marine waters. Nat. Geosci. 4, 298–302 (2011).
Kim, H. et al. Contrasting distributions of dissolved gaseous mercury concentration and evasion in the North Pacific Subarctic Gyre and the Subarctic Front. Deep Sea Res. Part I 110, 90–98 (2016).
Outridge, P. M., Macdonald, R. W., Wang, F., Stern, G. A. & Dastoor, A. P. A mass balance inventory of mercury in the Arctic Ocean. Environ. Chem. 5, 89–111 (2008).
Parkinson, C. L. & Cavalieri, D. J. Arctic sea ice variability and trends, 1979–2006. J. Geophys. Res. Oceans 113, C07003 (2008).
Cavalieri, D. J. & Parkinson, C. L. Arctic sea ice variability and trends, 1979–2010. Cryosphere 6, 881–889 (2012).
Arrigo, K. R. & van Dijken, G. L. Continued increases in Arctic Ocean primary production. Prog. Oceanogr. 136, 60–70 (2015).
Kirk, J. L. et al. Methylated mercury species in marine waters of the Canadian high and sub Arctic. Environ. Sci. Technol. 42, 8367–8373 (2008).
Hu, H. et al. Mercury reduction and cell-surface adsorption by Geobacter sulfurreducens PCA. Environ. Sci. Technol. 47, 10922–10930 (2013).
Møller, A. K. et al. Mercuric reductase genes (merA) and mercury resistance plasmids in High Arctic snow, freshwater and sea-ice brine. FEMS Microbiol. Ecol. 87, 52–63 (2014).
Whalin, L., Kim, E. H. & Mason, R. Factors influencing the oxidation, reduction, methylation and demethylation of mercury species in coastal waters. Mar. Chem. 107, 278–294 (2007).
Zhang, Y., Soerensen, A. L., Schartup, A. T. & Sunderland, E. M. A global model for methylmercury formation and uptake at the base of marine food webs. Glob. Biogeochem. Cycles 34, e2019GB006348 (2020).
Beattie, S. A. et al. Total and methylated mercury in Arctic multiyear sea ice. Environ. Sci. Technol. 48, 5575–5582 (2014).
Chaulk, A., Stern, G. A., Armstrong, D., Barber, D. G. & Wang, F. Mercury distribution and transport across the ocean–sea-ice–atmosphere interface in the Arctic Ocean. Environ. Sci. Technol. 45, 1866–1872 (2011).
Cossa, D. et al. Mercury in the Southern Ocean. Geochim. Cosmochim. Acta 75, 4037–4052 (2011).
Klunder, M. B. et al. Dissolved iron in the Arctic shelf seas and surface waters of the central Arctic Ocean: impact of Arctic river water and ice-melt. J. Geophys. Res. Oceans 117, C01027 (2012).
Wang, F., Pućko, M. & Stern, G. in Sea Ice (ed. Thomas, D. N.) 472–491 (Wiley, 2017).
Tsubouchi, T. et al. The Arctic Ocean seasonal cycles of heat and freshwater fluxes: observation-based inverse estimates. J. Phys. Oceanogr. 48, 2029–2055 (2018).
Østerhus, S. et al. Arctic Mediterranean exchanges: a consistent volume budget and trends in transports from two decades of observations. Ocean Sci. 15, 379–399 (2019).
Lamborg, C. H., Hammerschmidt, C. R. & Bowman, K. L. An examination of the role of particles in oceanic mercury cycling. Phil. Trans. R. Soc. A 374, 20150297 (2016).
Pućko, M. et al. Transformation of mercury at the bottom of the Arctic food web: an overlooked puzzle in the mercury exposure narrative. Environ. Sci. Technol. 48, 7280–7288 (2014).
Hayes, C. T. et al. Global ocean sediment composition and burial flux in the deep sea. Glob. Biogeochem. Cycles 35, e2020GB006769 (2021).
Aksentov, K. I. et al. Assessment of mercury levels in modern sediments of the East Siberian Sea. Mar. Pollut. Bull. 168, 112426 (2021).
Pelletier, N., Chételat, J., Blarquez, O. & Vermaire, J. C. Paleolimnological assessment of wildfire-derived atmospheric deposition of trace metal(loid)s and major ions to subarctic lakes (Northwest Territories, Canada). J. Geophys. Res. Biogeosci. 125, e2020JG005720 (2020).
Schuster, P. F. et al. Mercury export from the Yukon River Basin and potential response to a changing climate. Environ. Sci. Technol. 45, 9262–9267 (2011).
Ivanov, V. V., Shapiro, G. I., Huthnance, J. M., Aleynik, D. L. & Golovin, P. N. Cascades of dense water around the world ocean. Prog. Oceanogr. 60, 47–98 (2004).
Roeske, T., Loeff, M. R. V., Middag, R. & Bakker, K. Deep water circulation and composition in the Arctic Ocean by dissolved barium, aluminium and silicate. Mar. Chem. 132-133, 56–67 (2012).
Bianchi, T. S. The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect. Proc. Natl Acad. Sci. USA 108, 19473 (2011).
Rontani, J.-F. et al. Degradation of sterols and terrigenous organic matter in waters of the Mackenzie Shelf, Canadian Arctic. Org. Geochem. 75, 61–73 (2014).
Custodio, D., Ebinghaus, R., Spain, T. G. & Bieser, J. Source apportionment of atmospheric mercury in the remote marine atmosphere: Mace Head GAW station, Irish western coast. Atmos. Chem. Phys. 20, 7929–7939 (2020).
Haine, T. W. N. et al. Arctic freshwater export: status, mechanisms, and prospects. Glob. Planet. Change 125, 13–35 (2015).
Mason, R. P. et al. Mercury biogeochemical cycling in the ocean and policy implications. Environ. Res. 119, 101–117 (2012).
Bravo, A. G. & Cosio, C. Biotic formation of methylmercury: a bio–physico–chemical conundrum. Limnol. Oceanogr. 65, 1010–1027 (2020).
Gordon, J., Quinton, W., Branfireun, B. A. & Olefeldt, D. Mercury and methylmercury biogeochemistry in a thawing permafrost wetland complex, Northwest Territories, Canada. Hydrol. Process. 30, 3627–3638 (2016).
Burt, A. et al. Mercury uptake within an ice algal community during the spring bloom in first-year Arctic sea ice. J. Geophys. Res. Oceans 118, 4746–4754 (2013).
Villar, E., Cabrol, L. & Heimbürger-Boavida, L.-E. Widespread microbial mercury methylation genes in the global ocean. Environ. Microbiol. Rep. 12, 277–287 (2020).
Gilmour, C. C. et al. Mercury methylation by novel microorganisms from new environments. Environ. Sci. Technol. 47, 11810–11820 (2013).
Lee, C.-S. & Fisher, N. S. Methylmercury uptake by diverse marine phytoplankton. Limnol. Oceanogr. 61, 1626–1639 (2016).
Wang, F., Macdonald, R. W., Armstrong, D. A. & Stern, G. A. Total and methylated mercury in the Beaufort Sea: the role of local and recent organic remineralization. Environ. Sci. Technol. 46, 11821–11828 (2012).
Schartup, A. T. et al. A model for methylmercury uptake and trophic transfer by marine plankton. Environ. Sci. Technol. 52, 654–662 (2018).
Wu, P. et al. The importance of bioconcentration into the pelagic food web base for methylmercury biomagnification: a meta-analysis. Sci. Total Environ. 646, 357–367 (2019).
Acknowledgements
H.A. acknowledges N.E. Selin and the use of the Svante cluster provided by the Massachusetts Institute of Technology’s Joint Program on the Science and Policy of Global Change. M.J. acknowledges funding from the Swiss National Science Foundation grant PZ00P2_174101. R.P.M. acknowledges funding from the US National Science Foundation Office of Polar Programs grant 1854454. D.O. acknowledges funding from the US National Science Foundation (DEB no. 2027038 and AGS no. 1848212). A.T.S. acknowledges support from the US National Science Foundation (OCE no. 2023046). L.-E.H.-B. acknowledges funding from the Chantier Arctique Francais (Pollution in the Arctic System) and the AXA Research Fund. C.Z. acknowledges funding from the Swedish Research Council for Sustainable Development FORMAS (grant no. 2017-00660). The authors acknowledge the Arctic Monitoring and Assessment Programme (AMAP) for organizing the 2021 Arctic mercury assessment process that provided the basis for this Review. Finally, the authors acknowledge the Atmospheric Mercury Network (AMNet), the European Monitoring and Evaluation Programme (EMEP) and the Environment and Climate Change Canada-Atmospheric Mercury Measurement Network (ECCC-AMM) and their contributing scientists for the provision of mercury measurement data.
Author information
Authors and Affiliations
Contributions
A.D. designed, coordinated and led the study and manuscript writing, editing and revising. All authors (listed in alphabetical order) contributed to analysing data, writing and/or conducting model simulations of specific sections, developing the Arctic mercury mass balance, key points and future perspectives, and revising the manuscript. K.A.S.P. and C.Z. also contributed to overall editing and formatting.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Earth & Environment thanks the anonymous reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
About this article
Cite this article
Dastoor, A., Angot, H., Bieser, J. et al. Arctic mercury cycling. Nat Rev Earth Environ 3, 270–286 (2022). https://doi.org/10.1038/s43017-022-00269-w
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s43017-022-00269-w