Abstract
The formation, growth and drainage of lakes in Arctic and boreal lowland permafrost regions influence landscape and ecosystem processes. These lake and drained lake basin (L-DLB) systems occupy >20% of the circumpolar Northern Hemisphere permafrost region and ~50% of the area below 300 m above sea level. Climate change is causing drastic impacts to L-DLB systems, with implications for permafrost dynamics, ecosystem functioning, biogeochemical processes and human livelihoods in lowland permafrost regions. In this Review, we discuss how an increase in the number of lakes as a result of permafrost thaw and an intensifying hydrologic regime are not currently offsetting the land area gained through lake drainage, enhancing the dominance of drained lake basins (DLBs). The contemporary transition from lakes to DLBs decreases hydrologic storage, leads to permafrost aggradation, increases carbon sequestration and diversifies the shifting habitat mosaic in Arctic and boreal regions. However, further warming could inhibit permafrost aggradation in DLBs, disrupting the trajectory of important microtopographic controls on carbon fluxes and ecosystem processes in permafrost-region L-DLB systems. Further research is needed to understand the future dynamics of L-DLB systems to improve Earth system models, permafrost carbon feedback assessments, permafrost hydrology linkages, infrastructure development in permafrost regions and the well-being of northern socio-ecological systems.
Key points
-
Lake formation, growth and drainage create a shifting mosaic of landforms that serve as a primary driver of landscape and ecosystem processes in Arctic and boreal lowland permafrost regions.
-
The lake and drained lake basin (L-DLB) system governs geomorphic, hydrologic, ecological and human land use activities in more than 20% of the northern permafrost region.
-
L-DLB systems occur in regions with both ice-rich and ice-poor permafrost terrains.
-
The recent increase in the rate of L-DLB landscape dynamics in lowland permafrost regions highlights their role as a catalyst for understanding Arctic system change in a warming climate.
-
Climate warming will likely increase the loss of lakes and continue to tip the landscape to one more heavily dominated by drained lake basins (DLBs).
-
The rate of permafrost aggradation under DLBs will likely slow, disrupting important microtopographic controls on carbon fluxes and ecosystem processes in permafrost-region L-DLB systems. Constraining the environmental impacts of an increase in the coverage of DLBs in a warming landscape is, therefore, a critical topic for future research.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
van Everdingen, R. O. & International Permafrost Association. Multi-language Glossary of Permafrost and Related Ground-ice Terms in Chinese, English, French, German, Icelandic, Italian Norwegian, Polish, Romanian, Russian, Spanish, and Swedish (Arctic Inst. of North America University of Calgary, 1998).
Brown, J., Sidlauskas, F. J. & Delinski, G. Circum-Arctic map of Permafrost and Ground Ice Conditions (US Geological Survey, 1997).
Zhang, T., Heginbottom, J. A., Barry, R. G. & Brown, J. Further statistics on the distribution of permafrost and ground ice in the Northern Hemisphere. Polar Geogr. 24, 126–131 (2000).
Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 6, 221–233 (2012).
Obu, J. et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth Sci. Rev. 193, 299–316 (2019).
Smith, M. W. & Riseborough, D. W. Climate and the limits of permafrost: a zonal analysis. Permafr. Periglac. Process. 13, 1–15 (2002).
Shur, Y. L. & Jorgenson, M. T. Patterns of permafrost formation and degradation in relation to climate and ecosystems. Permafr. Periglac. Process. 18, 7–19 (2007).
French, H. & Shur, Y. The principles of cryostratigraphy. Earth Sci. Rev. 101, 190–206 (2010).
Jorgenson, M. T. et al. Resilience and vulnerability of permafrost to climate change. Can. J. For. Res. 40, 1219–1236 (2010).
Biskaborn, B. K. et al. Permafrost is warming at a global scale. Nat. Commun. 10, 264 (2019).
Smith, S. L. et al. The changing thermal state of permafrost. Nat. Rev. Earth Environ. 3 https://doi.org/10.1038/s43017-021-00240-1 (2022).
Schuur, E. A. G. et al. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. BioScience 58, 701–714 (2008).
Schuur, Ea. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).
Schaefer, K., Lantuit, H., Romanovsky, V. E., Schuur, E. A. G. & Witt, R. The impact of the permafrost carbon feedback on global climate. Environ. Res. Lett. 9, 085003 (2014).
Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).
Jorgenson, M. T., Shur, Y. L. & Pullman, E. R. Abrupt increase in permafrost degradation in Arctic Alaska. Geophys. Res. Lett. 33, L02503 (2006).
Liljedahl, A. K. et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 9, 312–318 (2016).
Hinzman, L. D. et al. Evidence and implications of recent climate change in Northern Alaska and other Arctic regions. Clim. Change 72, 251–298 (2005).
Vincent, W. F., Lemay, M. & Allard, M. Arctic permafrost landscapes in transition: towards an integrated Earth system approach. Arct. Sci. 3, 39–64 (2017).
Olefeldt, D. et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7, 13043 (2016).
Grosse, G., Jones, B. & Arp, C. in Treatise on Geomorphology Vol. 8 (ed. Shroder, J. F.) 325–353 (Academic, 2013).
Jorgenson, M. T. in Treatise on Geomorphology Vol. 8 (ed. Shroder, J. F.) 313–324 (Academic, 2013).
Hinkel, K. M. et al. Spatial extent, age, and carbon stocks in drained thaw lake basins on the Barrow Peninsula, Alaska. Arct. Antarct. Alp. Res. 35, 291–300 (2003).
Roy-Léveillée, P. & Burn, C. R. A modified landform development model for the topography of drained thermokarst lake basins in fine-grained sediments. Earth Surf. Process. Landf. 41, 1504–1520 (2016).
Jones, B. M. et al. Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska. J. Geophys. Res. Biogeosci. 116, G00M03 (2011).
Czudek, T. & Demek, J. Thermokarst in Siberia and its influence on the development of lowland relief. Quat. Res. 1, 103–120 (1970).
Soloviev, P. A. Thermokarst phenomena and land-forms due to frost heaving in Central Yakutia. Biul. Peryglac. 23, 135–155 (1973).
Hinkel, K. M., Frohn, R. C., Nelson, F. E., Eisner, W. R. & Beck, R. A. Morphometric and spatial analysis of thaw lakes and drained thaw lake basins in the western Arctic Coastal Plain, Alaska. Permafr. Periglac. Process. 16, 327–341 (2005).
Jorgenson, M. T. & Shur, Y. Evolution of lakes and basins in northern Alaska and discussion of the thaw lake cycle. J. Geophys. Res. Earth Surf. 112, F02S17 (2007).
Marsh, P. & Neumann, N. N. Processes controlling the rapid drainage of two ice-rich permafrost-dammed lakes in NW Canada. Hydrol. Process. 15, 3433–3446 (2001).
van Huissteden, J. et al. Methane emissions from permafrost thaw lakes limited by lake drainage. Nat. Clim. Chang. 1, 119–123 (2011).
Walter Anthony, K. et al. 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nat. Commun. 9, 3262 (2018).
Smith, L. C., Sheng, Y., MacDonald, G. M. & Hinzman, L. D. Disappearing Arctic lakes. Science 308, 1429–1429 (2005).
Roberts, K. E. et al. Climate and permafrost effects on the chemistry and ecosystems of High Arctic Lakes. Sci. Rep. 7, 13292 (2017).
Larsen, A. S., O’Donnell, J. A., Schmidt, J. H., Kristenson, H. J. & Swanson, D. K. Physical and chemical characteristics of lakes across heterogeneous landscapes in arctic and subarctic Alaska. J. Geophys. Res. Biogeosci. 122, 989–1008 (2017).
Arp, C. D. et al. Ice roads through lake-rich Arctic watersheds: Integrating climate uncertainty and freshwater habitat responses into adaptive management. Arct. Antarct. Alp. Res. 51, 9–23 (2019).
Arp, C. D. et al. Recurring outburst floods from drained lakes: an emerging Arctic hazard. Front. Ecol. Environ. 18, 384–390 (2020).
Walker, D. A., Raynolds, M. K., Buchhorn, M. & Peirce, J. L. Landscape and Permafrost Changes in The Prudhoe Bay Oilfield, Alaska (Alaska Geobotany Center, 2014).
Morgenstern, A., Grosse, G., Günther, F., Fedorova, I. & Schirrmeister, L. Spatial analyses of thermokarst lakes and basins in Yedoma landscapes of the Lena Delta. Cryosphere 5, 849–867 (2011).
Morgenstern, A. et al. Evolution of thermokarst in East Siberian ice-rich permafrost: a case study. Geomorphology 201, 363–379 (2013).
Farquharson, L. M., Mann, D. H., Grosse, G., Jones, B. M. & Romanovsky, V. E. Spatial distribution of thermokarst terrain in Arctic Alaska. Geomorphology 273, 116–133 (2016).
Wolfe, S., Murton, J., Bateman, M. & Barlow, J. Oriented-lake development in the context of late Quaternary landscape evolution, McKinley Bay Coastal Plain, western Arctic Canada. Quat. Sci. Rev. 242, 106414 (2020).
Ulrich, M. et al. Differences in behavior and distribution of permafrost-related lakes in Central Yakutia and their response to climatic drivers. Water Resour. Res. 53, 1167–1188 (2017).
Andresen, C. G. & Lougheed, V. L. Disappearing Arctic tundra ponds: Fine-scale analysis of surface hydrology in drained thaw lake basins over a 65 year period (1948–2013). J. Geophys. Res. Biogeosci. 120, 466–479 (2015).
MacDonald, L. A. et al. A synthesis of thermokarst lake water balance in high-latitude regions of North America from isotope tracers. Arct. Sci. 3, 118–149 (2017).
Walvoord, M. A. & Striegl, R. G. Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: Potential impacts on lateral export of carbon and nitrogen. Geophys. Res. Lett. 34, L12402 (2007).
Fedorov, A. N. et al. Estimating the water balance of a thermokarst lake in the middle of the Lena River basin, eastern Siberia. Ecohydrology 7, 188–196 (2014).
Veremeeva, A., Nitze, I., Günther, F., Grosse, G. & Rivkina, E. Geomorphological and climatic drivers of thermokarst lake area increase trend (1999–2018) in the Kolyma Lowland Yedoma region, North-Eastern Siberia. Remote Sens. 13, 178 (2021).
Bockheim, J. G. & Hinkel, K. M. Accumulation of excess ground ice in an age sequence of drained thermokarst lake basins, Arctic Alaska. Permafr. Periglac. Process. 23, 231–236 (2012).
Kanevskiy, M. et al. Ground ice in the upper permafrost of the Beaufort Sea coast of Alaska. Cold Reg. Sci. Technol. 85, 56–70 (2013).
Kanevskiy, M. et al. Cryostratigraphy and permafrost evolution in the lacustrine lowlands of west-central Alaska. Permafr. Periglac. Process. 25, 14–34 (2014).
Ulrich, M., Grosse, G., Strauss, J. & Schirrmeister, L. Quantifying wedge-ice volumes in Yedoma and thermokarst basin deposits. Permafr. Periglac. Process. 25, 151–161 (2014).
West, J. J. & Plug, L. J. Time-dependent morphology of thaw lakes and taliks in deep and shallow ground ice. J. Geophys. Res. Earth Surf. 113, F01009 (2008).
Rowland, J. C., Travis, B. J. & Wilson, C. J. The role of advective heat transport in talik development beneath lakes and ponds in discontinuous permafrost. Geophys. Res. Lett. 38, 48497 (2011).
Langer, M. et al. Rapid degradation of permafrost underneath waterbodies in tundra landscapes — Toward a representation of thermokarst in land surface models. J. Geophys. Res. Earth Surf. 121, 2446–2470 (2016).
Roy-Leveillee, P. & Burn, C. R. Near-shore talik development beneath shallow water in expanding thermokarst lakes, Old Crow Flats, Yukon. J. Geophys. Res. Earth Surf. 122, 1070–1089 (2017).
Creighton, A. L. et al. Transient electromagnetic surveys for the determination of talik depth and geometry beneath thermokarst lakes. J. Geophys. Res. Solid Earth 123, 9310–9323 (2018).
Pokrovsky, O. S. et al. Thermokarst lakes of Western Siberia: a complex biogeochemical multidisciplinary approach. Int. J. Environ. Stud. 71, 733–748 (2014).
Jongejans, L. L. et al. Organic matter characteristics in yedoma and thermokarst deposits on Baldwin Peninsula, west Alaska. Biogeosciences 15, 6033–6048 (2018).
Koch, J. C., Fondell, T. F., Laske, S. & Schmutz, J. A. Nutrient dynamics in partially drained arctic thaw lakes. J. Geophys. Res. Biogeosci. 123, 440–452 (2018).
Heslop, J. K. et al. A synthesis of methane dynamics in thermokarst lake environments. Earth Sci. Rev. 210, 103365 (2020).
Skeeter, J., Christen, A., Laforce, A.-A., Humphreys, E. & Henry, G. Vegetation influence and environmental controls on greenhouse gas fluxes from a drained thermokarst lake in the western Canadian Arctic. Biogeosciences 17, 4421–4441 (2020).
Li, B. et al. Thaw pond development and initial vegetation succession in experimental plots at a Siberian lowland tundra site. Plant Soil 420, 147–162 (2017).
Lantz, T. C. Vegetation succession and environmental conditions following catastrophic lake drainage in Old Crow Flats, Yukon. Arctic 70, 177–189 (2017).
Loiko, S., Klimova, N., Kuzmina, D. & Pokrovsky, O. Lake drainage in permafrost regions produces variable plant communities of high biomass and productivity. Plants 9, 867 (2020).
Carey, M. P. & Zimmerman, C. E. Physiological and ecological effects of increasing temperature on fish production in lakes of Arctic Alaska. Ecol. Evol. 4, 1981–1993 (2014).
Bégin, P. N. & Vincent, W. F. Permafrost thaw lakes and ponds as habitats for abundant rotifer populations. Arct. Sci. 3, 354–377 (2017).
Jones, B. M. et al. A lake-centric geospatial database to guide research and inform management decisions in an Arctic watershed in northern Alaska experiencing climate and land-use changes. Ambio 46, 769–786 (2017).
Istomin, K. V. & Habeck, J. O. Permafrost and indigenous land use in the northern Urals: Komi and Nenets reindeer husbandry. Polar Sci. 10, 278–287 (2016).
Crate, S. et al. Permafrost livelihoods: A transdisciplinary review and analysis of thermokarst-based systems of indigenous land use. Anthropocene 18, 89–104 (2017).
Raynolds, M. K. et al. Cumulative geoecological effects of 62 years of infrastructure and climate change in ice-rich permafrost landscapes, Prudhoe Bay Oilfield, Alaska. Glob. Chang. Biol. 20, 1211–1224 (2014).
Hinkel, K. M. et al. Thermokarst lakes on the Arctic coastal plain of Alaska: geomorphic controls on bathymetry. Permafr. Periglac. Process. 23, 218–230 (2012).
Mackay, J. R. Catastrophic lake drainage, Tuktoyaktuk Peninsula area, District of Mackenzie. Curr. Res. D Geol. Surv. Canada 88, 83–90 (1988).
Burn, C. R. & Smith, M. W. Development of thermokarst lakes during the holocene at sites near Mayo, Yukon territory. Permafr. Periglac. Process. 1, 161–175 (1990).
Lara, M. J. & Chipman, M. L. Periglacial lake origin influences the likelihood of lake drainage in northern Alaska. Remote Sens. 13, 852 (2021).
Edwards, M., Grosse, G., Jones, B. M. & McDowell, P. The evolution of a thermokarst-lake landscape: Late Quaternary permafrost degradation and stabilization in interior Alaska. Sediment. Geol. 340, 3–14 (2016).
Bouchard, F. et al. Thermokarst lake inception and development in syngenetic ice-wedge polygon terrain during a cooling climatic trend, Bylot Island (Nunavut), eastern Canadian Arctic. Cryosphere 14, 2607–2627 (2020).
Arp, C. D., Jones, B. M., Urban, F. E. & Grosse, G. Hydrogeomorphic processes of thermokarst lakes with grounded-ice and floating-ice regimes on the Arctic coastal plain, Alaska. Hydrol. Process. 25, 2422–2438 (2011).
O’Neill, H. B., Roy-Leveillee, P., Lebedeva, L. & Ling, F. Recent advances (2010–2019) in the study of taliks. Permafr. Periglac. Process. 31, 346–357 (2020).
Rangel, R. C. et al. Geophysical observations of taliks below drained lake basins on the Arctic Coastal Plain of Alaska. J. Geophys. Res. Solid Earth 126, e2020JB020889 (2021).
Parsekian, A. D. et al. Detecting unfrozen sediments below thermokarst lakes with surface nuclear magnetic resonance. Geophys. Res. Lett. 40, 535–540 (2013).
Jones, B. M. et al. Identifying historical and future potential lake drainage events on the western Arctic coastal plain of Alaska. Permafr. Periglac. Process. 31, 110–127 (2020).
Yoshikawa, K. & Hinzman, L. D. Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska. Permafr. Periglac. Process. 14, 151–160 (2003).
Lantz, T. C. & Turner, K. W. Changes in lake area in response to thermokarst processes and climate in Old Crow Flats, Yukon. J. Geophys. Res. Biogeosci. 120, 513–524 (2015).
Hinkel, K. M. et al. Methods to assess natural and anthropogenic thaw lake drainage on the western Arctic coastal plain of northern Alaska. J. Geophys. Res. Earth Surf. 112, F02S16 (2007).
Jones, B. M. & Arp, C. D. Observing a catastrophic thermokarst lake drainage in northern Alaska. Permafr. Periglac. Process. 26, 119–128 (2015).
Irrgang, A. et al. Drivers, dynamics and impacts of changing Arctic coasts. Nat. Rev. Earth Environ. 3 https://doi.org/10.1038/s43017-021-00232-1 (2022).
Veremeeva, A. & Glushkova, N. Formation of relief in the regions of Ice Complex deposits distribution: remote sensing and GIS studies in the Kolyma lowland tundra. Earths Cryosphere XX, 14–24 (2016).
Mackay, J. R. A full-scale field experiment (1978–1995) on the growth of permafrost by means of lake drainage, western Arctic coast: a discussion of the method and some results. Can. J. Earth Sci. 34, 17–33 (1997).
Mackay, J. R. & Burn, C. R. The first 20 years (1978-1979 to 1998-1999) of active-layer development, Illisarvik experimental drained lake site, western Arctic coast, Canada. Can. J. Earth Sci. 39, 1657–1674 (2002).
Wilson, M. A., Burn, C. R. & Humphreys, E. R. in 18th International Conference on Cold Regions Engineering and 8th Canadian Permafrost Conference 687–695 (American Society of Civil Engineers, 2019).
Mackay, J. R. & Burn, C. R. The first 20 years (1978-1979 to 1998–1999) of ice-wedge growth at the Illisarvik experimental drained lake site, western Arctic coast, Canada. Can. J. Earth Sci. 39, 95–111 (2002).
Regmi, P., Grosse, G., Jones, M. C., Jones, B. M. & Anthony, K. W. Characterizing post-drainage succession in thermokarst lake basins on the Seward Peninsula, Alaska with TerraSAR-X backscatter and landsat-based NDVI data. Remote Sens. 4, 3741–3765 (2012).
Wetterich, S. et al. Holocene thermokarst and pingo development in the Kolyma Lowland (NE Siberia). Permafr. Periglac. Process. 29, 182–198 (2018).
Heijmans, M. M. P. D. et al. Tundra vegetation change and impacts on permafrost. Nat. Rev. Earth Environ. 3 https://doi.org/10.1038/s43017-021-00233-0 (2022).
Kokelj, S. V., Lantz, T. C., Tunnicliffe, J., Segal, R. & Lacelle, D. Climate-driven thaw of permafrost preserved glacial landscapes, northwestern Canada. Geology 45, 371–374 (2017).
Lindgren, A., Hugelius, G. & Kuhry, P. Extensive loss of past permafrost carbon but a net accumulation into present-day soils. Nature 560, 219–222 (2018).
Brosius, L. S. et al. Spatiotemporal patterns of northern lake formation since the Last Glacial Maximum. Quat. Sci. Rev. 253, 106773 (2021).
Grosse, G. et al. Geological and geomorphological evolution of a sedimentary periglacial landscape in Northeast Siberia during the Late Quaternary. Geomorphology 86, 25–51 (2007).
Smith, L. C., Sheng, Y. & MacDonald, G. M. A first pan-Arctic assessment of the influence of glaciation, permafrost, topography and peatlands on northern hemisphere lake distribution. Permafr. Periglac. Process. 18, 201–208 (2007).
Anderson, L., Edwards, M., Shapley, M. D., Finney, B. P. & Langdon, C. Holocene thermokarst lake dynamics in northern interior Alaska: the interplay of climate, fire, and subsurface hydrology. Front. Earth Sci. 7, 53 (2019).
Schirrmeister, L., Froese, D., Tumskoy, V., Grosse, G. & Wetterich, S. in Encyclopedia of Quaternary Science (Second Edition) (eds Elias, S. A. & Mock, C. J.) 542–552 (Elsevier, 2013).
Gaglioti, B. V. et al. Aeolian stratigraphy describes ice-age paleoenvironments in unglaciated Arctic Alaska. Quat. Sci. Rev. 182, 175–190 (2018).
Walter, K. M., Edwards, M. E., Grosse, G., Zimov, S. A. & Chapin, F. S. Thermokarst lakes as a source of atmospheric CH4 during the last deglaciation. Science 318, 633–636 (2007).
Kaplina, T. N. Alas complex of northern Yakutia. Kriosf. Zemli 13, 3–17 (2009).
Bouchard, F. et al. Paleolimnology of thermokarst lakes: a window into permafrost landscape evolution. Arct. Sci. 3, 91–117 (2017).
Lenz, J. et al. Evidence of multiple thermokarst lake generations from an 11 800-year-old permafrost core on the northern Seward Peninsula, Alaska. Boreas 45, 584–603 (2016).
Loisel, J. et al. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. Holocene 24, 1028–1042 (2014).
Treat, C. C. & Jones, M. C. Near-surface permafrost aggradation in Northern Hemisphere peatlands shows regional and global trends during the past 6000 years. Holocene 28, 998–1010 (2018).
Jones, M. C., Grosse, G., Jones, B. M. & Walter Anthony, K. Peat accumulation in drained thermokarst lake basins in continuous, ice-rich permafrost, northern Seward Peninsula, Alaska. J. Geophys. Res. Biogeosci. 117, G00M07 (2012).
Fuchs, M. et al. Organic carbon and nitrogen stocks along a thermokarst lake sequence in Arctic Alaska. J. Geophys. Res. Biogeosci. 124, 1230–1247 (2019).
Anthony, K. M. W. et al. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature 511, 452–456 (2014).
Andreev, A. A. et al. Late Saalian and Eemian palaeoenvironmental history of the Bol’shoy Lyakhovsky Island (Laptev Sea region, Arctic Siberia). Boreas 33, 319–348 (2004).
Bergstedt, H. et al. Remote sensing-based statistical approach for defining drained lake basins in a continuous permafrost region, North Slope of Alaska. Remote Sens. 13, 2539 (2021).
Lindgren, P. R., Farquharson, L. M., Romanovsky, V. E. & Grosse, G. Landsat-based lake distribution and changes in western Alaska permafrost regions between the 1970s and 2010s. Environ. Res. Lett. 16, 025006 (2021).
Nitze, I. et al. Landsat-based trend analysis of lake dynamics across northern permafrost regions. Remote Sens. 9, 640 (2017).
Nitze, I., Grosse, G., Jones, B. M., Romanovsky, V. E. & Boike, J. Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic. Nat. Commun. 9, 5423 (2018).
Swanson, D. K. Thermokarst and precipitation drive changes in the area of lakes and ponds in the National Parks of northwestern Alaska, 1984–2018. Arct. Antarct. Alp. Res. 51, 265–279 (2019).
Veremeeva, A. Quaternary deposits map of Yana-Indigirka and Kolyma lowlands tundra zone, R-55-57, based on Landsat imagery. PANGAEA https://doi.org/10.1594/PANGAEA.927292 (2021).
Boike, J. et al. Satellite-derived changes in the permafrost landscape of central Yakutia, 2000–2011: wetting, drying, and fires. Glob. Planet. Change 139, 116–127 (2016).
Jones, B. M. et al. Increase in beaver dams controls surface water and thermokarst dynamics in an Arctic tundra region, Baldwin Peninsula, northwestern Alaska. Environ. Res. Lett. 15, 075005 (2020).
Morgenstern, A. et al. Thermo-erosional valleys in Siberian ice-rich permafrost. Permafr. Periglac. Process. 32, 59–75 (2021).
in’t Zandt, M. H., Liebner, S. & Welte, C. U. Roles of thermokarst lakes in a warming world. Trends Microbiol. 28, 769–779 (2020).
Kessler, M. A., Plug, L. J. & Walter Anthony, K. M. Simulating the decadal- to millennial-scale dynamics of morphology and sequestered carbon mobilization of two thermokarst lakes in NW Alaska. J. Geophys. Res. Biogeosci. 117, G00M06 (2012).
Nitze, I., Cooley, S. W., Duguay, C. R., Jones, B. M. & Grosse, G. The catastrophic thermokarst lake drainage events of 2018 in northwestern Alaska: fast-forward into the future. Cryosphere 14, 4279–4297 (2020).
Briggs, M. A. et al. New permafrost is forming around shrinking Arctic lakes, but will it last? Geophys. Res. Lett. 41, 1585–1592 (2014).
Kaverin, D. A. et al. Long-term changes in the ground thermal regime of an artificially drained thaw-lake basin in the Russian European north. Permafr. Periglac. Process. 29, 49–59 (2018).
Bring, A. et al. Arctic terrestrial hydrology: a synthesis of processes, regional effects, and research challenges. J. Geophys. Res. Biogeosci. 121, 621–649 (2016).
Walvoord, M. A. & Kurylyk, B. L. Hydrologic impacts of thawing permafrost — a review. Vadose Zone J. 15, 1–20 (2016).
Lafrenière, M. J. & Lamoureux, S. F. Effects of changing permafrost conditions on hydrological processes and fluvial fluxes. Earth Sci. Rev. 191, 212–223 (2019).
Ala-aho, P. et al. Permafrost and lakes control river isotope composition across a boreal Arctic transect in the Western Siberian lowlands. Environ. Res. Lett. 13, 034028 (2018).
Woo, M.-K. & Guan, X. J. Hydrological connectivity and seasonal storage change of tundra ponds in a polar oasis environment, Canadian High Arctic. Permafr. Periglac. Process. 17, 309–323 (2006).
Karlsson, J. M., Lyon, S. W. & Destouni, G. Thermokarst lake, hydrological flow and water balance indicators of permafrost change in Western Siberia. J. Hydrol. 464–465, 459–466 (2012).
Hiyama, T., Asai, K., Kolesnikov, A. B., Gagarin, L. A. & Shepelev, V. V. Estimation of the residence time of permafrost groundwater in the middle of the Lena River basin, eastern Siberia. Environ. Res. Lett. 8, 035040 (2013).
Olenchenko, V., Gagarin, L., Khristoforov, I. I., Kolesnikov, A. B. & Efremov, V. S. The structure of a site with thermo-suffosion processes within Bestyakh terrace of the Lena River, according to geophysical data. Earths Cryosphere 21, 16–26 (2017).
Riordan, B., Verbyla, D. & McGuire, A. D. Shrinking ponds in subarctic Alaska based on 1950–2002 remotely sensed images. J. Geophys. Res. Biogeosci. 111, 1G04002 (2006).
Pohl, S., Marsh, P., Onclin, C. & Russell, M. The summer hydrology of a small upland tundra thaw lake: implications to lake drainage. Hydrol. Process. 23, 2536–2546 (2009).
Turner, K. W., Wolfe, B. B. & Edwards, T. W. D. Characterizing the role of hydrological processes on lake water balances in the Old Crow Flats, Yukon Territory, Canada, using water isotope tracers. J. Hydrol. 386, 103–117 (2010).
Arp, C. D., Whitman, M. S., Kemnitz, R. & Stuefer, S. L. Evidence of hydrological intensification and regime change from northern Alaskan watershed runoff. Geophys. Res. Lett. 47, e2020GL089186 (2020).
Beel, C. R. et al. Emerging dominance of summer rainfall driving High Arctic terrestrial-aquatic connectivity. Nat. Commun. 12, 1448 (2021).
Iijima, Y., Nakamura, T., Park, H., Tachibana, Y. & Fedorov, A. N. Enhancement of Arctic storm activity in relation to permafrost degradation in eastern Siberia. Int. J. Climatol. 36, 4265–4275 (2016).
Kuhn, C. & Butman, D. Declining greenness in Arctic-boreal lakes. Proc. Natl Acad. Sci. USA 118, e2021219118 (2021).
Bowling, L. C., Kane, D. L., Gieck, R. E., Hinzman, L. D. & Lettenmaier, D. P. The role of surface storage in a low-gradient Arctic watershed. Water Resour. Res. 39, 1087 (2003).
Wik, M., Varner, R. K., Anthony, K. W., MacIntyre, S. & Bastviken, D. Climate-sensitive northern lakes and ponds are critical components of methane release. Nat. Geosci. 9, 99–105 (2016).
Heslop, J. K. et al. Thermokarst lake methanogenesis along a complete talik profile. Biogeosciences 12, 4317–4331 (2015).
Walter, K. M., Zimov, S. A., Chanton, J. P., Verbyla, D. & Chapin, F. S. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443, 71–75 (2006).
Lara, M. J. et al. Polygonal tundra geomorphological change in response to warming alters future CO2 and CH4 flux on the Barrow Peninsula. Glob. Chang. Biol. 21, 1634–1651 (2015).
Sepulveda-Jauregui, A., Walter Anthony, K. M., Martinez-Cruz, K., Greene, S. & Thalasso, F. Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska. Biogeosciences 12, 3197–3223 (2015).
Elder, C. D. et al. Greenhouse gas emissions from diverse Arctic Alaskan lakes are dominated by young carbon. Nat. Clim. Chang. 8, 166–171 (2018).
Miner, K. R. et al. Permafrost carbon emissions in a changing Arctic. Nat. Rev. Earth. Environ. 3 https://doi.org/10.1038/s43017-021-00230-3 (2022).
Walter Anthony, K. et al. Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s. Nat. Geosci. 9, 679–682 (2016).
Bogard, M. J. et al. Negligible cycling of terrestrial carbon in many lakes of the arid circumpolar landscape. Nat. Geosci. 12, 180–185 (2019).
Shirokova, L. S. et al. Lichen, moss and peat control of C, nutrient and trace metal regime in lakes of permafrost peatlands. Sci. Total Environ. 782, 146737 (2021).
Hughes-Allen, L. et al. Seasonal patterns in greenhouse gas emissions from thermokarst lakes in Central Yakutia (Eastern Siberia). Limnol. Oceanogr. 66, S98–S116 (2021).
Lindgren, P. R., Grosse, G., Walter Anthony, K. M. & Meyer, F. J. Detection and spatiotemporal analysis of methane ebullition on thermokarst lake ice using high-resolution optical aerial imagery. Biogeosciences 13, 27–44 (2016).
Engram, M. et al. Remote sensing northern lake methane ebullition. Nat. Clim. Chang. 10, 511–517 (2020).
Matthews, E., Johnson, M. S., Genovese, V., Du, J. & Bastviken, D. Methane emission from high latitude lakes: methane-centric lake classification and satellite-driven annual cycle of emissions. Sci. Rep. 10, 12465 (2020).
Zona, D. et al. Characterization of the carbon fluxes of a vegetated drained lake basin chronosequence on the Alaskan Arctic Coastal Plain. Glob. Chang. Biol. 16, 1870–1882 (2010).
Zona, D. et al. Increased CO2 loss from vegetated drained lake tundra ecosystems due to flooding. Glob. Biogeochem. Cycles 26, GB2004 (2012).
Treat, C. C. et al. Predicted vulnerability of carbon in permafrost peatlands with future climate change and permafrost thaw in Western Canada. J. Geophys. Res. Biogeosci. 126, e2020JG005872 (2021).
Frolking, S. & Roulet, N. T. Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions. Glob. Chang. Biol. 13, 1079–1088 (2007).
Wickland, K. et al. in AGU Fall Meeting Abstracts 2009 U41C-0057 (American Geophysical Union, 2009).
Berkes, F., Folke, C. & Colding, J. Linking Social and Ecological Systems: Management Practices and Social Mechanisms for Building Resilience (Cambridge Univ. Press, 2000).
Heino, J. et al. Lakes in the era of global change: moving beyond single-lake thinking in maintaining biodiversity and ecosystem services. Biol. Rev. 96, 89–106 (2021).
White, D. M., Gerlach, S. C., Loring, P., Tidwell, A. C. & Chambers, M. C. Food and water security in a changing arctic climate. Environ. Res. Lett. 2, 045018 (2007).
Medeiros, A. S., Wood, P., Wesche, S. D., Bakaic, M. & Peters, J. F. Water security for northern peoples: review of threats to Arctic freshwater systems in Nunavut, Canada. Reg. Environ. Change 17, 635–647 (2017).
Daley, K. et al. Chemical and microbial characteristics of municipal drinking water supply systems in the Canadian Arctic. Environ. Sci. Pollut. Res. 25, 32926–32937 (2018).
Gora, L. S. et al. Microbiological water quality in a decentralized Arctic drinking water system. Environ. Sci. Water Res. Technol. 6, 1855–1868 (2020).
Martin, D. et al. Drinking water and potential threats to human health in Nunavik: adaptation strategies under climate change conditions. Arctic 60, 195–202 (2007).
Vinokurova, D. E. & Prokhorova, M. N. Features of reindeer husbandry and trends in changing the number of domestic deer in the Republic of Sakha (Yakutia) [Russian]. Issues Mod. Econ. 126–135 (2013).
Zakharova, E. A. et al. Recent dynamics of hydro-ecosystems in thermokarst depressions in Central Siberia from satellite and in situ observations: Importance for agriculture and human life. Sci. Total Environ. 615, 1290–1304 (2018).
Rees, W. G., Stammler, F. M., Danks, F. S. & Vitebsky, P. Vulnerability of European reindeer husbandry to global change. Clim. Change 87, 199 (2007).
Jones, B. M. et al. Arctic lake physical processes and regimes with implications for winter water availability and management in the national petroleum reserve Alaska. Environ. Manag. 43, 1071–1084 (2009).
Prowse, T. D. et al. Implications of climate change for economic development in northern Canada: Energy, resource, and transportation sectors. Ambio 38, 272–281 (2009).
Instanes, A. et al. Changes to freshwater systems affecting Arctic infrastructure and natural resources. J. Geophys. Res. Biogeosci. 121, 567–585 (2016).
Hjort, J. et al. Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nat. Commun. 9, 5147 (2018).
Hjort, J. et al. Impacts of permafrost degradation on infrastructure. Nat. Rev. Earth Environ. 3 https://doi.org/10.1038/s43017-021-00247-8 (2022).
Streletskiy, D. A., Suter, L. J., Shiklomanov, N. I., Porfiriev, B. N. & Eliseev, D. O. Assessment of climate change impacts on buildings, structures and infrastructure in the Russian regions on permafrost. Environ. Res. Lett. 14, 025003 (2019).
O’Neill, H. B. et al. Permafrost thaw and northern development. Nat. Clim. Chang. 10, 722–723 (2020).
Rajendran, S. et al. Monitoring oil spill in Norilsk, Russia using satellite data. Sci. Rep. 11, 3817 (2021).
Holgerson, M. A. & Raymond, P. A. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nat. Geosci. 9, 222–226 (2016).
Thornton, B. F., Wik, M. & Crill, P. M. Double-counting challenges the accuracy of high-latitude methane inventories. Geophys. Res. Lett. 43, 12,569–12,577 (2016).
Bruhwiler, L., Parmentier, F.-J. W., Crill, P., Leonard, M. & Palmer, P. I. The Arctic carbon cycle and its response to changing climate. Curr. Clim. Change Rep. 7, 14–34 (2021).
Rautio, M. et al. Shallow freshwater ecosystems of the circumpolar Arctic. Écoscience 18, 204–222 (2011).
Meltofte, H. et al. Arctic Biodiversity Assessment 2013: Synthesis (CAFF, 2013).
Vincent, W. F. & Laybourn-Parry, J. Polar Lakes and Rivers: Limnology of Arctic and Antarctic Aquatic Ecosystems (Oxford Univ. Press, 2008).
Smith, P. A. et al. Status and trends of tundra birds across the circumpolar Arctic. Ambio 49, 732–748 (2020).
Stanford, J. A., Lorang, M. S. & Hauer, F. R. The shifting habitat mosaic of river ecosystems. Int. Ver. Theor. Angew. Limnol. Verh. 29, 123–136 (2005).
Thorp, J. H., Thoms, M. C. & Delong, M. D. The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Res. Appl. 22, 123–147 (2006).
Kleindl, W. J., Rains, M. C., Marshall, L. A. & Hauer, F. R. Fire and flood expand the floodplain shifting habitat mosaic concept. Freshw. Sci. 34, 1366–1382 (2015).
Lim, I. E., Wilson, S. K., Holmes, T. H., Noble, M. M. & Fulton, C. J. Specialization within a shifting habitat mosaic underpins the seasonal abundance of a tropical fish. Ecosphere 7, e01212 (2016).
Mouw, J. E. B. et al. Recruitment and successional dynamics diversify the shifting habitat mosaic of an Alaskan floodplain. River Res. Appl. 29, 671–685 (2013).
Vonk, J. E. et al. Reviews and syntheses: effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences 12, 7129–7167 (2015).
Brennan, S. R. et al. Shifting habitat mosaics and fish production across river basins. Science 364, 783–786 (2019).
Johaneman, T. M. et al. Classifying connectivity to guide aquatic habitat management in an arctic coastal plain watershed experiencing land use and climate change. Arct. Antarct. Alp. Res. 52, 476–490 (2020).
Scott, R. W., Tank, S. E., Wang, X. & Quinlan, R. Are different benthic communities in Arctic delta lakes distinguishable along a hydrological connectivity gradient using a rapid bioassessment approach? Arct. Sci. 6, 463–487 (2020).
Stralberg, D. et al. Climate-change refugia in boreal North America: what, where, and for how long? Front. Ecol. Environ. 18, 261–270 (2020).
Tarasenko, T. V., Kravtsova, V. I. & Pizhankova, E. I. Study of thermokarst lakes dynamics in the coastal part of the Yana-Indigirka Lowland using remote data. In Proceedings of the Conference Geocryological Mapping: Problems and Prospects 135–138 (Lomonosov Moscow State Univ., 2013).
Grosse, G., Schirrmeister, L., Kunitsky, V. V. & Hubberten, H.-W. The use of CORONA images in remote sensing of periglacial geomorphology: an illustration from the NE Siberian coast. Permafr. Periglac. Process. 16, 163–172 (2005).
Grosse, G., Schirrmeister, L. & Malthus, T. J. Application of Landsat-7 satellite data and a DEM for the quantification of thermokarst-affected terrain types in the periglacial Lena–Anabar coastal lowland. Polar Res. 25, 51–67 (2006).
Jones, B. M. et al. Recent Arctic tundra fire initiates widespread thermokarst development. Sci. Rep. 5, 15865 (2015).
Amante, C. & Eakins, B. W. ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA technical memorandum NESDIS NGDC-24. Natl Geophys. Data Center NOAA 10, V5C8276M (2009).
Acknowledgements
B.M.J., L.M.F., M.Z.K., B.V.G. and A.L.B. were supported by NSF grant OPP-1806213. B.M.J. and B.V.G. were supported by NSF grant OPP-1850578. B.M.J. was supported by NSF grant OPP-1903735. M.Z.K. was supported by NSF grant OPP-1820883. A.D.P. was supported by NSF grant OPP-1806202. K.M.H. was supported by NSF grant OPP-1806287. G.G. received support through BMBF KoPf Synthesis (03F0834B). P.R.-L. was supported by Gouvernement du Québec under the 2030 Plan for a Green Economy, Sentinel North programme of Université Laval (Canada First Research Excellence Fund) and ArcticNet, a Network of Centres of Excellence of Canada. Additional support was provided by an Action Groups award from the International Permafrost Association and the Teshekpuk Lake Observatory through the National Fish and Wildlife Foundation (NFWF-8006.19.063445). The authors would like to thank H. Foss for the graphical contributions to Fig. 3.
Author information
Authors and Affiliations
Contributions
B.M.J. led the synthesis and organized the international collaborative author team. All co-authors provided input on the manuscript text, figures, discussion of scientific content, regional expertise and contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Earth & Environment thanks Y. Iijima and the other, anonymous, reviewers for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Periglacial
-
Processes influenced by intense freeze–thaw and/or permafrost.
- Taliks
-
Ground in permafrost regions that remains unfrozen year round.
- Thermokarst lake
-
Lake that forms as a result of subsidence of the land surface due to the melting of ground ice.
- Bank overtopping
-
The process of water spilling over the lake bank, promoting lateral drainage.
- Piping or tunnel flow
-
Drainage through open frost cracks, underground erosional channels or layers of permeable material in taliks.
- Pingos
-
A perennial frost mound consisting of a core of massive ice, produced primarily by injection of water, and covered with soil and vegetation.
- Bølling–Allerød warming
-
An abrupt warm period that occurred during the final stages of the last glacial period.
Rights and permissions
About this article
Cite this article
Jones, B.M., Grosse, G., Farquharson, L.M. et al. Lake and drained lake basin systems in lowland permafrost regions. Nat Rev Earth Environ 3, 85–98 (2022). https://doi.org/10.1038/s43017-021-00238-9
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s43017-021-00238-9
This article is cited by
-
Assessing hydrothermal changes in the upper Yellow River Basin amidst permafrost degradation
npj Climate and Atmospheric Science (2024)
-
No respite from permafrost-thaw impacts in the absence of a global tipping point
Nature Climate Change (2024)
-
Permafrost degradation and its consequences for carbon storage in soils of Interior Alaska
Biogeochemistry (2024)
-
Tracking lake drainage events and drained lake basin vegetation dynamics across the Arctic
Nature Communications (2023)
-
Permafrost Monitoring from Space
Surveys in Geophysics (2023)