Abstract
The Atlantic Meridional Overturning Circulation (AMOC) is a key component of the climate through its transport of heat in the North Atlantic Ocean. Decadal changes in the AMOC, whether through internal variability or anthropogenically forced weakening, therefore have wide-ranging impacts. In this Review, we synthesize the understanding of contemporary decadal variability in the AMOC, bringing together evidence from observations, ocean reanalyses, forced models and AMOC proxies. Since 1980, there is evidence for periods of strengthening and weakening, although the magnitudes of change (5–25%) are uncertain. In the subpolar North Atlantic, the AMOC strengthened until the mid-1990s and then weakened until the early 2010s, with some evidence of a strengthening thereafter; these changes are probably linked to buoyancy forcing related to the North Atlantic Oscillation. In the subtropics, there is some evidence of the AMOC strengthening from 2001 to 2005 and strong evidence of a weakening from 2005 to 2014. Such large interannual and decadal variability complicates the detection of ongoing long-term trends, but does not preclude a weakening associated with anthropogenic warming. Research priorities include developing robust and sustainable solutions for the long-term monitoring of the AMOC, observation–modelling collaborations to improve the representation of processes in the North Atlantic and better ways to distinguish anthropogenic weakening from internal variability.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Pantropical Indo-Atlantic temperature gradient modulates multi-decadal AMOC variability in models and observations
npj Climate and Atmospheric Science Open Access 19 October 2023
-
Decadal changes in Atlantic overturning due to the excessive 1990s Labrador Sea convection
Nature Communications Open Access 02 August 2023
-
Future strengthening of the Nordic Seas overturning circulation
Nature Communications Open Access 12 April 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Trenberth, K. E., Zhang, Y., Fasullo, J. T. & Cheng, L. Observation-based estimates of global and basin ocean meridional heat transport time series. J. Clim. 32, 4567–4583 (2019).
Bellomo, K., Angeloni, M., Corti, S. & von Hardenberg, J. Future climate change shaped by inter-model differences in Atlantic Meridional Overturning Circulation response. Nat. Commun. 12, 3659 (2021).
Zhang, R. et al. A review of the role of the Atlantic Meridional Overturning Circulation in Atlantic Multidecadal Variability and associated climate impacts. Rev. Geophys. 57, 316–375 (2019).
Sarmiento, J. L. & Le Quere, C. Oceanic carbon dioxide uptake in a model of century-scale global warming. Science 274, 1346–1350 (1996).
McCarthy, G. D. et al. Measuring the Atlantic Meridional Overturning Circulation at 26°N. Prog. Oceanogr. 130, 91–111 (2015).
Danabasoglu, G. On multidecadal variability of the Atlantic Meridional Overturning Circulation in the community climate system model version 3. J. Clim. 21, 5524–5544 (2008).
Ba, J. et al. A multi-model comparison of Atlantic Multidecadal Variability. Clim. Dyn. 43, 2333–2348 (2014).
Wills, R. C., Armour, K. C., Battisti, D. S. & Hartmann, D. L. Ocean–atmosphere dynamical coupling fundamental to the Atlantic multidecadal oscillation. J. Clim. 32, 251–272 (2019).
Otterå, O. H., Bentsen, M., Drange, H. & Suo, L. External forcing as a metronome for Atlantic Multidecadal Variability. Nat. Geosci. 3, 688–694 (2010).
Menary, M. B. et al. Aerosol-forced AMOC changes in CMIP6 historical simulations. Geophys. Res. Lett. 47, e2020GL088166 (2020).
Collins, M. et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Ch. 12 (eds Stocker, T. F. et al.) 1029–1136 (Cambridge Univ. Press, 2013).
Desbruyères, D., Mercier, H., Maze, G. & Daniault, N. Surface predictor of overturning circulation and heat content change in the subpolar North Atlantic. Ocean Sci. 15, 809–817 (2019).
Jackson, L. C. et al. The mean state and variability of the North Atlantic circulation: a perspective from ocean reanalyses. J. Geophys. Res. Oceans 124, 9141–9170 (2019).
Tsujino, H. et al. Evaluation of global ocean–sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). Geosci. Model Dev. Discuss. 2020, 1–86 (2020).
Robson, J., Ortega, P. & Sutton, R. A reversal of climatic trends in the North Atlantic since 2005. Nat. Geosci. 9, 513–517 (2016).
Bryden, H. L. et al. Reduction in ocean heat transport at 26°N since 2008 cools the eastern subpolar gyre of the North Atlantic Ocean. J. Clim. 33, 1677–1689 (2020).
Srokosz, M. A. & Bryden, H. L. Observing the Atlantic Meridional Overturning Circulation yields a decade of inevitable surprises. Science 348, 1255575 (2015).
Smeed, D. A. et al. Observed decline of the Atlantic Meridional Overturning Circulation 2004–2012. Ocean Sci. 10, 29–38 (2014).
Smeed, D. A. et al. The North Atlantic Ocean is in a state of reduced overturning. Geophys. Res. Lett. 45, 2017GL076350 (2018).
Jackson, L. C., Peterson, K. A., Roberts, C. D. & Wood, R. A. Recent slowing of Atlantic overturning circulation as a recovery from earlier strengthening. Nat. Geosci. 9, 518–522 (2016).
Latif, M., Park, T. & Park, W. Decadal Atlantic Meridional Overturning Circulation slowing events in a climate model. Clim. Dyn. 53, 1111–1124 (2019).
Fu, Y., Li, F., Karstensen, J. & Wang, C. A stable Atlantic Meridional Overturning Circulation in a changing North Atlantic Ocean since the 1990s. Sci. Adv. 6, eabc7836 (2020).
Danabasoglu, G., Landrum, L., Yeager, S. G. & Gent, P. R. Robust and nonrobust aspects of Atlantic Meridional Overturning Circulation variability and mechanisms in the Community Earth System Model. J. Clim. 32, 7349–7368 (2019).
Weijer, W., Cheng, W., Garuba, O. A., Hu, A. & Nadiga, B. T. CMIP6 models predict significant 21st century decline of the Atlantic Meridional Overturning Circulation. Geophys. Res. Lett. 47, e2019GL086075 (2020).
Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556, 191–196 (2018).
Caesar, L., McCarthy, G., Thornalley, J., Cahill, N. & Rahmstorf, S. Current Atlantic Meridional Overturning Circulation weakest in last millennium. Nat. Geosci. 14, 118–120 (2021).
Booth, B. B., Dunstone, N. J., Halloran, P. R., Andrews, T. & Bellouin, N. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484, 228–232 (2012).
Buckley, M. W. & Marshall, J. Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: a review. Rev. Geophys. 54, 2015RG000493 (2016).
Yeager, S. G. & Robson, J. I. Recent progress in understanding and predicting Atlantic decadal climate variability. Curr. Clim. Change Rep. 3, 112–127 (2017).
Moat, B. I. et al. Pending recovery in the strength of the meridional overturning circulation at 26°N. Ocean Sci. 16, 863–874 (2020).
Kostov, Y. et al. Distinct sources of interannual subtropical and subpolar Atlantic overturning variability. Nat. Geosci. 14, 491–495 (2021).
Biastoch, A., Böning, C. W., Getzlaff, J., Molines, J.-M. & Madec, G. Causes of interannual–decadal variability in the meridional overturning circulation of the midlatitude North Atlantic Ocean. J. Clim. 21, 6599–6615 (2008).
Yeager, S. & Danabasoglu, G. The origins of late-twentieth-century variations in the large-scale North Atlantic circulation. J. Clim. 27, 3222–3247 (2014).
Pillar, H. R., Heimbach, P., Johnson, H. L. & Marshall, D. P. Dynamical attribution of recent variability in Atlantic overturning. J. Clim. 29, 3339–3352 (2016).
Larson, S. M., Buckley, M. W. & Clement, A. C. Extracting the buoyancy-driven Atlantic meridional overturning circulation. J. Clim. 33, 4697–4714 (2020).
Baehr, J., Hirschi, J., Beismann, J.-O. & Marotzke, J. Monitoring the meridional overturning circulation in the North Atlantic: a model-based array design study. J. Mar. Res. 62, 283–312 (2004).
Clément, L., Frajka-Williams, E., Szuts, Z. B. & Cunningham, S. A. Vertical structure of eddies and Rossby waves, and their effect on the Atlantic Meridional Overturning Circulation at 26.5°N. J. Geophys. Res. Oceans 119, 6479–6498 (2014).
Polo, I., Robson, J., Sutton, R. & Bamaseda, M. The importance of wind and buoyancy forcing of the boundary density variations and the geostrophic component of the AMOC at 26°N. J. Phys. Oceanogr. 44, 2387–2408 (2014).
Buckley, M. W., Ferreira, D., Campin, J.-M., Marshall, J. & Tulloch, R. On the relationship between decadal buoyancy anomalies and variability of the Atlantic Meridional Overturning Circulation. J. Clim. 25, 8009–8030 (2012).
Bingham, R., Hughes, C., Roussenov, V. & Williams, R. Meridional coherence of the North Atlantic Meridional Overturning Circulation. Geophys. Res. Lett. 34, L23606 (2007).
Mielke, C., Frajka-Williams, E. & Baehr, J. Observed and simulated variability of the AMOC at 26°N and 41°N. Geophys. Res. Lett. 40, 1159–1164 (2013).
Wunsch, C. & Heimbach, P. Two decades of the Atlantic Meridional Overturning Circulation: anatomy, variations, extremes, prediction, and overcoming its limitations. J. Clim. 26, 7167–7186 (2013).
Gu, S., Liu, Z. & Wu, L. Time scale dependence of the meridional coherence of the Atlantic Meridional Overturning Circulation. J. Geophys. Res. Oceans 125, e2019JC015838 (2020).
Lozier, M., Roussenov, V., Reed, M. & Williams, R. Opposing decadal changes for the North Atlantic Meridional Overturning Circulation. Nat. Geosci. 3, 728–734 (2010).
Groeskamp, S. et al. The water mass transformation framework for ocean physics and biogeochemistry. Annu. Rev. Mar. Sci. 11, 271–305 (2019).
Xu, X., Rhines, P. & Chassignet, E. On mapping the diapycnal water mass transformation of the upper North Atlantic Ocean. J. Phys. Oceanogr. 48, 2233–2258 (2018).
Böning, C. W., Scheinert, M., Dengg, J., Biastoch, A. & Funk, A. Decadal variability of subpolar gyre transport and its reverberation in the North Atlantic overturning. Geophys. Res. Lett. 33, 2006GL026906 (2006).
Robson, J., Sutton, R., Lohmann, K., Smith, D. & Palmer, M. D. Causes of the rapid warming of the North Atlantic Ocean in the mid-1990s. J. Clim. 25, 4116–4134 (2012).
Delworth, T. L. & Zeng, F. The impact of the North Atlantic oscillation on climate through its influence on the Atlantic Meridional Overturning Circulation. J. Clim. 29, 941–962 (2016).
Kim, W. M., Yeager, S. & Danabasoglu, G. Atlantic Multidecadal Variability and associated climate impacts initiated by ocean thermohaline dynamics. J. Clim. 33, 1317–1334 (2019).
Delworth, T., Manabe, S. & Stouffer, R. J. Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J. Clim. 6, 1993–2011 (1993).
Kwon, Y.-O. & Frankignoul, C. Stochastically-driven multidecadal variability of the Atlantic Meridional Overturning Circulation in CCSM3. Clim. Dyn. 38, 859–876 (2012).
Danabasoglu, G. et al. Variability of the Atlantic Meridional Overturning Circulation in CCSM4. J. Clim. 25, 5153–5172 (2012).
Roberts, C. D., Garry, F. K. & Jackson, L. C. A multimodel study of sea surface temperature and subsurface density fingerprints of the Atlantic Meridional Overturning Circulation. J. Clim. 26, 9155–9174 (2013).
Vage, K. et al. Surprising return of deep convection to the subpolar North Atlantic Ocean in winter 2007–2008. Nat. Geosci. 2, 67–72 (2009).
Rhein, M. et al. Deep water formation, the subpolar gyre, and the meridional overturning circulation in the subpolar North Atlantic. Deep Sea Res. Part II Top. Stud. Oceanogr. 58, 1819–1832 (2011).
Yashayaev, I. & Loder, J. W. Recurrent replenishment of Labrador Sea Water and associated decadal-scale variability. J. Geophys. Res. Oceans 121, 8095–8114 (2016).
Yashayaev, I. & Loder, J. W. Further intensification of deep convection in the Labrador sea in 2016. Geophys. Res. Lett. 44, 2016GL071668 (2017).
Li, F. et al. Subpolar North Atlantic western boundary density anomalies and the meridional overturning circulation. Nat. Commun. 12, 3002 (2021).
Mauritzen, C. & Häkkinen, S. On the relationship between dense water formation and the “meridional overturning cell” in the North Atlantic Ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. 46, 877–894 (1999).
Deshayes, J., Frankignoul, C. & Drange, H. Formation and export of deep water in the Labrador and Irminger seas in a GCM. Deep Sea Res. Part I Oceanogr. Res. Pap. 54, 510–532 (2007).
Grist, J. P., Marsh, R. & Josey, S. A. On the relationship between the North Atlantic Meridional Overturning Circulation and the surface-forced overturning streamfunction. J. Clim. 22, 4989–5002 (2009).
Josey, S. A., Grist, J. P. & Marsh, R. Estimates of meridional overturning circulation variability in the North Atlantic from surface density flux fields. J. Geophys. Res. Oceans 114, C09022 (2009).
Chafik, L. & Rossby, T. Volume, heat, and freshwater divergences in the subpolar North Atlantic suggest the Nordic seas as key to the state of the meridional overturning circulation. Geophys. Res. Lett. 46, 4799–4808 (2019).
Lozier, M. S. et al. A sea change in our view of overturning in the subpolar North Atlantic. Science 363, 516 (2019).
Petit, T., Lozier, M. S., Josey, S. A. & Cunningham, S. A. Atlantic deep water formation occurs primarily in the Iceland Basin and Irminger Sea by local buoyancy forcing. Geophys. Res. Lett. 47, e2020GL091028 (2020).
Feucher, C., Garcia-Quintana, Y., Yashayaev, I., Hu, X. & Myers, P. G. Labrador Sea Water formation rate and its impact on the local meridional overturning circulation. J. Geophys. Res. Oceans 124, 5654–5670 (2019).
Hirschi, J. J. et al. The Atlantic Meridional Overturning Circulation in high-resolution models. J. Geophys. Res. Oceans 125, e2019JC015522 (2020).
Menary, M. B., Jackson, L. C. & Lozier, M. S. Reconciling the relationship between the AMOC and Labrador sea in OSNAP observations and climate models. Geophys. Res. Lett. 47, e2020GL089793 (2020).
Oldenburg, D., Wills, R., Armour, K., Thompson, L. & Jackson, L. Mechanisms of low-frequency variability in North Atlantic Ocean heat transport and amoc. J. Clim. 34, 4733–4755 (2021).
Hirschi, J. J.-M. et al. Chaotic variability of the meridional overturning circulation on subannual to interannual timescales. Ocean Sci. 9, 805–823 (2013).
Grégorio, S. et al. Intrinsic variability of the Atlantic Meridional Overturning Circulation at interannual-to-multidecadal time scales. J. Phys. Oceanogr. 45, 1929–1946 (2015).
Leroux, S. et al. Intrinsic and atmospherically forced variability of the AMOC: insights from a large-ensemble ocean hindcast. J. Clim. 31, 1183–1203 (2018).
Frankcombe, L. M., von der Heydt, A. & Dijkstra, H. A. North Atlantic multidecadal climate variability: an investigation of dominant time scales and processes. J. Clim. 23, 3626–3638 (2010).
Sévellec, F. & Fedorov, A. V. The leading, interdecadal eigenmode of the Atlantic Meridional Overturning Circulation in a realistic ocean model. J. Clim. 26, 2160–2183 (2012).
Huck, T., Arzel, O. & Sévellec, F. Multidecadal variability of the overturning circulation in presence of eddy turbulence. J. Phys. Oceanogr. 45, 157–173 (2014).
Rahmstorf, S. & Willebrand, J. The role of temperature feedback in stabilizing the thermohaline circulation. J. Phys. Oceanogr. 25, 787–805 (1995).
Jungclaus, J., Haak, H., Latif, M. & Mikolajewicz, U. Arctic–North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J. Clim. 18, 4013–4031 (2005).
Deshayes, J., Curry, R. & Msadek, R. CMIP5 model intercomparison of freshwater budget and circulation in the North Atlantic. J. Clim. 27, 3298–3317 (2014).
Timmermann, A., Latif, M., Voss, R. & Groetzner, A. Northern hemispheric interdecadal variability: a coupled air–sea mode. J. Clim. 11, 1906–1931 (1998).
Dima, M. & Lohmann, G. A hemispheric mechanism for the Atlantic multidecadal oscillation. J. Clim. 20, 2706–2719 (2007).
Menary, M. B., Hodson, D. L. R., Robson, J. I., Sutton, R. T. & Wood, R. A. A mechanism of internal decadal Atlantic ocean variability in a high-resolution coupled climate model. J. Clim. 28, 7764–7785 (2015).
Menary, M. B. et al. Exploring the impact of CMIP5 model biases on the simulation of North Atlantic decadal variability. Geophys. Res. Lett. 42, 5926–5934 (2015).
Peings, Y., Simpkins, G. & Magnusdottir, G. Multidecadal fluctuations of the North Atlantic Ocean and feedback on the winter climate in CMIP5 control simulations. J. Geophys. Res. Atmos. 121, 2571–2592 (2016).
Martin, T., Reintges, A. & Latif, M. Coupled North Atlantic subdecadal variability in CMIP5 models. J. Geophys. Res. Oceans 124, 2404–2417 (2019).
Zhang, R. Latitudinal dependence of Atlantic Meridional Overturning Circulation (AMOC) variations. Geophys. Res. Lett. 37, L16703 (2010).
Ortega, P. et al. Labrador sea sub-surface density as a precursor of multi-decadal variability in the North Atlantic: a multi-model study. Earth Syst. Dyn. 12, 419–438 (2021).
Hodson, D. & Sutton, R. The impact of resolution on the adjustment and decadal variability of the Atlantic Meridional Overturning Circulation in a coupled climate model. Clim. Dyn. 39, 3057–3073 (2012).
Getzlaff, J., Böning, C., Eden, C. & Biastoch, A. Signal propagation related to the North Atlantic overturning. Geophys. Res. Lett. 32, L09602 (2005).
Bower, A. S., Lozier, M. S., Gary, S. F. & Böning, C. W. Interior pathways of the North Atlantic Meridional Overturning Circulation. Nature 459, 243–247 (2009).
Gary, S. F., Lozier, M. S., Biastoch, A. & Böning, C. W. Reconciling tracer and float observations of the export pathways of Labrador Sea Water. Geophys. Res. Lett. 39, L24606 (2012).
Rhein, M., Kieke, D. & Steinfeldt, R. Advection of North Atlantic deep water from the Labrador Sea to the southern hemisphere. J. Geophys. Res. Oceans 120, 2471–2487 (2015).
Zou, S. & Lozier, M. S. Breaking the linkage between Labrador Sea Water production and its advective export to the subtropical gyre. J. Phys. Oceanogr. 46, 2169–2182 (2016).
Li, F. et al. Local and downstream relationships between Labrador Sea Water volume and North Atlantic Meridional Overturning Circulation variability. J. Clim. 32, 3883–3898 (2019).
Bryden, H. L., Longworth, H. R. & Cunningham, S. A. Slowing of the Atlantic Meridional Overturning Circulation at 25°N. Nature 438, 655–657 (2005).
Mercier, H. et al. Variability of the meridional overturning circulation at the Greenland–Portugal OVIDE section from 1993 to 2010. Prog. Oceanogr. 132, 250–261 (2015).
Kanzow, T. et al. Seasonal variability of the Atlantic Meridional Overturning Circulation at 26.5°N. J. Clim. 23, 5678–5698 (2010).
Frajka-Williams, E. et al. Atlantic Meridional Overturning Circulation observed by the RAPID-MOCHA-WBTS array at 26N from 2004 to 2020 (v2020.1) BODC https://doi.org/10.5285/cc1e34b3-3385-662b-e053-6c86abc03444 (2021).
Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).
Willis, J. K. Can in situ floats and satellite altimeters detect long-term changes in Atlantic Ocean overturning? Geophys. Res. Lett. 37, L06602 (2010).
Frajka-Williams, E. Estimating the Atlantic overturning at 26°N using satellite altimetry and cable measurements. Geophys. Res. Lett. 42, 2015GL063220 (2015).
Sanchez-Franks, A., Frajka-Williams, E., Moat, B. I. & Smeed, D. A. A dynamically based method for estimating the Atlantic Meridional Overturning Circulation at 26°N from satellite altimetry. Ocean Sci. 17, 1321–1340 (2021).
WALIN, G. On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus 34, 187–195 (1982).
Marsh, R., Josey, S. A., de Nurser, A. J. G., Cuevas, B. A. & Coward, A. C. Water mass transformation in the North Atlantic over 1985–2002 simulated in an eddy-permitting model. Ocean Sci. 1, 127–144 (2005).
Large, W. G. & Yeager, S. The global climatology of an interannually varying air-sea flux data set. Clim. Dyn. 33, 341–364 (2009).
Tsujino, H. et al. JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do). Ocean Model. 130, 79–139 (2018).
Storto, A. et al. Ocean reanalyses: recent advances and unsolved challenges. Front. Mar. Sci. 6, 418 (2019).
Fox-Kemper, B. et al. Challenges and prospects in ocean circulation models. Front. Mar. Sci. 6, 65 (2019).
Chassignet, E. P. et al. Impact of horizontal resolution on global ocean–sea ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project Phase 2 (OMIP-2). Geosci. Model Dev. 13, 4595–4637 (2020).
Biastoch, A. et al. Regional imprints of changes in the Atlantic Meridional Overturning Circulation in the eddy-rich ocean model VIKING20X. Ocean Sci. 17, 1177–1211 (2021).
Danabasoglu, G. et al. North Atlantic simulations in coordinated ocean-ice reference experiments phase II (CORE-II). Part I: mean states. Ocean Model. 73, 76–107 (2014).
Danabasoglu, G. et al. North Atlantic simulations in coordinated ocean-ice reference experiments phase II (CORE-II). Part II: inter-annual to decadal variability. Ocean Model. 97, 65–90 (2016).
Blaker, A. et al. Historical analogues of the recent extreme minima observed in the Atlantic Meridional Overturning Circulation at 26°N. Clim. Dyn. 44, 457–473 (2015).
Griffies, S. M. et al. Coordinated ocean-ice reference experiments (COREs). Ocean Model. 26, 1–46 (2009).
Behrens, E., Biastoch, A. & Böning, C. W. Spurious AMOC trends in global ocean sea-ice models related to subarctic freshwater forcing. Ocean Model. 69, 39–49 (2013).
Riser, S. C. et al. Fifteen years of ocean observations with the global Argo array. Nat. Clim. Chang. 6, 145–153 (2016).
Karspeck, A. R. et al. Comparison of the Atlantic meridional overturning circulation between 1960 and 2007 in six ocean reanalysis products. Clim. Dyn. 49, 957–982 (2015).
Roberts, C. D. & Palmer, M. D. Detectability of changes to the Atlantic Meridional Overturning Circulation in the Hadley Centre climate models. Clim. Dyn. 39, 2533–2546 (2012).
Jackson, L. & Wood, R. Fingerprints for early detection of changes in the AMOC. J. Clim. 33, 7027–7044 (2020).
Latif, M. et al. Reconstructing, monitoring, and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. J. Clim. 17, 1605–1614 (2004).
Msadek, R., Dixon, K. W., Delworth, T. L. & Hurlin, W. Assessing the predictability of the Atlantic Meridional Overturning Circulation and associated fingerprints. Geophys. Res. Lett. 37, L19608 (2010).
Zhang, L. & Wang, C. Multidecadal North Atlantic sea surface temperature and Atlantic Meridional Overturning Circulation variability in CMIP5 historical simulations. J. Geophys. Res. Oceans 118, 5772–5791 (2013).
Rahmstorf, S. et al. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Clim. Chang. 5, 475–480 (2015).
Robson, J., Hodson, D., Hawkins, E. & Sutton, R. Atlantic overturning in decline? Nat. Geosci. 7, 2–3 (2013).
McCarthy, G. D., Haigh, I. D., Hirschi, J. J.-M., Grist, J. P. & Smeed, D. A. Ocean impact on decadal Atlantic climate variability revealed by sea-level observations. Nature 521, 508–510 (2015).
Diabaté, S. T. et al. Western boundary circulation and coastal sea-level variability in northern hemisphere oceans. Ocean Sci. 17, 1449–1471 (2021).
Thornalley, D. J. R. et al. Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature 556, 227–230 (2018).
Zantopp, R., Fischer, J., Visbeck, M. & Karstensen, J. From interannual to decadal: 17 years of boundary current transports at the exit of the Labrador Sea. J. Geophys. Res. Oceans 122, 1724–1748 (2017).
Handmann, P. et al. The deep western boundary current in the Labrador Sea from observations and a high-resolution model. J. Geophys. Res. Oceans 123, 2829–2850 (2018).
Osterhus, S. et al. Arctic Mediterranean exchanges: a consistent volume budget and trends in transports from two decades of observations. Ocean Sci. 15, 379–399 (2019).
Delworth, T. L. & Dixon, K. W. Have anthropogenic aerosols delayed a greenhouse gas-induced weakening of the North Atlantic thermohaline circulation? Geophys. Res. Lett. 33, L02606 (2006).
Robson, J. et al. Recent multivariate changes in the North Atlantic climate system, with a focus on 2005–2016. Int. J. Climatol. 38, 5050–5076 (2018).
Holliday, N. et al. Ocean circulation causes the largest freshening event for 120 years in eastern subpolar North Atlantic. Nat. Commun. 11, 585 (2020).
Rühs, S. et al. Changing spatial patterns of deep convection in the subpolar North Atlantic. J. Geophys. Res. Oceans 126, e2021JC017245 (2021).
Häkkinen, S. A simulation of thermohaline effects of a great salinity anomaly. J. Clim. 12, 1781–1795 (1999).
Haak, H., Jungclaus, J., Mikolajewicz, U. & Latif, M. Formation and propagation of great salinity anomalies. Geophys. Res. Lett. 30, 1473 (2003).
Kim, W. M., Yeager, S. & Danabasoglu, G. Revisiting the causal connection between the great salinity anomaly of the 1970s and the shutdown of Labrador Sea deep convection. J. Clim. 34, 675–696 (2021).
Chen, X. & Tung, K. Global surface warming enhanced by weak Atlantic overturning circulation. Nature 559, 387–391 (2018).
Roberts, C. D., Jackson, L. & McNeall, D. Is the 2004–2012 reduction of the Atlantic Meridional Overturning Circulation significant? Geophys. Res. Lett. 41, 3204–3210 (2014).
McCarthy, G. et al. Observed interannual variability of the Atlantic MOC at 26.5°N. Geophys. Res. Lett. 39, L19609 (2012).
Roberts, C. D. et al. Atmosphere drives recent interannual variability of the Atlantic Meridional Overturning Circulation at 26.5°N. Geophys. Res. Lett. 40, 5164–5170 (2013).
Zhao, J. & Johns, W. Wind-forced interannual variability of the Atlantic Meridional Overturning Circulation at 26.5°N. J. Geophys. Res. Oceans 119, 2403–2419 (2014).
Frajka-Williams, E., Lankhorst, M., Koelling, J. & Send, U. Coherent circulation changes in the deep North Atlantic from 16°N and 26°N transport arrays. J. Geophys. Res. Oceans 123, 3427–3443 (2018).
Piecuch, C. G., Ponte, R. M., Little, C. M., Buckley, M. W. & Fukumori, I. Mechanisms underlying recent decadal changes in subpolar North Atlantic Ocean heat content. J. Geophys. Res. Oceans 122, 7181–7197 (2017).
Tesdal, J.-E. & Haine, T. W. N. Dominant terms in the freshwater and heat budgets of the subpolar North Atlantic ocean and Nordic seas from 1992 to 2015. J. Geophys. Res. Oceans 125, e2020JC016435 (2020).
Zhang, R. Coherent surface–subsurface fingerprint of the Atlantic Meridional Overturning Circulation. Geophys. Res. Lett. 35, L20705+ (2008).
Zhang, J. & Zhang, R. On the evolution of Atlantic Meridional Overturning Circulation fingerprint and implications for decadal predictability in the North Atlantic. Geophys. Res. Lett. 42, 5419–5426 (2015).
Josey, S. A. et al. The recent Atlantic cold anomaly: causes, consequences, and related phenomena. Annu. Rev. Mar. Sci. 10, 475–501 (2018).
Desbruyères, D., Chafik, L. & Maze, G. A shift in the ocean circulation has warmed the subpolar North Atlantic ocean since 2016. Commun. Earth Environ. 2, 48 (2021).
Moat, B. et al. Insights into decadal North Atlantic sea surface temperature and ocean heat content variability from an eddy-permitting coupled climate model. J. Clim. 32, 6137–6149 (2019).
Clement, A. et al. The Atlantic multidecadal oscillation without a role for ocean circulation. Science 350, 320–324 (2015).
Cane, M. A., Clement, A. C., Murphy, L. N. & Bellomo, K. Low-pass filtering, heat flux, and Atlantic Multidecadal Variability. J. Clim. 30, 7529–7553 (2017).
Murphy, L. N., Bellomo, K., Cane, M. & Clement, A. The role of historical forcings in simulating the observed Atlantic multidecadal oscillation. Geophys. Res. Lett. 44, 2472–2480 (2017).
Yan, X., Zhang, R. & Knutson, T. R. Underestimated AMOC variability and implications for AMV and predictability in CMIP models. Geophys. Res. Lett. 45, 4319–4328 (2018).
Gregory, J. M. et al. A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys. Res. Lett. 32, L12703 (2005).
Marshall, J., Donohoe, A., Ferreira, D. & McGee, D. The ocean’s role in setting the mean position of the inter-tropical convergence zone. Clim. Dyn. 42, 1967–1979 (2014).
Sévellec, F., Fedorov, A. & Liu, W. Arctic sea-ice decline weakens the Atlantic Meridional Overturning Circulation. Nat. Clim. Chang. 7, 604–610 (2017).
Hassan, T., Allen, R. J., Liu, W. & Randles, C. A. Anthropogenic aerosol forcing of the Atlantic Meridional Overturning Circulation and the associated mechanisms in CMIP6 models. Atmos. Chem. Phys. 21, 5821–5846 (2021).
Menary, M. B. et al. Mechanisms of aerosol-forced AMOC variability in a state of the art climate model. J. Geophys. Res. Oceans 118, 2087–2096 (2013).
Smith, C. J. et al. Energy budget constraints on the time history of aerosol forcing and climate sensitivity. J. Geophys. Res. Atmos. 126, e2020JD033622 (2021).
Wang, C., Soden, B. J., Yang, W. & Vecchi, G. A. Compensation between cloud feedback and aerosol-cloud interaction in CMIP6 models. Geophys. Res. Lett. 48, e2020GL091024 (2021).
Zhu, C. & Liu, Z. Weakening Atlantic overturning circulation causes South Atlantic salinity pile-up. Nat. Clim. Chang. 10, 998–1003 (2020).
Piecuch, C. Likely weakening of the Florida Current during the past century revealed by sea-level observations. Nat. Commun. 11, 3973 (2020).
Moffa-Sánchez, P. et al. Variability in the northern North Atlantic and Arctic oceans across the last two millennia: a review. Paleoceanogr. Paleoclimatol. 34, 1399–1436 (2019).
Little, C. M., Zhao, M. & Buckley, M. W. Do surface temperature indices reflect centennial-timescale trends in Atlantic Meridional Overturning Circulation strength? Geophys. Res. Lett. 47, e2020GL090888 (2020).
Boning, C. W., Behrens, E., Biastoch, A., Getzlaff, K. & Bamber, J. L. Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean. Nat. Geosci. 9, 523–527 (2016).
van den Berk, J. & Drijfhout, S. A realistic freshwater forcing protocol for ocean-coupled climate models. Ocean Model. 81, 36–48 (2014).
Reintges, A., Martin, T., Latif, M. & Keenlyside, N. Uncertainty in twenty-first century projections of the Atlantic Meridional Overturning Circulation in CMIP3 and CMIP5 models. Clim. Dyn. 49, 1495–1511 (2016).
Liu, W., Xie, S.-P., Liu, Z. & Zhu, J. Overlooked possibility of a collapsed Atlantic Meridional Overturning Circulation in warming climate. Sci. Adv. 3, e1601666 (2017).
Jackson, L. C. et al. Impact of ocean resolution and mean state on the rate of AMOC weakening. Clim. Dyn. 55, 1711–1732 (2020).
Chang, P. et al. An unprecedented set of high-resolution Earth system simulations for understanding multiscale interactions in climate variability and change. J. Adv. Model. Earth Syst. 12, e2020MS002298 (2020).
Pohlmann, H. et al. Predictability of the mid-latitude Atlantic Meridional Overturning Circulation in a multi-model system. Clim. Dyn. 41, 775–785 (2013).
World Meteorological Organization. WMO lead centre for annual-to-decadal climate prediction (WMO, 2020).
Yeager, S. The abyssal origins of North Atlantic decadal predictability. Clim. Dyn. 55, 2253–2271 (2020).
Worthington, E. L. et al. A 30-year reconstruction of the Atlantic Meridional Overturning Circulation shows no decline. Ocean Sci. 17, 285–299 (2021).
Cunningham, S. A. et al. Atlantic Meridional Overturning Circulation slowdown cooled the subtropical ocean. Geophys. Res. Lett. 40, 2013GL058464 (2013).
Zou, S., Lozier, M., Li, F., Abernathy, R. & Jackson, L. Density-compensated overturning in the Labrador Sea. Nature. Geosci. 13, 121–126 (2020).
Frajka-Williams, E. et al. Atlantic Meridional Overturning Circulation: observed transport and variability. Front. Mar. Sci. 6, 260 (2019).
Good, S. A., Martin, M. J. & Rayner, N. A. EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. 118, 6704–6716 (2013).
Spall, M. A. Boundary currents and watermass transformation in marginal seas. J. Phys. Oceanogr. 34, 1197–1213 (2004).
Sayol, J.-M., Dijkstra, H. & Katsman, C. Seasonal and regional variations of sinking in the subpolar North Atlantic from a high-resolution ocean model. Ocean Sci. 15, 1033–1053 (2019).
Marshall, J. & Speer, K. Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci. 5, 171–180 (2012).
Acknowledgements
L.C.J. was supported by the Met Office Hadley Centre Climate Programme funded by BEIS and Defra (grant GA01101). M.W.B. gratefully acknowledges support from the NOAA ESS Program (grant NA20OAR4310396) and the NASA Physical Oceanography Program (grant 80NSSC20K0823). J.R. was supported by NERC through NCAS, and through the NERC ACSIS project (grant NE/N018001/1), and the UKRI-NERC WISHBONE (grant NE/T013516/1) and SNAP-DRAGON (grant NE/T013494/1) projects. E.F.-W. and B.M. were supported by the UK Natural Environment Research Council RAPID-AMOC programme at 26.5° N. B.M. was also supported by the European Union Horizon 2020 research and innovation programme BLUE-ACTION (grant 727852). The authors thank H. Mercier, A. Sanchez-Franks and G. McCarthy for providing updated time series for the AMOC at A25-OVIDE, AMOC at 26.5° N and a sea-level proxy, respectively.
Author information
Authors and Affiliations
Contributions
L.C.J. led the writing, coordinated the contributions and made the figures. All authors discussed the content and contributed to the writing of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Earth & Environment thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
About this article
Cite this article
Jackson, L.C., Biastoch, A., Buckley, M.W. et al. The evolution of the North Atlantic Meridional Overturning Circulation since 1980. Nat Rev Earth Environ 3, 241–254 (2022). https://doi.org/10.1038/s43017-022-00263-2
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s43017-022-00263-2
This article is cited by
-
Future strengthening of the Nordic Seas overturning circulation
Nature Communications (2023)
-
Likely accelerated weakening of Atlantic overturning circulation emerges in optimal salinity fingerprint
Nature Communications (2023)
-
Reply to: Evidence lacking for a pending collapse of the Atlantic Meridional Overturning Circulation
Nature Climate Change (2023)
-
Human-induced changes in the global meridional overturning circulation are emerging from the Southern Ocean
Communications Earth & Environment (2023)
-
Pantropical Indo-Atlantic temperature gradient modulates multi-decadal AMOC variability in models and observations
npj Climate and Atmospheric Science (2023)