Abstract
Subglacial lakes are repositories of ancient climate conditions, provide habitats for life and modulate ice flow, basal hydrology, biogeochemical fluxes and geomorphic activity. In this Review, we construct the first global inventory of subglacial lakes (773 in total), which includes 675 from Antarctica (59 newly identified), 64 from Greenland, 2 beneath the Devon Ice Cap, 6 beneath Iceland’s ice caps and 26 from valley glaciers. This inventory is used to evaluate subglacial lake environments, dynamics and their wider impact on ice flow and sediment transport. The behaviour of these lakes is conditioned by their subglacial setting and the hydrological, dynamic and mass balance regime of the overlying ice mass. Regions where climate warming causes ice surface steepening are predicted to have fewer and smaller lakes, but increased activity with higher discharge drainages of shorter duration. Coupling to surface melt and rainfall inputs will modulate fill–drain cycles and seasonally enhance oxic processes. Higher discharges cause large, transient ice flow accelerations but might result in overall net slowdown owing to the development of efficient subglacial drainage. Subglacial lake research requires new drilling technologies and the integration of geophysics, satellite monitoring and numerical modelling to provide insight into the wider role of subglacial lakes in the changing Earth system.
Key points
-
We report a global inventory of subglacial lakes (773 in total): 675 from Antarctica (59 newly identified here), 64 from Greenland, 6 from Iceland, 2 beneath the Devon Ice Cap and 26 from valley glaciers.
-
80% of subglacial lakes are stable, implying either closed systems or approximately balanced inflow and outflow; the remaining lakes are active and display one of five distinct activity patterns.
-
Active subglacial lakes exhibit a quasi-linear relationship between mean discharge and lake volume; lakes in Greenland and Iceland exhibit higher discharge rates for a given lake volume than do lakes in Antarctica.
-
Larger active subglacial lakes recharge at a faster rate than smaller lakes, suggesting an underlying control on lake refilling rate associated with lake size.
-
Lakes are less likely to occur where climate warming causes ice surface steepening, but drainage will be of higher magnitude, producing transient ice flow perturbations that are more likely to cause a net ice flow reduction.
-
Enhanced surface melt and rainfall inputs to the bed will modulate fill–drain cycles, increase the potential for catastrophic drainages and provide a supply of oxygen, sediment, microorganisms and nutrients.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Change history
11 January 2022
A Correction to this paper has been published: https://doi.org/10.1038/s43017-022-00262-3
References
Christner, B. C. et al. A microbial ecosystem beneath the West Antarctic ice sheet. Nature 512, 310–313 (2014).
Mikucki, J. A. et al. Subglacial Lake Whillans microbial biogeochemistry: a synthesis of current knowledge. Phil. Trans. R. Soc. A 374, 20140290 (2016).
Garcia-Lopez, E. & Cid, C. Glaciers and ice sheets as analog environments of potentially habitable icy worlds. Front. Microbiol. 8, 1407 (2017).
Wingham, D. J., Siegert, M. J., Shepherd, A. & Muir, A. S. Rapid discharge connects Antarctic subglacial lakes. Nature 440, 1033–1036 (2006).
Carter, S. P. & Fricker, H. A. The supply of subglacial meltwater to the grounding line of the Siple Coast, West Antarctica. Ann. Glaciol. 53, 267–280 (2012).
Siegfried, M. R. & Fricker, H. A. Thirteen years of subglacial lake activity in Antarctica from multi-mission satellite altimetry. Ann. Glaciol. 59, 42–55 (2018).
Dow, C. F. et al. Dynamics of active subglacial lakes in Recovery Ice Stream. J. Geophys. Res. Earth Surf. 121, 2248 (2018).
Willis, I. C., Pope, E. L., Leysinger, G. J.-M., Arnold, N. S. & Long, S. Drainage networks, lakes and water fluxes beneath the Antarctic ice sheet. Ann. Glaciol. 57, 96–108 (2016).
Vick-Majors, T. J. et al. Biogeochemical connectivity between freshwater ecosystems beneath the West Antarctic ice sheet and the sub-ice marine environment. Glob. Biogeochem. Cycles 34, e2019GB006446 (2020).
Stearns, L. A., Smith, B. E. & Hamilton, G. S. Increased flow speed on a large East Antarctic outlet glacier caused by subglacial floods. Nat. Geosci. 1, 827–831 (2008).
Scambos, T., Berthier, E. & Shuman, C. A. The triggering of subglacial lake drainage during rapid glacier drawdown: Crane Glacier, Antarctic Peninsula. Ann. Glaciol. 52, 74–82 (2011).
Fricker, H. A., Siegfried, M. R., Carter, S. P. & Scambos, T. A. A decade of progress in observing and modelling Antarctic subglacial water systems. Phil. Trans. R. Soc. A 374, 20140294 (2016).
Siegfried, M. R., Fricker, H. A., Carter, S. P. & Tulaczyk, S. Episodic ice velocity fluctuations triggered by a subglacial flood in West Antarctica. Geophys. Res. Lett. 43, 2640–2648 (2016).
Russell, A. J., Gregory, A. R., Large, A. R. G., Jay Fleisher, P. & Harris, T. D. Tunnel channel formation during the November 1996 jökulhlaup, Skeiðarárjökull, Iceland. Ann. Glaciol. 45, 95–103 (2007).
Livingstone, S. J. et al. Brief communication: subglacial lake drainage beneath Isunguata Sermia, west Greenland: geomorphic and ice dynamic effects. Cryosphere 13, 2789–2796 (2019).
Bentley, M. J. et al. in Antarctic Subglacial Aquatic Environments (eds Siegert, M. J., Kenicutt, M. C. & Bindschadler, R. A.) 83–110 (American Geophysical Union, 2011).
Le Brocq, A. et al. Evidence from ice shelves for channelized meltwater flow beneath the Antarctic Ice Sheet. Nat. Geosci. 6, 1–4 (2013).
Alley, K. E., Scambos, T. A., Siegfried, M. R. & Fricker, H. A. Impacts of warm water on Antarctic ice shelf stability through basal channel formation. Nat. Geosci. 9, 290–293 (2016).
Marsh, O. J. et al. High basal melting forming a channel at the grounding line of Ross Ice Shelf, Antarctica. Geophys. Res. Lett. 43, 250–255 (2016).
Li, Y., Shi, H., Lu, Y., Zhang, Z. & Xi, H. Subglacial discharge weakens the stability of the Ross Ice Shelf around the grounding line. Polar Res. 40, 3377 (2021).
Evatt, G. W., Fowler, A. C., Clark, C. D. & Hulton, N. R. J. Subglacial floods beneath ice sheets. Phil. Trans. R. Soc. A 364, 1769–1794 (2006).
Björnsson, H. Subglacial lakes and jökulhlaups in Iceland. Glob. Planet. Change 35, 255–271 (2003).
Sergienko, O. V. & Hulbe, C. L. “Sticky spots” and subglacial lakes under ice streams of the Siple Coast, Antarctica. Ann. Glaciol. 52, 18–22 (2011).
Gilbert, A., Vincent, C., Wagnon, P., Thibert, E. & Rabatel, A. The influence of snow cover thickness on the thermal regime of Tête Rousse Glacier (Mont Blanc range, 3200 m asl): consequences for outburst flood hazards and glacier response to climate change. J. Geophys. Res. Earth Surf. 117, F04018 (2012).
Robin, G. D. Q., Evans, S. & Bailey, J. T. Interpretation of radio echo sounding in polar ice sheets. Phil. Trans. R. Soc. Lond. A 265, 437–505 (1969).
Oswald, G. K. A. & Robin, G. D. E. Q. Lakes beneath the Antarctic ice sheet. Nature 245, 251–254 (1973).
Siegert, M. J., Dowdeswell, J. A., Gorman, M. R. & McIntyre, N. F. An inventory of Antarctic sub-glacial lakes. Antarct. Sci. 8, 281–286 (1996).
Wolovick, M. J., Bell, R. E. & Creyts, T. T. Identification and control of subglacial water networks under Dome A, Antarctica. J. Geophys. Res. 118, 140–154 (2013).
Siegert, M. J., Ross, N. & Le Brocq, A. M. Recent advances in understanding Antarctic subglacial lakes and hydrology. Phil. Trans. R. Soc. A 374, 20140306 (2016).
Kapitsa, A. P., Ridley, J. K., de Q. Robin, G., Siegert, M. J. & Zotikov, I. A. A large deep freshwater lake beneath the ice of central East Antarctica. Nature 381, 684–686 (1996).
Peters, L. E. et al. Seismic detection of a subglacial lake near the South Pole, Antarctica. Geophys. Res. Lett. 35, L23501 (2008).
Gray, L., Joughin, I., Tulaczyk, S. & Spikes, V. B. Evidence for subglacial water transport in the West Antarctic Ice Sheet through three-dimensional satellite radar interferometry. Geophys. Res. Lett. 32, L03501 (2005).
Fricker, H. A., Scambos, T., Bindschadler, R. & Padman, L. An active subglacial water system in West Antarctica mapped from space. Science 315, 1544–1548 (2007).
Flament, T., Berthier, E. & Rémy, F. Cascading water underneath Wilkes Land, East Antarctic ice sheet, observed using altimetry and digital elevation models. Cryosphere 8, 673–687 (2014).
Fricker, H. A. & Scambos, T. Connected subglacial lake activity on lower Mercer and Whillans Ice Streams, West Antarctica, 2003–2008. J. Glaciol. 55, 303–315 (2009).
Thorarinsson, S. & Sigurðsson, S. Volcano-glaciological investigations in Iceland during the last decade. Polar Rec. 5, 60–66 (1947).
Björnsson, H. Explanations of jökulhlaups from Grímsvötn, Vatnajökull, Iceland. Jökull 24, 1–26 (1974).
Björnsson, H. Hydrology of Ice Caps in Volcanic Regions (Societas Scientarium Islandica, University of Iceland, 1988).
Björnsson, H. Jökulhlaups in Iceland: prediction, characteristics and simulation. Ann. Glaciol. 16, 95–106 (1992).
Haeberli, W. Frequency and characteristics of glacier floods in the Swiss Alps. Ann. Glaciol. 4, 85–90 (1983).
Driedger, C. L. & Fountain, A. G. Glacier outburst floods at Mount Rainier, Washington state, USA. Ann. Glaciol. 13, 51–55 (1989).
Palmer, S. J. et al. Greenland subglacial lakes detected by radar. Geophys. Res. Lett. 40, 6154–6159 (2013).
Oswald, G. K. A., Rezvanbehbahani, S. & Stearns, L. A. Radar evidence of ponded subglacial water in Greenland. J. Glaciol. 64, 711–729 (2018).
Bowling, J. S., Livingstone, S. J., Sole, A. J. & Chu, W. Distribution and dynamics of Greenland subglacial lakes. Nat. Commun. 10, 2810 (2019).
Rutishauser, A. et al. Discovery of a hypersaline subglacial lake complex beneath Devon Ice Cap, Canadian Arctic. Sci. Adv. 4, eaar4353 (2018).
Ekholm, S., Keller, K., Bamber, J. L. & Gogineni, S. P. Unusual surface morphology from digital elevation models of the Greenland ice sheet. Geophys. Res. Lett. 25, 3623–3626 (1998).
Willis, M. J., Herried, B. G., Bevis, M. G. & Bell, R. E. Recharge of a subglacial lake by surface meltwater in northeast Greenland. Nature 518, 223–227 (2015).
Palmer, S., McMillan, M. & Morlighem, M. Subglacial lake drainage detected beneath the Greenland ice sheet. Nat. Commun. 6, 8408 (2015).
Robin, G. D. Q., Swithinbank, C. W. M. & Smith, B. M. E. Radio echo exploration of the Antarctic ice sheet. Int. Assoc. Sci. Hydrol. Publ. 86, 97–115 (1970).
Horgan, H. J. et al. Subglacial Lake Whillans — seismic observations of a shallow active reservoir beneath a West Antarctic ice stream. Earth Planet. Sci. Lett. 331–332, 201–209 (2012).
Popov, S. Fifty-five years of Russian radio-echo sounding investigations in Antarctica. Ann. Glaciol. 61, 14–24 (2020).
Siegert, M. J., Makinson, K., Blake, D., Mowlem, M. & Ross, N. An assessment of deep hot-water drilling as a means to undertake direct measurement and sampling of Antarctic subglacial lakes: experience and lessons learned from the Lake Ellsworth field season 2012/13. Ann. Glaciol. 55, 59–73 (2014).
Tulaczyk, S. et al. WISSARD at Subglacial Lake Whillans, West Antarctica: scientific operations and initial observations. Ann. Glaciol. 55, 51–58 (2014).
Hodson, T. O., Powell, R. D., Brachfeld, S. A., Tulaczyk, S. & Scherer, R. P. Physical processes in Subglacial Lake Whillans, West Antarctica: Inferences from sediment cores. Earth Planet. Sci. Lett. 444, 56–63 (2016).
Priscu, J. C. et al. Scientific access into Mercer subglacial lake: scientific objectives, drilling operations and initial observations. Ann. Glaciol. 62, 340–352 (2021).
Gaidos, E. et al. An oligarchic microbial assemblage in the anoxic bottom waters of a volcanic subglacial lake. ISME J. 3, 486–497 (2009).
Gaidos, E. et al. A viable microbial community in a subglacial volcanic crater lake, Iceland. Astrobiology 4, 327–344 (2004).
Bulat, S. A. Microbiology of the subglacial Lake Vostok: first results of borehole-frozen lake water analysis and prospects for searching for lake inhabitants. Phil. Trans. R. Soc. A 374, 20140292 (2016).
Vincent, C. et al. Mechanisms of subglacial cavity filling in Glacier de Tête Rousse, French Alps. J. Glaciol. 61, 609–623 (2015).
Arnold, E. et al. CReSIS airborne radars and platforms for ice and snow sounding. Ann. Glaciol. 61, 58–67 (2020).
Paden, J., Akins, T., Dunson, D., Allen, C. & Gogineni, P. Ice-sheet bed 3-D tomography. J. Glaciol. 56, 3–11 (2010).
Holschuh, N., Christianson, K., Paden, J., Alley, R. B. & Anandakrishnan, S. Linking postglacial landscapes to glacier dynamics using swath radar at Thwaites Glacier, Antarctica. Geology 48, 268–272 (2020).
Schroeder, D. M., Blankenship, D. D. & Young, D. A. Evidence for a water system transition beneath Thwaites Glacier, West Antarctica. Proc. Natl Acad. Sci. USA 110, 12225–12228 (2013).
Young, D. A., Schroeder, D. M., Blankenship, D. D., Kempf, S. D. & Quartini, E. The distribution of basal water between Antarctic subglacial lakes from radar sounding. Phil. Trans. R. Soc. A 374, 20140297 (2016).
Oswald, G. & Gogineni, S. P. Recovery of subglacial water extent from Greenland radar survey data. J. Glaciol. 54, 94–106 (2008).
Oswald, G. & Gogineni, S. P. Mapping basal melt under the northern Greenland Ice Sheet. IEEE Trans. Geosci. Remote Sens. 50, 585–592 (2012).
Jordan, T. M. et al. A constraint upon the basal water distribution and thermal state of the Greenland Ice Sheet from radar bed echoes. Cryosphere 12, 2831–2854 (2018).
Schroeder, D. M., Blankenship, D. D., Young, D. A., Witus, A. E. & Anderson, J. B. Airborne radar sounding evidence for deformable sediments and outcropping bedrock beneath Thwaites Glacier, West Antarctica. Geophys. Res. Lett. 41, 7200–7208 (2014).
Schroeder, D. M., Blankenship, D. D., Raney, R. K. & Grima, C. Estimating subglacial water geometry using radar bed echo specularity: application to Thwaites Glacier, west Antarctica. IEEE Geosci. Remote Sens. Lett. 12, 443–447 (2015).
Dow, C. F. et al. Totten Glacier subglacial hydrology determined from geophysics and modeling. Earth Planet. Sci. Lett. 531, 115961 (2020).
Carter, S. P. et al. Radar-based subglacial lake classification in Antarctica. Geochem. Geophys. Geosyst. 8, Q03016 (2007).
Ilisei, A., Khodadadzadeh, M., Ferro, A. & Bruzzone, L. An automatic method for subglacial lake detection in ice sheet radar sounder data. IEEE Trans. Geosci. Remote Sens. 57, 1–19 (2018).
Woodward, J. et al. Location for direct access to subglacial Lake Ellsworth: an assessment of geophysical data and modeling. Geophys. Res. Lett. 37, L11501 (2010).
Masolov, V. N., Popov, S. V., Lukin, V. V. & Popkov, A. M. The bottom topography and subglacial Lake Vostok water body, East Antarctica. Dokl. Earth Sci. 433, 1092–1097 (2010).
Key, K. & Siegfried, M. R. The feasibility of imaging subglacial hydrology beneath ice streams with ground-based electromagnetics. J. Glaciol. 63, 755–771 (2017).
Studinger, M., Bell, R. E. & Tikku, A. A. Estimating the depth and shape of subglacial Lake Vostok’s water cavity from aerogravity data. Geophys. Res. Lett. 31, L12401 (2004).
Siegert, M. J., Popov, S. & Studinger, M. in Antarctic Subglacial Aquatic Environments (eds Siegert, M. J., Kennicutt, M. C. II & Bindschadler, R. A.) 45–60 (American Geophysical Union, 2011).
Gray, L. Evidence for subglacial water transport in the West Antarctic Ice Sheet through three-dimensional satellite radar interferometry. Geophys. Res. Lett. 32, L03501 (2005).
McMillan, M. et al. Three-dimensional mapping by CryoSat-2 of subglacial lake volume changes. Geophys. Res. Lett. 40, 4321–4327 (2013).
Siegfried, M. R. et al. A decade of West Antarctic subglacial lake interactions from combined ICESat and CryoSat-2 altimetry. Geophys. Res. Lett. 41, 891–898 (2014).
Smith, B. E., Gourmelen, N., Huth, A. & Joughin, I. Connected subglacial lake drainage beneath Thwaites Glacier, West Antarctica. Cryosphere 11, 451–467 (2017).
McMillan, M. et al. Sentinel-3 Delay-Doppler altimetry over Antarctica. Cryosphere 13, 709–722 (2019).
Siegfried, M. R. & Fricker, H. A. Illuminating active subglacial lake processes with ICESat-2 laser altimetry. Geophys. Res. Lett. 48, e2020GL091089 (2021).
Brunt, K. M., Neumann, T. A. & Smith, B. E. Assessment of ICESat-2 ice sheet surface heights, based on comparisons over the interior of the Antarctic ice sheet. Geophys. Res. Lett. 46, 13072–13078 (2019).
Smith, B. et al. Land ice height-retrieval algorithm for NASA’s ICESat-2 photon-counting laser altimeter. Remote Sens. Environ. 233, 111352 (2019).
Porter, C., Morin, P., Howat, I., Noh, M. J. & Bates, B. ArcticDEM (Harvard Dataverse, 2018).
Howat, I. M., Porter, C., Smith, B. E., Noh, M.-J. & Morin, P. The reference elevation model of Antarctica. Cryosphere 13, 665–674 (2019).
Capps, D. M., Rabus, B., Clague, J. J. & Shugar, D. H. Identification and characterization of alpine subglacial lakes using interferometric synthetic aperture radar (InSAR): Brady Glacier, Alaska, USA. J. Glaciol. 56, 861–870 (2010).
Livingstone, S. J., Clark, C. D., Woodward, J. & Kingslake, J. Potential subglacial lake locations and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets. Cryosphere 7, 1721–1740 (2013).
Goeller, S., Steinhage, D., Thoma, M. & Grosfeld, K. Assessing the subglacial lake coverage of Antarctica. Ann. Glaciol. 57, 109–117 (2016).
MacKie, E. J., Schroeder, D. M., Caers, J., Siegfried, M. R. & Scheidt, C. Antarctic topographic realizations and geostatistical modeling used to map subglacial lakes. J. Geophys. Res. Earth Surf. 125, e2019JF005420 (2020).
Wright, A. & Siegert, M. A fourth inventory of Antarctic subglacial lakes. Antarct. Sci. 24, 659–664 (2012).
Einarsson, B., Jóhannesson, T., Thorsteinsson, T., Gaidos, E. & Zwinger, T. Subglacial flood path development during a rapidly rising jökulhlaup from the western Skaftá cauldron, Vatnajökull, Iceland. J. Glaciol. 63, 670–682 (2017).
Thorarinsson, S. Vötnin stríð Skeiðarárhlaupa Grímsvatnagosa Menningarsjóður (The Swift Flowing Rivers. The History of Grímsvötn Jökulhlaups and Eruptions) Vol. 254 (Menningarsjodur, 1974).
Björnsson, H. & Pálsson, F. Radio-echo soundings on Icelandic temperate glaciers: history of techniques and findings. Ann. Glaciol. 61, 25–34 (2020).
Pattyn, F. Antarctic subglacial conditions inferred from a hybrid ice sheet/ice stream model. Earth Planet. Sci. Lett. 295, 451–461 (2010).
Das, S. B. et al. Fracture propagation to the base of the Greenland Ice Sheet during supraglacial lake drainage. Science 320, 778–781 (2008).
Shreve, R. L. Movement of water in glaciers. J. Glaciol. 11, 205–214 (1972).
Pattyn, F. Investigating the stability of subglacial lakes with a full Stokes ice-sheet model. J. Glaciol. 54, 353–361 (2008).
Fowler, A. C. Breaking the seal at Grímsvötn, Iceland. J. Glaciol. 45, 506–516 (1999).
Dow, C. F., Werder, M. A., Nowicki, S. & Walker, R. T. Modeling Antarctic subglacial lake filling and drainage cycles. Cryosphere 10, 1381–1393 (2016).
Siegert, M. J. Antarctic subglacial lakes. Earth Sci. Rev. 50, 29–50 (2000).
Siegert, M. J. A wide variety of unique environments beneath the Antarctic ice sheet. Geology 44, 399–400 (2016).
Legchenko, A. et al. Three-dimensional magnetic resonance imaging for groundwater. N. J. Phys. 13, 025022 (2011).
Ridley, J. K., Laxon, S., Rapley, C. G. & Mantripp, D. Antarctic ice sheet topography mapped with the ERS-1 radar altimeter. Int. J. Remote Sens. 14, 1649–1650 (1993).
Diez, A. et al. Patchy lakes and topographic origin for fast flow in the Recovery Glacier system, East Antarctica. J. Geophys. Res. Earth Surf. 124, 287–304 (2019).
Couston, L.-A. & Siegert, M. Dynamic flows create potentially habitable conditions in Antarctic subglacial lakes. Sci. Adv. 7, eabc3972 (2021).
Lipenkov, V. Y., Ekaykin, A. A., Polyakova, E. V. & Raynaud, D. Characterization of subglacial Lake Vostok as seen from physical and isotope properties of accreted ice. Phil. Trans. R. Soc. A 374, 20140303 (2016).
Thoma, M., Grosfeld, K. & Mayer, C. Modelling mixing and circulation in subglacial Lake Vostok, Antarctica. Ocean Dyn. 57, 531–540 (2007).
Siegert, M. J. et al. Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes. Nature 414, 603–609 (2001).
Napoleoni, F. et al. Subglacial lakes and hydrology across the Ellsworth Subglacial Highlands, West Antarctica. Cryosphere 14, 4507–4524 (2020).
Studinger, M. et al. Geophysical models for the tectonic framework of the Lake Vostok region, East Antarctica. Earth Planet. Sci. Lett. 216, 663–677 (2003).
Tabacco, I. E., Cianfarra, P., Forieri, A., Salvini, F. & Zirizotti, A. Physiography and tectonic setting of the subglacial lake district between Vostok and Belgica subglacial highlands (Antarctica). Geophys. J. Int. 165, 1029–1040 (2006).
Bell, R. E., Studinger, M., Fahnestock, M. A. & Shuman, C. A. Tectonically controlled subglacial lakes on the flanks of the Gamburtsev Subglacial Mountains, East Antarctica. Geophys. Res. Lett. 33, L02504 (2006).
Jamieson, S. S. R. et al. An extensive subglacial lake and canyon system in Princess Elizabeth Land, East Antarctica. Geology 44, 87–90 (2016).
Walder, J. S. & Driedger, C. L. Rapid geomorphic change caused by glacial outburst floods and debris flows along Tahoma Creek, Mount Rainier, Washington, USA. Arct. Alp. Res. 26, 319–327 (1994).
Sergienko, O. V., MacAyeal, D. R. & Bindschadler, R. A. Causes of sudden, short-term changes in ice-stream surface elevation. Geophys. Res. Lett. 34, L22503 (2007).
Li, Y., Lu, Y. & Siegert, M. J. Radar sounding confirms a hydrologically active deep-water subglacial lake in east Antarctica. Front. Earth Sci. 8, 294 (2020).
Humbert, A., Steinhage, D., Helm, V., Beyer, S. & Kleiner, T. Missing evidence of widespread subglacial lakes at Recovery Glacier, Antarctica. J. Geophys. Res. Earth Surf. 123, 2802–2826 (2018).
Smith, B. E., Fricker, H. A., Joughin, I. & Tulaczyk, S. An inventory of active subglacial lakes in Antarctica detected by ICESat (2003–2008). J. Glaciol. 55, 573–595 (2009).
Warburton, J. & Fenn, C. R. Unusual flood events from an Alpine glacier: observations and deductions on generating mechanisms. J. Glaciol. 40, 176–186 (1994).
Lliboutry, L. General theory of subglacial cavitation and sliding of temperate glaciers. J. Glaciol. 7, 21–58 (1968).
Kamb, B. Glacier surge mechanism based on linked cavity configuration of the basal water conduit system. J. Geophys. Res. 92, 9083–9100 (1987).
Fountain, A. G. & Walder, J. S. Water flow through temperate glaciers. Rev. Geophys. 36, 299–328 (1998).
Sharp, M., Gemmell, J. C. & Tison, J.-L. Structure and stability of the former subglacial drainage system of the glacier De Tsanfleuron, Switzerland. Earth Surf. Process. Landf. 14, 119–134 (1989).
Walder, J. & Hallet, B. Geometry of former subglacial water channels and cavities. J. Glaciol. 23, 335–346 (1979).
Vincent, C. et al. Detection of a subglacial lake in Glacier de Tête Rousse (Mont Blanc area, France). J. Glaciol. 58, 866–878 (2012).
Walder, J. S. & Driedger, C. L. Frequent outburst floods from South Tahoma Glacier, Mount Rainier, USA: relation to debris flows, meteorological origin and implications for subglacial hydrology. J. Glaciol. 41, 1–10 (1995).
Chu, W. et al. Extensive winter subglacial water storage beneath the Greenland Ice Sheet. Geophys. Res. Lett. 12, 484–492 (2016).
Clarke, G. K. C. Glacier outburst floods from “Hazard Lake”, Yukon Territory, and the problem of flood magnitude prediction. J. Glaciol. 28, 3–21 (1982).
Nye, J. F. Water flow in glaciers: jökulhlaups, tunnels and veins. J. Glaciol. 17, 181–207 (1976).
Flowers, G. E., Björnsson, H., Pálsson, F. & Clarke, G. K. C. A coupled sheet-conduit mechanism for jökulhlaup propagation. Geophys. Res. Lett. 31, L05401 (2004).
Walder, J. S. Hydraulics of subglacial cavities. J. Glaciol. 32, 439–445 (1986).
Cowton, T., Nienow, P., Sole, A. & Bartholomew, I. Variability in ice motion at a land-terminating Greenlandic outlet glacier: the role of channelized and distributed drainage systems. J.Glaciol. 62, 451–466 (2016).
Rada, C. & Schoof, C. Channelized, distributed, and disconnected: subglacial drainage under a valley glacier in the Yukon. Cryosphere 12, 2609–2636 (2018).
Davison, B., Sole, A., Livingstone, S., Cowton, T. & Nienow, P. The influence of hydrology on the dynamics of land-terminating sectors of the Greenland Ice Sheet. Front. Earth Sci. 7, 10 (2019).
Stubblefield, A. G., Creyts, T. T., Kingslake, J. & Spiegelman, M. Modeling oscillations in connected glacial lakes. J. Glaciol. 65, 745–758 (2019).
Werder, M. A. & Hewitt, I. J. Modeling channelized and distributed subglacial drainage in two dimensions. J. Geophys. Res. Earth Surf. 118, 2140–2150 (2013).
Clague, J. J. & Mathews, W. H. The magnitude of jökulhlaups. J. Glaciol. 12, 501–504 (1973).
Ng, F. & Björnsson, H. On the Clague–Mathews relation for jökulhlaups. J. Glaciol. 49, 161–172 (2003).
Carter, S. P., Fricker, H. A. & Siegfried, M. R. Antarctic subglacial lakes drain through sediment-floored canals: theory and model testing on real and idealized domains. Cryosphere 11, 381–405 (2017).
Walter, J. A., Fleck, R., Pace, M. L. & Wilkinson, G. M. Scaling relationships between lake surface area and catchment area. Aquat. Sci. 82, 47 (2020).
Magnússon, E., Rott, H., Björnsson, H. & Pálsson, F. The impact of jökulhlaups on basal sliding observed by SAR interferometry on Vatnajökull, Iceland. J. Glaciol. 53, 232–240 (2007).
Magnússon, E., Björnsson, H., Rott, H. & Pálsson, F. Reduced glacier sliding caused by persistent drainage from a subglacial lake. Cryosphere 14, 13–20 (2010).
Hoffman, A. O., Christianson, K., Shapero, D., Smith, B. E. & Joughin, I. Brief communication: heterogenous thinning and subglacial lake activity on Thwaites Glacier, West Antarctica. Cryosphere 14, 4603–4609 (2020).
Fowler, A. C. & Ng, F. S. L. The role of sediment transport in the mechanics of jökulhlaups. Ann. Glaciol. 22, 255–259 (1996).
Kingslake, J. & Ng, F. S. L. Modelling the coupling of flood discharge with glacier flow during jökulhlaups. Ann. Glaciol. 54, 25–31 (2013).
Anderson, R. S., Walder, J. S., Anderson, S. P., Trabant, D. C. & Fountain, A. G. The dynamic response of Kennicott Glacier, Alaska, USA, to the Hidden Creek Lake outburst flood. Ann. Glaciol. 40, 237–242 (2005).
Bartholomaus, T. C., Anderson, R. S. & Anderson, S. P. Growth and collapse of the distributed subglacial hydrologic system of Kennicott Glacier, Alaska, USA, and its effects on basal motion. J. Glaciol. 57, 985–1002 (2011).
Bartholomew, I. et al. Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier. Nat. Geosci. 3, 408–411 (2010).
Alley, R. B., Blankenship, D. D., Bentley, C. R. & Rooney, S. T. Deformation of till beneath ice stream B, West Antarctica. Nature 322, 57–59 (1986).
Blankenship, D. D., Bentley, C. R., Rooney, S. T. & Alley, R. B. Seismic measurements reveal a saturated porous layer beneath an active Antarctic ice stream. Nature 322, 54–57 (1986).
MacAyeal, D. R., Bindschadler, R. A. & Scambos, T. A. Basal friction of Ice Stream E, West Antarctica. J. Glaciol. 41, 247–262 (1995).
Russell, A. J. & Knudsen, Ó. An ice-contact rhythmite (turbidite) succession deposited during the November 1996 catastrophic outburst flood (jökulhlaup), Skeiðarárjökull, Iceland. Sediment. Geol. 127, 1–10 (1999).
Russell, A. J. & Knudsen, Ó. in Flood and Megaflood Processes and Deposits: Recent and Ancient Examples Vol. 32 (eds Martini, I. P., Baker, V. R. & Garzón, G.) 67–83 (Wiley, 2002).
Russell, A. J. et al. Icelandic jökulhlaup impacts: implications for ice-sheet hydrology, sediment transfer and geomorphology. Geomorphology 75, 33–64 (2006).
Roberts, M. J., Russell, A. J., Tweed, F. S. & Knudsen, Ó. Controls on englacial sediment deposition during the November 1996 jökulhlaup, Skeiđarárjökull, Iceland. Earth Surf. Process. Landf. 26, 935–952 (2001).
Burke, M. J., Woodward, J., Russell, A. J., Fleisher, P. J. & Bailey, P. K. Controls on the sedimentary architecture of a single event englacial esker: Skeiðarárjökull, Iceland. Quat. Sci. Rev. 27, 1829–1847 (2008).
Maizels, J. in Environmental Change in Iceland: Past and Present (eds Maizels, J. K. & Caseldin, C.) 267–302 (Springer, 1991).
Maizels, J. Jökulhlaup deposits in proglacial areas. Quat. Sci. Rev. 16, 793–819 (1997).
Russell, A. J. & Knudsen, Ó. in Fluvial Sedimentology VI (eds Smith, N. D. & Rogers, J.) 315–329 (Blackwell, 1999).
Russell, A. J. & Knudsen, Ó. An ice-contact rhythmite (turbidite) succession deposited during the November 1996 catastrophic outburst flood (jökulhlaup), Skeiðarárjökull, Iceland. Sediment. Geol. 127, 1–10 (1999).
Smith, L. C. et al. Estimation of erosion, deposition, and net volumetric change caused by the 1996 Skeiðarársandur jökulhlaup, Iceland, from synthetic aperture radar interferometry. Water Resour. Res. 36, 1583–1594 (2000).
Guðmundsson, M. T., Bonnel, A. & Gunnarsson, K. Seismic soundings of sediment thickness on Skeiðarársandur, SE-Iceland. Jökull 51, 53–64 (2002).
Domack, E. et al. Subglacial morphology and glacial evolution of the Palmer deep outlet system, Antarctic Peninsula. Geomorphology 75, 125–142 (2006).
Jordan, T. A. et al. Hypothesis for mega-outburst flooding from a palaeo-subglacial lake beneath the East Antarctic Ice Sheet. Terra Nova 22, 283–289 (2010).
Kuhn, G. et al. Evidence for a palaeo-subglacial lake on the Antarctic continental shelf. Nat. Commun. 8, 15591 (2017).
Kirkham, J. D. et al. Past water flow beneath Pine Island and Thwaites glaciers, West Antarctica. Cryosphere 13, 1959–1981 (2019).
Lewis, A. R., Marchant, D. R., Kowalewski, D. E., Baldwin, S. L. & Webb, L. E. The age and origin of the Labyrinth, western Dry Valleys, Antarctica: evidence for extensive middle Miocene subglacial floods and freshwater discharge to the Southern Ocean. Geology 34, 513–516 (2006).
Bell, R. E., Studinger, M., Shuman, C. A., Fahnestock, M. A. & Joughin, I. Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams. Nature 445, 904–907 (2007).
Maizels, J. Lithofacies variations within sandur deposits: the role of runoff regime, flow dynamics and sediment supply characteristics. Sediment. Geol. 85, 299–325 (1993).
Dunning, S. A. et al. The role of multiple glacier outburst floods in proglacial landscape evolution: the 2010 Eyjafjallajökull eruption, Iceland. Geology 41, 1123–1126 (2013).
Roberts, M. J. Jökulhlaups: a reassessment of floodwater flow through glaciers. Rev. Geophys. 43, RG1002 (2005).
Snorrason, Á. et al. in Flood and Megaflood Processes and Deposits: Recent and Ancient Examples Vol. 32 (eds Martini, I. P., Baker, V. R. & Garzón, G.) 55–65 (Wiley, 2002).
Björnsson, H. Glaciers in Iceland. Jökull 29, 74–80 (1979).
Walder, J. S. & Driedger, C. L. Geomorphic change caused by outburst floods and debris flows at Mount Rainier, Washington, with emphasis on Tahoma Creek valley (USGS, 1994).
Denton, G. H. & Sugden, D. E. Meltwater features that suggest miocene ice-sheet overriding of the transantarctic mountains in Victoria Land, Antarctica. Geogr. Ann. Ser. A. 87, 67–85 (2005).
Horgan, H. J. et al. Estuaries beneath ice sheets. Geology 41, 1159–1162 (2013).
Simkins, L. M. et al. Anatomy of a meltwater drainage system beneath the ancestral East Antarctic ice sheet. Nat. Geosci. 10, 691–697 (2017).
Tweed, F. S. & Russell, A. J. Controls on the formation and sudden drainage of glacier-impounded lakes: implications for jökulhlaup characteristics. Prog. Phys. Geogr. Earth Environ. 23, 79–110 (1999).
Hawkings, J. R. et al. Enhanced trace element mobilization by Earth’s ice sheets. Proc. Natl Acad. Sci. USA 117, 31648–31659 (2020).
Death, R. et al. Antarctic ice sheet fertilises the Southern Ocean. Biogeosciences 11, 2635–2643 (2014).
Parnell, J. & McMahon, S. Physical and chemical controls on habitats for life in the deep subsurface beneath continents and ice. Phil. Trans. R. Soc. A 374, 20140293 (2016).
Madsen, E. L. Microorganisms and their roles in fundamental biogeochemical cycles. Curr. Opin. Biotechnol. 22, 456–464 (2011).
Christner, B. C., Skidmore, M. L., Priscu, J. C., Tranter, M. & Foreman, C. M. in Psychrophiles: from Biodiversity to Biotechnology (eds Margesin, R., Schinner, F., Marx, J.-C. & Gerday, C.) 51–71 (Springer, 2008).
Marteinsson, V. T. et al. Microbial communities in the subglacial waters of the Vatnajökull ice cap, Iceland. ISME J. 7, 427–437 (2013).
Graly, J. A., Drever, J. I. & Humphrey, N. F. Calculating the balance between atmospheric CO2 drawdown and organic carbon oxidation in subglacial hydrochemical systems: Carbon Balance in Subglacial Systems. Glob. Biogeochem. Cycles 31, 709–727 (2017).
Tranter, M., Skidmore, M. & Wadham, J. Hydrological controls on microbial communities in subglacial environments. Hydrol. Process. 19, 995–998 (2005).
Michaud, A. B. et al. Microbial oxidation as a methane sink beneath the West Antarctic Ice Sheet. Nat. Geosci. 10, 582–586 (2017).
Purcell, A. M. et al. Microbial sulfur transformations in sediments from Subglacial Lake Whillans. Front. Microbiol. 5, 594 (2014).
Wadham, J. L., Tranter, M., Tulaczyk, S. & Sharp, M. Subglacial methanogenesis: a potential climatic amplifier? Glob. Biogeochem. Cycles 22, GB2021 (2008).
Santschi, P., Höhener, P., Benoit, G. & Buchholtz-ten Brink, M. Chemical processes at the sediment–water interface. Mar. Chem. 30, 269–315 (1990).
Vick-Majors, T. J. et al. Physiological ecology of microorganisms in Subglacial Lake Whillans. Front. Microbiol. 7, 1705 (2016).
Achberger, A. M. et al. Microbial community structure of Subglacial Lake Whillans, West Antarctica. Front. Microbiol. 7, 1457 (2016).
Kitzinger, K. et al. Characterization of the first “Candidatus Nitrotoga” isolate reveals metabolic versatility and separate evolution of widespread nitrite-oxidizing bacteria. mBio 9, e01186-18 (2018).
Michaud, A. B. et al. Solute sources and geochemical processes in Subglacial Lake Whillans, West Antarctica. Geology 44, 347–350 (2016).
Kohler, T. J. et al. Carbon dating reveals a seasonal progression in the source of particulate organic carbon exported from the Greenland Ice Sheet. Geophys. Res. Lett. 44, 6209–6217 (2017).
Miteva, V., Teacher, C., Sowers, T. & Brenchley, J. Comparison of the microbial diversity at different depths of the GISP2 Greenland ice core in relationship to deposition climates. Environ. Microbiol. 11, 640–656 (2009).
Dieser, M. et al. Molecular and biogeochemical evidence for methane cycling beneath the western margin of the Greenland Ice Sheet. ISME J. 8, 2305–2316 (2014).
Christiansen, J. R. & Jørgensen, C. J. First observation of direct methane emission to the atmosphere from the subglacial domain of the Greenland Ice Sheet. Sci. Rep. 8, 16623 (2018).
Maguire, R. et al. Geophysical constraints on the properties of a subglacial lake in northwest Greenland. Cryosphere 15, 3279–3291 (2021).
Christner, B. C. et al. Limnological conditions in Subglacial Lake Vostok, Antarctica. Limnol. Oceanogr. 51, 2485–2501 (2006).
King, M. D. et al. Dynamic ice loss from the Greenland Ice Sheet driven by sustained glacier retreat. Commun. Earth Environ. 1, 1 (2020).
Smith, B. et al. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science 368, 1239–1242 (2020).
Fettweis, X. et al. Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. Cryosphere 7, 469–489 (2013).
Karlsson, N. B. et al. A first constraint on basal melt-water production of the Greenland ice sheet. Nat. Commun. 12, 1–10 (2021).
Trusel, L. D. et al. Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios. Nat. Geosci. 8, 927–932 (2015).
Trusel, L. D. et al. Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming. Nature 564, 104–108 (2018).
Rignot, E. et al. Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys. Res. Lett. 31, L18401 (2004).
Scambos, T. A., Bohlander, J. A., Shuman, C. A. & Skvarca, P. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett. 31, L18402 (2004).
Robinson, A., Calov, R. & Ganopolski, A. Multistability and critical thresholds of the Greenland ice sheet. Nat. Clim. Chang. 2, 429–432 (2012).
Garbe, J., Albrecht, T., Levermann, A., Donges, J. F. & Winkelmann, R. The hysteresis of the Antarctic Ice Sheet. Nature 585, 538–544 (2020).
DeConto, R. M. et al. The Paris Climate Agreement and future sea-level rise from Antarctica. Nature 593, 83–89 (2021).
Pattyn, F. et al. The Greenland and Antarctic ice sheets under 1.5 °C global warming. Nat. Clim. Chang. 8, 1053–1061 (2018).
Golledge, N. R. et al. The multi-millennial Antarctic commitment to future sea-level rise. Nature 526, 421–425 (2015).
Jamieson, S. S. R., Sugden, D. E. & Hulton, N. R. J. The evolution of the subglacial landscape of Antarctica. Earth Planet. Sci. Lett. 293, 1–27 (2010).
Anandakrishnan, S. & Alley, R. B. Stagnation of Ice Stream C, West Antarctica by water piracy. Geophys. Res. Lett. 24, 265–268 (1997).
Lindbäck, K. et al. Subglacial water drainage, storage, and piracy beneath the Greenland Ice Sheet. Geophys. Res. Lett. 42, 7606–7614 (2015).
Carter, S. P., Fricker, H. A. & Siegfried, M. R. Evidence of rapid subglacial water piracy under Whillans Ice Stream, West Antarctica. J. Glaciol. 59, 1147–1162 (2013).
van Wyk de Vries, M., Bingham, R. G. & Hein, A. S. A new volcanic province: an inventory of subglacial volcanoes in West Antarctica. Geol. Soc. 461, 231 (2017).
Guðmundsson, M. T., Larsen, G., Höskuldsson, Á. & Gylfason, Á. G. Volcanic hazards in Iceland. Jökull 58, 251–268 (2008).
Rivera, A. et al. Ice volumetric changes on active volcanoes in southern Chile. Ann. Glaciol. 43, 111–122 (2006).
Maclennan, J., Jull, M., McKenzie, D., Slater, L. & Grönvold, K. The link between volcanism and deglaciation in Iceland. Geochem. Geophys. Geosyst. 3, 1–25 (2002).
Tuffen, H. How will melting of ice affect volcanic hazards in the twenty-first century? Phil. Trans. R. Soc. A 368, 2535–2558 (2010).
van Vliet-Lanoë, B. et al. Tectonism and volcanism enhanced by deglaciation events in southern Iceland. Quat. Res. 94, 94–120 (2020).
Hugonnet, R. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 592, 726–731 (2021).
Benn, D. I. et al. Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth Sci. Rev. 114, 156–174 (2012).
Sevestre, H. & Benn, D. I. Climatic and geometric controls on the global distribution of surge-type glaciers: implications for a unifying model of surging. J. Glaciol. 61, 646–662 (2015).
Tuckett, P. A. et al. Rapid accelerations of Antarctic Peninsula outlet glaciers driven by surface melt. Nat. Commun. 10, 4311 (2019).
Doyle, S. H. et al. Amplified melt and flow of the Greenland ice sheet driven by late-summer cyclonic rainfall. Nat. Geosci. 8, 647–653 (2015).
Wright, A. P., Siegert, M. J., Le Brocq, A. & Gore, D. High sensitivity of subglacial hydrological pathways in Antarctica to small ice-sheet changes. Geophys. Res. Lett. 35, L17504 (2008).
Jenkins, A. Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. J. Phys. Oceanogr. 41, 2279–2294 (2011).
Wei, W. et al. Getz Ice Shelf melt enhanced by freshwater discharge from beneath the West Antarctic ice sheet. Cryosphere 14, 1399–1408 (2020).
Slater, D. A., Nienow, P. W., Cowton, T. R., Goldberg, D. N. & Sole, A. J. Effect of near-terminus subglacial hydrology on tidewater glacier submarine melt rates. Geophys. Res. Lett. 42, 2861–2868 (2015).
Clague, J. J. & O’Connor, J. E. in Snow and Ice-Related Hazards, Risks, and Disasters 2nd edn Ch. 14 (eds Haeberli, W. & Whiteman, C.) 467–499 (Elsevier, 2021).
Braun, A. Retrieval of digital elevation models from Sentinel-1 radar data–open applications, techniques, and limitations. Open. Geosci. 13, 532–569 (2021).
Rahnemoonfar, M., Yari, M., Paden, J., Koenig, L. & Ibikunle, O. Deep multi-scale learning for automatic tracking of internal layers of ice in radar data. J. Glaciol. 67, 39–48 (2021).
Quegan, S. et al. The European Space Agency BIOMASS mission: measuring forest above-ground biomass from space. Remote Sens. Environ. 227, 44–60 (2019).
Donini, E., Thakur, S., Bovolo, F. & Bruzzone, L. Assessing the detection performance on icy targets acquired by an orbiting radar sounder. In IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium 997–1000 (IEEE, 2019).
Heggy, E., Rosen, P. A., Beatty, R., Freeman, T. & Gim, Y. Orbiting Arid Subsurface and Ice Sheet Sounder (OASIS): exploring desert aquifers and polar ice sheets and their role in current and paleo-climate evolution. In 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS 3483–3486 (IEEE, 2013).
Winberry, J. P., Anandakrishnan, S. & Alley, R. B. Seismic observations of transient subglacial water-flow beneath MacAyeal Ice Stream, West Antarctica. Geophys. Res. Lett. 36, L11502 (2009).
Nanni, U. et al. Quantification of seasonal and diurnal dynamics of subglacial channels using seismic observations on an Alpine glacier. Cryosphere 14, 1475–1496 (2020).
Pattyn, F., Carter, S. P. & Thoma, M. Advances in modelling subglacial lakes and their interaction with the Antarctic ice sheet. Phil. Trans. R. Soc. A 374, 20140296 (2016).
Livingstone, S. J. et al. Discovery of relict subglacial lakes and their geometry and mechanism of drainage. Nat. Commun. 7, 11767 (2016).
Christoffersen, P. et al. Large subglacial lake beneath the Laurentide Ice Sheet inferred from sedimentary sequences. Geology 36, 563 (2008).
Beaud, F., Flowers, G. E. & Venditti, J. G. Efficacy of bedrock erosion by subglacial water flow. Earth Surf. Dynam. 4, 125–145 (2016).
Delaney, I., Werder, M. A. & Farinotti, D. A numerical model for fluvial transport of subglacial sediment. J. Geophys. Res. Earth Surf. 124, 2197–2223 (2019).
Rack, F. R. Enabling clean access into Subglacial Lake Whillans: development and use of the WISSARD hot water drill system. Phil. Trans. R. Soc. A 374, 20140305 (2016).
Makinson, K. et al. Development of a clean hot water drill to access Subglacial Lake CECs, West Antarctica. Ann. Glaciol. 62, 250–262 (2021).
Li, Y. et al. Thermal heads for melt drilling to subglacial lakes: design and testing. Astrobiology 20, 142–156 (2020).
Campen, R. et al. Microbial diversity of an Antarctic subglacial community and high-resolution replicate sampling inform hydrological connectivity in a polar desert. Environ. Microbiol. 21, 2290–2306 (2019).
Kowalski, J. et al. Navigation technology for exploration of glacier ice with maneuverable melting probes. Cold Reg. Sci. Technol. 123, 53–70 (2016).
Brennan, P. V., Lok, L. B., Nicholls, K. & Corr, H. Phase-sensitive FMCW radar system for high-precision Antarctic ice shelf profile monitoring. IET Radar Sonar Navig. 8, 776–786 (2014).
Nicholls, K. W. et al. A ground-based radar for measuring vertical strain rates and time-varying basal melt rates in ice sheets and shelves. J. Glaciol. 61, 1079–1087 (2015).
Mingo, L., Flowers, G. E., Crawford, A. J., Mueller, D. R. & Bigelow, D. G. A stationary impulse-radar system for autonomous deployment in cold and temperate environments. Ann. Glaciol. 61, 99–107 (2020).
Babcock, E. & Bradford, J. Quantifying the basal conditions of a mountain glacier using a targeted full-waveform inversion: Bench glacier, Alaska, USA. J. Glaciol. 60, 1221–1231 (2014).
Killingbeck, S., Dow, C. F. & Unsworth, M. A. A quantitative method for deriving salinity of subglacial water using ground-based transient electromagnetics. J. Glaciol. https://doi.org/10.1017/jog.2021.94 (2021).
Siegert, M. J. et al. Antarctic subglacial groundwater: a concept paper on its measurement and potential influence on ice flow. Geol. Soc. Spec. Publ. 461, 197–213 (2018).
Walder, J. S. & Costa, J. E. Outburst floods from glacier-dammed lakes: the effect of mode of lake drainage on flood magnitude. Earth Surf. Process. Landf. 21, 701–723 (1996).
Acknowledgements
M.J.S. acknowledges funding from NERC grants NE/G00465X/3, NE/D008638/1 and NE/F016646/2. C.F.D. was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC 699 RGPIN-03761-2017) and the Canada Research Chairs Program (CRC 950-231237). A.R. was supported by the G. Unger Vetlesen Foundation. This is UTIG contribution 3808. J.S.B. is funded by a UK Natural Environment Research Council PhD studentship (EAA6583/3152) awarded through the ENVISION Doctoral Training Partnership. M.McM. was supported by the European Space Agency’s Polar+ 4D Greenland study (4000132139/20/I-EF) and the UK NERC Centre for Polar Observation and Modelling. R.J.S. was supported by the Natural Environment Research Council (NERC)-funded ONE Planet Doctoral Training Partnership (NE/S007512/1). J.A.M. acknowledges support from the National Science Foundation Office of Polar Programs. Analysis of Antarctica’s Gamburtsev Province Project (AGAP) RES data was supported by a bursary from Antarctic Science Ltd awarded to K.W. The authors thank R. Bell and T. Jordan for their help with the data set. The radar-echo sounding data used to identify new subglacial lakes are freely available from CReSIS and NASA Operation IceBridge.
Author information
Authors and Affiliations
Contributions
S.J.L. led the project and assembled the authorship team. S.J.L. produced the global subglacial lake inventory with input from all authors. Y.L., R.J.S. and K.W. identified the additional new Antarctic subglacial lakes included in the global inventory and wrote the Supplementary Data. The section on lake discharge–recharge relationships came from discussions between S.J.L., F.S.L.N. and A.J.S. K.W. produced Fig. 1; S.J.L. produced Figs. 3, 4 and 5, with help from F.N. and A.J.S.; J.A.M. produced Fig. 6; A.R. and S.J.L. produced Fig. 7; and M.S., H.A.F. and A.R. contributed to Fig. 2. All authors contributed to the writing and editing of the manuscript prior to submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Earth and Environment thanks F. Pattyn, T. Vick-Majors, K. Christianson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Glossary
- Grounding line
-
The boundary where a grounded glacier becomes a floating ice shelf.
- Basal hydrological potential
-
Total head determined by bed topography, weight of the overlying ice and basal drainage characteristics.
- Cold-based ice
-
Ice below freezing point at the ice–bed interface, which is thus frozen to the underlying substrate.
- Radio-echo sounding
-
(RES). A radar technique used to measure the internal structure, ice thickness, bed topography and water content of ice masses.
- Jökulhlaup
-
Glacial outburst flood from a subglacial or proglacial lake.
- Eskers
-
Slightly sinuous ridges of glaciofluvial sediments (such as gravels) that record the former drainage of meltwater under, in or on top of ice masses.
- Redox reactions
-
Chemical reactions in which one molecule becomes reduced and another becomes oxidized.
- Chemosynthesis
-
The fixation of single-carbon molecules into organic biomass using energy from the oxidation of inorganic electron donors.
- Methanogenesis
-
A metabolic process that yields energy for microbial growth while releasing methane.
- Necromass
-
Organic material consisting of or derived from dead organisms.
- Nitrification
-
The oxidation of reduced nitrogen compounds to nitrite or nitrate.
- Chemolithotrophic
-
The metabolic oxidation of inorganic compounds to yield energy and fix single-carbon compounds into organic biomass.
- Equilibrium line altitude
-
(ELA). The elevation at which the accumulation and ablation of ice are in balance over a given time period (typically, 1 year).
Rights and permissions
About this article
Cite this article
Livingstone, S.J., Li, Y., Rutishauser, A. et al. Subglacial lakes and their changing role in a warming climate. Nat Rev Earth Environ 3, 106–124 (2022). https://doi.org/10.1038/s43017-021-00246-9
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s43017-021-00246-9
This article is cited by
-
Exploring Antarctic subglacial lakes with RECoverable Autonomous Sonde (RECAS): Design and first field tests
Science China Technological Sciences (2024)
-
Radar for Europa Assessment and Sounding: Ocean to Near-Surface (REASON)
Space Science Reviews (2024)
-
Biogeochemical and historical drivers of microbial community composition and structure in sediments from Mercer Subglacial Lake, West Antarctica
ISME Communications (2023)
-
Liquid water on cold exo-Earths via basal melting of ice sheets
Nature Communications (2022)
-
Surface topographic impact of subglacial water beneath the south polar ice cap of Mars
Nature Astronomy (2022)