Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The occurrence and hazards of great subduction zone earthquakes

Abstract

Subduction zone earthquakes result in some of the most devastating natural hazards on Earth. Knowledge of where great (moment magnitude M ≥ 8) subduction zone earthquakes can occur and how they rupture is critical to constraining future seismic and tsunami hazards. Since the occurrence of well-instrumented great earthquakes, such as the 2004 M9.1 Sumatra–Andaman and 2011 M9.1 Tohoku earthquakes, the hypotheses that plate age and convergence rate influence the ability of subduction zones to host large earthquakes have been dispelled. In this Review, we highlight how certain subduction zone properties might influence the location and characteristics of great earthquake rupture and impact seismic and tsunami hazard. The rupture characteristics of great earthquakes that most heavily impact earthquake hazards include the rupture extent (seaward and landward), location of strong motion-generating areas and earthquake recurrence. By contrast, large slip or displacement at the seafloor is one of the major controls of tsunami hazard. Future improvements in addressing hazards posed by subduction zones depend heavily on sustained geophysical monitoring in subduction zone systems (both onshore and offshore), expanded development of palaeoseismic data sets and improved integration of observations and models across disciplines and timescales.

Key points

  • Numerous hazards are associated with the remarkable size of moment magnitude M ≥ 8 megathrust earthquakes, such as landslides, coastal land-level change, liquefaction and tsunamis.

  • Understanding the likelihood of subduction zone earthquake occurrence and their rupture physics is crucial to creating probabilistic hazard assessments and to mitigating future risks.

  • Seismic and geodetic instrumentation combined with advanced modelling techniques have brought about notable advances in understanding great subduction zone earthquakes, unveiling more about the source processes of great earthquakes, and the structure and state of stress in subduction zones.

  • Improved data sets and additional observations of great earthquakes have refocused attention on a more diverse range of subduction zone properties and processes required for great earthquakes to occur, but still lack the statistical significance required to make broad claims about where and when great subduction zone earthquakes are likely to occur.

  • Great earthquakes occur infrequently; improving characterizations of great megathrust earthquake occurrence for probabilistic seismic hazard assessments will require additional geologic and geophysical observations and constraints, as well as numerical models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Map of recorded and historical M ≥ 8.5 megathrust earthquakes.
Fig. 2: Subduction zone structures, behaviour and their relationship to hazard.
Fig. 3: Correlation between subduction zone parameters and the magnitude of great earthquakes.
Fig. 4: Representative cross sections of global seismogenic zone geometries.
Fig. 5: Slip distributions from observations of giant megathrust earthquakes.

Similar content being viewed by others

Data availability

Raw data behind all data synthesis can be found within Supplementary Data.

References

  1. Telford, J. & Cosgrave, J. Joint evaluation of the international response to the Indian Ocean tsunami: synthesis report (Tsunami Evaluation Coalition, 2006).

  2. The 137th report (FDMA, 2011); http://www.fdma.go.jp/bn/2011/detail/691.html

  3. Kajitani, Y., Chang, S. E. & Tatano, H. Economic impacts of the 2011 Tohoku-Oki earthquake and tsunami. Earthq. Spectra 29, 457–478 (2013).

    Article  Google Scholar 

  4. Reid, H. F. in The California Earthquake of April 18, 1906: Report of the State Investigation Commission Vol. 2 (Carnegie Institution of Washington, 1910).

  5. Briggs, R. W. et al. Deformation and slip along the Sunda megathrust in the great 2005 Nias-Simeulue earthquake. Science 311, 1897–1901 (2006).

    Article  Google Scholar 

  6. Wartman, J., Dunham, L., Tiwari, B. & Pradel, D. Landslides in eastern Honshu Induced by the 2011 Tohoku earthquake landslides in eastern Honshu induced by the 2011 Tohoku earthquake. Bull. Seismol. Soc. Am. 103, 1503–1521 (2013).

    Article  Google Scholar 

  7. Verdugo, R. & González, J. Liquefaction-induced ground damages during the 2010 Chile earthquake. Soil. Dyn. Earthq. Eng. 79, 280–295 (2015).

    Article  Google Scholar 

  8. Fraser, S. et al. Tsunami damage to coastal defences and buildings in the March 11th 2011 M w 9.0 Great East Japan earthquake and tsunami. Bull. Earthq. Eng. 11, 205–239 (2013).

    Article  Google Scholar 

  9. The Human Cost of Natural Disasters 2015: A Global Perspective (CRED, 2015).

  10. Kodaira, S. et al. Coseismic fault rupture at the trench axis during the 2011 Tohoku-Oki earthquake. Nat. Geosci. 5, 646–650 (2012).

    Article  Google Scholar 

  11. Lay, T. A review of the rupture characteristics of the 2011 Tohoku-Oki Mw 9.1 earthquake. Tectonophysics. 733, 4–36 (2018).

    Article  Google Scholar 

  12. Bilek, S. L. & Lay, T. Subduction zone megathrust earthquakes. Geosphere 14, 1468–1500 (2018).

    Article  Google Scholar 

  13. Global Historical Tsunami Database (NOAA, 2021); https://doi.org/10.7289/V5PN93H7.

  14. Bock, Y. & Melgar, D. Physical applications of GPS geodesy: a review. Rep. Prog. Phys. 79, 106801 (2016).

    Article  Google Scholar 

  15. Moreno, M., Rosenau, M. & Oncken, O. 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone. Nature 467, 198–202 (2010).

    Article  Google Scholar 

  16. Loveless, J. P. & Meade, B. J. Spatial correlation of interseismic coupling and coseismic rupture extent of the 2011 MW=9.0 Tohoku-Oki earthquake. Geophys. Res. Lett. 38, L17306 (2011).

    Article  Google Scholar 

  17. Protti, M. et al. Nicoya earthquake rupture anticipated by geodetic measurement of the locked plate interface. Nat. Geosci. 7, 117–121 (2014).

    Article  Google Scholar 

  18. Métois, M., Vigny, C. & Socquet, A. Interseismic coupling, megathrust earthquakes and seismic swarms along the Chilean subduction zone (38–18 S). Pure Appl. Geophys. 173, 1431–1449 (2016).

    Article  Google Scholar 

  19. Wesson, R. L., Melnick, D., Cisternas, M., Moreno, M. & Ely, L. L. Vertical deformation through a complete seismic cycle at Isla Santa Maria, Chile. Nat. Geosci. 8, 547–551 (2015).

    Article  Google Scholar 

  20. Philibosian, B. & Meltzner, A. J. Segmentation and supercycles: a catalog of earthquake rupture patterns from the Sumatran Sunda megathrust and other well-studied faults worldwide. Quaternary Sci. Rev. 241, 106390 (2020).

    Article  Google Scholar 

  21. Kelsey, H. M., Nelson, A. R., Hemphill-Haley, E. & Witter, R. C. Tsunami history of an Oregon coastal lake reveals a 4600 yr record of great earthquakes on the Cascadia subduction zone. Geol. Soc. Am. Bull. 117, 1009–1032 (2005).

    Article  Google Scholar 

  22. Sieh, K. et al. Earthquake supercycles inferred from sea-level changes recorded in the corals of west Sumatra. Science 322, 1674–1678 (2008).

    Article  Google Scholar 

  23. McCann, W. R., Nishenko, S. P., Sykes, L. R. & Krause, J. in Earthquake Prediction and Seismicity Patterns 1082–1147 (Birkhäuser, 1979).

  24. Campos, J. et al. A seismological study of the 1835 seismic gap in south-central Chile. Phys. Earth Planet. Inter. 132, 177–195 (2002).

    Article  Google Scholar 

  25. Madariaga, R., Métois, M., Vigny, C. & Campos, J. Central Chile finally breaks. Science 328, 181–182 (2010).

    Article  Google Scholar 

  26. Moreno, M. et al. Toward understanding tectonic control on the Mw 8.8 2010 Maule Chile earthquake. Earth Planet. Sci. Lett. 321, 52–165 (2012).

    Google Scholar 

  27. Kagan, Y. Y. & Jackson, D. Seismic gap hypothesis: ten years after. J. Geophys. Res. Solid Earth 96, 21419–21431 (1991).

    Article  Google Scholar 

  28. Jackson, D., Kagan, Y. Y. & Gupta, H. K. Characteristic earthquakes and seismic gaps. Encycl. Solid Earth Geophys. 5, 1539 (2011).

    Google Scholar 

  29. Wyss, M. & Wiemer, S. in Seismicity Patterns, Their Statistical Significance and Physical Meaning (eds Wyss, M., Shimazaki, K. & Ito, A.) 259–278 (Birkhäuser, 1999).

  30. Scholz, C. Earthquakes and friction laws. Nature 391, 37–42 (1998).

    Article  Google Scholar 

  31. Kato, A. & Ben-Zion, Y. The generation of large earthquakes. Nat. Rev. Earth Environ. 2, 26–39 (2021).

    Article  Google Scholar 

  32. Lay, T. et al. Depth-varying rupture properties of subduction zone megathrust faults. J. Geophys. Res. Solid Earth 117, B04311 (2012).

    Article  Google Scholar 

  33. Noda, H. & Lapusta, N. Stable creeping fault segments can become destructive as a result of dynamic weakening. Nature 493, 518–521 (2013).

    Article  Google Scholar 

  34. Ye, L., Lay, T. & Rivera, L. Rupture characteristics of major and great (Mw ≥ 7.0) megathrust earthquakes from 1990 to 2015: 2. Depth dependence. J. Geophys. Res. Solid Earth 121, 845–863 (2016).

    Article  Google Scholar 

  35. Morgan, P., Feng, L., Meltzner, A., Mallick, R. & Hill, E. Diverse slip behavior of the banyak islands subsegment of the sunda megathrust in Sumatra, Indonesia. J. Geophys. Res. Solid Earth 125, e2020JB020011 (2020).

    Article  Google Scholar 

  36. Bilek, S. & Lay, T. Rigidity variations with depth along interplate megathrust faults in subduction zones. Nature 400, 443–446 (1999).

    Article  Google Scholar 

  37. Sallarès, V. & Ranero, C. Upper-plate rigidity determines depth-varying rupture behaviour of megathrust earthquakes. Nature 576, 96–101 (2019).

    Article  Google Scholar 

  38. Boatwright, J. & Choy, G. Teleseismic estimates of the energy radiated by shallow earthquakes. J. Geophys. Res. Solid Earth 91, 2095–2112 (1986).

    Article  Google Scholar 

  39. Sahakian, V., Melgar, D. & Muzli, M. Weak near-field behavior of a tsunami earthquake: toward real-time identification for local warning. Geophys. Res. Lett. 46, 9519–9528 (2019).

    Article  Google Scholar 

  40. Kanamori, H. Mechanism of tsunami earthquakes. Phys. Earth Planet. Inter. 6, 346–359 (1972).

    Article  Google Scholar 

  41. Hill, E. et al. The 2010 Mw 7.8 Mentawai earthquake: very shallow source of a rare tsunami earthquake determined from tsunami field survey and near-field GPS data. J. Geophys. Res. Solid Earth 117, B06402 (2012).

    Article  Google Scholar 

  42. Kanamori, H. The diversity of large earthquakes and its implications for hazard mitigation. Annu. Rev. Earth Planet. Sci. 42, 7–26 (2014).

    Article  Google Scholar 

  43. Mai, P. & Beroza, G. A spatial random field model to characterize complexity in earthquake slip. J. Geophys. Res. Solid. Earth 107, ESE–10 (2002).

    Article  Google Scholar 

  44. Kurahashi, S. & Irikura, K. Short-period source model of the 2011 M w 9.0 off the Pacific coast of Tohoku earthquake. Bull. Seismol. Soc. Am. 103, 1373–1393 (2013).

    Article  Google Scholar 

  45. Kurahashi, S. & Irikura, K. Source model for generating strong ground motions during the 2011 off the Pacific coast of Tohoku earthquake. Earth Planets Space 63, 11 (2011).

    Article  Google Scholar 

  46. Frankel, A. Rupture history of the 2011 M 9 Tohoku Japan earthquake determined from strong-motion and high-rate GPS recordings: subevents radiating energy in different frequency bands. Bull. Seismol. Soc. Am. 103, 1290–1306 (2013).

    Article  Google Scholar 

  47. Dragert, H., Wang, K. & James, T. A silent slip event on the deeper Cascadia subduction interface. Science 292, 1525–1528 (2001).

    Article  Google Scholar 

  48. Schwartz, S. & Rokosky, J. Slow slip events and seismic tremor at circum-Pacific subduction zones. Rev. Geophys. 45, RG3004 (2007).

    Article  Google Scholar 

  49. Obara, K., Hirose, H., Yamamizu, F. & Kasahara, K. Episodic slow slip events accompanied by non-volcanic tremors in southwest Japan subduction zone. Geophys. Res. Lett. 31, L23602 (2004).

    Article  Google Scholar 

  50. Shelly, D., Beroza, G., Ide, S. & Nakamula, S. Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip. Nature 442, 188–191 (2006).

    Article  Google Scholar 

  51. Bartlow, N. M., Miyazaki, S. I., Bradley, A. M. & Segall, P. Space–time correlation of slip and tremor during the 2009 Cascadia slow slip event. Geophys. Res. Lett. 38, L18309 (2011).

    Article  Google Scholar 

  52. Wallace, L. & Beavan, J. Diverse slow slip behavior at the Hikurangi subduction margin, New Zealand. J. Geophys. Res. Solid Earth 115, B12402 (2010).

    Article  Google Scholar 

  53. Radiguet, M. et al. Slow slip events and strain accumulation in the Guerrero gap, Mexico. J. Geophys. Res. Solid Earth 117, B04305 (2012).

    Article  Google Scholar 

  54. Davis, E., Villinger, H. & Sun, T. Slow and delayed deformation and uplift of the outermost subduction prism following ETS and seismogenic slip events beneath Nicoya Peninsula, Costa Rica. Earth Planet. Sci. Lett. 410, 117–127 (2015).

    Article  Google Scholar 

  55. Wallace, L. et al. Slow slip near the trench at the Hikurangi subduction zone, New Zealand. Science 352, 701–704 (2016).

    Article  Google Scholar 

  56. Araki, E. et al. Recurring and triggered slow-slip events near the trench at the Nankai Trough subduction megathrust. Science 356, 115 (2017).

    Article  Google Scholar 

  57. Ito, Y. et al. Episodic slow slip events in the Japan subduction zone before the 2011 Tohoku-Oki earthquake. Tectonophysics 600, 14–26 (2013).

    Article  Google Scholar 

  58. Ruiz, S. et al. Intense foreshocks and a slow slip event preceded the 2014 Iquique Mw 8.1 earthquake. Science 345, 1165–1169 (2014).

    Article  Google Scholar 

  59. Vigny, C. et al. The 2010 Mw 8.8 Maule megathrust earthquake of central Chile, monitored by GPS. Science 332, 1417–1421 (2011).

    Article  Google Scholar 

  60. Lapusta, N. & Rice, J. Nucleation and early seismic propagation of small and large events in a crustal earthquake model. J. Geophys. Res. Solid Earth 108, 2205 (2003).

    Article  Google Scholar 

  61. Bilek, S., Schwartz, S. & DeShon, H. Control of seafloor roughness on earthquake rupture behavior. Geology 31, 455–458 (2003).

    Article  Google Scholar 

  62. Duan, B. Dynamic rupture of the 2011 Mw 9.0 Tohoku-Oki earthquake: roles of a possible subducting seamount. J. Geophys. Res. Solid Earth 117, B05311 (2012).

    Article  Google Scholar 

  63. Ruff, L. & Kanamori, H. Seismicity and the subduction process. Phys. Earth Planet. Inter. 23, 240–252 (1980).

    Article  Google Scholar 

  64. Corbi, F., Herrendörfer, R., Funiciello, F. & van Dinther, Y. Controls of seismogenic zone width and subduction velocity on interplate seismicity: insights from analog and numerical models. Geophys. Res. Lett. 44, 6082–6091 (2017).

    Article  Google Scholar 

  65. Oleskevich, D., Hyndman, R. & Wang, K. The updip and downdip limits to great subduction earthquakes: thermal and structural models of Cascadia, south Alaska, SW Japan, and Chile. J. Geophys. Res. 104, 14965–14991 (1999).

    Article  Google Scholar 

  66. Schellart, W. & Rawlinson, N. Global correlations between maximum magnitudes of subduction zone interface thrust earthquakes and physical parameters of subduction zones. Phys. Earth Planet. Inter. 225, 41–67 (2013).

    Article  Google Scholar 

  67. Muldashev, I. & Sobolev, S. What controls maximum magnitudes of giant subduction earthquakes? Geochem. Geophys. Geosystems 21, e2020GC009145 (2020).

    Article  Google Scholar 

  68. Herrendörfer, R., van Dinther, Y., Gerya, T. & Dalguer, L. Earthquake supercycle in subduction zones controlled by the width of the seismogenic zone. Nat. Geosci. 8, 471–474 (2015).

    Article  Google Scholar 

  69. Bletery, Q. et al. Mega-earthquakes rupture flat megathrusts. Science 354, 1027–1031 (2016).

    Article  Google Scholar 

  70. Plescia, S. & Hayes, G. Geometric controls on megathrust earthquakes. Geophys. J. Int. 222, 1270–1282 (2020).

    Article  Google Scholar 

  71. Shrivastava, M. et al. Earthquake segmentation in northern Chile correlates with curved plate geometry. Sci. Rep. 9, 1–10 (2019).

    Article  Google Scholar 

  72. Scholl, D. et al. Great (≥Mw8. 0) megathrust earthquakes and the subduction of excess sediment and bathymetrically smooth seafloor. Geosphere 11, 236–265 (2015).

    Article  Google Scholar 

  73. Ruff, L. in Subduction Zones Part II (eds Ruff, L. J. & Kanamori, H.) 263–282 (Birkhäuser, 1989).

  74. Sobolev, S., Babeyko, A., Koulakov, I. & Oncken, O. in The Andes (eds Oncken, O. et al.) 513–535 (Springer, 2006).

  75. Brizzi, S., Van Zelst, I., Funiciello, F., Corbi, F. & van Dinther, Y. How sediment thickness influences subduction dynamics and seismicity. J. Geophys. Res. Solid Earth 125, e2019JB018964 (2020).

    Article  Google Scholar 

  76. Lallemand, S., Peyret, M., van Rijsingen, E., Arcay, D. & Heuret, A. Roughness characteristics of oceanic seafloor prior to subduction in relation to the seismogenic potential of subduction zones. Geochem. Geophys. Geosystems 19, 2121–2146 (2018).

    Article  Google Scholar 

  77. Wang, K. & Bilek, S. Invited review paper: Fault creep caused by subduction of rough seafloor relief. Tectonophysics 610, 1–24 (2014).

    Article  Google Scholar 

  78. Collot, J. et al. Subducted oceanic relief locks the shallow megathrust in central Ecuador. J. Geophys. Res. Solid Earth 122, 3286–3305 (2017).

    Article  Google Scholar 

  79. Gao, X. & Wang, K. Strength of stick-slip and creeping subduction megathrusts from heat flow observations. Science 345, 1038–1041 (2014).

    Article  Google Scholar 

  80. van Rijsingen, E. et al. How subduction interface roughness influences the occurrence of large interplate earthquakes. Geochem. Geophys. Geosystems 19, 2342–2370 (2018).

    Article  Google Scholar 

  81. Cloos, M. Thrust-type subduction-zone earthquakes and seamount asperities: a physical model for seismic rupture. Geology 20, 601–604 (1992).

    Article  Google Scholar 

  82. Scholz, C. & Small, C. The effect of seamount subduction on seismic coupling. Geology 25, 487–490 (1997).

    Article  Google Scholar 

  83. Kopp, H. Invited review paper: The control of subduction zone structural complexity and geometry on margin segmentation and seismicity. Tectonophysics 589, 1–16 (2013).

    Article  Google Scholar 

  84. Wang, K. & Bilek, S. Do subducting seamounts generate or stop large earthquakes? Geology 39, 819–822 (2011).

    Article  Google Scholar 

  85. Barnes, P. M. et al. Slow slip source characterized by lithological and geometric heterogeneity. Sci. Adv. 6, eaay3314 (2020).

    Article  Google Scholar 

  86. Ando, R., Takeda, N. & Yamashita, T. Propagation dynamics of seismic and aseismic slip governed by fault heterogeneity and Newtonian rheology. J. Geophys. Res. Solid Earth 117, B11308 (2012).

    Article  Google Scholar 

  87. Skarbek, R., Rempel, A. & Schmidt, D. Geologic heterogeneity can produce aseismic slip transients. Geophys. Res. Lett. 39, 21306 (2012).

    Article  Google Scholar 

  88. Webber, S., Ellis, S. & Fagereng, Å. “Virtual shear box” experiments of stress and slip cycling within a subduction interface mélange. Earth Planet. Sci. Lett. 488, 27–35 (2018).

    Article  Google Scholar 

  89. Taylor, F. et al. Rupture across arc segment and plate boundaries in the 1 April 2007 Solomons earthquake. Nat. Geosci. 1, 253–257 (2008).

    Article  Google Scholar 

  90. Carvajal, M., Cisternas, M. & Catalán, P. A. Source of the 1730 Chilean earthquake from historical records: implications for the future tsunami hazard on the coast of metropolitan Chile. J. Geophys. Res. Solid Earth 122, 3648–3660 (2017).

    Article  Google Scholar 

  91. Contreras-Reyes, E. & Carrizo, D. Control of high oceanic features and subduction channel on earthquake ruptures along the Chile–Peru subduction zone. Phys. Earth Planet. Inter. 186, 49–58 (2011).

    Article  Google Scholar 

  92. Song, T. & Simons, M. Large trench-parallel gravity variations predict seismogenic behavior in subduction zones. Science 301, 630–633 (2003).

    Article  Google Scholar 

  93. Wells, R. E., Blakely, R. J., Sugiyama, Y., Scholl, D. W. & Dinterman, P. A. Basin-centered asperities in great subduction zone earthquakes: a link between slip, subsidence, and subduction erosion? J. Geophys. Res. Solid Earth 108, 2507 (2003).

    Google Scholar 

  94. Bassett, D., Sandwell, D. T., Fialko, Y. & Watts, A. B. Upper-plate controls on co-seismic slip in the 2011 magnitude 9.0 Tohoku-Oki earthquake. Nature 531, 92–96 (2016).

    Article  Google Scholar 

  95. Wells, R., Weaver, C. & Blakely, R. Fore-arc migration in Cascadia and its neotectonic significance. Geology 26, 759–762 (1998).

    Article  Google Scholar 

  96. Melnick, D., Bookhagen, B., Strecker, M. R. & Echtler, H. P. Segmentation of megathrust rupture zones from fore-arc deformation patterns over hundreds to millions of years, Arauco peninsula, Chile. J. Geophys. Res. Solid Earth 114, B01407 (2009).

    Article  Google Scholar 

  97. McCaffrey, R. The tectonic framework of the Sumatran subduction zone. Annu. Rev. Earth Planet. Sci. 37, 345–366 (2009).

    Article  Google Scholar 

  98. Uyeda, S. & Kanamori, H. Back-arc opening and the mode of subduction. J. Geophys. Res. Solid Earth 84, 1049–1061 (1979).

    Article  Google Scholar 

  99. Scholz, C. & Campos, J. On the mechanism of seismic decoupling and back arc spreading at subduction zones. J. Geophys. Res. Solid Earth 100, 22103–22115 (1995).

    Article  Google Scholar 

  100. Heuret, A. & Lallemand, S. Plate motions, slab dynamics and back-arc deformation. Phys. Earth Planet. Inter. 149, 31–51 (2005).

    Article  Google Scholar 

  101. Wallace, L., Fagereng, Å. & Ellis, S. Upper plate tectonic stress state may influence interseismic coupling on subduction megathrusts. Geology 40, 895–898 (2012).

    Article  Google Scholar 

  102. Heuret, A., Conrad, C., Funiciello, F., Lallemand, S. & Sandri, L. Relation between subduction megathrust earthquakes, trench sediment thickness and upper plate strain. Geophy. Res. Lett. 39, L05304 (2012).

    Article  Google Scholar 

  103. Fagerang, Å. & Ellis, S. On factors controlling the depth of interseismic coupling on the Hikurangi subduction interface, New Zealand. Earth Planet. Sci. Lett. 278, 120–130 (2009).

    Article  Google Scholar 

  104. Shapiro, N. M., Ritzwoller, M. H. & Engdahl, E. R. Structural context of the great Sumatra–Andaman Islands earthquake. Geophys. Res. Lett. 35, L05301 (2008).

    Article  Google Scholar 

  105. Clift, P. & Vannucchi, P. Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. Rev. Geophys. 42, RG2001 (2004).

    Article  Google Scholar 

  106. Storch, I., Buske, S., Victor, P. & Oncken, O. Seismic images of the northern Chilean subduction zone at 19° 40′ S, prior to the 2014 Iquique earthquake. Geophys. J. Int. 225, 1048–1061 (2021).

    Article  Google Scholar 

  107. Park, J., Tsuru, T., Kodaira, S., Cummins, P. & Kaneda, Y. Splay fault branching along the Nankai subduction zone. Science 297, 157–1160 (2002).

    Article  Google Scholar 

  108. Tsuji, T. et al. Extension of continental crust by anelastic deformation during the 2011 Tohoku-Oki earthquake: the role of extensional faulting in the generation of a great tsunami. Earth Planet. Sci. Lett. 364, 44–58 (2013).

    Article  Google Scholar 

  109. Plafker, G. Tectonic deformation associated with the 1964 Alaska earthquake: the earthquake of 27 March 1964 resulted in observable crustal deformation of unprecedented areal extent. Science 48, 1675–1687 (1965).

    Article  Google Scholar 

  110. Farías, M., Comte, D., Roecker, S., Carrizo, D. & Pardo, M. Crustal extensional faulting triggered by the 2010 Chilean earthquake: the Pichilemu seismic sequence. Tectonics 30, TC6010 (2011).

    Article  Google Scholar 

  111. Ashford, S. A., Boulanger, R. W., Donahue, J. L. & Stewart, J. P. Geotechnical Quick Report on the Kanto Plain Region During the March 11, 2011, off Pacific Coast of Tohoku Earthquake, Japan (GEER, 2011).

  112. Serey, A. et al. Landslides induced by the 2010 Chile megathrust earthquake: a comprehensive inventory and correlations with geological and seismic factors. Landslides 16, 1153–1165 (2019).

    Article  Google Scholar 

  113. Douglas, J. & Edwards, B. Recent and future developments in earthquake ground motion estimation. Earth Sci. Rev. 160, 203–219 (2016).

    Article  Google Scholar 

  114. Oth, A., Miyake, H. & Bindi, D. On the relation of earthquake stress drop and ground motion variability. J. Geophys. Res. Solid Earth 122, 5474–5492 (2017).

    Article  Google Scholar 

  115. Wirth, E., Frankel, A., Marafi, N., Vidale, J. & Stephenson, W. Broadband synthetic seismograms for magnitude 9 earthquakes on the Cascadia megathrust based on 3D simulations and stochastic synthetics, Part 2: rupture parameters and variability. Bull. Seismol. Soc. Am. 108, 2370–2388 (2018).

    Article  Google Scholar 

  116. Somerville, P., Smith, N., Graves, R. & Abrahamson, N. Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity. Seismol. Res. Lett. 68, 199–222 (1997).

    Article  Google Scholar 

  117. Chandramohan, R., Baker, J. & Deierlein, G. Quantifying the influence of ground motion duration on structural collapse capacity using spectrally equivalent records. Earthq. Spectra 32, 927–950 (2016).

    Article  Google Scholar 

  118. McGuire, J., Zhao, L. & Jordan, T. Predominance of unilateral rupture for a global catalog of large earthquakes. Bull. Seismol. Soc. Am. 92, 3309–3317 (2002).

    Article  Google Scholar 

  119. Mai, P., Spudich, P. & Boatwright, J. Hypocenter locations in finite-source rupture models. Bull. Seismol. Soc. Am. 95, 965–980 (2005).

    Article  Google Scholar 

  120. Melgar, D. & Hayes, G. The correlation lengths and hypocentral positions of great earthquakes. Bull. Seismol. Soc. Am. 109, 2582–2593 (2019).

    Article  Google Scholar 

  121. Ishii, M., Shearer, P., Houston, H. & Vidale, J. Extent, duration and speed of the 2004 Sumatra–Andaman earthquake imaged by the Hi-Net array. Nature 435, 933–936 (2005).

    Article  Google Scholar 

  122. Baltay, A. S., Hanks, T. C. & Beroza, G. C. Stable stress-drop measurements and their variability: implications for ground-motion prediction. Bull. Seismol. Soc. Am. 103, 211–222 (2013).

    Article  Google Scholar 

  123. Cotton, F., Archuleta, R. & Causse, M. What is sigma of the stress drop? Seismol.Res. Lett. 84, 42–48 (2013).

    Article  Google Scholar 

  124. Allmann, B. P. & Shearer, P. M. Global variations of stress drop for moderate to large earthquakes. J. Geophys. Res. Solid Earth 114, B01310 (2009).

    Article  Google Scholar 

  125. Denolle, M. & Shearer, P. New perspectives on self-similarity for shallow thrust earthquakes. J. Geophys. Res. Solid Earth 121, 6533–6565 (2016).

    Article  Google Scholar 

  126. Uchide, T., Shearer, P. & Imanishi, K. Stress drop variations among small earthquakes before the 2011 Tohoku-Oki, Japan, earthquake and implications for the main shock. J. Geophys. Res. Solid Earth 119, 7164–7174 (2014).

    Article  Google Scholar 

  127. Uchida, N. & Bürgmann, R. Repeating earthquakes. Annu. Rev. Earth Planet. Sci. 47, 305–332 (2019).

    Article  Google Scholar 

  128. Wirth, E. & Frankel, A. Impact of down-dip rupture limit and high-stress drop subevents on coseismic land-level change during cascadia megathrust earthquakes. Bull. Seismol. Soc. Am. 109, 2187–2197 (2019).

    Article  Google Scholar 

  129. Das, S. The need to study speed. Science 317, 905–906 (2007).

    Article  Google Scholar 

  130. Wang, D., Mori, J. & Koketsu, K. Fast rupture propagation for large strike-slip earthquakes. Earth Planet. Sci. Lett. 40, 115–126 (2016).

    Article  Google Scholar 

  131. Ye, L., Lay, T., Kanamori, H. & Rivera, L. Rupture characteristics of major and great (Mw ≥ 7.0) megathrust earthquakes from 1990 to 2015: 1. Source parameter scaling relationships. J. Geophys. Res. Solid Earth 121, 826–844 (2016).

    Article  Google Scholar 

  132. Ammon, C. J. et al. Rupture process of the 2004 Sumatra–Andaman earthquake. Science 308, 1133–1139 (2005).

    Article  Google Scholar 

  133. Delouis, B., Nocquet, J. & Vallée, M. Slip distribution of the February 27, 2010 Mw=8.8 Maule earthquake, central Chile, from static and high-rate GPS, InSAR, and broadband teleseismic data. Geophys. Res. Lett. 37, L17305 (2010).

    Article  Google Scholar 

  134. Lay, T. et al. Teleseismic inversion for rupture process of the 27 February 2010 Chile (Mw 8.8) earthquake. Geophys. Res. Lett. 37, L13301 (2010).

    Article  Google Scholar 

  135. Koper, K. D., Hutko, A. R. & Lay, T. Along-dip variation of teleseismic short-period radiation from the 11 March 2011 Tohoku earthquake (Mw 9.0). Geophys. Res. Lett. 38, L21309 (2011).

    Article  Google Scholar 

  136. Yue, H. & Lay, T. Inversion of high rate (1 sps) GPS data for rupture process of the 11 March 2011 Tohoku earthquake (Mw 9.1). Geophys. Res. Lett. 38, L00G09 (2011).

    Article  Google Scholar 

  137. Das, S. in Perspectives on European Earthquake Engineering and Seismology (ed. Ansal, A.) 1–20 (Springer, 2015).

  138. Bruhat, L., Fang, Z. & Dunham, E. Rupture complexity and the supershear transition on rough faults. J. Geophys. Res. Solid Earth 121, 210–224 (2016).

    Article  Google Scholar 

  139. Hyndman, R. D. Downdip landward limit of Cascadia great earthquake rupture. J. Geophys. Res. Solid. Earth 118, 5530–5549 (2013).

    Article  Google Scholar 

  140. Heuret, A., Lallemand, S., Funiciello, F., Piromallo, C. & Faccenna, C. Physical characteristics of subduction interface type seismogenic zones revisited. Geochem. Geophys. Geosystems 12, Q01004 (2011).

    Article  Google Scholar 

  141. Garrett, E. et al. A systematic review of geological evidence for Holocene earthquakes and tsunamis along the Nankai–Suruga Trough, Japan. Earth Sci. Rev. 159, 337–357 (2016).

    Article  Google Scholar 

  142. Clark, K. et al. Geological evidence for past large earthquakes and tsunamis along the Hikurangi subduction margin, New Zealand. Mar. Geol. 412, 39–172 (2019).

    Article  Google Scholar 

  143. Moernaut, J. Time-dependent recurrence of strong earthquake shaking near plate boundaries: a lake sediment perspective. Earth Sci. Rev. 210, 103344 (2020).

    Article  Google Scholar 

  144. Walton, M. et al. Toward an integrative geological and geophysical view of cascadia subduction zone earthquakes. Annu. Rev. Earth Planet. Sci. 49, 367–398 (2021).

    Article  Google Scholar 

  145. Goldfinger, C., Ikeda, Y., Yeats, R. & Ren, J. Superquakes and supercycles. Seismol. Res. Lett. 84, 24–32 (2013).

    Article  Google Scholar 

  146. Barbot, S. Frictional and structural controls of seismic super-cycles at the Japan Trench. Earth Planets Space 72, 1–25 (2020).

    Article  Google Scholar 

  147. Rosenau, M., Corbi, F. & Dominguez, S. Analogue earthquakes and seismic cycles: experimental modelling across timescales. Solid Earth 8, 597–635 (2017).

    Article  Google Scholar 

  148. Salditch, L. et al. Earthquake supercycles and long-term fault memory. Tectonophysics 774, 228289 (2020).

    Article  Google Scholar 

  149. Howarth, J. et al. Calibrating the marine turbidite palaeoseismometer using the 2016 Kaikōura earthquake. Nat. Geosci. 14, 161–167 (2021).

    Article  Google Scholar 

  150. Struble, W. et al. The preservation of climate driven landslide dams in western oregon. J. Geophys. Res. Earth Surf. 126, e2020JF005908 (2021).

    Article  Google Scholar 

  151. Nanayama, F. et al. Unusually large earthquakes inferred from tsunami deposits along the Kuril trench. Nature 424, 660–663 (2003).

    Article  Google Scholar 

  152. Satake, K. Mechanism of the 1992 Nicaragua tsunami earthquake. Geophys. Res. Lett. 21, 2519–2522 (1994).

    Article  Google Scholar 

  153. Satake, K., Fujii, Y., Harada, T. & Namegaya, Y. Time and space distribution of coseismic slip of the 2011 Tohoku earthquake as inferred from tsunami waveform data. Bull. Seismol. Soc. Am. 103, 1473–1492 (2013).

    Article  Google Scholar 

  154. Melgar, D. & Bock, Y. Near-field tsunami models with rapid earthquake source inversions from land- and ocean-based observations: the potential for forecast and warning. J. Geophys. Res. Solid Earth 118, 5939–5955 (2013).

    Article  Google Scholar 

  155. Lotto, G., Nava, G. & Dunham, E. Should tsunami simulations include a nonzero initial horizontal velocity? Earth Planets Space 69, 1–14 (2017).

    Article  Google Scholar 

  156. Tappin, D. T. et al. Did a submarine landslide contribute to the 2011 Tohoku tsunami? Mar. Geol. 357, 344–361 (2014).

    Article  Google Scholar 

  157. Melgar, D., Williamson, A. & Salazar-Monroy, E. Differences between heterogenous and homogenous slip in regional tsunami hazards modelling. Geophys. J. Int. 219, 553–562 (2019).

    Google Scholar 

  158. Moore, G. et al. Three-dimensional splay fault geometry and implications for tsunami generation. Science 318, 1128–1131 (2007).

    Article  Google Scholar 

  159. Wendt, J., Oglesby, D. L. & Geist, E. L. Tsunamis and splay fault dynamics. Geophys. Res. Lett. 36, L15303 (2009).

    Article  Google Scholar 

  160. Baba, T., Cummins, P. R., Hori, T. & Kaneda, Y. High precision slip distribution of the 1944 Tonankai earthquake inferred from tsunami waveforms: possible slip on a splay fault. Tectonophysics 426, 119–134 (2006).

    Article  Google Scholar 

  161. Fan, W., Bassett, D., Jiang, J., Shearer, P. & Ji, C. Rupture evolution of the 2006 Java tsunami earthquake and the possible role of splay faults. Tectonophysics 721, 143–150 (2017).

    Article  Google Scholar 

  162. Liberty, L., Brothers, D. & Haeussler, P. Tsunamigenic splay faults imply a long-term asperity in southern Prince William Sound, Alaska. Geophys. Res. Lett. 46, 3764–3772 (2019).

    Article  Google Scholar 

  163. Bell, R., Holden, C., Power, W., Wang, X. & Downes, G. Hikurangi margin tsunami earthquake generated by slow seismic rupture over a subducted seamount. Earth Planet. Sci. Lett. 397, 1–9 (2014).

    Article  Google Scholar 

  164. Riquelme, S., Schwarze, H., Fuentes, M. & Campos, J. Near-field effects of earthquake rupture velocity into tsunami runup heights. J. Geophys. Res. Solid Earth 125, e2019JB018946 (2020).

    Article  Google Scholar 

  165. Williamson, A., Melgar, D. & Rim, D. The effect of earthquake kinematics on tsunami propagation. J. Geophys. Res. Solid Earth 124, 11639–11650 (2019).

    Article  Google Scholar 

  166. Ma, S. & Hirakawa, E. Dynamic wedge failure reveals anomalous energy radiation of shallow subduction earthquakes. Earth Planet. Sci. Lett. 375, 113–122 (2013).

    Article  Google Scholar 

  167. Okada, Y. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 75, 1135–1154 (1985).

    Article  Google Scholar 

  168. Lindsey, E. et al. 2021. Slip rate deficit and earthquake potential on shallow megathrusts. Nat. Geosci. 14, 321–326 (2021).

    Article  Google Scholar 

  169. Materna, K., Bartlow, N., Wech, A., Williams, C. & Bürgmann, R. Dynamically triggered changes of plate interface coupling in southern Cascadia. Geophys. Res. Lett. 46, 12890–12899 (2019).

    Article  Google Scholar 

  170. Goldfinger, C. et al. Turbidite Event History — Methods and Implications for Holocene Paleoseismicity of the Cascadia Subduction Zone (No. 1661-F) (US Geological Survey, 2012).

  171. Pearl, J., Black, B., Pringle, P., Sherrod, B. & Angster, S. Multiproxy dendrochronological dating of coseismic land-level changes in the Puget lowlands [abstract EP035-01] (American Geophysical Union, 2020).

  172. van Daele, M. et al. Distinguishing intraplate from megathrust earthquakes using lacustrine turbidites. Geology 47, 127–130 (2019).

    Article  Google Scholar 

  173. Erickson, B. et al. The community code verification exercise for simulating sequences of earthquakes and aseismic slip (SEAS). Seismol. Res. Lett. 91, 874–890 (2020).

    Article  Google Scholar 

  174. Brown, J., Prejean, S., Beroza, G., Gomberg, J. & Haeussler, P. Deep low-frequency earthquakes in tectonic tremor along the Alaska–Aleutian subduction zone. J. Geophys. Res. Solid Earth 118, 1079–1090 (2013).

    Article  Google Scholar 

  175. Collot, J. et al. Are rupture zone limits of great subduction earthquakes controlled by upper plate structures? Evidence from multichannel seismic reflection data acquired across the northern Ecuador–southwest Colombia margin. J. Geophys. Res. Solid Earth 109, B11103 (2004).

    Article  Google Scholar 

  176. Haeussler, P. & Plafker, G. Earthquakes in Alaska: Open-File Report 95-624 (US Geological Survey, 2004).

  177. Hayes, G. The finite, kinematic rupture properties of great-sized earthquakes since 1990. Earth Planet. Sci. Lett. 468, 94–100 (2017).

    Article  Google Scholar 

  178. Hong, I. et al. A 600-year-long stratigraphic record of tsunamis in south-central Chile. Holocene 27, 39–51 (2017).

    Article  Google Scholar 

  179. Lay, T. et al. The 2006–2007 Kuril Islands great earthquake sequence. J. Geophys. Res. Solid Earth 114, B11308 (2009).

    Google Scholar 

  180. Moernaut, J. et al. Larger earthquakes recur more periodically: new insights in the megathrust earthquake cycle from lacustrine turbidite records in south-central Chile. Earth Planet. Sci. Lett. 481, 9–19 (2018).

    Article  Google Scholar 

  181. Mondal, D. et al. Microatolls document the 1762 and prior earthquakes along the southeast coast of Bangladesh. Tectonophysics 745, 196–213 (2018).

    Article  Google Scholar 

  182. Okal, E., Borrero, J. & Synolakis, C. Evaluation of tsunami risk from regional earthquakes at Pisco, Peru. Bull. Seismol. Soc. Am. 96, 634–1648 (2006).

    Article  Google Scholar 

  183. Gripp, A. & Gordon, R. Young tracks of hotspots and current plate velocities. Geophys. J. Int. 150, 321–361 (2002).

    Article  Google Scholar 

  184. Christophersen, A., Berryman,K. & Litchfield, N. The GEM Faulted Earth Project (GEM, 2015); https://www.globalquakemodel.org/gempublications/The-GEM-Faulted-Earth-Project.

  185. Hayes, G. et al. Slab2, a comprehensive subduction zone geometry model. Science 362, 58–61 (2018).

    Article  Google Scholar 

  186. Ho, T., Satake, K., Watada, S. & Fujii, Y. Source estimate for the 1960 Chile earthquake from joint inversion of geodetic and transoceanic tsunami data. J. Geophys. Res. Solid Earth 124, 2812–2828 (2019).

    Article  Google Scholar 

  187. Ichinose, G., Somerville, P., Thio, H., Graves, R. & O’Connell, D. Rupture process of the 1964 Prince William Sound, Alaska, earthquake from the combined inversion of seismic, tsunami, and geodetic data. J. Geophys. Res. Solid Earth 112, B07306 (2007).

    Article  Google Scholar 

  188. Atwater, B. F. et al. The Orphan Tsunami of 1700: Japanese Clues to a Parent Earthquake in North America (No. 1707) (US Geological Survey, 2005).

  189. Satake, K., Wang, K. & Atwater, B. F. Fault slip and seismic moment of the 1700 Cascadia earthquake inferred from Japanese tsunami descriptions. J. Geophys. Res. Solid Earth 108, 2535 (2003).

    Article  Google Scholar 

  190. Skarlatoudis, A., Somerville, P. & Thio, H. Source-scaling relations of interface subduction earthquakes for strong ground motion and tsunami simulation. Bull. Seismol. Soc. Am. 106, 1652–1662 (2016).

    Article  Google Scholar 

  191. Allen, T. & Hayes, G. Alternative rupture-scaling relationships for subduction interface and other offshore environments. Bull. Seismol. Soc. Am. 107, 1240–1253 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank G. Hayes and J. Gomberg for helpful and constructive feedback, which helped to improve this manuscript. V.J.S. was supported, in part, by NASA ROSES grant 80NSSC21K0841. D.M. was supported by the Millennium Scientific Initiative (ICM) of the Chilean government through grant NC160025 ‘Millennium Nucleus CYCLO The Seismic cycle along subduction zones’, FONDECYT grants 1181479 and 1190258, and the ANID PIA Anillo ACT192169.

Author information

Authors and Affiliations

Authors

Contributions

E.A.W. and V.J.S. co-led the writing of the manuscript and contributed equally to this article. All authors contributed to the research, writing, figure preparation and editing of this Review.

Corresponding authors

Correspondence to Erin A. Wirth or Valerie J. Sahakian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks K. Satake, S. Lallemand and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Ground motions

Movements of the Earth’s surface due to seismic waves from earthquakes or explosions.

Seismic cycle

A repetitive process during which tectonic stress on a fault builds up over time and then is rapidly released during (coseismic) and after (post-seismic) an earthquake.

Partially locked

When a fault is slipping at some rate between zero and the long-term relative plate motion rate.

Fully locked

When a fault releases zero slip during the interseismic period.

Quasi-periodic behaviour

Earthquake recurrence that exhibits simple, nearly periodic recurrence intervals between earthquakes.

Seismogenic zone

The region of the megathrust fault capable of generating earthquakes.

Velocity-weakening

When a fault exhibits a decrease in frictional strength with increased sliding velocity, promoting earthquake rupture. Velocity weakening friction is a prerequisite for the nucleation of unstable (seismic) slip.

Conditionally stable

When a fault exhibits frictional stability under static loading conditions but could become unstable (seismic) under sufficiently strong dynamic loading.

Slow slip events

(SSEs). Episodic aseismic slip events lasting days to years that result in a few to tens of centimetres of slip along a fault.

Velocity-strengthening

When a fault exhibits frictional strength that increases with sliding, promoting aseismic slip or creep.

Tsunami earthquakes

Slow earthquakes that rupture the shallow (typically <15 km) megathrust and produce anomalously large tsunamis for their magnitude. Tsunami earthquakes also exhibit a depletion of high-frequency seismic energy.

Afterslip

Aseismic slip that typically occurs on a fault following seismic rupture and can last for months to years and is often associated spatio-temporally with aftershocks.

Seismic hazard

In general, any physical phenomenon caused by an earthquake that could produce adverse effects (ground shaking, landslides, liquefaction, land-level change and so on). More specifically, seismic hazard refers to the likelihood of exceeding a threshold level of shaking or ground motion in a particular region and time frame.

Coupling

A quantitative value that can be determined geodetically, indicating the fraction of plate motion that is accommodated seismically.

Interseismic coupling

When a fault is locked or coupled due to friction along the plate boundary, leading to the accumulation of elastic strain that is ultimately released during an earthquake. Faults can be either fully locked or partially locked, or can creep aseismically with no interseismic coupling.

Rupture directivity

The focusing of seismic energy in the direction of fault rupture, leading to stronger ground shaking in the direction of rupture propagation.

Supershear ruptures

Earthquakes in which the rupture velocity is faster than the shear wave (S wave) speeds of the host rock.

Supercycles

Broad periods of strain accumulation followed by a temporal cluster of differently sized megathrust earthquakes, ultimately leading to the complete failure of a subduction zone segment.

Superimposed cycles

Long-term cycles of strain accumulation and release, overlapping in both space and time with a short-term cycle of strain accumulation and release on the same fault.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wirth, E.A., Sahakian, V.J., Wallace, L.M. et al. The occurrence and hazards of great subduction zone earthquakes. Nat Rev Earth Environ 3, 125–140 (2022). https://doi.org/10.1038/s43017-021-00245-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-021-00245-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing