Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Arctic mercury cycling

Abstract

Anthropogenic mercury (Hg) emissions have driven marked increases in Arctic Hg levels, which are now being impacted by regional warming, with uncertain ecological consequences. This Review presents a comprehensive assessment of the present-day total Hg mass balance in the Arctic. Over 98% of atmospheric Hg is emitted outside the region and is transported to the Arctic via long-range air and ocean transport. Around two thirds of this Hg is deposited in terrestrial ecosystems, where it predominantly accumulates in soils via vegetation uptake. Rivers and coastal erosion transfer about 80 Mg year−1 of terrestrial Hg to the Arctic Ocean, in approximate balance with modelled net terrestrial Hg deposition in the region. The revised Arctic Ocean Hg mass balance suggests net atmospheric Hg deposition to the ocean and that Hg burial in inner-shelf sediments is underestimated (up to >100%), needing seasonal observations of sediment-ocean Hg exchange. Terrestrial Hg mobilization pathways from soils and the cryosphere (permafrost, ice, snow and glaciers) remain uncertain. Improved soil, snowpack and glacial Hg inventories, transfer mechanisms of riverine Hg releases under accelerated glacier and soil thaw, coupled atmosphere–terrestrial modelling and monitoring of Hg in sensitive ecosystems such as fjords can help to anticipate impacts on downstream Arctic ecosystems.

Key points

  • Arctic terrestrial mercury (Hg) emissions from anthropogenic activities (14 Mg year−1), wildfires (8.8 ± 6.4 Mg year−1) and soil and vegetation re-volatilization (24 (7–59) Mg year−1) are low compared with deposition (118 ± 20 Mg year−1). Estimates suggest that atmospheric Hg input on land is balanced by riverine and erosional exports.

  • Large pools of Hg (~597,000 Mg, 0–3 m depth) have accumulated in permafrost soils. Permafrost thaw is ubiquitous, but impacts Hg mobilization variably across the Arctic, and its future impact is presently uncertain.

  • Melt releases ~0.4 Mg year−1 of deposited Hg stored in Arctic glaciers (2,415 Mg), which is dwarfed by ~40 Mg year−1 of geogenic particulate Hg exported by glacial rivers into adjacent seas. Coastal erosion mobilizes an estimated 39 (18–52) Mg year−1 of soil-bound Hg into the Arctic Ocean.

  • Pan-Arctic rivers export 41 ± 4 Mg year−1 of dissolved and particulate Hg (~50% each) to the Arctic Ocean, predominantly during the spring freshet, likely derived from seasonal snowpacks (≤50%) and active-layer surface soils (≥50%) of the watershed portion north of 60°N.

  • Arctic Ocean Hg deposition (65 ± 20 Mg year−1) exceeds evasion (32 (23–45) Mg year−1). The revised Arctic Ocean Hg budget (~1,870 Mg) is lower than previous estimates (2,847–7,920 Mg) and implies higher sensitivity to changes in climate and emissions.

  • Shelf-region particulate Hg settling (122 ± 55 Mg year−1) from surface waters is the largest Hg removal mechanism in the ocean. The revised Arctic Ocean Hg mass balance suggests that Hg burial in shelf sediments (42 ± 31 Mg year−1) is underestimated by up to 52.2 ± 43.5 Mg year−1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Atmospheric Hg distribution in the Arctic.
Fig. 2: Distribution of THg in Arctic soils, wintertime deposition and rivers.
Fig. 3: Spatial distribution of Hg in the Arctic Ocean.
Fig. 4: Arctic Hg cycle.

Similar content being viewed by others

References

  1. Arctic Monitoring and Assessment Programme. AMAP assessment 2011: mercury in the Arctic (AMAP, 2011).

  2. Chen, L. et al. A decline in Arctic Ocean mercury suggested by differences in decadal trends of atmospheric mercury between the Arctic and northern midlatitudes. Geophys. Res. Lett. 42, 6076–6083 (2015).

    Article  Google Scholar 

  3. Dietz, R. et al. Current state of knowledge on biological effects from contaminants on arctic wildlife and fish. Sci. Total Environ. 696, 133792 (2019).

    Article  Google Scholar 

  4. UN Environment Programme. Global mercury assessment 2018 (UNEP, 2019).

  5. Basu, N. et al. A state-of-the-science review of mercury biomarkers in human populations worldwide between 2000 and 2018. Environ. Health Perspect. 126, 106001 (2018).

    Article  Google Scholar 

  6. Soerensen, A. L. et al. A mass budget for mercury and methylmercury in the Arctic Ocean. Glob. Biogeochem. Cycles 30, 560–575 (2016).

    Article  Google Scholar 

  7. Sonke, J. E. et al. Eurasian river spring flood observations support net Arctic Ocean mercury export to the atmosphere and Atlantic Ocean. Proc. Natl Acad. Sci. USA 115, E11586 (2018).

    Article  Google Scholar 

  8. Qureshi, A., O’Driscoll, N. J., MacLeod, M., Neuhold, Y.-M. & Hungerbühler, K. Photoreactions of mercury in surface ocean water: gross reaction kinetics and possible pathways. Environ. Sci. Technol. 44, 644–649 (2010).

    Article  Google Scholar 

  9. O’Driscoll, N. J. et al. Dissolved gaseous mercury production at a marine aquaculture site in the mercury-contaminated Marano and Grado Lagoon, Italy. Bull. Environ. Contam. Toxicol. 103, 218–224 (2019).

    Article  Google Scholar 

  10. Mason, R. P., Reinfelder, J. R. & Morel, F. M. M. Bioaccumulation of mercury and methylmercury. Water Air Soil Pollut. 80, 915–921 (1995).

    Article  Google Scholar 

  11. Arctic Monitoring and Assessment Programme. 2021 AMAP mercury assessment: summary for policy-makers (AMAP, 2021).

  12. Clem, K. R. et al. Record warming at the South Pole during the past three decades. Nat. Clim. Chang. 10, 762–770 (2020).

    Article  Google Scholar 

  13. Kumar, A. & Wu, S. Mercury pollution in the Arctic from wildfires: source attribution for the 2000s. Environ. Sci. Technol. 53, 11269–11275 (2019).

    Article  Google Scholar 

  14. St. Pierre, K. A. et al. Unprecedented increases in total and methyl mercury concentrations downstream of retrogressive thaw slumps in the western Canadian Arctic. Environ. Sci. Technol. 52, 14099–14109 (2018).

    Article  Google Scholar 

  15. Schaefer, K. et al. Potential impacts of mercury released from thawing permafrost. Nat. Commun. 11, 4650 (2020).

    Article  Google Scholar 

  16. St. Pierre, K. A. et al. Drivers of mercury cycling in the rapidly changing watershed of the High Arctic’s largest lake by volume (Lake Hazen, Nunavut, Canada). Environ. Sci. Technol. 53, 1175–1185 (2019).

    Article  Google Scholar 

  17. Søndergaard, J. et al. Mercury exports from a High-Arctic river basin in Northeast Greenland (74°N) largely controlled by glacial lake outburst floods. Sci. Total Environ. 514, 83–91 (2015).

    Article  Google Scholar 

  18. DiMento, B. P., Mason, R. P., Brooks, S. & Moore, C. The impact of sea ice on the air-sea exchange of mercury in the Arctic Ocean. Deep Sea Res. Part I 144, 28–38 (2019).

    Article  Google Scholar 

  19. Petrova, M. V. et al. Mercury species export from the Arctic to the Atlantic Ocean. Mar. Chem. 225, 103855 (2020).

    Article  Google Scholar 

  20. Wang, K. et al. Subsurface seawater methylmercury maximum explains biotic mercury concentrations in the Canadian Arctic. Sci. Rep. 8, 14465 (2018).

    Article  Google Scholar 

  21. Agather, A. M., Bowman, K. L., Lamborg, C. H. & Hammerschmidt, C. R. Distribution of mercury species in the Western Arctic Ocean (US GEOTRACES GN01). Mar. Chem. 216, 103686 (2019).

    Article  Google Scholar 

  22. Schartup, A. T., Soerensen, A. L. & Heimbürger-Boavida, L.-E. Influence of the arctic sea-ice regime shift on sea-ice methylated mercury trends. Environ. Sci. Technol. Lett. 7, 708–713 (2020).

    Article  Google Scholar 

  23. Kim, J. et al. Mass budget of methylmercury in the East Siberian Sea: the importance of sediment sources. Environ. Sci. Technol. 54, 9949–9957 (2020).

    Article  Google Scholar 

  24. Jiskra, M., Sonke, J. E., Agnan, Y., Helmig, D. & Obrist, D. Insights from mercury stable isotopes on terrestrial–atmosphere exchange of Hg(0) in the Arctic tundra. Biogeosciences 16, 4051–4064 (2019).

    Article  Google Scholar 

  25. Blum, J. D., Sherman, L. S. & Johnson, M. W. Mercury isotopes in earth and environmental sciences. Annu. Rev. Earth Planet. Sci. 42, 249–269 (2014).

    Article  Google Scholar 

  26. Štrok, M., Baya, P. A. & Hintelmann, H. The mercury isotope composition of Arctic coastal seawater. C. R. Geosci. 347, 368–376 (2015).

    Article  Google Scholar 

  27. Zdanowicz, C. M. et al. Historical variations of mercury stable isotope ratios in Arctic glacier firn and ice cores. Glob. Biogeochem. Cycles 30, 1324–1347 (2016).

    Article  Google Scholar 

  28. Obrist, D. et al. A review of global environmental mercury processes in response to human and natural perturbations: changes of emissions, climate, and land use. Ambio 47, 116–140 (2018).

    Article  Google Scholar 

  29. Dibble, T. S., Tetu, H. L., Jiao, Y., Thackray, C. P. & Jacob, D. J. Modeling the OH-initiated oxidation of mercury in the global atmosphere without violating physical laws. J. Phys. Chem. A 124, 444–453 (2020).

    Article  Google Scholar 

  30. Saiz-Lopez, A. et al. Photochemistry of oxidized Hg(I) and Hg(II) species suggests missing mercury oxidation in the troposphere. Proc. Natl Acad. Sci. USA 117, 30949 (2020).

    Article  Google Scholar 

  31. Zhang, Y. et al. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions. Proc. Natl Acad. Sci. USA 113, 526–531 (2016).

    Article  Google Scholar 

  32. Angot, H. et al. Chemical cycling and deposition of atmospheric mercury in polar regions: review of recent measurements and comparison with models. Atmos. Chem. Phys. 16, 10735–10763 (2016).

    Article  Google Scholar 

  33. Fisher, J. A. et al. Riverine source of Arctic Ocean mercury inferred from atmospheric observations. Nat. Geosci. 5, 499–504 (2012).

    Article  Google Scholar 

  34. Fisher, J. A. et al. Factors driving mercury variability in the Arctic atmosphere and ocean over the past 30 years. Glob. Biogeochem. Cycles 27, 1226–1235 (2013).

    Article  Google Scholar 

  35. Tesán Onrubia, J. A. et al. Mercury export flux in the Arctic Ocean estimated from 234Th/238U disequilibria. ACS Earth Space Chem. 4, 795–801 (2020).

    Article  Google Scholar 

  36. Heimbürger, L.-E. et al. Shallow methylmercury production in the marginal sea ice zone of the central Arctic Ocean. Sci. Rep. 5, 10318 (2015).

    Article  Google Scholar 

  37. Cossa, D. et al. Mercury distribution and transport in the North Atlantic Ocean along the GEOTRACES-GA01 transect. Biogeosciences 15, 2309–2323 (2018).

    Article  Google Scholar 

  38. Charette, M. A. et al. The transpolar drift as a source of riverine and shelf-derived trace elements to the Central Arctic Ocean. J. Geophys. Res. Oceans 125, e2019JC015920 (2020).

    Article  Google Scholar 

  39. Schuster, P. F. et al. Permafrost stores a globally significant amount of mercury. Geophys. Res. Lett. 45, 1463–1471 (2018).

    Article  Google Scholar 

  40. Lim, A. G. et al. A revised northern soil Hg pool, based on western Siberia permafrost peat Hg and carbon observations. Biogeosciences 17, 3083–3097 (2020).

    Article  Google Scholar 

  41. Obrist, D. et al. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution. Nature 547, 201–204 (2017).

    Article  Google Scholar 

  42. Zhou, J., Obrist, D., Dastoor, A., Jiskra, M. & Ryjkov, A. Vegetation uptake of mercury and impacts on global cycling. Nat. Rev. Earth Environ. 2, 269–284 (2021).

    Article  Google Scholar 

  43. Arctic Monitoring and Assessment Programme & UN Environment Programme. Technical background report to the global mercury assessment 2018 (AMAP/UN Environment, 2019).

  44. Outridge, P. M., Mason, R. P., Wang, F., Guerrero, S. & Heimbürger-Boavida, L. E. Updated global and oceanic mercury budgets for the United Nations Global Mercury Assessment 2018. Environ. Sci. Technol. 52, 11466–11477 (2018).

    Google Scholar 

  45. De Simone, F. et al. Particulate-phase mercury emissions from biomass burning and impact on resulting deposition: a modelling assessment. Atmos. Chem. Phys. 17, 1881–1899 (2017).

    Article  Google Scholar 

  46. Kumar, A., Wu, S., Huang, Y., Liao, H. & Kaplan, J. O. Mercury from wildfires: global emission inventories and sensitivity to 2000–2050 global change. Atmos. Environ. 173, 6–15 (2018).

    Article  Google Scholar 

  47. Friedli, H. R., Arellano, A. F., Cinnirella, S. & Pirrone, N. Initial estimates of mercury emissions to the atmosphere from global biomass burning. Environ. Sci. Technol. 43, 3507–3513 (2009).

    Article  Google Scholar 

  48. Bozem, H. et al. Characterization of transport regimes and the polar dome during Arctic spring and summer using in situ aircraft measurements. Atmos. Chem. Phys. 19, 15049–15071 (2019).

    Article  Google Scholar 

  49. Law, K. S. et al. Arctic air pollution: new insights from POLARCAT-IPY. Bull. Am. Meteorol. Soc. 95, 1873–1895 (2014).

    Article  Google Scholar 

  50. Monks, P. S. et al. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys. 15, 8889–8973 (2015).

    Article  Google Scholar 

  51. Weiss-Penzias, P. et al. Quantifying Asian and biomass burning sources of mercury using the Hg/CO ratio in pollution plumes observed at the Mount Bachelor Observatory. Atmos. Environ. 41, 4366–4379 (2007).

    Article  Google Scholar 

  52. Durnford, D., Dastoor, A., Figuera-Nieto, D. & Ryjkov, A. Long range transport of mercury to the Arctic and across Canada. Atmos. Chem. Phys. 10, 6063–6086 (2010).

    Article  Google Scholar 

  53. Pithan, F. et al. Role of air-mass transformations in exchange between the Arctic and mid-latitudes. Nat. Geosci. 11, 805–812 (2018).

    Article  Google Scholar 

  54. Lee, M.-Y., Hong, C.-C. & Hsu, H.-H. Compounding effects of warm sea surface temperature and reduced sea ice on the extreme circulation over the extratropical North Pacific and North America during the 2013–2014 boreal winter. Geophys. Res. Lett. 42, 1612–1618 (2015).

    Article  Google Scholar 

  55. Dastoor, A. et al. Atmospheric mercury in the Canadian Arctic. Part II: insight from modeling. Sci. Total Environ. 509–510, 16–27 (2015).

    Article  Google Scholar 

  56. Steenhuisen, F. & Wilson, S. J. Development and application of an updated geospatial distribution model for gridding 2015 global mercury emissions. Atmos. Environ. 211, 138–150 (2019).

    Article  Google Scholar 

  57. Friedli, H. R. et al. Mercury emissions from burning of biomass from temperate North American forests: laboratory and airborne measurements. Atmos. Environ. 37, 253–267 (2003).

    Article  Google Scholar 

  58. Webster, J. P., Kane, T. J., Obrist, D., Ryan, J. N. & Aiken, G. R. Estimating mercury emissions resulting from wildfire in forests of the Western United States. Sci. Total Environ. 568, 578–586 (2016).

    Article  Google Scholar 

  59. McLagan, D. S., Stupple, G. W., Darlington, A., Hayden, K. & Steffen, A. Where there is smoke there is mercury: assessing boreal forest fire mercury emissions using aircraft and highlighting uncertainties associated with upscaling emissions estimates. Atmos. Chem. Phys. 21, 5635–5653 (2021).

    Article  Google Scholar 

  60. Giglio, L., Schroeder, W. & Justice, C. O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 178, 31–41 (2016).

    Article  Google Scholar 

  61. Giglio, L., Randerson, J. T. & van der Werf, G. R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. Biogeosci. 118, 317–328 (2013).

    Article  Google Scholar 

  62. Lizundia-Loiola, J., Otón, G., Ramo, R. & Chuvieco, E. A spatio-temporal active-fire clustering approach for global burned area mapping at 250 m from MODIS data. Remote Sens. Environ. 236, 111493 (2020).

    Article  Google Scholar 

  63. Amiro, B. D. et al. Direct carbon emissions from Canadian forest fires, 1959-1999. Can. J. For. Res. 31, 512–525 (2001).

    Article  Google Scholar 

  64. Arctic Monitoring and Assessment Programme. Impacts of short-lived climate forcers on Arctic climate, air quality, and human health: summary for policy-makers (AMAP, 2021).

  65. Veira, A., Lasslop, G. & Kloster, S. Wildfires in a warmer climate: emission fluxes, emission heights, and black carbon concentrations in 2090–2099. J. Geophys. Res. Atmos. 121, 3195–3223 (2016).

    Article  Google Scholar 

  66. Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).

    Article  Google Scholar 

  67. Turetsky, M. R. et al. Wildfires threaten mercury stocks in northern soils. Geophys. Res. Lett. 33, L16403 (2006).

    Article  Google Scholar 

  68. Kohlenberg, A. J., Turetsky, M. R., Thompson, D. K., Branfireun, B. A. & Mitchell, C. P. J. Controls on boreal peat combustion and resulting emissions of carbon and mercury. Environ. Res. Lett. 13, 035005 (2018).

    Article  Google Scholar 

  69. Steffen, A. et al. Atmospheric mercury in the Canadian Arctic. Part I: a review of recent field measurements. Sci. Total Environ. 509510, 3–15 (2015).

    Article  Google Scholar 

  70. Steffen, A. et al. A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow. Atmos. Chem. Phys. 8, 1445–1482 (2008).

    Article  Google Scholar 

  71. Wang, S. et al. Direct detection of atmospheric atomic bromine leading to mercury and ozone depletion. Proc. Natl Acad. Sci. USA 116, 14479 (2019).

    Article  Google Scholar 

  72. Abbatt, J. P. D. et al. Halogen activation via interactions with environmental ice and snow in the polar lower troposphere and other regions. Atmos. Chem. Phys. 12, 6237–6271 (2012).

    Article  Google Scholar 

  73. Pratt, K. A. et al. Photochemical production of molecular bromine in Arctic surface snowpacks. Nat. Geosci. 6, 351–356 (2013).

    Article  Google Scholar 

  74. Toyota, K., McConnell, J. C., Staebler, R. M. & Dastoor, A. P. Air–snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS - Part 1: In-snow bromine activation and its impact on ozone. Atmos. Chem. Phys. 14, 4101–4133 (2014).

    Article  Google Scholar 

  75. Marelle, L. et al. Implementation and impacts of surface and blowing snow sources of Arctic bromine activation within WRF-Chem 4.1.1. J. Adv. Model. Earth Syst. 13, e2020MS002391 (2021).

    Article  Google Scholar 

  76. Durnford, D. & Dastoor, A. The behavior of mercury in the cryosphere: a review of what we know from observations. J. Geophys. Res. Atmos. 116, D06305 (2011).

    Article  Google Scholar 

  77. Agnan, Y., Douglas, T. A., Helmig, D., Hueber, J. & Obrist, D. Mercury in the Arctic tundra snowpack: temporal and spatial concentration patterns and trace gas exchanges. Cryosphere 12, 1939–1956 (2018).

    Article  Google Scholar 

  78. Travnikov, O. et al. Multi-model study of mercury dispersion in the atmosphere: atmospheric processes and model evaluation. Atmos. Chem. Phys. 17, 5271–5295 (2017).

    Article  Google Scholar 

  79. Travnikov, O. & Ilyin, I. in Mercury Fate and Transport in the Global Atmosphere: Emissions, Measurements and Models (eds Mason, R. & Pirrone, N.) 571–587 (Springer, 2009).

  80. Holmes, C. D. et al. Global atmospheric model for mercury including oxidation by bromine atoms. Atmos. Chem. Phys. 10, 12037–12057 (2010).

    Article  Google Scholar 

  81. Dastoor, A. P. & Durnford, D. A. Arctic Ocean: is it a sink or a source of atmospheric mercury? Environ. Sci. Technol. 48, 1707–1717 (2014).

    Article  Google Scholar 

  82. Fraser, A., Dastoor, A. & Ryjkov, A. How important is biomass burning in Canada to mercury contamination? Atmos. Chem. Phys. 18, 7263–7286 (2018).

    Article  Google Scholar 

  83. Durnford, D. et al. How relevant is the deposition of mercury onto snowpacks? – Part 2: a modeling study. Atmos. Chem. Phys. 12, 9251–9274 (2012).

    Article  Google Scholar 

  84. Christensen, J. H., Brandt, J., Frohn, L. M. & Skov, H. Modelling of mercury in the Arctic with the Danish Eulerian Hemispheric Model. Atmos. Chem. Phys. 4, 2251–2257 (2004).

    Article  Google Scholar 

  85. Skov, H. et al. Variability in gaseous elemental mercury at Villum Research Station, Station Nord, in North Greenland from 1999 to 2017. Atmos. Chem. Phys. 20, 13253–13265 (2020).

    Article  Google Scholar 

  86. Cole, A. S. et al. Ten-year trends of atmospheric mercury in the high Arctic compared to Canadian sub-Arctic and mid-latitude sites. Atmos. Chem. Phys. 13, 1535–1545 (2013).

    Article  Google Scholar 

  87. Gay, D. A. et al. The Atmospheric Mercury Network: measurement and initial examination of an ongoing atmospheric mercury record across North America. Atmos. Chem. Phys. 13, 11339–11349 (2013).

    Article  Google Scholar 

  88. Tørseth, K. et al. Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009. Atmos. Chem. Phys. 12, 5447–5481 (2012).

    Article  Google Scholar 

  89. Steffen, A. et al. Atmospheric mercury speciation and mercury in snow over time at Alert, Canada. Atmos. Chem. Phys. 14, 2219–2231 (2014).

    Article  Google Scholar 

  90. Toyota, K., Dastoor, A. P. & Ryzhkov, A. Air–snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS - Part 2: Mercury and its speciation. Atmos. Chem. Phys. 14, 4135–4167 (2014).

    Article  Google Scholar 

  91. Sanei, H. et al. Wet deposition mercury fluxes in the Canadian sub-Arctic and southern Alberta, measured using an automated precipitation collector adapted to cold regions. Atmos. Environ. 44, 1672–1681 (2010).

    Article  Google Scholar 

  92. Pearson, C., Howard, D., Moore, C. & Obrist, D. Mercury and trace metal wet deposition across five stations in Alaska: controlling factors, spatial patterns, and source regions. Atmos. Chem. Phys. 19, 6913–6929 (2019).

    Article  Google Scholar 

  93. Sprovieri, F. et al. Five-year records of mercury wet deposition flux at GMOS sites in the Northern and Southern hemispheres. Atmos. Chem. Phys. 17, 2689–2708 (2017).

    Article  Google Scholar 

  94. Zhou, H., Zhou, C., Hopke, P. K. & Holsen, T. M. Mercury wet deposition and speciated mercury air concentrations at rural and urban sites across New York state: Temporal patterns, sources and scavenging coefficients. Sci. Total Environ. 637-638, 943–953 (2018).

    Article  Google Scholar 

  95. Qin, C., Wang, Y., Peng, Y. & Wang, D. Four-year record of mercury wet deposition in one typical industrial city in southwest China. Atmos. Environ. 142, 442–451 (2016).

    Article  Google Scholar 

  96. Douglas, T. A. & Blum, J. D. Mercury isotopes reveal atmospheric gaseous mercury deposition directly to the Arctic coastal snowpack. Environ. Sci. Technol. Lett. 6, 235–242 (2019).

    Article  Google Scholar 

  97. Galloway, J. N. & Likens, G. E. The collection of precipitation for chemical analysis. Tellus 30, 71–82 (1978).

    Article  Google Scholar 

  98. Kochendorfer, J. et al. Testing and development of transfer functions for weighing precipitation gauges in WMO-SPICE. Hydrol. Earth Syst. Sci. 22, 1437–1452 (2018).

    Article  Google Scholar 

  99. Rasmussen, R. et al. How well are we measuring snow: the NOAA/FAA/NCAR winter precipitation test bed. Bull. Am. Meteorol. Soc. 93, 811–829 (2012).

    Article  Google Scholar 

  100. Yang, D., Goodison, B. E., Ishida, S. & Benson, C. S. Adjustment of daily precipitation data at 10 climate stations in Alaska: application of World Meteorological Organization intercomparison results. Water Resour. Res. 34, 241–256 (1998).

    Article  Google Scholar 

  101. Yang, D. An improved precipitation climatology for the Arctic Ocean. Geophys. Res. Lett. 26, 1625–1628 (1999).

    Article  Google Scholar 

  102. Wang, X., Bao, Z., Lin, C.-J., Yuan, W. & Feng, X. Assessment of global mercury deposition through litterfall. Environ. Sci. Technol. 50, 8548–8557 (2016).

    Article  Google Scholar 

  103. Kirk, J. L. et al. Climate change and mercury accumulation in Canadian high and subarctic lakes. Environ. Sci. Technol. 45, 964–970 (2011).

    Article  Google Scholar 

  104. Lehnherr, I. et al. The world’s largest High Arctic lake responds rapidly to climate warming. Nat. Commun. 9, 1290 (2018).

    Article  Google Scholar 

  105. Muir, D. C. G. et al. Spatial trends and historical deposition of mercury in eastern and northern Canada inferred from lake sediment cores. Environ. Sci. Technol. 43, 4802–4809 (2009).

    Article  Google Scholar 

  106. Korosi, J. B. et al. Long-term changes in organic matter and mercury transport to lakes in the sporadic discontinuous permafrost zone related to peat subsidence. Limnol. Oceanogr. 60, 1550–1561 (2015).

    Article  Google Scholar 

  107. Douglas, T. A. et al. A pulse of mercury and major ions in snowmelt runoff from a small arctic Alaska watershed. Environ. Sci. Technol. 15, 11145–11155 (2017).

    Article  Google Scholar 

  108. Dommergue, A. et al. Deposition of mercury species in the Ny-Ålesund area (79°N) and their transfer during snowmelt. Environ. Sci. Technol. 44, 901–907 (2010).

    Article  Google Scholar 

  109. Steffen, A. et al. Atmospheric mercury over sea ice during the OASIS-2009 campaign. Atmos. Chem. Phys. 13, 7007–7021 (2013).

    Article  Google Scholar 

  110. Zhang, Y. et al. Biogeochemical drivers of the fate of riverine mercury discharged to the global and Arctic oceans. Glob. Biogeochem. Cycles 29, 854–864 (2015).

    Article  Google Scholar 

  111. Andersson, M. E., Sommar, J., Gårdfeldt, K. & Lindqvist, O. Enhanced concentrations of dissolved gaseous mercury in the surface waters of the Arctic Ocean. Mar. Chem. 110, 190–194 (2008).

    Article  Google Scholar 

  112. Kalinchuk, V. V., Lopatnikov, E. A., Astakhov, A. S., Ivanov, M. V. & Hu, L. Distribution of atmospheric gaseous elemental mercury (Hg(0)) from the Sea of Japan to the Arctic, and Hg(0) evasion fluxes in the Eastern Arctic Seas: Results from a joint Russian-Chinese cruise in fall 2018. Sci. Total Environ. 753, 142003 (2021).

    Article  Google Scholar 

  113. Berg, T., Pfaffhuber, K. A., Cole, A. S., Engelsen, O. & Steffen, A. Ten-year trends in atmospheric mercury concentrations, meteorological effects and climate variables at Zeppelin, Ny-Ålesund. Atmos. Chem. Phys. 13, 6575–6586 (2013).

    Article  Google Scholar 

  114. Wang, X. et al. Underestimated sink of atmospheric mercury in a deglaciated forest chronosequence. Environ. Sci. Technol. 54, 8083–8093 (2020).

    Article  Google Scholar 

  115. Overland, J. E. Less climatic resilience in the Arctic. Weather Clim. Extremes 30, 100275 (2020).

    Article  Google Scholar 

  116. Bougoudis, I. et al. Long-term time series of Arctic tropospheric BrO derived from UV–VIS satellite remote sensing and its relation to first-year sea ice. Atmos. Chem. Phys. 20, 11869–11892 (2020).

    Article  Google Scholar 

  117. Goodsite, M. E., Plane, J. M. C. & Skov, H. A theoretical study of the oxidation of Hg0 to HgBr2 in the troposphere. Environ. Sci. Technol. 38, 1772–1776 (2004).

    Article  Google Scholar 

  118. Goodsite, M. E., Plane, J. M. C. & Skov, H. Correction to A theoretical study of the oxidation of Hg0 to HgBr2 in the troposphere. Environ. Sci. Technol. 46, 5262 (2012).

    Article  Google Scholar 

  119. Shah, V. et al. Improved mechanistic model of the atmospheric redox chemistry of mercury. Environ. Sci. Technol. 55, 14445–14456 (2021).

    Article  Google Scholar 

  120. Moore, C. W. et al. Convective forcing of mercury and ozone in the Arctic boundary layer induced by leads in sea ice. Nature 506, 81–84 (2014).

    Article  Google Scholar 

  121. Douglas, T. A. et al. Elevated mercury measured in snow and frost flowers near Arctic sea ice leads. Geophys. Res. Lett. 32, L04502 (2005).

    Google Scholar 

  122. Bishop, K. et al. Recent advances in understanding and measurement of mercury in the environment: terrestrial Hg cycling. Sci. Total Environ. 721, 137647 (2020).

    Article  Google Scholar 

  123. Olson, C. L., Jiskra, M., Sonke, J. E. & Obrist, D. Mercury in tundra vegetation of Alaska: spatial and temporal dynamics and stable isotope patterns. Sci. Total Environ. 660, 1502–1512 (2019).

    Article  Google Scholar 

  124. St. Pierre, K. A. et al. Importance of open marine waters to the enrichment of total mercury and monomethylmercury in lichens in the Canadian High Arctic. Environ. Sci. Technol. 49, 5930–5938 (2015).

    Article  Google Scholar 

  125. Landers, D. H. et al. Mercury in vegetation and lake sediments from the US Arctic. Water Air Soil Pollut. 80, 591–601 (1995).

    Article  Google Scholar 

  126. Drbal, K., Elster, J. & Komarek, J. Heavy metals in water, ice and biological material from Spitsbergen, Svalbard. Polar Res. 11, 99–101 (1992).

    Article  Google Scholar 

  127. Zhou, J. & Obrist, D. Global mercury assimilation by vegetation. Environ. Sci. Technol. 55, 14245–14257 (2021).

    Article  Google Scholar 

  128. Wohlgemuth, L. et al. A bottom-up quantification of foliar mercury uptake fluxes across Europe. Biogeosciences 17, 6441–6456 (2020).

    Article  Google Scholar 

  129. Olson, C., Jiskra, M., Biester, H., Chow, J. & Obrist, D. Mercury in active-layer tundra soils of Alaska: concentrations, pools, origins, and spatial distribution. Glob. Biogeochem. Cycles 32, 1058–1073 (2018).

    Article  Google Scholar 

  130. Halbach, K., Mikkelsen, Ø., Berg, T. & Steinnes, E. The presence of mercury and other trace metals in surface soils in the Norwegian Arctic. Chemosphere 188, 567–574 (2017).

    Article  Google Scholar 

  131. Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014).

    Article  Google Scholar 

  132. Hoyer, M., Burke, J. & Keeler, G. Atmospheric sources, transport and deposition of mercury in Michigan: two years of event precipitation. Water Air Soil Pollut. 80, 199–208 (1995).

    Article  Google Scholar 

  133. Keeler, G. J., Gratz, L. E. & Al-wali, K. Long-term atmospheric mercury wet deposition at Underhill, Vermont. Ecotoxicology 14, 71–83 (2005).

    Article  Google Scholar 

  134. Nelson, S. J. et al. A comparison of winter mercury accumulation at forested and no-canopy sites measured with different snow sampling techniques. Appl. Geochem. 23, 384–398 (2008).

    Article  Google Scholar 

  135. Bargagli, R., Agnorelli, C., Borghini, F. & Monaci, F. Enhanced deposition and bioaccumulation of mercury in Antarctic terrestrial ecosystems facing a coastal polynya. Environ. Sci. Technol. 39, 8150–8155 (2005).

    Article  Google Scholar 

  136. Sherman, L. S., Blum, J. D., Douglas, T. A. & Steffen, A. Frost flowers growing in the Arctic ocean-atmosphere–sea ice–snow interface: 2. Mercury exchange between the atmosphere, snow, and frost flowers. J. Geophys. Res. Atmos. 117, D00R10 (2012).

    Article  Google Scholar 

  137. Douglas, T. A. et al. Influence of snow and ice crystal formation and accumulation on mercury deposition to the Arctic. Environ. Sci. Technol. 42, 1542–1551 (2008).

    Article  Google Scholar 

  138. Domine, F. et al. The specific surface area and chemical composition of diamond dust near Barrow, Alaska. J. Geophys. Res. Atmos. 116, D00R06 (2011).

    Article  Google Scholar 

  139. Xu, W., Tenuta, M. & Wang, F. Bromide and chloride distribution across the snow-sea ice-ocean interface: a comparative study between an Arctic coastal marine site and an experimental sea ice mesocosm. J. Geophys. Res. Oceans 121, 5535–5548 (2016).

    Article  Google Scholar 

  140. Lalonde, J. D., Poulain, A. J. & Amyot, M. The role of mercury redox reactions in snow on snow-to-air mercury transfer. Environ. Sci. Technol. 36, 174–178 (2002).

    Article  Google Scholar 

  141. Poulain, A. J. et al. Redox transformations of mercury in an Arctic snowpack at springtime. Atmos. Environ. 38, 6763–6774 (2004).

    Article  Google Scholar 

  142. Faïn, X. et al. Mercury in the snow and firn at Summit Station, Central Greenland, and implications for the study of past atmospheric mercury levels. Atmos. Chem. Phys. 8, 3441–3457 (2008).

    Article  Google Scholar 

  143. St. Louis, V. L. et al. Some sources and sinks of monomethyl and inorganic mercury on Ellesmere Island in the Canadian High Arctic. Environ. Sci. Technol. 39, 2686–2701 (2005).

    Article  Google Scholar 

  144. Ferrari, C. P. et al. Snow-to-air exchanges of mercury in an Arctic seasonal snow pack in Ny-Ålesund, Svalbard. Atmos. Environ. 39, 7633–7645 (2005).

    Article  Google Scholar 

  145. Kamp, J., Skov, H., Jensen, B. & Sørensen, L. L. Fluxes of gaseous elemental mercury (GEM) in the High Arctic during atmospheric mercury depletion events (AMDEs). Atmos. Chem. Phys. 18, 6923–6938 (2018).

    Article  Google Scholar 

  146. Mann, E. A. et al. Photoreducible mercury loss from Arctic snow is influenced by temperature and snow age. Environ. Sci. Technol. 49, 12120–12126 (2015).

    Article  Google Scholar 

  147. Dommergue, A. et al. The fate of mercury species in a sub-arctic snowpack during snowmelt. Geophys. Res. Lett. 30, 1621 (2003).

    Article  Google Scholar 

  148. Boutron, C. F., Vandal, G. M., Fitzgerald, W. F. & Ferrari, C. P. A forty year record of mercury in central Greenland snow. Geophys. Res. Lett. 25, 3315–3318 (1998).

    Article  Google Scholar 

  149. Brooks, S. et al. Temperature and sunlight controls of mercury oxidation and deposition atop the Greenland ice sheet. Atmos. Chem. Phys. 11, 8295–8306 (2011).

    Article  Google Scholar 

  150. Zheng, J. Archives of total mercury reconstructed with ice and snow from Greenland and the Canadian High Arctic. Sci. Total Environ. 509-510, 133–144 (2015).

    Article  Google Scholar 

  151. Farinotti, D. et al. A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nat. Geosci. 12, 168–173 (2019).

    Article  Google Scholar 

  152. Forsberg, R., Sørensen, L. & Simonsen, S. in Integrative Study of the Mean Sea Level and its Components (eds Cazenave, A., Champollion, N., Paul, F. & Benveniste, J.) 91–106 (Springer, 2017).

  153. Ciracì, E., Velicogna, I. & Swenson, S. Continuity of the mass loss of the world’s glaciers and ice caps from the GRACE and GRACE follow-on missions. Geophys. Res. Lett. 47, e2019GL086926 (2020).

    Article  Google Scholar 

  154. Friske, P. W. B. et al. Regional stream sediment and water geochemical reconnaissance data, southwestern Yukon. GEOSCAN https://doi.org/10.4095/194140 (1994).

  155. Nagorski, S. A., Vermilyea, A. W. & Lamborg, C. H. Mercury export from glacierized Alaskan watersheds as influenced by bedrock geology, watershed processes, and atmospheric deposition. Geochim. Cosmochim. Acta 304, 32–49 (2021).

    Article  Google Scholar 

  156. Søndergaard, J., Riget, F., Tamstorf, M. P. & Larsen, M. M. Mercury transport in a low-Arctic river in Kobbefjord, West Greenland (64A degrees N). Water Air Soil Pollut. 223, 4333–4342 (2012).

    Article  Google Scholar 

  157. Overeem, I. et al. Substantial export of suspended sediment to the global oceans from glacial erosion in Greenland. Nat. Geosci. 10, 859–863 (2017).

    Article  Google Scholar 

  158. Hawkings, J. R. et al. Large subglacial source of mercury from the southwestern margin of the Greenland Ice Sheet. Nat. Geosci. 14, 496–502 (2021).

    Article  Google Scholar 

  159. Pfeffer, W. T. et al. The Randolph Glacier Inventory: a globally complete inventory of glaciers. J. Glaciol. 60, 537–552 (2014).

    Article  Google Scholar 

  160. Zolkos, S. et al. Mercury export from Arctic great rivers. Environ. Sci. Technol. 54, 4140–4148 (2020).

    Article  Google Scholar 

  161. Leitch, D. R. et al. The delivery of mercury to the Beaufort Sea of the Arctic Ocean by the Mackenzie River. Sci. Total Environ. 373, 178–195 (2007).

    Article  Google Scholar 

  162. Lim, A. G. et al. Enhanced particulate Hg export at the permafrost boundary, western Siberia. Environ. Pollut. 254, 113083 (2019).

    Article  Google Scholar 

  163. Walvoord, M. A. & Striegl, R. G. Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: potential impacts on lateral export of carbon and nitrogen. Geophys. Res. Lett. 34, L12402 (2007).

    Article  Google Scholar 

  164. Tank, S. E. et al. Landscape matters: predicting the biogeochemical effects of permafrost thaw on aquatic networks with a state factor approach. Permafr. Periglac. Process. 31, 358–370 (2020).

    Article  Google Scholar 

  165. Vonk, J. E. et al. Reviews and syntheses: effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences 12, 7129–7167 (2015).

    Article  Google Scholar 

  166. Halm, D. R. & Dornblaser, M. M. Water and sediment quality in the Yukon River and its tributaries between Atlin, British Columbia, Canada, and Eagle, Alaska, USA, 2004 (US Geological Survey, 2007).

  167. Sukhenko, S. A., Papina, T. S. & Pozdnjakov, S. R. Transport of mercury by the Katun river, West Siberia. Hydrobiologia 228, 23–28 (1992).

    Article  Google Scholar 

  168. Fedorov, Y. A. et al. Patterns of mercury distribution in bottom sediments along the Severnaya Dvina-White Sea section. Dokl. Earth Sci. 436, 51–54 (2011).

    Article  Google Scholar 

  169. Delaney, I. & Adhikari, S. Increased subglacial sediment discharge in a warming climate: consideration of ice dynamics, glacial erosion, and fluvial sediment transport. Geophys. Res. Lett. 47, e2019GL085672 (2020).

    Article  Google Scholar 

  170. van Pelt, W. J. J., Schuler, T. V., Pohjola, V. A. & Pettersson, R. Accelerating future mass loss of Svalbard glaciers from a multi-model ensemble. J. Glaciol. 67, 485–499 (2021).

    Article  Google Scholar 

  171. Muntjewerf, L. et al. Accelerated Greenland ice sheet mass loss under high greenhouse gas forcing as simulated by the coupled CESM2.1-CISM2.1. J. Adv. Model. Earth Syst. 12, e2019MS002031 (2020).

    Article  Google Scholar 

  172. Bliss, A., Hock, R. & Radić, V. Global response of glacier runoff to twenty-first century climate change. J. Geophys. Res. Earth Surf. 119, 717–730 (2014).

    Article  Google Scholar 

  173. Mu, C. et al. Carbon and mercury export from the Arctic rivers and response to permafrost degradation. Water Res. 161, 54–60 (2019).

    Article  Google Scholar 

  174. Gibbs, A. E., Ohman, K. A. & Richmond, B. M. National assessment of shoreline change:a GIS 11639 compilation of vector shorelines and associated shoreline change data for the north coast of Alaska, US-Canadian border to Icy Cape. Open-file report 2015-1030 (US Geological Survey, 2015).

  175. Couture, N. J., Irrgang, A., Pollard, W., Lantuit, H. & Fritz, M. Coastal erosion of permafrost soils along the Yukon Coastal Plain and fluxes of organic carbon to the Canadian Beaufort Sea. J. Geophys. Res. Biogeosci. 123, 406–422 (2018).

    Article  Google Scholar 

  176. Overduin, P. P. et al. Coastal changes in the Arctic. Geol. Soc. Lond. Spec. Publ. 388, 103–129 (2014).

    Article  Google Scholar 

  177. Outridge, P. M. & Sanei, H. Does organic matter degradation affect the reconstruction of pre-industrial atmospheric mercury deposition rates from peat cores? — A test of the hypothesis using a permafrost peat deposit in northern Canada. Int. J. Coal Geol. 83, 73–81 (2010).

    Article  Google Scholar 

  178. Leitch, D. R. Mercury Distribution in Water and Permafrost of the Lower Mackenzie Basin, Their Contribution to the Mercury Contamination in the Beaufort Sea Marine Ecosystem, and Potential Effects of Climate Variation. Thesis, Univ. Manitoba (2006).

  179. Lantuit, H. et al. The Arctic coastal dynamics database: a new classification scheme and statistics on Arctic permafrost coastlines. Estuaries Coasts 35, 383–400 (2012).

    Article  Google Scholar 

  180. Irrgang, A. M. et al. Variability in rates of coastal change along the Yukon coast, 1951 to 2015. J. Geophys. Res. Earth Surf. 123, 779–800 (2018).

    Article  Google Scholar 

  181. Bowman, K. L., Lamborg, C. H. & Agather, A. M. A global perspective on mercury cycling in the ocean. Sci. Total Environ. 710, 136166 (2020).

    Article  Google Scholar 

  182. Lehnherr, I., St Louis, V. L., Hintelmann, H. & Kirk, J. L. Methylation of inorganic mercury in polar marine waters. Nat. Geosci. 4, 298–302 (2011).

    Article  Google Scholar 

  183. Kim, H. et al. Contrasting distributions of dissolved gaseous mercury concentration and evasion in the North Pacific Subarctic Gyre and the Subarctic Front. Deep Sea Res. Part I 110, 90–98 (2016).

    Article  Google Scholar 

  184. Outridge, P. M., Macdonald, R. W., Wang, F., Stern, G. A. & Dastoor, A. P. A mass balance inventory of mercury in the Arctic Ocean. Environ. Chem. 5, 89–111 (2008).

    Article  Google Scholar 

  185. Parkinson, C. L. & Cavalieri, D. J. Arctic sea ice variability and trends, 1979–2006. J. Geophys. Res. Oceans 113, C07003 (2008).

    Article  Google Scholar 

  186. Cavalieri, D. J. & Parkinson, C. L. Arctic sea ice variability and trends, 1979–2010. Cryosphere 6, 881–889 (2012).

    Article  Google Scholar 

  187. Arrigo, K. R. & van Dijken, G. L. Continued increases in Arctic Ocean primary production. Prog. Oceanogr. 136, 60–70 (2015).

    Article  Google Scholar 

  188. Kirk, J. L. et al. Methylated mercury species in marine waters of the Canadian high and sub Arctic. Environ. Sci. Technol. 42, 8367–8373 (2008).

    Article  Google Scholar 

  189. Hu, H. et al. Mercury reduction and cell-surface adsorption by Geobacter sulfurreducens PCA. Environ. Sci. Technol. 47, 10922–10930 (2013).

    Article  Google Scholar 

  190. Møller, A. K. et al. Mercuric reductase genes (merA) and mercury resistance plasmids in High Arctic snow, freshwater and sea-ice brine. FEMS Microbiol. Ecol. 87, 52–63 (2014).

    Article  Google Scholar 

  191. Whalin, L., Kim, E. H. & Mason, R. Factors influencing the oxidation, reduction, methylation and demethylation of mercury species in coastal waters. Mar. Chem. 107, 278–294 (2007).

    Article  Google Scholar 

  192. Zhang, Y., Soerensen, A. L., Schartup, A. T. & Sunderland, E. M. A global model for methylmercury formation and uptake at the base of marine food webs. Glob. Biogeochem. Cycles 34, e2019GB006348 (2020).

    Google Scholar 

  193. Beattie, S. A. et al. Total and methylated mercury in Arctic multiyear sea ice. Environ. Sci. Technol. 48, 5575–5582 (2014).

    Article  Google Scholar 

  194. Chaulk, A., Stern, G. A., Armstrong, D., Barber, D. G. & Wang, F. Mercury distribution and transport across the ocean–sea-ice–atmosphere interface in the Arctic Ocean. Environ. Sci. Technol. 45, 1866–1872 (2011).

    Article  Google Scholar 

  195. Cossa, D. et al. Mercury in the Southern Ocean. Geochim. Cosmochim. Acta 75, 4037–4052 (2011).

    Article  Google Scholar 

  196. Klunder, M. B. et al. Dissolved iron in the Arctic shelf seas and surface waters of the central Arctic Ocean: impact of Arctic river water and ice-melt. J. Geophys. Res. Oceans 117, C01027 (2012).

    Article  Google Scholar 

  197. Wang, F., Pućko, M. & Stern, G. in Sea Ice (ed. Thomas, D. N.) 472–491 (Wiley, 2017).

  198. Tsubouchi, T. et al. The Arctic Ocean seasonal cycles of heat and freshwater fluxes: observation-based inverse estimates. J. Phys. Oceanogr. 48, 2029–2055 (2018).

    Article  Google Scholar 

  199. Østerhus, S. et al. Arctic Mediterranean exchanges: a consistent volume budget and trends in transports from two decades of observations. Ocean Sci. 15, 379–399 (2019).

    Article  Google Scholar 

  200. Lamborg, C. H., Hammerschmidt, C. R. & Bowman, K. L. An examination of the role of particles in oceanic mercury cycling. Phil. Trans. R. Soc. A 374, 20150297 (2016).

    Article  Google Scholar 

  201. Pućko, M. et al. Transformation of mercury at the bottom of the Arctic food web: an overlooked puzzle in the mercury exposure narrative. Environ. Sci. Technol. 48, 7280–7288 (2014).

    Article  Google Scholar 

  202. Hayes, C. T. et al. Global ocean sediment composition and burial flux in the deep sea. Glob. Biogeochem. Cycles 35, e2020GB006769 (2021).

    Article  Google Scholar 

  203. Aksentov, K. I. et al. Assessment of mercury levels in modern sediments of the East Siberian Sea. Mar. Pollut. Bull. 168, 112426 (2021).

    Article  Google Scholar 

  204. Pelletier, N., Chételat, J., Blarquez, O. & Vermaire, J. C. Paleolimnological assessment of wildfire-derived atmospheric deposition of trace metal(loid)s and major ions to subarctic lakes (Northwest Territories, Canada). J. Geophys. Res. Biogeosci. 125, e2020JG005720 (2020).

    Article  Google Scholar 

  205. Schuster, P. F. et al. Mercury export from the Yukon River Basin and potential response to a changing climate. Environ. Sci. Technol. 45, 9262–9267 (2011).

    Article  Google Scholar 

  206. Ivanov, V. V., Shapiro, G. I., Huthnance, J. M., Aleynik, D. L. & Golovin, P. N. Cascades of dense water around the world ocean. Prog. Oceanogr. 60, 47–98 (2004).

    Article  Google Scholar 

  207. Roeske, T., Loeff, M. R. V., Middag, R. & Bakker, K. Deep water circulation and composition in the Arctic Ocean by dissolved barium, aluminium and silicate. Mar. Chem. 132-133, 56–67 (2012).

    Article  Google Scholar 

  208. Bianchi, T. S. The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect. Proc. Natl Acad. Sci. USA 108, 19473 (2011).

    Article  Google Scholar 

  209. Rontani, J.-F. et al. Degradation of sterols and terrigenous organic matter in waters of the Mackenzie Shelf, Canadian Arctic. Org. Geochem. 75, 61–73 (2014).

    Article  Google Scholar 

  210. Custodio, D., Ebinghaus, R., Spain, T. G. & Bieser, J. Source apportionment of atmospheric mercury in the remote marine atmosphere: Mace Head GAW station, Irish western coast. Atmos. Chem. Phys. 20, 7929–7939 (2020).

    Article  Google Scholar 

  211. Haine, T. W. N. et al. Arctic freshwater export: status, mechanisms, and prospects. Glob. Planet. Change 125, 13–35 (2015).

    Article  Google Scholar 

  212. Mason, R. P. et al. Mercury biogeochemical cycling in the ocean and policy implications. Environ. Res. 119, 101–117 (2012).

    Article  Google Scholar 

  213. Bravo, A. G. & Cosio, C. Biotic formation of methylmercury: a bio–physico–chemical conundrum. Limnol. Oceanogr. 65, 1010–1027 (2020).

    Article  Google Scholar 

  214. Gordon, J., Quinton, W., Branfireun, B. A. & Olefeldt, D. Mercury and methylmercury biogeochemistry in a thawing permafrost wetland complex, Northwest Territories, Canada. Hydrol. Process. 30, 3627–3638 (2016).

    Article  Google Scholar 

  215. Burt, A. et al. Mercury uptake within an ice algal community during the spring bloom in first-year Arctic sea ice. J. Geophys. Res. Oceans 118, 4746–4754 (2013).

    Article  Google Scholar 

  216. Villar, E., Cabrol, L. & Heimbürger-Boavida, L.-E. Widespread microbial mercury methylation genes in the global ocean. Environ. Microbiol. Rep. 12, 277–287 (2020).

    Article  Google Scholar 

  217. Gilmour, C. C. et al. Mercury methylation by novel microorganisms from new environments. Environ. Sci. Technol. 47, 11810–11820 (2013).

    Article  Google Scholar 

  218. Lee, C.-S. & Fisher, N. S. Methylmercury uptake by diverse marine phytoplankton. Limnol. Oceanogr. 61, 1626–1639 (2016).

    Article  Google Scholar 

  219. Wang, F., Macdonald, R. W., Armstrong, D. A. & Stern, G. A. Total and methylated mercury in the Beaufort Sea: the role of local and recent organic remineralization. Environ. Sci. Technol. 46, 11821–11828 (2012).

    Article  Google Scholar 

  220. Schartup, A. T. et al. A model for methylmercury uptake and trophic transfer by marine plankton. Environ. Sci. Technol. 52, 654–662 (2018).

    Article  Google Scholar 

  221. Wu, P. et al. The importance of bioconcentration into the pelagic food web base for methylmercury biomagnification: a meta-analysis. Sci. Total Environ. 646, 357–367 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

H.A. acknowledges N.E. Selin and the use of the Svante cluster provided by the Massachusetts Institute of Technology’s Joint Program on the Science and Policy of Global Change. M.J. acknowledges funding from the Swiss National Science Foundation grant PZ00P2_174101. R.P.M. acknowledges funding from the US National Science Foundation Office of Polar Programs grant 1854454. D.O. acknowledges funding from the US National Science Foundation (DEB no. 2027038 and AGS no. 1848212). A.T.S. acknowledges support from the US National Science Foundation (OCE no. 2023046). L.-E.H.-B. acknowledges funding from the Chantier Arctique Francais (Pollution in the Arctic System) and the AXA Research Fund. C.Z. acknowledges funding from the Swedish Research Council for Sustainable Development FORMAS (grant no. 2017-00660). The authors acknowledge the Arctic Monitoring and Assessment Programme (AMAP) for organizing the 2021 Arctic mercury assessment process that provided the basis for this Review. Finally, the authors acknowledge the Atmospheric Mercury Network (AMNet), the European Monitoring and Evaluation Programme (EMEP) and the Environment and Climate Change Canada-Atmospheric Mercury Measurement Network (ECCC-AMM) and their contributing scientists for the provision of mercury measurement data.

Author information

Authors and Affiliations

Authors

Contributions

A.D. designed, coordinated and led the study and manuscript writing, editing and revising. All authors (listed in alphabetical order) contributed to analysing data, writing and/or conducting model simulations of specific sections, developing the Arctic mercury mass balance, key points and future perspectives, and revising the manuscript. K.A.S.P. and C.Z. also contributed to overall editing and formatting.

Corresponding author

Correspondence to Ashu Dastoor.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dastoor, A., Angot, H., Bieser, J. et al. Arctic mercury cycling. Nat Rev Earth Environ 3, 270–286 (2022). https://doi.org/10.1038/s43017-022-00269-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00269-w

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene