Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Subglacial lakes and their changing role in a warming climate

A Publisher Correction to this article was published on 11 January 2022

This article has been updated

Abstract

Subglacial lakes are repositories of ancient climate conditions, provide habitats for life and modulate ice flow, basal hydrology, biogeochemical fluxes and geomorphic activity. In this Review, we construct the first global inventory of subglacial lakes (773 in total), which includes 675 from Antarctica (59 newly identified), 64 from Greenland, 2 beneath the Devon Ice Cap, 6 beneath Iceland’s ice caps and 26 from valley glaciers. This inventory is used to evaluate subglacial lake environments, dynamics and their wider impact on ice flow and sediment transport. The behaviour of these lakes is conditioned by their subglacial setting and the hydrological, dynamic and mass balance regime of the overlying ice mass. Regions where climate warming causes ice surface steepening are predicted to have fewer and smaller lakes, but increased activity with higher discharge drainages of shorter duration. Coupling to surface melt and rainfall inputs will modulate fill–drain cycles and seasonally enhance oxic processes. Higher discharges cause large, transient ice flow accelerations but might result in overall net slowdown owing to the development of efficient subglacial drainage. Subglacial lake research requires new drilling technologies and the integration of geophysics, satellite monitoring and numerical modelling to provide insight into the wider role of subglacial lakes in the changing Earth system.

Key points

  • We report a global inventory of subglacial lakes (773 in total): 675 from Antarctica (59 newly identified here), 64 from Greenland, 6 from Iceland, 2 beneath the Devon Ice Cap and 26 from valley glaciers.

  • 80% of subglacial lakes are stable, implying either closed systems or approximately balanced inflow and outflow; the remaining lakes are active and display one of five distinct activity patterns.

  • Active subglacial lakes exhibit a quasi-linear relationship between mean discharge and lake volume; lakes in Greenland and Iceland exhibit higher discharge rates for a given lake volume than do lakes in Antarctica.

  • Larger active subglacial lakes recharge at a faster rate than smaller lakes, suggesting an underlying control on lake refilling rate associated with lake size.

  • Lakes are less likely to occur where climate warming causes ice surface steepening, but drainage will be of higher magnitude, producing transient ice flow perturbations that are more likely to cause a net ice flow reduction.

  • Enhanced surface melt and rainfall inputs to the bed will modulate fill–drain cycles, increase the potential for catastrophic drainages and provide a supply of oxygen, sediment, microorganisms and nutrients.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Subglacial lake settings and hydrological links with ice sheets or glaciers.
Fig. 2: Methods for identifying subglacial lakes and investigating their dynamics.
Fig. 3: Global inventory of subglacial lakes.
Fig. 4: Subglacial lake activity patterns and the relationship with lake volume.
Fig. 5: Conceptual model of the influence of subglacial lake activity on ice flow.
Fig. 6: Microbial redox reactions across a range of lake settings.
Fig. 7: Impact of climate warming on the future distribution, geometry and activity of subglacial lakes.

Change history

References

  1. Christner, B. C. et al. A microbial ecosystem beneath the West Antarctic ice sheet. Nature 512, 310–313 (2014).

    Google Scholar 

  2. Mikucki, J. A. et al. Subglacial Lake Whillans microbial biogeochemistry: a synthesis of current knowledge. Phil. Trans. R. Soc. A 374, 20140290 (2016).

    Google Scholar 

  3. Garcia-Lopez, E. & Cid, C. Glaciers and ice sheets as analog environments of potentially habitable icy worlds. Front. Microbiol. 8, 1407 (2017).

    Google Scholar 

  4. Wingham, D. J., Siegert, M. J., Shepherd, A. & Muir, A. S. Rapid discharge connects Antarctic subglacial lakes. Nature 440, 1033–1036 (2006).

    Google Scholar 

  5. Carter, S. P. & Fricker, H. A. The supply of subglacial meltwater to the grounding line of the Siple Coast, West Antarctica. Ann. Glaciol. 53, 267–280 (2012).

    Google Scholar 

  6. Siegfried, M. R. & Fricker, H. A. Thirteen years of subglacial lake activity in Antarctica from multi-mission satellite altimetry. Ann. Glaciol. 59, 42–55 (2018).

    Google Scholar 

  7. Dow, C. F. et al. Dynamics of active subglacial lakes in Recovery Ice Stream. J. Geophys. Res. Earth Surf. 121, 2248 (2018).

    Google Scholar 

  8. Willis, I. C., Pope, E. L., Leysinger, G. J.-M., Arnold, N. S. & Long, S. Drainage networks, lakes and water fluxes beneath the Antarctic ice sheet. Ann. Glaciol. 57, 96–108 (2016).

    Google Scholar 

  9. Vick-Majors, T. J. et al. Biogeochemical connectivity between freshwater ecosystems beneath the West Antarctic ice sheet and the sub-ice marine environment. Glob. Biogeochem. Cycles 34, e2019GB006446 (2020).

    Google Scholar 

  10. Stearns, L. A., Smith, B. E. & Hamilton, G. S. Increased flow speed on a large East Antarctic outlet glacier caused by subglacial floods. Nat. Geosci. 1, 827–831 (2008).

    Google Scholar 

  11. Scambos, T., Berthier, E. & Shuman, C. A. The triggering of subglacial lake drainage during rapid glacier drawdown: Crane Glacier, Antarctic Peninsula. Ann. Glaciol. 52, 74–82 (2011).

    Google Scholar 

  12. Fricker, H. A., Siegfried, M. R., Carter, S. P. & Scambos, T. A. A decade of progress in observing and modelling Antarctic subglacial water systems. Phil. Trans. R. Soc. A 374, 20140294 (2016).

    Google Scholar 

  13. Siegfried, M. R., Fricker, H. A., Carter, S. P. & Tulaczyk, S. Episodic ice velocity fluctuations triggered by a subglacial flood in West Antarctica. Geophys. Res. Lett. 43, 2640–2648 (2016).

    Google Scholar 

  14. Russell, A. J., Gregory, A. R., Large, A. R. G., Jay Fleisher, P. & Harris, T. D. Tunnel channel formation during the November 1996 jökulhlaup, Skeiðarárjökull, Iceland. Ann. Glaciol. 45, 95–103 (2007).

    Google Scholar 

  15. Livingstone, S. J. et al. Brief communication: subglacial lake drainage beneath Isunguata Sermia, west Greenland: geomorphic and ice dynamic effects. Cryosphere 13, 2789–2796 (2019).

    Google Scholar 

  16. Bentley, M. J. et al. in Antarctic Subglacial Aquatic Environments (eds Siegert, M. J., Kenicutt, M. C. & Bindschadler, R. A.) 83–110 (American Geophysical Union, 2011).

  17. Le Brocq, A. et al. Evidence from ice shelves for channelized meltwater flow beneath the Antarctic Ice Sheet. Nat. Geosci. 6, 1–4 (2013).

    Google Scholar 

  18. Alley, K. E., Scambos, T. A., Siegfried, M. R. & Fricker, H. A. Impacts of warm water on Antarctic ice shelf stability through basal channel formation. Nat. Geosci. 9, 290–293 (2016).

    Google Scholar 

  19. Marsh, O. J. et al. High basal melting forming a channel at the grounding line of Ross Ice Shelf, Antarctica. Geophys. Res. Lett. 43, 250–255 (2016).

    Google Scholar 

  20. Li, Y., Shi, H., Lu, Y., Zhang, Z. & Xi, H. Subglacial discharge weakens the stability of the Ross Ice Shelf around the grounding line. Polar Res. 40, 3377 (2021).

    Google Scholar 

  21. Evatt, G. W., Fowler, A. C., Clark, C. D. & Hulton, N. R. J. Subglacial floods beneath ice sheets. Phil. Trans. R. Soc. A 364, 1769–1794 (2006).

    Google Scholar 

  22. Björnsson, H. Subglacial lakes and jökulhlaups in Iceland. Glob. Planet. Change 35, 255–271 (2003).

    Google Scholar 

  23. Sergienko, O. V. & Hulbe, C. L. “Sticky spots” and subglacial lakes under ice streams of the Siple Coast, Antarctica. Ann. Glaciol. 52, 18–22 (2011).

    Google Scholar 

  24. Gilbert, A., Vincent, C., Wagnon, P., Thibert, E. & Rabatel, A. The influence of snow cover thickness on the thermal regime of Tête Rousse Glacier (Mont Blanc range, 3200 m asl): consequences for outburst flood hazards and glacier response to climate change. J. Geophys. Res. Earth Surf. 117, F04018 (2012).

    Google Scholar 

  25. Robin, G. D. Q., Evans, S. & Bailey, J. T. Interpretation of radio echo sounding in polar ice sheets. Phil. Trans. R. Soc. Lond. A 265, 437–505 (1969).

    Google Scholar 

  26. Oswald, G. K. A. & Robin, G. D. E. Q. Lakes beneath the Antarctic ice sheet. Nature 245, 251–254 (1973).

    Google Scholar 

  27. Siegert, M. J., Dowdeswell, J. A., Gorman, M. R. & McIntyre, N. F. An inventory of Antarctic sub-glacial lakes. Antarct. Sci. 8, 281–286 (1996).

    Google Scholar 

  28. Wolovick, M. J., Bell, R. E. & Creyts, T. T. Identification and control of subglacial water networks under Dome A, Antarctica. J. Geophys. Res. 118, 140–154 (2013).

    Google Scholar 

  29. Siegert, M. J., Ross, N. & Le Brocq, A. M. Recent advances in understanding Antarctic subglacial lakes and hydrology. Phil. Trans. R. Soc. A 374, 20140306 (2016).

    Google Scholar 

  30. Kapitsa, A. P., Ridley, J. K., de Q. Robin, G., Siegert, M. J. & Zotikov, I. A. A large deep freshwater lake beneath the ice of central East Antarctica. Nature 381, 684–686 (1996).

    Google Scholar 

  31. Peters, L. E. et al. Seismic detection of a subglacial lake near the South Pole, Antarctica. Geophys. Res. Lett. 35, L23501 (2008).

    Google Scholar 

  32. Gray, L., Joughin, I., Tulaczyk, S. & Spikes, V. B. Evidence for subglacial water transport in the West Antarctic Ice Sheet through three-dimensional satellite radar interferometry. Geophys. Res. Lett. 32, L03501 (2005).

    Google Scholar 

  33. Fricker, H. A., Scambos, T., Bindschadler, R. & Padman, L. An active subglacial water system in West Antarctica mapped from space. Science 315, 1544–1548 (2007).

    Google Scholar 

  34. Flament, T., Berthier, E. & Rémy, F. Cascading water underneath Wilkes Land, East Antarctic ice sheet, observed using altimetry and digital elevation models. Cryosphere 8, 673–687 (2014).

    Google Scholar 

  35. Fricker, H. A. & Scambos, T. Connected subglacial lake activity on lower Mercer and Whillans Ice Streams, West Antarctica, 2003–2008. J. Glaciol. 55, 303–315 (2009).

    Google Scholar 

  36. Thorarinsson, S. & Sigurðsson, S. Volcano-glaciological investigations in Iceland during the last decade. Polar Rec. 5, 60–66 (1947).

    Google Scholar 

  37. Björnsson, H. Explanations of jökulhlaups from Grímsvötn, Vatnajökull, Iceland. Jökull 24, 1–26 (1974).

    Google Scholar 

  38. Björnsson, H. Hydrology of Ice Caps in Volcanic Regions (Societas Scientarium Islandica, University of Iceland, 1988).

  39. Björnsson, H. Jökulhlaups in Iceland: prediction, characteristics and simulation. Ann. Glaciol. 16, 95–106 (1992).

    Google Scholar 

  40. Haeberli, W. Frequency and characteristics of glacier floods in the Swiss Alps. Ann. Glaciol. 4, 85–90 (1983).

    Google Scholar 

  41. Driedger, C. L. & Fountain, A. G. Glacier outburst floods at Mount Rainier, Washington state, USA. Ann. Glaciol. 13, 51–55 (1989).

    Google Scholar 

  42. Palmer, S. J. et al. Greenland subglacial lakes detected by radar. Geophys. Res. Lett. 40, 6154–6159 (2013).

    Google Scholar 

  43. Oswald, G. K. A., Rezvanbehbahani, S. & Stearns, L. A. Radar evidence of ponded subglacial water in Greenland. J. Glaciol. 64, 711–729 (2018).

    Google Scholar 

  44. Bowling, J. S., Livingstone, S. J., Sole, A. J. & Chu, W. Distribution and dynamics of Greenland subglacial lakes. Nat. Commun. 10, 2810 (2019).

    Google Scholar 

  45. Rutishauser, A. et al. Discovery of a hypersaline subglacial lake complex beneath Devon Ice Cap, Canadian Arctic. Sci. Adv. 4, eaar4353 (2018).

    Google Scholar 

  46. Ekholm, S., Keller, K., Bamber, J. L. & Gogineni, S. P. Unusual surface morphology from digital elevation models of the Greenland ice sheet. Geophys. Res. Lett. 25, 3623–3626 (1998).

    Google Scholar 

  47. Willis, M. J., Herried, B. G., Bevis, M. G. & Bell, R. E. Recharge of a subglacial lake by surface meltwater in northeast Greenland. Nature 518, 223–227 (2015).

    Google Scholar 

  48. Palmer, S., McMillan, M. & Morlighem, M. Subglacial lake drainage detected beneath the Greenland ice sheet. Nat. Commun. 6, 8408 (2015).

    Google Scholar 

  49. Robin, G. D. Q., Swithinbank, C. W. M. & Smith, B. M. E. Radio echo exploration of the Antarctic ice sheet. Int. Assoc. Sci. Hydrol. Publ. 86, 97–115 (1970).

    Google Scholar 

  50. Horgan, H. J. et al. Subglacial Lake Whillans — seismic observations of a shallow active reservoir beneath a West Antarctic ice stream. Earth Planet. Sci. Lett. 331–332, 201–209 (2012).

    Google Scholar 

  51. Popov, S. Fifty-five years of Russian radio-echo sounding investigations in Antarctica. Ann. Glaciol. 61, 14–24 (2020).

    Google Scholar 

  52. Siegert, M. J., Makinson, K., Blake, D., Mowlem, M. & Ross, N. An assessment of deep hot-water drilling as a means to undertake direct measurement and sampling of Antarctic subglacial lakes: experience and lessons learned from the Lake Ellsworth field season 2012/13. Ann. Glaciol. 55, 59–73 (2014).

    Google Scholar 

  53. Tulaczyk, S. et al. WISSARD at Subglacial Lake Whillans, West Antarctica: scientific operations and initial observations. Ann. Glaciol. 55, 51–58 (2014).

    Google Scholar 

  54. Hodson, T. O., Powell, R. D., Brachfeld, S. A., Tulaczyk, S. & Scherer, R. P. Physical processes in Subglacial Lake Whillans, West Antarctica: Inferences from sediment cores. Earth Planet. Sci. Lett. 444, 56–63 (2016).

    Google Scholar 

  55. Priscu, J. C. et al. Scientific access into Mercer subglacial lake: scientific objectives, drilling operations and initial observations. Ann. Glaciol. 62, 340–352 (2021).

    Google Scholar 

  56. Gaidos, E. et al. An oligarchic microbial assemblage in the anoxic bottom waters of a volcanic subglacial lake. ISME J. 3, 486–497 (2009).

    Google Scholar 

  57. Gaidos, E. et al. A viable microbial community in a subglacial volcanic crater lake, Iceland. Astrobiology 4, 327–344 (2004).

    Google Scholar 

  58. Bulat, S. A. Microbiology of the subglacial Lake Vostok: first results of borehole-frozen lake water analysis and prospects for searching for lake inhabitants. Phil. Trans. R. Soc. A 374, 20140292 (2016).

    Google Scholar 

  59. Vincent, C. et al. Mechanisms of subglacial cavity filling in Glacier de Tête Rousse, French Alps. J. Glaciol. 61, 609–623 (2015).

    Google Scholar 

  60. Arnold, E. et al. CReSIS airborne radars and platforms for ice and snow sounding. Ann. Glaciol. 61, 58–67 (2020).

    Google Scholar 

  61. Paden, J., Akins, T., Dunson, D., Allen, C. & Gogineni, P. Ice-sheet bed 3-D tomography. J. Glaciol. 56, 3–11 (2010).

    Google Scholar 

  62. Holschuh, N., Christianson, K., Paden, J., Alley, R. B. & Anandakrishnan, S. Linking postglacial landscapes to glacier dynamics using swath radar at Thwaites Glacier, Antarctica. Geology 48, 268–272 (2020).

    Google Scholar 

  63. Schroeder, D. M., Blankenship, D. D. & Young, D. A. Evidence for a water system transition beneath Thwaites Glacier, West Antarctica. Proc. Natl Acad. Sci. USA 110, 12225–12228 (2013).

    Google Scholar 

  64. Young, D. A., Schroeder, D. M., Blankenship, D. D., Kempf, S. D. & Quartini, E. The distribution of basal water between Antarctic subglacial lakes from radar sounding. Phil. Trans. R. Soc. A 374, 20140297 (2016).

    Google Scholar 

  65. Oswald, G. & Gogineni, S. P. Recovery of subglacial water extent from Greenland radar survey data. J. Glaciol. 54, 94–106 (2008).

    Google Scholar 

  66. Oswald, G. & Gogineni, S. P. Mapping basal melt under the northern Greenland Ice Sheet. IEEE Trans. Geosci. Remote Sens. 50, 585–592 (2012).

    Google Scholar 

  67. Jordan, T. M. et al. A constraint upon the basal water distribution and thermal state of the Greenland Ice Sheet from radar bed echoes. Cryosphere 12, 2831–2854 (2018).

    Google Scholar 

  68. Schroeder, D. M., Blankenship, D. D., Young, D. A., Witus, A. E. & Anderson, J. B. Airborne radar sounding evidence for deformable sediments and outcropping bedrock beneath Thwaites Glacier, West Antarctica. Geophys. Res. Lett. 41, 7200–7208 (2014).

    Google Scholar 

  69. Schroeder, D. M., Blankenship, D. D., Raney, R. K. & Grima, C. Estimating subglacial water geometry using radar bed echo specularity: application to Thwaites Glacier, west Antarctica. IEEE Geosci. Remote Sens. Lett. 12, 443–447 (2015).

    Google Scholar 

  70. Dow, C. F. et al. Totten Glacier subglacial hydrology determined from geophysics and modeling. Earth Planet. Sci. Lett. 531, 115961 (2020).

    Google Scholar 

  71. Carter, S. P. et al. Radar-based subglacial lake classification in Antarctica. Geochem. Geophys. Geosyst. 8, Q03016 (2007).

    Google Scholar 

  72. Ilisei, A., Khodadadzadeh, M., Ferro, A. & Bruzzone, L. An automatic method for subglacial lake detection in ice sheet radar sounder data. IEEE Trans. Geosci. Remote Sens. 57, 1–19 (2018).

    Google Scholar 

  73. Woodward, J. et al. Location for direct access to subglacial Lake Ellsworth: an assessment of geophysical data and modeling. Geophys. Res. Lett. 37, L11501 (2010).

    Google Scholar 

  74. Masolov, V. N., Popov, S. V., Lukin, V. V. & Popkov, A. M. The bottom topography and subglacial Lake Vostok water body, East Antarctica. Dokl. Earth Sci. 433, 1092–1097 (2010).

    Google Scholar 

  75. Key, K. & Siegfried, M. R. The feasibility of imaging subglacial hydrology beneath ice streams with ground-based electromagnetics. J. Glaciol. 63, 755–771 (2017).

    Google Scholar 

  76. Studinger, M., Bell, R. E. & Tikku, A. A. Estimating the depth and shape of subglacial Lake Vostok’s water cavity from aerogravity data. Geophys. Res. Lett. 31, L12401 (2004).

    Google Scholar 

  77. Siegert, M. J., Popov, S. & Studinger, M. in Antarctic Subglacial Aquatic Environments (eds Siegert, M. J., Kennicutt, M. C. II & Bindschadler, R. A.) 45–60 (American Geophysical Union, 2011).

  78. Gray, L. Evidence for subglacial water transport in the West Antarctic Ice Sheet through three-dimensional satellite radar interferometry. Geophys. Res. Lett. 32, L03501 (2005).

    Google Scholar 

  79. McMillan, M. et al. Three-dimensional mapping by CryoSat-2 of subglacial lake volume changes. Geophys. Res. Lett. 40, 4321–4327 (2013).

    Google Scholar 

  80. Siegfried, M. R. et al. A decade of West Antarctic subglacial lake interactions from combined ICESat and CryoSat-2 altimetry. Geophys. Res. Lett. 41, 891–898 (2014).

    Google Scholar 

  81. Smith, B. E., Gourmelen, N., Huth, A. & Joughin, I. Connected subglacial lake drainage beneath Thwaites Glacier, West Antarctica. Cryosphere 11, 451–467 (2017).

    Google Scholar 

  82. McMillan, M. et al. Sentinel-3 Delay-Doppler altimetry over Antarctica. Cryosphere 13, 709–722 (2019).

    Google Scholar 

  83. Siegfried, M. R. & Fricker, H. A. Illuminating active subglacial lake processes with ICESat-2 laser altimetry. Geophys. Res. Lett. 48, e2020GL091089 (2021).

    Google Scholar 

  84. Brunt, K. M., Neumann, T. A. & Smith, B. E. Assessment of ICESat-2 ice sheet surface heights, based on comparisons over the interior of the Antarctic ice sheet. Geophys. Res. Lett. 46, 13072–13078 (2019).

    Google Scholar 

  85. Smith, B. et al. Land ice height-retrieval algorithm for NASA’s ICESat-2 photon-counting laser altimeter. Remote Sens. Environ. 233, 111352 (2019).

    Google Scholar 

  86. Porter, C., Morin, P., Howat, I., Noh, M. J. & Bates, B. ArcticDEM (Harvard Dataverse, 2018).

  87. Howat, I. M., Porter, C., Smith, B. E., Noh, M.-J. & Morin, P. The reference elevation model of Antarctica. Cryosphere 13, 665–674 (2019).

    Google Scholar 

  88. Capps, D. M., Rabus, B., Clague, J. J. & Shugar, D. H. Identification and characterization of alpine subglacial lakes using interferometric synthetic aperture radar (InSAR): Brady Glacier, Alaska, USA. J. Glaciol. 56, 861–870 (2010).

    Google Scholar 

  89. Livingstone, S. J., Clark, C. D., Woodward, J. & Kingslake, J. Potential subglacial lake locations and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets. Cryosphere 7, 1721–1740 (2013).

    Google Scholar 

  90. Goeller, S., Steinhage, D., Thoma, M. & Grosfeld, K. Assessing the subglacial lake coverage of Antarctica. Ann. Glaciol. 57, 109–117 (2016).

    Google Scholar 

  91. MacKie, E. J., Schroeder, D. M., Caers, J., Siegfried, M. R. & Scheidt, C. Antarctic topographic realizations and geostatistical modeling used to map subglacial lakes. J. Geophys. Res. Earth Surf. 125, e2019JF005420 (2020).

    Google Scholar 

  92. Wright, A. & Siegert, M. A fourth inventory of Antarctic subglacial lakes. Antarct. Sci. 24, 659–664 (2012).

    Google Scholar 

  93. Einarsson, B., Jóhannesson, T., Thorsteinsson, T., Gaidos, E. & Zwinger, T. Subglacial flood path development during a rapidly rising jökulhlaup from the western Skaftá cauldron, Vatnajökull, Iceland. J. Glaciol. 63, 670–682 (2017).

    Google Scholar 

  94. Thorarinsson, S. Vötnin stríð Skeiðarárhlaupa Grímsvatnagosa Menningarsjóður (The Swift Flowing Rivers. The History of Grímsvötn Jökulhlaups and Eruptions) Vol. 254 (Menningarsjodur, 1974).

  95. Björnsson, H. & Pálsson, F. Radio-echo soundings on Icelandic temperate glaciers: history of techniques and findings. Ann. Glaciol. 61, 25–34 (2020).

    Google Scholar 

  96. Pattyn, F. Antarctic subglacial conditions inferred from a hybrid ice sheet/ice stream model. Earth Planet. Sci. Lett. 295, 451–461 (2010).

    Google Scholar 

  97. Das, S. B. et al. Fracture propagation to the base of the Greenland Ice Sheet during supraglacial lake drainage. Science 320, 778–781 (2008).

    Google Scholar 

  98. Shreve, R. L. Movement of water in glaciers. J. Glaciol. 11, 205–214 (1972).

    Google Scholar 

  99. Pattyn, F. Investigating the stability of subglacial lakes with a full Stokes ice-sheet model. J. Glaciol. 54, 353–361 (2008).

    Google Scholar 

  100. Fowler, A. C. Breaking the seal at Grímsvötn, Iceland. J. Glaciol. 45, 506–516 (1999).

    Google Scholar 

  101. Dow, C. F., Werder, M. A., Nowicki, S. & Walker, R. T. Modeling Antarctic subglacial lake filling and drainage cycles. Cryosphere 10, 1381–1393 (2016).

    Google Scholar 

  102. Siegert, M. J. Antarctic subglacial lakes. Earth Sci. Rev. 50, 29–50 (2000).

    Google Scholar 

  103. Siegert, M. J. A wide variety of unique environments beneath the Antarctic ice sheet. Geology 44, 399–400 (2016).

    Google Scholar 

  104. Legchenko, A. et al. Three-dimensional magnetic resonance imaging for groundwater. N. J. Phys. 13, 025022 (2011).

    Google Scholar 

  105. Ridley, J. K., Laxon, S., Rapley, C. G. & Mantripp, D. Antarctic ice sheet topography mapped with the ERS-1 radar altimeter. Int. J. Remote Sens. 14, 1649–1650 (1993).

    Google Scholar 

  106. Diez, A. et al. Patchy lakes and topographic origin for fast flow in the Recovery Glacier system, East Antarctica. J. Geophys. Res. Earth Surf. 124, 287–304 (2019).

    Google Scholar 

  107. Couston, L.-A. & Siegert, M. Dynamic flows create potentially habitable conditions in Antarctic subglacial lakes. Sci. Adv. 7, eabc3972 (2021).

    Google Scholar 

  108. Lipenkov, V. Y., Ekaykin, A. A., Polyakova, E. V. & Raynaud, D. Characterization of subglacial Lake Vostok as seen from physical and isotope properties of accreted ice. Phil. Trans. R. Soc. A 374, 20140303 (2016).

    Google Scholar 

  109. Thoma, M., Grosfeld, K. & Mayer, C. Modelling mixing and circulation in subglacial Lake Vostok, Antarctica. Ocean Dyn. 57, 531–540 (2007).

    Google Scholar 

  110. Siegert, M. J. et al. Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes. Nature 414, 603–609 (2001).

    Google Scholar 

  111. Napoleoni, F. et al. Subglacial lakes and hydrology across the Ellsworth Subglacial Highlands, West Antarctica. Cryosphere 14, 4507–4524 (2020).

    Google Scholar 

  112. Studinger, M. et al. Geophysical models for the tectonic framework of the Lake Vostok region, East Antarctica. Earth Planet. Sci. Lett. 216, 663–677 (2003).

    Google Scholar 

  113. Tabacco, I. E., Cianfarra, P., Forieri, A., Salvini, F. & Zirizotti, A. Physiography and tectonic setting of the subglacial lake district between Vostok and Belgica subglacial highlands (Antarctica). Geophys. J. Int. 165, 1029–1040 (2006).

    Google Scholar 

  114. Bell, R. E., Studinger, M., Fahnestock, M. A. & Shuman, C. A. Tectonically controlled subglacial lakes on the flanks of the Gamburtsev Subglacial Mountains, East Antarctica. Geophys. Res. Lett. 33, L02504 (2006).

    Google Scholar 

  115. Jamieson, S. S. R. et al. An extensive subglacial lake and canyon system in Princess Elizabeth Land, East Antarctica. Geology 44, 87–90 (2016).

    Google Scholar 

  116. Walder, J. S. & Driedger, C. L. Rapid geomorphic change caused by glacial outburst floods and debris flows along Tahoma Creek, Mount Rainier, Washington, USA. Arct. Alp. Res. 26, 319–327 (1994).

    Google Scholar 

  117. Sergienko, O. V., MacAyeal, D. R. & Bindschadler, R. A. Causes of sudden, short-term changes in ice-stream surface elevation. Geophys. Res. Lett. 34, L22503 (2007).

    Google Scholar 

  118. Li, Y., Lu, Y. & Siegert, M. J. Radar sounding confirms a hydrologically active deep-water subglacial lake in east Antarctica. Front. Earth Sci. 8, 294 (2020).

    Google Scholar 

  119. Humbert, A., Steinhage, D., Helm, V., Beyer, S. & Kleiner, T. Missing evidence of widespread subglacial lakes at Recovery Glacier, Antarctica. J. Geophys. Res. Earth Surf. 123, 2802–2826 (2018).

    Google Scholar 

  120. Smith, B. E., Fricker, H. A., Joughin, I. & Tulaczyk, S. An inventory of active subglacial lakes in Antarctica detected by ICESat (2003–2008). J. Glaciol. 55, 573–595 (2009).

    Google Scholar 

  121. Warburton, J. & Fenn, C. R. Unusual flood events from an Alpine glacier: observations and deductions on generating mechanisms. J. Glaciol. 40, 176–186 (1994).

    Google Scholar 

  122. Lliboutry, L. General theory of subglacial cavitation and sliding of temperate glaciers. J. Glaciol. 7, 21–58 (1968).

    Google Scholar 

  123. Kamb, B. Glacier surge mechanism based on linked cavity configuration of the basal water conduit system. J. Geophys. Res. 92, 9083–9100 (1987).

    Google Scholar 

  124. Fountain, A. G. & Walder, J. S. Water flow through temperate glaciers. Rev. Geophys. 36, 299–328 (1998).

    Google Scholar 

  125. Sharp, M., Gemmell, J. C. & Tison, J.-L. Structure and stability of the former subglacial drainage system of the glacier De Tsanfleuron, Switzerland. Earth Surf. Process. Landf. 14, 119–134 (1989).

    Google Scholar 

  126. Walder, J. & Hallet, B. Geometry of former subglacial water channels and cavities. J. Glaciol. 23, 335–346 (1979).

    Google Scholar 

  127. Vincent, C. et al. Detection of a subglacial lake in Glacier de Tête Rousse (Mont Blanc area, France). J. Glaciol. 58, 866–878 (2012).

    Google Scholar 

  128. Walder, J. S. & Driedger, C. L. Frequent outburst floods from South Tahoma Glacier, Mount Rainier, USA: relation to debris flows, meteorological origin and implications for subglacial hydrology. J. Glaciol. 41, 1–10 (1995).

    Google Scholar 

  129. Chu, W. et al. Extensive winter subglacial water storage beneath the Greenland Ice Sheet. Geophys. Res. Lett. 12, 484–492 (2016).

    Google Scholar 

  130. Clarke, G. K. C. Glacier outburst floods from “Hazard Lake”, Yukon Territory, and the problem of flood magnitude prediction. J. Glaciol. 28, 3–21 (1982).

    Google Scholar 

  131. Nye, J. F. Water flow in glaciers: jökulhlaups, tunnels and veins. J. Glaciol. 17, 181–207 (1976).

    Google Scholar 

  132. Flowers, G. E., Björnsson, H., Pálsson, F. & Clarke, G. K. C. A coupled sheet-conduit mechanism for jökulhlaup propagation. Geophys. Res. Lett. 31, L05401 (2004).

    Google Scholar 

  133. Walder, J. S. Hydraulics of subglacial cavities. J. Glaciol. 32, 439–445 (1986).

    Google Scholar 

  134. Cowton, T., Nienow, P., Sole, A. & Bartholomew, I. Variability in ice motion at a land-terminating Greenlandic outlet glacier: the role of channelized and distributed drainage systems. J.Glaciol. 62, 451–466 (2016).

    Google Scholar 

  135. Rada, C. & Schoof, C. Channelized, distributed, and disconnected: subglacial drainage under a valley glacier in the Yukon. Cryosphere 12, 2609–2636 (2018).

    Google Scholar 

  136. Davison, B., Sole, A., Livingstone, S., Cowton, T. & Nienow, P. The influence of hydrology on the dynamics of land-terminating sectors of the Greenland Ice Sheet. Front. Earth Sci. 7, 10 (2019).

    Google Scholar 

  137. Stubblefield, A. G., Creyts, T. T., Kingslake, J. & Spiegelman, M. Modeling oscillations in connected glacial lakes. J. Glaciol. 65, 745–758 (2019).

    Google Scholar 

  138. Werder, M. A. & Hewitt, I. J. Modeling channelized and distributed subglacial drainage in two dimensions. J. Geophys. Res. Earth Surf. 118, 2140–2150 (2013).

    Google Scholar 

  139. Clague, J. J. & Mathews, W. H. The magnitude of jökulhlaups. J. Glaciol. 12, 501–504 (1973).

    Google Scholar 

  140. Ng, F. & Björnsson, H. On the Clague–Mathews relation for jökulhlaups. J. Glaciol. 49, 161–172 (2003).

    Google Scholar 

  141. Carter, S. P., Fricker, H. A. & Siegfried, M. R. Antarctic subglacial lakes drain through sediment-floored canals: theory and model testing on real and idealized domains. Cryosphere 11, 381–405 (2017).

    Google Scholar 

  142. Walter, J. A., Fleck, R., Pace, M. L. & Wilkinson, G. M. Scaling relationships between lake surface area and catchment area. Aquat. Sci. 82, 47 (2020).

    Google Scholar 

  143. Magnússon, E., Rott, H., Björnsson, H. & Pálsson, F. The impact of jökulhlaups on basal sliding observed by SAR interferometry on Vatnajökull, Iceland. J. Glaciol. 53, 232–240 (2007).

    Google Scholar 

  144. Magnússon, E., Björnsson, H., Rott, H. & Pálsson, F. Reduced glacier sliding caused by persistent drainage from a subglacial lake. Cryosphere 14, 13–20 (2010).

    Google Scholar 

  145. Hoffman, A. O., Christianson, K., Shapero, D., Smith, B. E. & Joughin, I. Brief communication: heterogenous thinning and subglacial lake activity on Thwaites Glacier, West Antarctica. Cryosphere 14, 4603–4609 (2020).

    Google Scholar 

  146. Fowler, A. C. & Ng, F. S. L. The role of sediment transport in the mechanics of jökulhlaups. Ann. Glaciol. 22, 255–259 (1996).

    Google Scholar 

  147. Kingslake, J. & Ng, F. S. L. Modelling the coupling of flood discharge with glacier flow during jökulhlaups. Ann. Glaciol. 54, 25–31 (2013).

    Google Scholar 

  148. Anderson, R. S., Walder, J. S., Anderson, S. P., Trabant, D. C. & Fountain, A. G. The dynamic response of Kennicott Glacier, Alaska, USA, to the Hidden Creek Lake outburst flood. Ann. Glaciol. 40, 237–242 (2005).

    Google Scholar 

  149. Bartholomaus, T. C., Anderson, R. S. & Anderson, S. P. Growth and collapse of the distributed subglacial hydrologic system of Kennicott Glacier, Alaska, USA, and its effects on basal motion. J. Glaciol. 57, 985–1002 (2011).

    Google Scholar 

  150. Bartholomew, I. et al. Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier. Nat. Geosci. 3, 408–411 (2010).

    Google Scholar 

  151. Alley, R. B., Blankenship, D. D., Bentley, C. R. & Rooney, S. T. Deformation of till beneath ice stream B, West Antarctica. Nature 322, 57–59 (1986).

    Google Scholar 

  152. Blankenship, D. D., Bentley, C. R., Rooney, S. T. & Alley, R. B. Seismic measurements reveal a saturated porous layer beneath an active Antarctic ice stream. Nature 322, 54–57 (1986).

    Google Scholar 

  153. MacAyeal, D. R., Bindschadler, R. A. & Scambos, T. A. Basal friction of Ice Stream E, West Antarctica. J. Glaciol. 41, 247–262 (1995).

    Google Scholar 

  154. Russell, A. J. & Knudsen, Ó. An ice-contact rhythmite (turbidite) succession deposited during the November 1996 catastrophic outburst flood (jökulhlaup), Skeiðarárjökull, Iceland. Sediment. Geol. 127, 1–10 (1999).

    Google Scholar 

  155. Russell, A. J. & Knudsen, Ó. in Flood and Megaflood Processes and Deposits: Recent and Ancient Examples Vol. 32 (eds Martini, I. P., Baker, V. R. & Garzón, G.) 67–83 (Wiley, 2002).

  156. Russell, A. J. et al. Icelandic jökulhlaup impacts: implications for ice-sheet hydrology, sediment transfer and geomorphology. Geomorphology 75, 33–64 (2006).

    Google Scholar 

  157. Roberts, M. J., Russell, A. J., Tweed, F. S. & Knudsen, Ó. Controls on englacial sediment deposition during the November 1996 jökulhlaup, Skeiđarárjökull, Iceland. Earth Surf. Process. Landf. 26, 935–952 (2001).

    Google Scholar 

  158. Burke, M. J., Woodward, J., Russell, A. J., Fleisher, P. J. & Bailey, P. K. Controls on the sedimentary architecture of a single event englacial esker: Skeiðarárjökull, Iceland. Quat. Sci. Rev. 27, 1829–1847 (2008).

    Google Scholar 

  159. Maizels, J. in Environmental Change in Iceland: Past and Present (eds Maizels, J. K. & Caseldin, C.) 267–302 (Springer, 1991).

  160. Maizels, J. Jökulhlaup deposits in proglacial areas. Quat. Sci. Rev. 16, 793–819 (1997).

    Google Scholar 

  161. Russell, A. J. & Knudsen, Ó. in Fluvial Sedimentology VI (eds Smith, N. D. & Rogers, J.) 315–329 (Blackwell, 1999).

  162. Russell, A. J. & Knudsen, Ó. An ice-contact rhythmite (turbidite) succession deposited during the November 1996 catastrophic outburst flood (jökulhlaup), Skeiðarárjökull, Iceland. Sediment. Geol. 127, 1–10 (1999).

    Google Scholar 

  163. Smith, L. C. et al. Estimation of erosion, deposition, and net volumetric change caused by the 1996 Skeiðarársandur jökulhlaup, Iceland, from synthetic aperture radar interferometry. Water Resour. Res. 36, 1583–1594 (2000).

    Google Scholar 

  164. Guðmundsson, M. T., Bonnel, A. & Gunnarsson, K. Seismic soundings of sediment thickness on Skeiðarársandur, SE-Iceland. Jökull 51, 53–64 (2002).

    Google Scholar 

  165. Domack, E. et al. Subglacial morphology and glacial evolution of the Palmer deep outlet system, Antarctic Peninsula. Geomorphology 75, 125–142 (2006).

    Google Scholar 

  166. Jordan, T. A. et al. Hypothesis for mega-outburst flooding from a palaeo-subglacial lake beneath the East Antarctic Ice Sheet. Terra Nova 22, 283–289 (2010).

    Google Scholar 

  167. Kuhn, G. et al. Evidence for a palaeo-subglacial lake on the Antarctic continental shelf. Nat. Commun. 8, 15591 (2017).

    Google Scholar 

  168. Kirkham, J. D. et al. Past water flow beneath Pine Island and Thwaites glaciers, West Antarctica. Cryosphere 13, 1959–1981 (2019).

    Google Scholar 

  169. Lewis, A. R., Marchant, D. R., Kowalewski, D. E., Baldwin, S. L. & Webb, L. E. The age and origin of the Labyrinth, western Dry Valleys, Antarctica: evidence for extensive middle Miocene subglacial floods and freshwater discharge to the Southern Ocean. Geology 34, 513–516 (2006).

    Google Scholar 

  170. Bell, R. E., Studinger, M., Shuman, C. A., Fahnestock, M. A. & Joughin, I. Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams. Nature 445, 904–907 (2007).

    Google Scholar 

  171. Maizels, J. Lithofacies variations within sandur deposits: the role of runoff regime, flow dynamics and sediment supply characteristics. Sediment. Geol. 85, 299–325 (1993).

    Google Scholar 

  172. Dunning, S. A. et al. The role of multiple glacier outburst floods in proglacial landscape evolution: the 2010 Eyjafjallajökull eruption, Iceland. Geology 41, 1123–1126 (2013).

    Google Scholar 

  173. Roberts, M. J. Jökulhlaups: a reassessment of floodwater flow through glaciers. Rev. Geophys. 43, RG1002 (2005).

    Google Scholar 

  174. Snorrason, Á. et al. in Flood and Megaflood Processes and Deposits: Recent and Ancient Examples Vol. 32 (eds Martini, I. P., Baker, V. R. & Garzón, G.) 55–65 (Wiley, 2002).

  175. Björnsson, H. Glaciers in Iceland. Jökull 29, 74–80 (1979).

    Google Scholar 

  176. Walder, J. S. & Driedger, C. L. Geomorphic change caused by outburst floods and debris flows at Mount Rainier, Washington, with emphasis on Tahoma Creek valley (USGS, 1994).

  177. Denton, G. H. & Sugden, D. E. Meltwater features that suggest miocene ice-sheet overriding of the transantarctic mountains in Victoria Land, Antarctica. Geogr. Ann. Ser. A. 87, 67–85 (2005).

    Google Scholar 

  178. Horgan, H. J. et al. Estuaries beneath ice sheets. Geology 41, 1159–1162 (2013).

    Google Scholar 

  179. Simkins, L. M. et al. Anatomy of a meltwater drainage system beneath the ancestral East Antarctic ice sheet. Nat. Geosci. 10, 691–697 (2017).

    Google Scholar 

  180. Tweed, F. S. & Russell, A. J. Controls on the formation and sudden drainage of glacier-impounded lakes: implications for jökulhlaup characteristics. Prog. Phys. Geogr. Earth Environ. 23, 79–110 (1999).

    Google Scholar 

  181. Hawkings, J. R. et al. Enhanced trace element mobilization by Earth’s ice sheets. Proc. Natl Acad. Sci. USA 117, 31648–31659 (2020).

    Google Scholar 

  182. Death, R. et al. Antarctic ice sheet fertilises the Southern Ocean. Biogeosciences 11, 2635–2643 (2014).

    Google Scholar 

  183. Parnell, J. & McMahon, S. Physical and chemical controls on habitats for life in the deep subsurface beneath continents and ice. Phil. Trans. R. Soc. A 374, 20140293 (2016).

    Google Scholar 

  184. Madsen, E. L. Microorganisms and their roles in fundamental biogeochemical cycles. Curr. Opin. Biotechnol. 22, 456–464 (2011).

    Google Scholar 

  185. Christner, B. C., Skidmore, M. L., Priscu, J. C., Tranter, M. & Foreman, C. M. in Psychrophiles: from Biodiversity to Biotechnology (eds Margesin, R., Schinner, F., Marx, J.-C. & Gerday, C.) 51–71 (Springer, 2008).

  186. Marteinsson, V. T. et al. Microbial communities in the subglacial waters of the Vatnajökull ice cap, Iceland. ISME J. 7, 427–437 (2013).

    Google Scholar 

  187. Graly, J. A., Drever, J. I. & Humphrey, N. F. Calculating the balance between atmospheric CO2 drawdown and organic carbon oxidation in subglacial hydrochemical systems: Carbon Balance in Subglacial Systems. Glob. Biogeochem. Cycles 31, 709–727 (2017).

    Google Scholar 

  188. Tranter, M., Skidmore, M. & Wadham, J. Hydrological controls on microbial communities in subglacial environments. Hydrol. Process. 19, 995–998 (2005).

    Google Scholar 

  189. Michaud, A. B. et al. Microbial oxidation as a methane sink beneath the West Antarctic Ice Sheet. Nat. Geosci. 10, 582–586 (2017).

    Google Scholar 

  190. Purcell, A. M. et al. Microbial sulfur transformations in sediments from Subglacial Lake Whillans. Front. Microbiol. 5, 594 (2014).

    Google Scholar 

  191. Wadham, J. L., Tranter, M., Tulaczyk, S. & Sharp, M. Subglacial methanogenesis: a potential climatic amplifier? Glob. Biogeochem. Cycles 22, GB2021 (2008).

    Google Scholar 

  192. Santschi, P., Höhener, P., Benoit, G. & Buchholtz-ten Brink, M. Chemical processes at the sediment–water interface. Mar. Chem. 30, 269–315 (1990).

    Google Scholar 

  193. Vick-Majors, T. J. et al. Physiological ecology of microorganisms in Subglacial Lake Whillans. Front. Microbiol. 7, 1705 (2016).

    Google Scholar 

  194. Achberger, A. M. et al. Microbial community structure of Subglacial Lake Whillans, West Antarctica. Front. Microbiol. 7, 1457 (2016).

    Google Scholar 

  195. Kitzinger, K. et al. Characterization of the first “Candidatus Nitrotoga” isolate reveals metabolic versatility and separate evolution of widespread nitrite-oxidizing bacteria. mBio 9, e01186-18 (2018).

    Google Scholar 

  196. Michaud, A. B. et al. Solute sources and geochemical processes in Subglacial Lake Whillans, West Antarctica. Geology 44, 347–350 (2016).

    Google Scholar 

  197. Kohler, T. J. et al. Carbon dating reveals a seasonal progression in the source of particulate organic carbon exported from the Greenland Ice Sheet. Geophys. Res. Lett. 44, 6209–6217 (2017).

    Google Scholar 

  198. Miteva, V., Teacher, C., Sowers, T. & Brenchley, J. Comparison of the microbial diversity at different depths of the GISP2 Greenland ice core in relationship to deposition climates. Environ. Microbiol. 11, 640–656 (2009).

    Google Scholar 

  199. Dieser, M. et al. Molecular and biogeochemical evidence for methane cycling beneath the western margin of the Greenland Ice Sheet. ISME J. 8, 2305–2316 (2014).

    Google Scholar 

  200. Christiansen, J. R. & Jørgensen, C. J. First observation of direct methane emission to the atmosphere from the subglacial domain of the Greenland Ice Sheet. Sci. Rep. 8, 16623 (2018).

    Google Scholar 

  201. Maguire, R. et al. Geophysical constraints on the properties of a subglacial lake in northwest Greenland. Cryosphere 15, 3279–3291 (2021).

    Google Scholar 

  202. Christner, B. C. et al. Limnological conditions in Subglacial Lake Vostok, Antarctica. Limnol. Oceanogr. 51, 2485–2501 (2006).

    Google Scholar 

  203. King, M. D. et al. Dynamic ice loss from the Greenland Ice Sheet driven by sustained glacier retreat. Commun. Earth Environ. 1, 1 (2020).

    Google Scholar 

  204. Smith, B. et al. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science 368, 1239–1242 (2020).

    Google Scholar 

  205. Fettweis, X. et al. Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. Cryosphere 7, 469–489 (2013).

    Google Scholar 

  206. Karlsson, N. B. et al. A first constraint on basal melt-water production of the Greenland ice sheet. Nat. Commun. 12, 1–10 (2021).

    Google Scholar 

  207. Trusel, L. D. et al. Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios. Nat. Geosci. 8, 927–932 (2015).

    Google Scholar 

  208. Trusel, L. D. et al. Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming. Nature 564, 104–108 (2018).

    Google Scholar 

  209. Rignot, E. et al. Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys. Res. Lett. 31, L18401 (2004).

    Google Scholar 

  210. Scambos, T. A., Bohlander, J. A., Shuman, C. A. & Skvarca, P. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett. 31, L18402 (2004).

    Google Scholar 

  211. Robinson, A., Calov, R. & Ganopolski, A. Multistability and critical thresholds of the Greenland ice sheet. Nat. Clim. Chang. 2, 429–432 (2012).

    Google Scholar 

  212. Garbe, J., Albrecht, T., Levermann, A., Donges, J. F. & Winkelmann, R. The hysteresis of the Antarctic Ice Sheet. Nature 585, 538–544 (2020).

    Google Scholar 

  213. DeConto, R. M. et al. The Paris Climate Agreement and future sea-level rise from Antarctica. Nature 593, 83–89 (2021).

    Google Scholar 

  214. Pattyn, F. et al. The Greenland and Antarctic ice sheets under 1.5 °C global warming. Nat. Clim. Chang. 8, 1053–1061 (2018).

    Google Scholar 

  215. Golledge, N. R. et al. The multi-millennial Antarctic commitment to future sea-level rise. Nature 526, 421–425 (2015).

    Google Scholar 

  216. Jamieson, S. S. R., Sugden, D. E. & Hulton, N. R. J. The evolution of the subglacial landscape of Antarctica. Earth Planet. Sci. Lett. 293, 1–27 (2010).

    Google Scholar 

  217. Anandakrishnan, S. & Alley, R. B. Stagnation of Ice Stream C, West Antarctica by water piracy. Geophys. Res. Lett. 24, 265–268 (1997).

    Google Scholar 

  218. Lindbäck, K. et al. Subglacial water drainage, storage, and piracy beneath the Greenland Ice Sheet. Geophys. Res. Lett. 42, 7606–7614 (2015).

    Google Scholar 

  219. Carter, S. P., Fricker, H. A. & Siegfried, M. R. Evidence of rapid subglacial water piracy under Whillans Ice Stream, West Antarctica. J. Glaciol. 59, 1147–1162 (2013).

    Google Scholar 

  220. van Wyk de Vries, M., Bingham, R. G. & Hein, A. S. A new volcanic province: an inventory of subglacial volcanoes in West Antarctica. Geol. Soc. 461, 231 (2017).

    Google Scholar 

  221. Guðmundsson, M. T., Larsen, G., Höskuldsson, Á. & Gylfason, Á. G. Volcanic hazards in Iceland. Jökull 58, 251–268 (2008).

    Google Scholar 

  222. Rivera, A. et al. Ice volumetric changes on active volcanoes in southern Chile. Ann. Glaciol. 43, 111–122 (2006).

    Google Scholar 

  223. Maclennan, J., Jull, M., McKenzie, D., Slater, L. & Grönvold, K. The link between volcanism and deglaciation in Iceland. Geochem. Geophys. Geosyst. 3, 1–25 (2002).

    Google Scholar 

  224. Tuffen, H. How will melting of ice affect volcanic hazards in the twenty-first century? Phil. Trans. R. Soc. A 368, 2535–2558 (2010).

    Google Scholar 

  225. van Vliet-Lanoë, B. et al. Tectonism and volcanism enhanced by deglaciation events in southern Iceland. Quat. Res. 94, 94–120 (2020).

    Google Scholar 

  226. Hugonnet, R. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 592, 726–731 (2021).

    Google Scholar 

  227. Benn, D. I. et al. Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth Sci. Rev. 114, 156–174 (2012).

    Google Scholar 

  228. Sevestre, H. & Benn, D. I. Climatic and geometric controls on the global distribution of surge-type glaciers: implications for a unifying model of surging. J. Glaciol. 61, 646–662 (2015).

    Google Scholar 

  229. Tuckett, P. A. et al. Rapid accelerations of Antarctic Peninsula outlet glaciers driven by surface melt. Nat. Commun. 10, 4311 (2019).

    Google Scholar 

  230. Doyle, S. H. et al. Amplified melt and flow of the Greenland ice sheet driven by late-summer cyclonic rainfall. Nat. Geosci. 8, 647–653 (2015).

    Google Scholar 

  231. Wright, A. P., Siegert, M. J., Le Brocq, A. & Gore, D. High sensitivity of subglacial hydrological pathways in Antarctica to small ice-sheet changes. Geophys. Res. Lett. 35, L17504 (2008).

    Google Scholar 

  232. Jenkins, A. Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. J. Phys. Oceanogr. 41, 2279–2294 (2011).

    Google Scholar 

  233. Wei, W. et al. Getz Ice Shelf melt enhanced by freshwater discharge from beneath the West Antarctic ice sheet. Cryosphere 14, 1399–1408 (2020).

    Google Scholar 

  234. Slater, D. A., Nienow, P. W., Cowton, T. R., Goldberg, D. N. & Sole, A. J. Effect of near-terminus subglacial hydrology on tidewater glacier submarine melt rates. Geophys. Res. Lett. 42, 2861–2868 (2015).

    Google Scholar 

  235. Clague, J. J. & O’Connor, J. E. in Snow and Ice-Related Hazards, Risks, and Disasters 2nd edn Ch. 14 (eds Haeberli, W. & Whiteman, C.) 467–499 (Elsevier, 2021).

  236. Braun, A. Retrieval of digital elevation models from Sentinel-1 radar data–open applications, techniques, and limitations. Open. Geosci. 13, 532–569 (2021).

    Google Scholar 

  237. Rahnemoonfar, M., Yari, M., Paden, J., Koenig, L. & Ibikunle, O. Deep multi-scale learning for automatic tracking of internal layers of ice in radar data. J. Glaciol. 67, 39–48 (2021).

    Google Scholar 

  238. Quegan, S. et al. The European Space Agency BIOMASS mission: measuring forest above-ground biomass from space. Remote Sens. Environ. 227, 44–60 (2019).

    Google Scholar 

  239. Donini, E., Thakur, S., Bovolo, F. & Bruzzone, L. Assessing the detection performance on icy targets acquired by an orbiting radar sounder. In IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium 997–1000 (IEEE, 2019).

  240. Heggy, E., Rosen, P. A., Beatty, R., Freeman, T. & Gim, Y. Orbiting Arid Subsurface and Ice Sheet Sounder (OASIS): exploring desert aquifers and polar ice sheets and their role in current and paleo-climate evolution. In 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS 3483–3486 (IEEE, 2013).

  241. Winberry, J. P., Anandakrishnan, S. & Alley, R. B. Seismic observations of transient subglacial water-flow beneath MacAyeal Ice Stream, West Antarctica. Geophys. Res. Lett. 36, L11502 (2009).

    Google Scholar 

  242. Nanni, U. et al. Quantification of seasonal and diurnal dynamics of subglacial channels using seismic observations on an Alpine glacier. Cryosphere 14, 1475–1496 (2020).

    Google Scholar 

  243. Pattyn, F., Carter, S. P. & Thoma, M. Advances in modelling subglacial lakes and their interaction with the Antarctic ice sheet. Phil. Trans. R. Soc. A 374, 20140296 (2016).

    Google Scholar 

  244. Livingstone, S. J. et al. Discovery of relict subglacial lakes and their geometry and mechanism of drainage. Nat. Commun. 7, 11767 (2016).

    Google Scholar 

  245. Christoffersen, P. et al. Large subglacial lake beneath the Laurentide Ice Sheet inferred from sedimentary sequences. Geology 36, 563 (2008).

    Google Scholar 

  246. Beaud, F., Flowers, G. E. & Venditti, J. G. Efficacy of bedrock erosion by subglacial water flow. Earth Surf. Dynam. 4, 125–145 (2016).

    Google Scholar 

  247. Delaney, I., Werder, M. A. & Farinotti, D. A numerical model for fluvial transport of subglacial sediment. J. Geophys. Res. Earth Surf. 124, 2197–2223 (2019).

    Google Scholar 

  248. Rack, F. R. Enabling clean access into Subglacial Lake Whillans: development and use of the WISSARD hot water drill system. Phil. Trans. R. Soc. A 374, 20140305 (2016).

    Google Scholar 

  249. Makinson, K. et al. Development of a clean hot water drill to access Subglacial Lake CECs, West Antarctica. Ann. Glaciol. 62, 250–262 (2021).

    Google Scholar 

  250. Li, Y. et al. Thermal heads for melt drilling to subglacial lakes: design and testing. Astrobiology 20, 142–156 (2020).

    Google Scholar 

  251. Campen, R. et al. Microbial diversity of an Antarctic subglacial community and high-resolution replicate sampling inform hydrological connectivity in a polar desert. Environ. Microbiol. 21, 2290–2306 (2019).

    Google Scholar 

  252. Kowalski, J. et al. Navigation technology for exploration of glacier ice with maneuverable melting probes. Cold Reg. Sci. Technol. 123, 53–70 (2016).

    Google Scholar 

  253. Brennan, P. V., Lok, L. B., Nicholls, K. & Corr, H. Phase-sensitive FMCW radar system for high-precision Antarctic ice shelf profile monitoring. IET Radar Sonar Navig. 8, 776–786 (2014).

    Google Scholar 

  254. Nicholls, K. W. et al. A ground-based radar for measuring vertical strain rates and time-varying basal melt rates in ice sheets and shelves. J. Glaciol. 61, 1079–1087 (2015).

    Google Scholar 

  255. Mingo, L., Flowers, G. E., Crawford, A. J., Mueller, D. R. & Bigelow, D. G. A stationary impulse-radar system for autonomous deployment in cold and temperate environments. Ann. Glaciol. 61, 99–107 (2020).

    Google Scholar 

  256. Babcock, E. & Bradford, J. Quantifying the basal conditions of a mountain glacier using a targeted full-waveform inversion: Bench glacier, Alaska, USA. J. Glaciol. 60, 1221–1231 (2014).

    Google Scholar 

  257. Killingbeck, S., Dow, C. F. & Unsworth, M. A. A quantitative method for deriving salinity of subglacial water using ground-based transient electromagnetics. J. Glaciol. https://doi.org/10.1017/jog.2021.94 (2021).

    Article  Google Scholar 

  258. Siegert, M. J. et al. Antarctic subglacial groundwater: a concept paper on its measurement and potential influence on ice flow. Geol. Soc. Spec. Publ. 461, 197–213 (2018).

    Google Scholar 

  259. Walder, J. S. & Costa, J. E. Outburst floods from glacier-dammed lakes: the effect of mode of lake drainage on flood magnitude. Earth Surf. Process. Landf. 21, 701–723 (1996).

    Google Scholar 

Download references

Acknowledgements

M.J.S. acknowledges funding from NERC grants NE/G00465X/3, NE/D008638/1 and NE/F016646/2. C.F.D. was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC 699 RGPIN-03761-2017) and the Canada Research Chairs Program (CRC 950-231237). A.R. was supported by the G. Unger Vetlesen Foundation. This is UTIG contribution 3808. J.S.B. is funded by a UK Natural Environment Research Council PhD studentship (EAA6583/3152) awarded through the ENVISION Doctoral Training Partnership. M.McM. was supported by the European Space Agency’s Polar+ 4D Greenland study (4000132139/20/I-EF) and the UK NERC Centre for Polar Observation and Modelling. R.J.S. was supported by the Natural Environment Research Council (NERC)-funded ONE Planet Doctoral Training Partnership (NE/S007512/1). J.A.M. acknowledges support from the National Science Foundation Office of Polar Programs. Analysis of Antarctica’s Gamburtsev Province Project (AGAP) RES data was supported by a bursary from Antarctic Science Ltd awarded to K.W. The authors thank R. Bell and T. Jordan for their help with the data set. The radar-echo sounding data used to identify new subglacial lakes are freely available from CReSIS and NASA Operation IceBridge.

Author information

Authors and Affiliations

Authors

Contributions

S.J.L. led the project and assembled the authorship team. S.J.L. produced the global subglacial lake inventory with input from all authors. Y.L., R.J.S. and K.W. identified the additional new Antarctic subglacial lakes included in the global inventory and wrote the Supplementary Data. The section on lake discharge–recharge relationships came from discussions between S.J.L., F.S.L.N. and A.J.S. K.W. produced Fig. 1; S.J.L. produced Figs. 3, 4 and 5, with help from F.N. and A.J.S.; J.A.M. produced Fig. 6; A.R. and S.J.L. produced Fig. 7; and M.S., H.A.F. and A.R. contributed to Fig. 2. All authors contributed to the writing and editing of the manuscript prior to submission.

Corresponding author

Correspondence to Stephen J. Livingstone.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth and Environment thanks F. Pattyn, T. Vick-Majors, K. Christianson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Grounding line

The boundary where a grounded glacier becomes a floating ice shelf.

Basal hydrological potential

Total head determined by bed topography, weight of the overlying ice and basal drainage characteristics.

Cold-based ice

Ice below freezing point at the ice–bed interface, which is thus frozen to the underlying substrate.

Radio-echo sounding

(RES). A radar technique used to measure the internal structure, ice thickness, bed topography and water content of ice masses.

Jökulhlaup

Glacial outburst flood from a subglacial or proglacial lake.

Eskers

Slightly sinuous ridges of glaciofluvial sediments (such as gravels) that record the former drainage of meltwater under, in or on top of ice masses.

Redox reactions

Chemical reactions in which one molecule becomes reduced and another becomes oxidized.

Chemosynthesis

The fixation of single-carbon molecules into organic biomass using energy from the oxidation of inorganic electron donors.

Methanogenesis

A metabolic process that yields energy for microbial growth while releasing methane.

Necromass

Organic material consisting of or derived from dead organisms.

Nitrification

The oxidation of reduced nitrogen compounds to nitrite or nitrate.

Chemolithotrophic

The metabolic oxidation of inorganic compounds to yield energy and fix single-carbon compounds into organic biomass.

Equilibrium line altitude

(ELA). The elevation at which the accumulation and ablation of ice are in balance over a given time period (typically, 1 year).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Livingstone, S.J., Li, Y., Rutishauser, A. et al. Subglacial lakes and their changing role in a warming climate. Nat Rev Earth Environ 3, 106–124 (2022). https://doi.org/10.1038/s43017-021-00246-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-021-00246-9

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing