Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sustaining Earth’s magnetic dynamo

Abstract

Earth’s magnetic field is generated by fluid motions in the outer core. This geodynamo has operated for over 3.4 billion years. However, the mechanism that has sustained the geodynamo for over 75% of Earth’s history remains debated. In this Review, we assess the mechanisms proposed to drive the geodynamo (precession, tides and convection) and their ability to match geomagnetic and palaeomagnetic observations. Flows driven by precession are too weak to drive the geodynamo. Flows driven by tides could have been strong enough in the early Earth, before 1.5 billion years ago, when tidal deformation and Earth’s spin rate were larger than they are today. Evidence that the thermal conductivity of Earth’s core could be as high as 250 W m−1 K−1 calls the ability of convection to maintain the dynamo for over 3.4 billion years into question. Yet, convection could supply enough power to sustain a long-lived geodynamo if the thermal conductivity is lower than 100 W m−1 K−1. Exsolution of light elements from the core increases this upper conductivity limit by 15% to 200%, based on the exsolution rates reported so far. Convection, possibly aided by the exsolution of light elements, remains the mechanism most likely to have sustained the geodynamo. The light-element exsolution rate, which remains poorly constrained, should be further investigated.

Key points

  • Numerical models of the geodynamo driven by thermo-chemical convection account for most of the observed properties of the present geodynamo.

  • The thermal conductivity in Earth’s core remains debated, with published values ranging between 20 and 250 W m−1 K−1. With a conductivity as high as 250 W m−1 K−1, motionless heat transport would prevail in the core implying that convection would not be able to sustain Earth’s magnetic dynamo for 3.4 billion years (Gyr).

  • Nevertheless, thermo-chemical convection caused by the slow cooling of Earth supplies enough power to the geodynamo when the thermal conductivity is lower than 100 W m−1 K−1. The exsolution of light elements increases this upper conductivity limit only marginally or by up to a factor of three, depending on the exsolution rate.

  • Flows driven by precession are too weak to drive the geodynamo.

  • Flows driven by tides could have been strong enough before 1.5 Gyr ago, when tidal deformation and Earth’s spin rate were larger than today, which calls for further investigation of tidally driven dynamos.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The Earth’s dynamo requires turbulent motion of liquid iron in Earth’s core.
Fig. 2: The Earth’s dynamo operates on a broad range of timescales.
Fig. 3: The morphology of the Earth’s magnetic field is best reproduced by convection-driven dynamos.
Fig. 4: Convection can power the geodynamo in the distant past when thermal conductivity is lower than 100 W m−1 K−1.
Fig. 5: Precession cannot drive a dynamo but tides generated strong flows that could drive a dynamo in the early Earth.

Similar content being viewed by others

Code availability statement

The code for Figs 4 and 5 is available from https://doi.org/10.6084/m9.figshare.16722346.

References

  1. Lundin, R., Lammer, H. & Ribas, I. Planetary magnetic fields and solar forcing: implications for atmospheric evolution. Space Sci. Rev. 129, 245–278 (2007).

    Article  Google Scholar 

  2. Lammer, H. et al. Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. II. CME-induced ion pick up of Earth-like exoplanets in close-in habitable zones. Astrobiology 7, 185–207 (2007).

    Article  Google Scholar 

  3. Gunell, H. et al. Why an intrinsic magnetic field does not protect a planet against atmospheric escape. Astron. Astrophys. 614, L3 (2018).

    Article  Google Scholar 

  4. Lohmann, K., Putman, N. & Lohmann, C. Geomagnetic imprinting: a unifying hypothesis of long-distance natal homing in salmon and sea turtles. Proc. Natl Acad. Sci. USA 105, 19096–19101 (2008).

    Article  Google Scholar 

  5. Benhamou, S. et al. The role of geomagnetic cues in green turtle open sea navigation. PLoS ONE 6, e26672 (2011).

    Article  Google Scholar 

  6. Rismani Yazdi, S. et al. Magnetotaxis enables magnetotactic bacteria to navigate in flow. Small 14, 1870019 (2018).

    Article  Google Scholar 

  7. Roque, B., Rosselli, A., Mitchell, C. & Petroff, A. Control of multicellular magnetotactic bacteria with a magnetic field. In APS March Meeting Abstracts, L70.321 (American Physical Society, 2019).

  8. Larmor, J. How could a rotating body such as the Sun become a magnet? In Report of the British Association for the Advancement of Science Vol. 87, 159–160 (1919).

  9. Roberts, P. H. & King, E. M. On the genesis of the Earth’s magnetism. Rep. Prog. Phys. 76, 096801 (2013).

    Article  Google Scholar 

  10. Christensen, U. R., Aubert, J. & Hulot, G. Conditions for Earth-like geodynamo models. Earth Planet. Sci. Lett. 296, 487–496 (2010).

    Article  Google Scholar 

  11. Schaeffer, N., Jault, D., Nataf, H.-C. & Fournier, A. Turbulent geodynamo simulations: a leap towards Earth’s core. Geophys. J. Int. 211, 1–29 (2017).

    Article  Google Scholar 

  12. Aubert, J., Gastine, T. & Fournier, A. Spherical convective dynamos in the rapidly rotating asymptotic regime. J. Fluid Mech. 813, 558–593 (2017).

    Article  Google Scholar 

  13. Sheyko, A., Finlay, C., Favre, J. & Jackson, A. Scale separated low viscosity dynamos and dissipation within the Earth’s core. Sci. Rep. 8, 1–7 (2018).

    Article  Google Scholar 

  14. Aubert, J. & Finlay, C. C. Geomagnetic jerks and rapid hydromagnetic waves focusing at Earth’s core surface. Nat. Geosci. 12, 393–398 (2019).

    Article  Google Scholar 

  15. Aubert, J. & Gillet, N. The interplay of fast waves and slow convection in geodynamo simulations nearing Earth’s core conditions. Geophys. J. Int. 225, 1854–1873 (2021).

    Article  Google Scholar 

  16. Tarduno, J. A. et al. Geodynamo, solar wind, and magnetopause 3.4 to 3.45 billion years ago. Science 327, 1238–1240 (2010).

    Article  Google Scholar 

  17. Olson, P. The new core paradox. Science 342, 431–432 (2013).

    Article  Google Scholar 

  18. Konôpková, Z., McWilliams, R. S., Gómez-Pérez, N. & Goncharov, A. F. Direct measurement of thermal conductivity in solid iron at planetary core conditions. Nature 534, 99–101 (2016).

    Article  Google Scholar 

  19. Hasegawa, A., Yagi, T. & Ohta, K. Combination of pulsed light heating thermoreflectance and laser-heated diamond anvil cell for in-situ high pressure-temperature thermal diffusivity measurements. Rev. Sci. Instrum. 90, 074901 (2019).

    Article  Google Scholar 

  20. Hsieh, W.-P. et al. Low thermal conductivity of iron-silicon alloys at Earth’s core conditions with implications for the geodynamo. Nat. Commun. 11, 1–7 (2020).

    Article  Google Scholar 

  21. Stacey, F. D. & Anderson, O. L. Electrical and thermal conductivities of Fe–Ni–Si alloy under core conditions. Phys. Earth Planet. Inter. 124, 153–162 (2001).

    Article  Google Scholar 

  22. Stacey, F. D. & Loper, D. E. A revised estimate of the conductivity of iron alloy at high pressure and implications for the core energy balance. Phys. Earth Planet. Int. 161, 13–18 (2007).

    Article  Google Scholar 

  23. de Koker, N., Steinle-Neumann, G. & Vlček, V. Electrical resistivity and thermal conductivity of liquid Fe alloys at high P and T, and heat flux in Earth’s core. Proc. Natl Acad. Sci. USA 109, 4070–4073 (2012).

    Article  Google Scholar 

  24. Pozzo, M., Davies, C., Gubbins, D. & Alfè, D. Thermal and electrical conductivity of iron at Earth’s core conditions. Nature 485, 355–358 (2012).

    Article  Google Scholar 

  25. Gomi, H. et al. The high conductivity of iron and thermal evolution of the Earth’s core. Phys. Earth Planet. Int. 224, 88–103 (2013).

    Article  Google Scholar 

  26. Ohta, K., Kuwayama, Y., Hirose, K., Shimizu, K. & Ohishi, Y. Experimental determination of the electrical resistivity of iron at Earth’s core conditions. Nature 534, 95–98 (2016).

    Article  Google Scholar 

  27. Labrosse, S. Thermal evolution of the core with a high thermal conductivity. Phys. Earth Planet. Int. 247, 36–55 (2015).

    Article  Google Scholar 

  28. Davies, C. Cooling history of Earth’s core with high thermal conductivity. Phys. Earth Planet. Int. 247, 65–79 (2015).

    Article  Google Scholar 

  29. Buffett, B. A., Garnero, E. J. & Jeanloz, R. Sediments at the top of Earth’s core. Science 290, 1338–1342 (2000).

    Article  Google Scholar 

  30. Badro, J., Siebert, J. & Nimmo, F. An early geodynamo driven by exsolution of mantle components from Earth’s core. Nature 536, 326–328 (2016).

    Article  Google Scholar 

  31. O’Rourke, J. & Stevenson, D. Powering Earth’s dynamo with magnesium precipitation from the core. Nature 529, 387–389 (2016).

    Article  Google Scholar 

  32. Malkus, W. V. R. Precession of the Earth as the cause of geomagnetism. Science 160, 259–264 (1968).

    Article  Google Scholar 

  33. Stacey, F. The coupling of the core to the precession of the Earth. Geophys. J. Int. 33, 47–55 (1973).

    Article  Google Scholar 

  34. Loper, D. E. Torque balance and energy budget for the precessionally driven dynamo. Phys. Earth Planet. Inter. 11, 43–60 (1975).

    Article  Google Scholar 

  35. Rochester, M. G., Jacobs, J. A., Smylie, D. E. & Chong, K. F. Can precession power the geomagnetic dynamo? Geophys. J. Int. 43, 661–678 (1975).

    Article  Google Scholar 

  36. Le Bars, M., Lacaze, L., Le Dizes, S., Le Gal, P. & Rieutord, M. Tidal instability in stellar and planetary binary systems. Phys. Earth Planet. Inter. 178, 48–55 (2010).

    Article  Google Scholar 

  37. Grannan, A., Le Bars, M., Cébron, D. & Aurnou, J. Experimental study of global-scale turbulence in a librating ellipsoid. Phys. Fluids 26, 126601 (2014).

    Article  Google Scholar 

  38. Lin, Y., Noir, J. & Jackson, A. Experimental study of fluid flows in a precessing cylindrical annulus. Phys. Fluids 26, 046604 (2014).

    Article  Google Scholar 

  39. Lemasquerier, D. et al. Libration-driven flows in ellipsoidal shells. J. Geophys. Res. Planets 122, 1926–1950 (2017).

    Article  Google Scholar 

  40. Tilgner, A. Precession driven dynamos. Phys. Fluids 17, 034104 (2005).

    Article  Google Scholar 

  41. Wu, C.-C. & Roberts, P. H. On a dynamo driven topographically by longitudinal libration. Geophys. Astrophys. Fluid Dyn. 107, 20–44 (2013).

    Article  Google Scholar 

  42. Ernst-Hullermann, J., Harder, H. & Hansen, U. Finite volume simulations of dynamos in ellipsoidal planets. Geophys. J. Int. 195, 1395–1405 (2013).

    Article  Google Scholar 

  43. Lin, Y., Marti, P., Noir, J. & Jackson, A. Precession-driven dynamos in a full sphere and the role of large scale cyclonic vortices. Phys. Fluids 28, 066601 (2016).

    Article  Google Scholar 

  44. Andrault, D., Monteux, J., Le Bars, M. & Samuel, H. The deep Earth may not be cooling down. Earth Planet. Sci. Lett. 443, 195–203 (2016).

    Article  Google Scholar 

  45. Hulot, G., Olsen, N., Sabaka, T. J. & Fournier, A. in Geomagnetism, Treatise on Geophysics 2nd edn, Vol. 5 (eds Kono, M. & Schubert, G.) 33–78 (Elsevier, 2015).

  46. Alken, P. et al. International geomagnetic reference field: the 13th generation. Earth Planets Space 73, 49 (2021).

    Article  Google Scholar 

  47. Olsen, N., Hulot, G. & Sabaka, T. J. Sources of the geomagnetic field and the modern data that enable their investigation. In Handbook of Geomathematics (eds Freeden, W., Nashed, M. Z. & Sonar, T.) 105–124 (Springer, 2010).

  48. Jonkers, A. R. T., Jackson, A. & Murray, A. Four centuries of geomagnetic data from historical records. Rev. Geophys. 41, 1006 (2003).

    Article  Google Scholar 

  49. Jackson, A. & Finlay, C. C. in Geomagnetism, Treatise on Geophysics 2nd edn, Vol. 5 (eds Kono, M. & Schubert, G.) 137–184 (Elsevier, Amsterdam, 2015).

  50. Gillet, N., Jault, D. & Finlay, C. C. Planetary gyre, time-dependent eddies, torsional waves, and equatorial jets at the Earth’s core surface. J. Geophys. Res. Solid Earth 120, 3991–4013 (2015).

    Article  Google Scholar 

  51. Gillet, N., Jault, D., Canet, E. & Fournier, A. Fast torsional waves and strong magnetic field within the Earth’s core. Nature 465, 74–77 (2010).

    Article  Google Scholar 

  52. Braginsky, S. I. & Roberts, P. H. Equations governing convection in Earth’s core and the geodynamo. Geophys. Astrophys. Fluid Dyn. 79, 1–97 (1995).

    Article  Google Scholar 

  53. Holme, R. in Core Dynamics, Treatise on Geophysics 2nd edn, Vol. 8 (eds Olson, P. & Schubert, G.) 91–113 (Elsevier, 2015).

  54. Channell, J. E. T., Kent, D. V., Lowrie, W. & Meert, J. G. Timescales of the Paleomagnetic Field Vol. 145 (American Geophysical Union, 2004).

  55. Gallet, Y. et al. On the use of archeology in geomagnetism, and vice-versa: recent developments in archeomagnetism. C. R. Phys. 10, 630–648 (2009).

    Article  Google Scholar 

  56. Evans, D. A. D. Reconstructing pre-Pangean supercontinents. GSA Bull. 125, 1735–1751 (2013).

    Article  Google Scholar 

  57. Nichols, C. et al. Hints of an Eoarchean magnetic field from the Isua Supracrustal Belt, Greenland. In American Geophysical Union Fall Meeting 2019 Abstract DI14A–02 (American Geophysical Union, 2019).

  58. Tarduno, J., Cottrell, R., Davis, W., Nimmo, F. & Bono, R. A Hadean to Paleoarchean geodynamo recorded by single zircon crystals. Science 349, 521–524 (2015).

    Article  Google Scholar 

  59. Weiss, B. et al. Secondary magnetic inclusions in detrital zircons from the Jack Hills, western Australia, and implications for the origin of the geodynamo. Geology 46, 427–430 (2018).

    Article  Google Scholar 

  60. Olson, P., Deguen, R., Hinnov, L. & Zhong, S. Controls on geomagnetic reversals and core evolution by mantle convection in the Phanerozoic. Phys. Earth Planet. Inter. 214, 87–103 (2013).

    Article  Google Scholar 

  61. Biggin, A. J. et al. Palaeomagnetic field intensity variations suggest Mesoproterozoic inner-core nucleation. Nature 526, 245–248 (2015).

    Article  Google Scholar 

  62. Smirnov, A. V., Tarduno, J. A., Kulakov, E. V., McEnroe, S. A. & Bono, R. K. Palaeointensity, core thermal conductivity and the unknown age of the inner core. Geophys. J. Int. 205, 1190–1195 (2016).

    Article  Google Scholar 

  63. Valet, J.-P., Besse, J., Kumar, A., Vadakke-Chanat, S. & Philippe, E. The intensity of the geomagnetic field from 2.4 Ga old Indian dykes. Geochem., Geophys.Geosystems 15, 2426–2437 (2014).

    Article  Google Scholar 

  64. Smirnov, A. V., Tarduno, J. A. & Evans, D. A. Evolving core conditions ca. 2 billion years ago detected by paleosecular variation. Phys. Earth Planet. Inter. 187, 225–231 (2011).

    Article  Google Scholar 

  65. Evans, D. Proterozoic low orbital obliquity and axial-dipolar geomagnetic field from evaporite palaeolatitudes. Nature 444, 51–55 (2006).

    Article  Google Scholar 

  66. Jaupart, C., Labrosse, S., Lucazeau, F. & Mareschal, J.-C. in Mantle Convection, Treatise on Geophysics 2nd edn (eds Bercovici, D. & Schubert, G.) 223–270 (Elsevier, 2015).

  67. McDonough, W. F. & Sun, S.-S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    Article  Google Scholar 

  68. Palme, H. & O’Neill, H. C. in Treatise on Geochemistry (eds Holland, H. D. & Turekian, K. K.) 1–38 (Pergamon, 2007).

  69. Gubbins, D. Energetics of the Earth’s core. J. Geophys. 43, 453–464 (1977).

    Google Scholar 

  70. Olson, P. A simple physical model for the terrestrial dynamo. J. Geophys. Res. Solid Earth 86, 10875–10882 (1981).

    Article  Google Scholar 

  71. Loper, D. E. & Roberts, P. Compositional convection and the gravitationally powered dynamo. Stellar Planet. Magn. 297–327 (1983).

  72. Hirose, K., Wood, B. & Vočadlo, L. Light elements in the Earth’s core. Nat. Rev. Earth Environ. 2, 645–658 (2021).

    Article  Google Scholar 

  73. Bouffard, M., Choblet, G., Labrosse, S. & Wicht, J. Chemical convection and stratification in the Earth’s outer core. Front. Earth Sci. 7, 99 (2019).

    Article  Google Scholar 

  74. Busse, F. H. Thermal instabilities in rapidly rotating systems. J. Fluid. Mech. 44, 441–460 (1970).

    Article  Google Scholar 

  75. Cardin, P. & Olson, P. An experimental approach to thermochemical convection in the Earth’s core. Geophys. Res. Lett. 19, 1995–1998 (1992).

    Article  Google Scholar 

  76. Sumita, I. & Olson, P. Laboratory experiments on high Rayleigh number thermal convection in a rapidly rotating hemispherical shell. Phys. Earth Planet. Int. 117, 153–170 (2000).

    Article  Google Scholar 

  77. King, E. M., Stellmach, S., Noir, J., Hansen, U. & Aurnou, J. M. Boundary layer control of rotating convection systems. Nature 457, 301–304 (2009).

    Article  Google Scholar 

  78. Gastine, T., Wicht, J. & Aubert, J. Scaling regimes in spherical shell rotating convection. J. Fluid Mech. 808, 690–732 (2016).

    Article  Google Scholar 

  79. Busse, F. H. A model of the geodynamo. Geophys. J. R. Astron. Soc. 42, 437–459 (1975).

    Article  Google Scholar 

  80. Glatzmaier, G. A. & Roberts, P. H. A three-dimensional self-consistent computer simulation of a geomagnetic field reversal. Nature 377, 203–209 (1995).

    Article  Google Scholar 

  81. Kageyama, A., Sato, T. & The Complexity Simulation Group. Computer simulation of a magnetohydrodynamic dynamo. II. Phys. Plasmas 2, 1421–1431 (1995).

    Article  Google Scholar 

  82. Christensen, U. R. & Wicht, J. in Core Dynamics, Treatise on Geophysics 2nd edn (eds Olson, P. & Schubert, G.) 245–277 (Elsevier, 2015).

  83. Christensen, U. & Aubert, J. Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophys. J. Int. 166, 97–114 (2006).

    Article  Google Scholar 

  84. Aubert, J., Labrosse, S. & Poitou, C. Modelling the palaeo-evolution of the geodynamo. Geophys. J. Int. 179, 1414–1428 (2009).

    Article  Google Scholar 

  85. Schwaiger, T., Gastine, T. & Aubert, J. Force balance in numerical geodynamo simulations: a systematic study. Geophys. J. Int. 219, S101–S114 (2019).

    Article  Google Scholar 

  86. Hori, K., Teed, R. J. & Jones, C. A. The dynamics of magnetic Rossby waves in spherical dynamo simulations: a signature of strong-field dynamos? Phys. Earth Planet. Inter. 276, 68–85 (2018).

    Article  Google Scholar 

  87. Fischer, R. A. et al. High pressure metal–silicate partitioning of Ni, Co, V, Cr, Si, and O. Geochim. Cosmochim. Acta 167, 177–194 (2015).

    Article  Google Scholar 

  88. Badro, J. et al. Magnesium partitioning between Earth’s mantle and core and its potential to drive an early exsolution geodynamo. Geophys. Res. Lett. 45, 13,240–13,248 (2018).

    Article  Google Scholar 

  89. Hirose, K. et al. Crystallization of silicon dioxide and compositional evolution of the Earth’s core. Nature 543, 99–102 (2017).

    Article  Google Scholar 

  90. Nakajima, M. & Stevenson, D. J. Melting and mixing states of the Earth’s mantle after the Moon-forming impact. Earth Planet. Sci. Lett. 427, 286–295 (2015).

    Article  Google Scholar 

  91. Nakajima, M. et al. Scaling laws for the geometry of an impact-induced magma ocean. Earth Planet. Sci. Lett. 568, 116983 (2021).

    Article  Google Scholar 

  92. Huang, D., Badro, J., Brodholt, J. & Li, Y. Ab initio molecular dynamics investigation of molten Fe–Si–O in Earth’s core. Geophys. Res. Lett. 46, 6397–6405 (2019).

    Article  Google Scholar 

  93. Liu, W., Zhang, Y., Yin, Q.-Z., Zhao, Y. & Zhang, Z. Magnesium partitioning between silicate melt and liquid iron using first-principles molecular dynamics: implications for the early thermal history of the Earth’s core. Earth Planet. Sci. Lett. 531, 115934 (2020).

    Article  Google Scholar 

  94. Helffrich, G., Hirose, K. & Nomura, R. Thermodynamical modeling of liquid Fe-Si-Mg-O: molten magnesium silicate release from the core. Geophys. Res. Lett. 47, e2020GL089218 (2020).

    Article  Google Scholar 

  95. Arveson, S., Deng, J., Karki, B. & Lee, K. Evidence for Fe-Si-O liquid immiscibility at deep Earth pressures. Proc. Natl Acad. Sci. USA 116, 10238–10243 (2019).

    Article  Google Scholar 

  96. Landeau, M. & Aubert, J. Equatorially asymmetric convection inducing a hemispherical magnetic field in rotating spheres and implications for the past Martian dynamo. Phys. Earth Planet. Inter. 185, 61–73 (2011).

    Article  Google Scholar 

  97. Landeau, M., Aubert, J. & Olson, P. The signature of inner-core nucleation on the geodynamo. Earth Planet. Sci. Lett. 465, 193–204 (2017).

    Article  Google Scholar 

  98. Driscoll, P. E. Simulating 2 Ga of geodynamo history. Geophys. Res. Lett. 43, 5680–5687 (2016).

    Article  Google Scholar 

  99. Busse, F. H. Steady fluid flow in a precessing spheroidal shell. J. Fluid Mech. 33, 739–751 (1968).

    Article  Google Scholar 

  100. Noir, J., Jault, D. & Cardin, P. Numerical study of the motions within a slowly precessing sphere at low Ekman number. J. Fluid Mech. 437, 283–299 (2001).

    Article  Google Scholar 

  101. Le Bars, M., Cébron, D. & Le Gal, P. Flows driven by libration, precession, and tides. Annu. Rev. Fluid Mech. 47, 163–193 (2015).

    Article  Google Scholar 

  102. Noir, J. & Cébron, D. Precession-driven flows in non-axisymmetric ellipsoids. J. Fluid Mech. 737, 412–439 (2013).

    Article  Google Scholar 

  103. Tilgner, A. in Core Dynamics, Treatise on Geophysics 2nd edn, Vol. 8 (eds Olson, P. & Schubert, G.) 183–212 (Elsevier, 2015).

  104. Tilgner, A. On models of precession driven core flow. Stud. Geophys. Geodaetica 42, 232–238 (1998).

    Article  Google Scholar 

  105. Cébron, D., Laguerre, R., Noir, J. & Schaeffer, N. Precessing spherical shells: flows, dissipation, dynamo and the lunar core. Geophys. J. Int. 219, S34–S57 (2019).

    Article  Google Scholar 

  106. Reddy, K. S., Favier, B. & Le Bars, M. Turbulent kinematic dynamos in ellipsoids driven by mechanical forcing. Geophys. Res. Lett. 45, 1741–1750 (2018).

    Article  Google Scholar 

  107. Wu, C.-C. & Roberts, P. H. On a dynamo driven by topographic precession. Geophys. Astrophys. Fluid Dyn. 103, 467–501 (2009).

    Article  Google Scholar 

  108. Guermond, J.-L., Léorat, J., Luddens, F. & Nore, C. Remarks on the stability of the Navier–Stokes equations supplemented with stress boundary conditions. Eur. J. Mech. B 39, 1–10 (2013).

    Article  Google Scholar 

  109. Spence, E., Nornberg, M., Jacobson, C., Kendrick, R. & Forest, C. Observation of a turbulence-induced large scale magnetic field. Phys. Rev. Lett. 96, 055002 (2006).

    Article  Google Scholar 

  110. Monchaux, R. et al. Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium. Phys. Rev. Lett. 98, 044502 (2007).

    Article  Google Scholar 

  111. Zimmerman, D. S., Triana, S. A., Nataf, H.-C. & Lathrop, D. P. A turbulent, high magnetic Reynolds number experimental model of Earth’s core. J. Geophys. Res. Solid. Earth 119, 4538–4557 (2014).

    Article  Google Scholar 

  112. Cabanes, S., Schaeffer, N. & Nataf, H.-C. Turbulence reduces magnetic diffusivity in a liquid sodium experiment. Phys. Rev. Lett. 113, 184501 (2014).

    Article  Google Scholar 

  113. Stefani, F. et al. Towards a precession driven dynamo experiment. Magnetohydrodynamics 51, 275–284 (2015).

    Article  Google Scholar 

  114. Poirier, J.-P. Introduction to the Physics of the Earth’s Interior (Cambridge Univ. Press, 2000).

  115. Williams, Q. The thermal conductivity of Earth’s core: a key geophysical parameter’s constraints and uncertainties. Annu. Rev. Earth Planet. Sci. 46, 47–66 (2018).

    Article  Google Scholar 

  116. Zhang, Y. et al. Reconciliation of experiments and theory on transport properties of iron and the geodynamo. Phys. Rev. Lett. 125, 078501 (2020).

    Article  Google Scholar 

  117. Pourovskii, L. V., Mravlje, J., Georges, A., Simak, S. I. & Abrikosov, I. A. Electron–electron scattering and thermal conductivity of iron at Earth’s core conditions. N. J. Phys. 19, 073022 (2017).

    Article  Google Scholar 

  118. Christensen, U. R. & Tilgner, A. Power requirement of the geodynamo from Ohmic losses in numerical and laboratory dynamos. Nature 429, 169–171 (2004).

    Article  Google Scholar 

  119. Christensen, U. R. Dynamo scaling laws and applications to the planets. Space Sci. Rev. 152, 565–590 (2010).

    Article  Google Scholar 

  120. Buffett, B. A., Huppert, H. E., Lister, J. R. & Woods, A. W. On the thermal evolution of the Earth’s core. J. Geophys. Res. 101, 7989–8006 (1996).

    Article  Google Scholar 

  121. Lister, J. R. Expressions for the dissipation driven by convection in the Earth’s core. Phys. Earth Planet. Int. 140, 145–158 (2003).

    Article  Google Scholar 

  122. Gubbins, D., Alfè, D., Masters, G., Price, G. D. & Gillan, M. J. Can the Earth’s dynamo run on heat alone? Geophys. J. Int. 155, 609–622 (2003).

    Article  Google Scholar 

  123. Gubbins, D., Alfè, D., Masters, G., Price, G. D. & Gillan, M. Gross thermodynamics of two-component core convection. Geophys. J. Int. 157, 1407–1414 (2004).

    Article  Google Scholar 

  124. Labrosse, S. Thermal and magnetic evolution of the Earth’s core. Phys. Earth Planet. Inter. 140, 127–143 (2003).

    Article  Google Scholar 

  125. Nimmo, F. in Core Dynamics, Treatise on Geophysics 2nd edn, Vol. 8 (eds Olson, P. & Schubert, G.) 27–55 (Elsevier, 2015).

  126. Driscoll, P. & Bercovici, D. On the thermal and magnetic histories of Earth and Venus: influences of melting, radioactivity, and conductivity. Phys. Earth Planet. Inter. 236, 36–51 (2014).

    Article  Google Scholar 

  127. Patočka, V., Šrámek, O. & Tosi, N. Minimum heat flow from the core and thermal evolution of the Earth. Phys. Earth Planet. Inter. 305, 106457 (2020).

    Article  Google Scholar 

  128. Hernlund, J. W., Thomas, C. & Tackley, P. J. Phase boundary double crossing and the structure of Earth’s deep mantle. Nature 434, 882–886 (2005).

    Article  Google Scholar 

  129. Buffett, B. The thermal state of the Earth’s core. Science 299, 1675–1676 (2003).

    Article  Google Scholar 

  130. Lay, T., Hernlund, J. & Buffett, B. A. Core–mantle boundary heat flow. Nat. Geosci. 1, 25–32 (2008).

    Article  Google Scholar 

  131. Leng, W. & Zhong, S. Controls on plume heat flux and plume excess temperature. J. Geophys. Res. Solid Earth 113, https://doi.org/10.1029/2007JB005155 (2008).

  132. Olson, P., Deguen, R., Rudolph, M. L. & Zhong, S. Core evolution driven by mantle global circulation. Phys. Earth Planet. Int. 243, 44–55 (2015).

    Article  Google Scholar 

  133. Kennedy, G. C. & Higgins, G. H. The core paradox. J. Geophys. Res. 78, 900–904 (1973).

    Article  Google Scholar 

  134. Busse, F. Higgins-Kennedy paradox. In Encyclopedia of Geomagnetism and Paleomagnetism (eds Gubbins, D. & Herrero-Bervera, E.) 401–402 (Springer, 2007).

  135. Davidson, P. A. Scaling laws for planetary dynamos. Geophys. J. Int. 195, 67–74 (2013).

    Article  Google Scholar 

  136. Lay, T., Hernlund, J., Garnero, E. J. & Thorne, M. S. A post-perovskite lens and D” heat flux beneath the central Pacific. Science 314, 1272–1276 (2006).

    Article  Google Scholar 

  137. O’Rourke, J., Korenaga, J. & Stevenson, D. Thermal evolution of Earth with magnesium precipitation in the core. Earth Planet. Sci. Lett. 458, 263–272 (2017).

    Article  Google Scholar 

  138. Mittal, T. et al. Precipitation of multiple light elements to power Earth’s early dynamo. Earth Planet. Sci. Lett. 532, 116030 (2020).

    Article  Google Scholar 

  139. Du, Z., Boujibar, A., Driscoll, P. & Fei, Y. Experimental constraints on an MgO exsolution-driven geodynamo. Geophys. Res. Lett. 46, 7379–7385 (2019).

    Article  Google Scholar 

  140. Olson, P., Landeau, M. & Hirsh, B. Laboratory experiments on rain-driven convection: implications for planetary dynamos. Earth Planet. Sci. Lett. 457, 403–411 (2017).

    Article  Google Scholar 

  141. Stevenson, D. J., Spohn, T. & Schubert, G. Magnetism and thermal evolution of the terrestrial planets. Icarus 54, 466–489 (1983).

    Article  Google Scholar 

  142. Korenaga, J. Urey ratio and the structure and evolution of Earth’s mantle. Rev. Geophys. 46, https://doi.org/10.1029/2007RG000241 (2008).

  143. Grove, T. & Parman, S. Thermal evolution of the Earth as recorded by komatiites. Earth Planet. Sci. Lett. 219, 173–187 (2004).

    Article  Google Scholar 

  144. Herzberg, C., Condie, K. & Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010).

    Article  Google Scholar 

  145. Labrosse, S., Hernlund, J. W. & Coltice, N. A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature 450, 866–869 (2007).

    Article  Google Scholar 

  146. Ziegler, L. & Stegman, D. Implications of a long-lived basal magma ocean in generating Earth’s ancient magnetic field. Geochem. Geophys. Geosystems 14, 4735–4742 (2013).

    Article  Google Scholar 

  147. Stixrude, L., Scipioni, R. & Desjarlais, M. P. A silicate dynamo in the early Earth. Nat. Commun. 11, 1–5 (2020).

    Article  Google Scholar 

  148. Blanc, N. A., Stegman, D. R. & Ziegler, L. B. Thermal and magnetic evolution of a crystallizing basal magma ocean in Earth’s mantle. Earth Planet. Sci. Lett. 534, 116085 (2020).

    Article  Google Scholar 

  149. Laneuville, M., Hernlund, J., Labrosse, S. & Guttenberg, N. Crystallization of a compositionally stratified basal magma ocean. Phys. Earth Planet. Inter. 276, 86–92 (2018).

    Article  Google Scholar 

  150. Tyler, R. H. On the tidal history and future of the Earth–Moon orbital system. Planet. Sci. J. 2, 70 (2021).

    Article  Google Scholar 

  151. Ray, R. D., Eanes, R. J. & Lemoine, F. G. Constraints on energy dissipation in the Earth’s body tide from satellite tracking and altimetry. Geophys. J. Int. 144, 471–480 (2001).

    Article  Google Scholar 

  152. Kerswell, R. R. Upper bounds on the energy dissipation in turbulent precession. J. Fluid Mech. 321, 335–370 (1996).

    Article  Google Scholar 

  153. Kerswell, R. R. The instability of precessing flow. Geophys. Astrophys. Fluid Dyn. 72, 107–144 (1993).

    Article  Google Scholar 

  154. Lacaze, L., Le Gal, P. & Le Dizes, S. Elliptical instability in a rotating spheroid. J. Fluid Mech. 505, 1–22 (2004).

    Article  Google Scholar 

  155. Lin, Y., Marti, P. & Noir, J. Shear-driven parametric instability in a precessing sphere. Phys. Fluids 27, 046601 (2015).

    Article  Google Scholar 

  156. Kerswell, R. R. Tidal excitation of hydromagnetic waves and their damping in the Earth. J. Fluid Mech. 274, 219–241 (1994).

    Article  Google Scholar 

  157. Mineev, V. N. & Funtikov, A. I. Viscosity measurements on metal melts at high pressure and viscosity calculations for the Earth’s core. Phys. Uspekhi 47, 671 (2004).

    Article  Google Scholar 

  158. Touma, J. & Wisdom, J. Evolution of the Earth-Moon system. Astron. J. 108, 1943–1961 (1994).

    Article  Google Scholar 

  159. Neron de Surgy, O. & Laskar, J. On the long term evolution of the spin of the Earth. Astron. Astrophys. 318, 975–989 (1997).

    Google Scholar 

  160. Grannan, A. M., Favier, B., Le Bars, M. & Aurnou, J. M. Tidally forced turbulence in planetary interiors. Geophys. J. Int. 208, 1690–1703 (2017).

    Google Scholar 

  161. Barker, A. J. & Lithwick, Y. Non-linear evolution of the tidal elliptical instability in gaseous planets and stars. Mon. Not. R. Astron. Soc. 435, 3614–3626 (2013).

    Article  Google Scholar 

  162. Monteux, J., Andrault, D. & Samuel, H. On the cooling of a deep terrestrial magma ocean. Earth Planet. Sci. Lett. 448, 140–149 (2016).

    Article  Google Scholar 

  163. Deguen, R., Olson, P. & Reynolds, E. F-layer formation in the outer core with asymmetric inner core growth. C. R. Geosci. 346, 101–109 (2014).

    Article  Google Scholar 

  164. Rubie, D. et al. Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed solar system bodies and accretion of water. Icarus 248, 89–108 (2015).

    Article  Google Scholar 

  165. Jacobson, S. A., Rubie, D. C., Hernlund, J., Morbidelli, A. & Nakajima, M. Formation, stratification, and mixing of the cores of Earth and Venus. Earth Planet. Sci. Lett. 474, 375–386 (2017).

    Article  Google Scholar 

  166. Landeau, M., Olson, P., Deguen, R. & Hirsh, B. Core merging and stratification following giant impact. Nat. Geosci. 9, 786–789 (2016).

    Article  Google Scholar 

  167. Bouffard, M., Landeau, M. & Goument, A. Convective erosion of a primordial stratification atop Earth’s core. Geophys. Res. Lett. 47, e2020GL087109 (2020).

    Article  Google Scholar 

  168. Vidal, J., Cébron, D., Schaeffer, N. & Hollerbach, R. Magnetic fields driven by tidal mixing in radiative stars. Mon. Not. R. Astron. Soc. 475, 4579–4594 (2018).

    Article  Google Scholar 

  169. Christensen, U. R. Geodynamo models with a stable layer and heterogeneous heat flow at the top of the core. Geophys. J. Int. 215, 1338–1351 (2018).

    Article  Google Scholar 

  170. Olson, P., Landeau, M. & Reynolds, E. Outer core stratification from the high latitude structure of the geomagnetic field. Front. Earth Sci. 6, 140 (2018).

    Article  Google Scholar 

  171. Gastine, T., Aubert, J. & Fournier, A. Dynamo-based limit to the extent of a stable layer atop Earth’s core. Geophys. J. Int. 222, 1433–1448 (2020).

    Article  Google Scholar 

  172. Bono, R. K., Tarduno, J. A., Nimmo, F. & Cottrell, R. D. Young inner core inferred from Ediacaran ultra-low geomagnetic field intensity. Nat. Geosci. 12, 143–147 (2019).

    Article  Google Scholar 

  173. Biggin, A. J. et al. Strange fields: non-uniformitarian paleomagnetic records imply that the geodynamo process has been substantially perturbed on multiple occasions. In AGU Fall Meeting Abstracts DI006–DI0014 (American Geophysical Union, 2020).

  174. Manglik, A., Wicht, J. & Christensen, U. R. A dynamo model with double diffusive convection for Mercury’s core. Earth Planet. Sci. Lett. 289, 619–628 (2010).

    Article  Google Scholar 

  175. Takahashi, F., Shimizu, H. & Tsunakawa, H. Mercury’s anomalous magnetic field caused by a symmetry-breaking self-regulating dynamo. Nat. Commun. 10, 1–8 (2019).

    Article  Google Scholar 

  176. Monville, R., Vidal, J., Cébron, D. & Schaeffer, N. Rotating double-diffusive convection in stably stratified planetary cores. Geophys. J. Int. 219, S195–S218 (2019).

    Article  Google Scholar 

  177. Mather, J. F. & Simitev, R. D. Regimes of thermo-compositional convection and related dynamos in rotating spherical shells. Geophys. Astrophys. Fluid Dyn. 115, 61–84 (2021).

    Article  Google Scholar 

  178. Tassin, T., Gastine, T. & Fournier, A. Geomagnetic semblance and dipolar-multipolar transition in top-heavy double-diffusive geodynamo models. Geophys. J. Int. 226, 1897–1919 (2021).

    Article  Google Scholar 

  179. Davies, C. J. & Greenwood, S. Dynamics in Earth’s Core Arising from Thermo-Chemical Interactions with the Mantle. (In: Core-Mantle Coevolution - A multidisciplinary approach, Wiley), preprint at https://eprints.whiterose.ac.uk/181484/ (2021).

  180. Pavón-Carrasco, F. J., Osete, M. L., Torta, J. M. & De Santis, A. A geomagnetic field model for the Holocene based on archaeomagnetic and lava flow data. Earth Planet. Sci. Lett. 388, 98–109 (2014).

    Article  Google Scholar 

  181. Panovska, S., Constable, C. G. & Korte, M. Extending global continuous geomagnetic field reconstructions on timescales beyond human civilization. Geochem. Geophys. Geosyst. 19, 4757–4772 (2018).

    Article  Google Scholar 

  182. Usoskin, I. G., Gallet, Y., Lopes, F., Kovaltsov, G. A. & Hulot, G. Solar activity during the Holocene: the Hallstatt cycle and its consequence for grand minima and maxima. Astron. Astrophys. 587, A150 (2016).

    Article  Google Scholar 

  183. Nilsson, A., Holme, R., Korte, M., Suttie, N. & Hill, M. Reconstructing Holocene geomagnetic field variation: new methods, models and implications. Geophys. J. Int. 198, 229–248 (2014).

    Article  Google Scholar 

  184. Valet, J.-P., Meynadier, L. & Guyodo, Y. Geomagnetic field strength and reversal rate over the past 2 million years. Nature 435, 802–805 (2005).

    Article  Google Scholar 

  185. Ziegler, L., Constable, C., Johnson, C. & Tauxe, L. PADM2M: a penalized maximum likelihood model of the 0–2 Ma palaeomagnetic axial dipole moment. Geophys. J. Int. 184, 1069–1089 (2011).

    Article  Google Scholar 

  186. Cande, S. C. & Kent, D. V. Revised calibration of the geomagnetic polarity timescale for the late Cretaceous and Cenozoic. J. Geophys. Res. 100, 6093–6095 (1995).

    Article  Google Scholar 

  187. Aubert, J., Finlay, C. C. & Fournier, A. Bottom-up control of geomagnetic secular variation by the Earth’s inner core. Nature 502, 219–223 (2013).

    Article  Google Scholar 

  188. Le Reun, T., Favier, B. & Le Bars, M. Experimental study of the nonlinear saturation of the elliptical instability: inertial wave turbulence versus geostrophic turbulence. J. Fluid Mech. 879, 296–326 (2019).

    Article  Google Scholar 

  189. Moffatt, H. K. Magnetic Field Generation In Electrically Conducting Fluids (Cambridge Univ. Press, 1978).

  190. Roberts, P. H. & Soward, A. M. Dynamo theory. Annu. Rev. Fluid Mech. 24, 459–512 (1992).

    Article  Google Scholar 

  191. Chen, L. et al. The optimal kinematic dynamo driven by steady flows in a sphere. J. Fluid Mech. 839, 1–32 (2018).

    Article  Google Scholar 

  192. Cowling, T. The magnetic field of sunspots. Mon. Not. R. Astron. Soc. 94, 39–48 (1933).

    Article  Google Scholar 

  193. Wicht, J. & Sanchez, S. Advances in geodynamo modelling. Geophys. Astrophys. Fluid Dyn. 113, 2–50 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank J. Badro, Y. Gallet, S. Labrosse, G. Morard, A. Nilsson and P. Olson for useful discussions. M.L. was supported by the Programme National de Planétologie (PNP) of CNRS-INSU, co-funded by CNES. N.S., A.F. and H.-C.N. acknowledge support by the French Agence Nationale de la Recherche under grant ANR-19-CE31-0019 (revEarth). D.C. acknowledges support from the European Research Council (ERC) under grant agreement no. 847433 (Theia project).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the thinking and writing of the article. M.L. contributed particularly to the convection energy budget, N.S. and D.C. to precession energetics and dynamos, and A.F. to the review of geomagnetic data.

Corresponding author

Correspondence to Nathanaël Schaeffer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks H. Matsui, J. Wicht and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Exsolution

Precipitation of a dissolved substance, due to a decrease in temperature and hence in solubility.

Turbulent flow

A high Reynolds number flow, which, because of instabilities, exhibits a wide range of lengthscales and timescales, with apparently random fluctuations requiring a statistical description.

Geomagnetic secular variation

Time variations of the magnetic field of the Earth with periods ranging from one year to hundreds of years.

Alfvén waves

In a conducting liquid or plasma, oscillations of the fluid and magnetic field that propagate together along magnetic field lines. Discovered by H. Alfvén in 1942, they earned him a Nobel Prize in 1970.

Mass anomaly flux

Thermal or chemical mass anomaly that passes through a surface area per unit of time (in kg s–1).

Mantle thermal catastrophe

In thermal-evolution models of the Earth, solutions in which the mantle becomes fully molten within the past 2 Gyr. These solutions are incompatible with petrological observations, and hence unacceptable.

Boundary layer

The fluid layer located in the vicinity of a bounding surface, where diffusive processes prevail.

Flow instabilities

In hydrodynamics, a simple fluid flow can become unstable when some quantitative condition is met, leading to more complexity, enhanced mixing and sometimes chaotic behaviour or turbulence.

Obliquity

The angle between the normal to the ecliptic plane and the axis of rotation of the Earth. Its present-day value is 23.5°.

Kinematic dynamo

A dynamo sustained by a prescribed velocity field, discarding any back-reaction of the magnetic field on the flow. A kinematic dynamo leads to unbounded growth of the magnetic field.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landeau, M., Fournier, A., Nataf, HC. et al. Sustaining Earth’s magnetic dynamo. Nat Rev Earth Environ 3, 255–269 (2022). https://doi.org/10.1038/s43017-022-00264-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00264-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing