Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lake and drained lake basin systems in lowland permafrost regions

Abstract

The formation, growth and drainage of lakes in Arctic and boreal lowland permafrost regions influence landscape and ecosystem processes. These lake and drained lake basin (L-DLB) systems occupy >20% of the circumpolar Northern Hemisphere permafrost region and ~50% of the area below 300 m above sea level. Climate change is causing drastic impacts to L-DLB systems, with implications for permafrost dynamics, ecosystem functioning, biogeochemical processes and human livelihoods in lowland permafrost regions. In this Review, we discuss how an increase in the number of lakes as a result of permafrost thaw and an intensifying hydrologic regime are not currently offsetting the land area gained through lake drainage, enhancing the dominance of drained lake basins (DLBs). The contemporary transition from lakes to DLBs decreases hydrologic storage, leads to permafrost aggradation, increases carbon sequestration and diversifies the shifting habitat mosaic in Arctic and boreal regions. However, further warming could inhibit permafrost aggradation in DLBs, disrupting the trajectory of important microtopographic controls on carbon fluxes and ecosystem processes in permafrost-region L-DLB systems. Further research is needed to understand the future dynamics of L-DLB systems to improve Earth system models, permafrost carbon feedback assessments, permafrost hydrology linkages, infrastructure development in permafrost regions and the well-being of northern socio-ecological systems.

Key points

  • Lake formation, growth and drainage create a shifting mosaic of landforms that serve as a primary driver of landscape and ecosystem processes in Arctic and boreal lowland permafrost regions.

  • The lake and drained lake basin (L-DLB) system governs geomorphic, hydrologic, ecological and human land use activities in more than 20% of the northern permafrost region.

  • L-DLB systems occur in regions with both ice-rich and ice-poor permafrost terrains.

  • The recent increase in the rate of L-DLB landscape dynamics in lowland permafrost regions highlights their role as a catalyst for understanding Arctic system change in a warming climate.

  • Climate warming will likely increase the loss of lakes and continue to tip the landscape to one more heavily dominated by drained lake basins (DLBs).

  • The rate of permafrost aggradation under DLBs will likely slow, disrupting important microtopographic controls on carbon fluxes and ecosystem processes in permafrost-region L-DLB systems. Constraining the environmental impacts of an increase in the coverage of DLBs in a warming landscape is, therefore, a critical topic for future research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The Arctic and boreal lowland permafrost region.
Fig. 2: The variability of lake and drained lake basin system districts.
Fig. 3: Evolution and future trajectory of the lake and drained lake basin system.
Fig. 4: Primary lake and drained lake basin system districts of the northern circumpolar permafrost region.
Fig. 5: The role of lake and drained lake basin systems in lowland permafrost carbon cycling.

Similar content being viewed by others

References

  1. van Everdingen, R. O. & International Permafrost Association. Multi-language Glossary of Permafrost and Related Ground-ice Terms in Chinese, English, French, German, Icelandic, Italian Norwegian, Polish, Romanian, Russian, Spanish, and Swedish (Arctic Inst. of North America University of Calgary, 1998).

  2. Brown, J., Sidlauskas, F. J. & Delinski, G. Circum-Arctic map of Permafrost and Ground Ice Conditions (US Geological Survey, 1997).

  3. Zhang, T., Heginbottom, J. A., Barry, R. G. & Brown, J. Further statistics on the distribution of permafrost and ground ice in the Northern Hemisphere. Polar Geogr. 24, 126–131 (2000).

    Google Scholar 

  4. Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 6, 221–233 (2012).

    Google Scholar 

  5. Obu, J. et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth Sci. Rev. 193, 299–316 (2019).

    Google Scholar 

  6. Smith, M. W. & Riseborough, D. W. Climate and the limits of permafrost: a zonal analysis. Permafr. Periglac. Process. 13, 1–15 (2002).

    Google Scholar 

  7. Shur, Y. L. & Jorgenson, M. T. Patterns of permafrost formation and degradation in relation to climate and ecosystems. Permafr. Periglac. Process. 18, 7–19 (2007).

    Google Scholar 

  8. French, H. & Shur, Y. The principles of cryostratigraphy. Earth Sci. Rev. 101, 190–206 (2010).

    Google Scholar 

  9. Jorgenson, M. T. et al. Resilience and vulnerability of permafrost to climate change. Can. J. For. Res. 40, 1219–1236 (2010).

    Google Scholar 

  10. Biskaborn, B. K. et al. Permafrost is warming at a global scale. Nat. Commun. 10, 264 (2019).

    Google Scholar 

  11. Smith, S. L. et al. The changing thermal state of permafrost. Nat. Rev. Earth Environ. 3 https://doi.org/10.1038/s43017-021-00240-1 (2022).

  12. Schuur, E. A. G. et al. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. BioScience 58, 701–714 (2008).

    Google Scholar 

  13. Schuur, Ea. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

    Google Scholar 

  14. Schaefer, K., Lantuit, H., Romanovsky, V. E., Schuur, E. A. G. & Witt, R. The impact of the permafrost carbon feedback on global climate. Environ. Res. Lett. 9, 085003 (2014).

    Google Scholar 

  15. Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).

    Google Scholar 

  16. Jorgenson, M. T., Shur, Y. L. & Pullman, E. R. Abrupt increase in permafrost degradation in Arctic Alaska. Geophys. Res. Lett. 33, L02503 (2006).

    Google Scholar 

  17. Liljedahl, A. K. et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 9, 312–318 (2016).

    Google Scholar 

  18. Hinzman, L. D. et al. Evidence and implications of recent climate change in Northern Alaska and other Arctic regions. Clim. Change 72, 251–298 (2005).

    Google Scholar 

  19. Vincent, W. F., Lemay, M. & Allard, M. Arctic permafrost landscapes in transition: towards an integrated Earth system approach. Arct. Sci. 3, 39–64 (2017).

    Google Scholar 

  20. Olefeldt, D. et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7, 13043 (2016).

    Google Scholar 

  21. Grosse, G., Jones, B. & Arp, C. in Treatise on Geomorphology Vol. 8 (ed. Shroder, J. F.) 325–353 (Academic, 2013).

  22. Jorgenson, M. T. in Treatise on Geomorphology Vol. 8 (ed. Shroder, J. F.) 313–324 (Academic, 2013).

  23. Hinkel, K. M. et al. Spatial extent, age, and carbon stocks in drained thaw lake basins on the Barrow Peninsula, Alaska. Arct. Antarct. Alp. Res. 35, 291–300 (2003).

    Google Scholar 

  24. Roy-Léveillée, P. & Burn, C. R. A modified landform development model for the topography of drained thermokarst lake basins in fine-grained sediments. Earth Surf. Process. Landf. 41, 1504–1520 (2016).

    Google Scholar 

  25. Jones, B. M. et al. Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska. J. Geophys. Res. Biogeosci. 116, G00M03 (2011).

    Google Scholar 

  26. Czudek, T. & Demek, J. Thermokarst in Siberia and its influence on the development of lowland relief. Quat. Res. 1, 103–120 (1970).

    Google Scholar 

  27. Soloviev, P. A. Thermokarst phenomena and land-forms due to frost heaving in Central Yakutia. Biul. Peryglac. 23, 135–155 (1973).

    Google Scholar 

  28. Hinkel, K. M., Frohn, R. C., Nelson, F. E., Eisner, W. R. & Beck, R. A. Morphometric and spatial analysis of thaw lakes and drained thaw lake basins in the western Arctic Coastal Plain, Alaska. Permafr. Periglac. Process. 16, 327–341 (2005).

    Google Scholar 

  29. Jorgenson, M. T. & Shur, Y. Evolution of lakes and basins in northern Alaska and discussion of the thaw lake cycle. J. Geophys. Res. Earth Surf. 112, F02S17 (2007).

    Google Scholar 

  30. Marsh, P. & Neumann, N. N. Processes controlling the rapid drainage of two ice-rich permafrost-dammed lakes in NW Canada. Hydrol. Process. 15, 3433–3446 (2001).

    Google Scholar 

  31. van Huissteden, J. et al. Methane emissions from permafrost thaw lakes limited by lake drainage. Nat. Clim. Chang. 1, 119–123 (2011).

    Google Scholar 

  32. Walter Anthony, K. et al. 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nat. Commun. 9, 3262 (2018).

    Google Scholar 

  33. Smith, L. C., Sheng, Y., MacDonald, G. M. & Hinzman, L. D. Disappearing Arctic lakes. Science 308, 1429–1429 (2005).

    Google Scholar 

  34. Roberts, K. E. et al. Climate and permafrost effects on the chemistry and ecosystems of High Arctic Lakes. Sci. Rep. 7, 13292 (2017).

    Google Scholar 

  35. Larsen, A. S., O’Donnell, J. A., Schmidt, J. H., Kristenson, H. J. & Swanson, D. K. Physical and chemical characteristics of lakes across heterogeneous landscapes in arctic and subarctic Alaska. J. Geophys. Res. Biogeosci. 122, 989–1008 (2017).

    Google Scholar 

  36. Arp, C. D. et al. Ice roads through lake-rich Arctic watersheds: Integrating climate uncertainty and freshwater habitat responses into adaptive management. Arct. Antarct. Alp. Res. 51, 9–23 (2019).

    Google Scholar 

  37. Arp, C. D. et al. Recurring outburst floods from drained lakes: an emerging Arctic hazard. Front. Ecol. Environ. 18, 384–390 (2020).

    Google Scholar 

  38. Walker, D. A., Raynolds, M. K., Buchhorn, M. & Peirce, J. L. Landscape and Permafrost Changes in The Prudhoe Bay Oilfield, Alaska (Alaska Geobotany Center, 2014).

  39. Morgenstern, A., Grosse, G., Günther, F., Fedorova, I. & Schirrmeister, L. Spatial analyses of thermokarst lakes and basins in Yedoma landscapes of the Lena Delta. Cryosphere 5, 849–867 (2011).

    Google Scholar 

  40. Morgenstern, A. et al. Evolution of thermokarst in East Siberian ice-rich permafrost: a case study. Geomorphology 201, 363–379 (2013).

    Google Scholar 

  41. Farquharson, L. M., Mann, D. H., Grosse, G., Jones, B. M. & Romanovsky, V. E. Spatial distribution of thermokarst terrain in Arctic Alaska. Geomorphology 273, 116–133 (2016).

    Google Scholar 

  42. Wolfe, S., Murton, J., Bateman, M. & Barlow, J. Oriented-lake development in the context of late Quaternary landscape evolution, McKinley Bay Coastal Plain, western Arctic Canada. Quat. Sci. Rev. 242, 106414 (2020).

    Google Scholar 

  43. Ulrich, M. et al. Differences in behavior and distribution of permafrost-related lakes in Central Yakutia and their response to climatic drivers. Water Resour. Res. 53, 1167–1188 (2017).

    Google Scholar 

  44. Andresen, C. G. & Lougheed, V. L. Disappearing Arctic tundra ponds: Fine-scale analysis of surface hydrology in drained thaw lake basins over a 65 year period (1948–2013). J. Geophys. Res. Biogeosci. 120, 466–479 (2015).

    Google Scholar 

  45. MacDonald, L. A. et al. A synthesis of thermokarst lake water balance in high-latitude regions of North America from isotope tracers. Arct. Sci. 3, 118–149 (2017).

    Google Scholar 

  46. Walvoord, M. A. & Striegl, R. G. Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: Potential impacts on lateral export of carbon and nitrogen. Geophys. Res. Lett. 34, L12402 (2007).

    Google Scholar 

  47. Fedorov, A. N. et al. Estimating the water balance of a thermokarst lake in the middle of the Lena River basin, eastern Siberia. Ecohydrology 7, 188–196 (2014).

    Google Scholar 

  48. Veremeeva, A., Nitze, I., Günther, F., Grosse, G. & Rivkina, E. Geomorphological and climatic drivers of thermokarst lake area increase trend (1999–2018) in the Kolyma Lowland Yedoma region, North-Eastern Siberia. Remote Sens. 13, 178 (2021).

    Google Scholar 

  49. Bockheim, J. G. & Hinkel, K. M. Accumulation of excess ground ice in an age sequence of drained thermokarst lake basins, Arctic Alaska. Permafr. Periglac. Process. 23, 231–236 (2012).

    Google Scholar 

  50. Kanevskiy, M. et al. Ground ice in the upper permafrost of the Beaufort Sea coast of Alaska. Cold Reg. Sci. Technol. 85, 56–70 (2013).

    Google Scholar 

  51. Kanevskiy, M. et al. Cryostratigraphy and permafrost evolution in the lacustrine lowlands of west-central Alaska. Permafr. Periglac. Process. 25, 14–34 (2014).

    Google Scholar 

  52. Ulrich, M., Grosse, G., Strauss, J. & Schirrmeister, L. Quantifying wedge-ice volumes in Yedoma and thermokarst basin deposits. Permafr. Periglac. Process. 25, 151–161 (2014).

    Google Scholar 

  53. West, J. J. & Plug, L. J. Time-dependent morphology of thaw lakes and taliks in deep and shallow ground ice. J. Geophys. Res. Earth Surf. 113, F01009 (2008).

    Google Scholar 

  54. Rowland, J. C., Travis, B. J. & Wilson, C. J. The role of advective heat transport in talik development beneath lakes and ponds in discontinuous permafrost. Geophys. Res. Lett. 38, 48497 (2011).

    Google Scholar 

  55. Langer, M. et al. Rapid degradation of permafrost underneath waterbodies in tundra landscapes — Toward a representation of thermokarst in land surface models. J. Geophys. Res. Earth Surf. 121, 2446–2470 (2016).

    Google Scholar 

  56. Roy-Leveillee, P. & Burn, C. R. Near-shore talik development beneath shallow water in expanding thermokarst lakes, Old Crow Flats, Yukon. J. Geophys. Res. Earth Surf. 122, 1070–1089 (2017).

    Google Scholar 

  57. Creighton, A. L. et al. Transient electromagnetic surveys for the determination of talik depth and geometry beneath thermokarst lakes. J. Geophys. Res. Solid Earth 123, 9310–9323 (2018).

    Google Scholar 

  58. Pokrovsky, O. S. et al. Thermokarst lakes of Western Siberia: a complex biogeochemical multidisciplinary approach. Int. J. Environ. Stud. 71, 733–748 (2014).

    Google Scholar 

  59. Jongejans, L. L. et al. Organic matter characteristics in yedoma and thermokarst deposits on Baldwin Peninsula, west Alaska. Biogeosciences 15, 6033–6048 (2018).

    Google Scholar 

  60. Koch, J. C., Fondell, T. F., Laske, S. & Schmutz, J. A. Nutrient dynamics in partially drained arctic thaw lakes. J. Geophys. Res. Biogeosci. 123, 440–452 (2018).

    Google Scholar 

  61. Heslop, J. K. et al. A synthesis of methane dynamics in thermokarst lake environments. Earth Sci. Rev. 210, 103365 (2020).

    Google Scholar 

  62. Skeeter, J., Christen, A., Laforce, A.-A., Humphreys, E. & Henry, G. Vegetation influence and environmental controls on greenhouse gas fluxes from a drained thermokarst lake in the western Canadian Arctic. Biogeosciences 17, 4421–4441 (2020).

    Google Scholar 

  63. Li, B. et al. Thaw pond development and initial vegetation succession in experimental plots at a Siberian lowland tundra site. Plant Soil 420, 147–162 (2017).

    Google Scholar 

  64. Lantz, T. C. Vegetation succession and environmental conditions following catastrophic lake drainage in Old Crow Flats, Yukon. Arctic 70, 177–189 (2017).

    Google Scholar 

  65. Loiko, S., Klimova, N., Kuzmina, D. & Pokrovsky, O. Lake drainage in permafrost regions produces variable plant communities of high biomass and productivity. Plants 9, 867 (2020).

    Google Scholar 

  66. Carey, M. P. & Zimmerman, C. E. Physiological and ecological effects of increasing temperature on fish production in lakes of Arctic Alaska. Ecol. Evol. 4, 1981–1993 (2014).

    Google Scholar 

  67. Bégin, P. N. & Vincent, W. F. Permafrost thaw lakes and ponds as habitats for abundant rotifer populations. Arct. Sci. 3, 354–377 (2017).

    Google Scholar 

  68. Jones, B. M. et al. A lake-centric geospatial database to guide research and inform management decisions in an Arctic watershed in northern Alaska experiencing climate and land-use changes. Ambio 46, 769–786 (2017).

    Google Scholar 

  69. Istomin, K. V. & Habeck, J. O. Permafrost and indigenous land use in the northern Urals: Komi and Nenets reindeer husbandry. Polar Sci. 10, 278–287 (2016).

    Google Scholar 

  70. Crate, S. et al. Permafrost livelihoods: A transdisciplinary review and analysis of thermokarst-based systems of indigenous land use. Anthropocene 18, 89–104 (2017).

    Google Scholar 

  71. Raynolds, M. K. et al. Cumulative geoecological effects of 62 years of infrastructure and climate change in ice-rich permafrost landscapes, Prudhoe Bay Oilfield, Alaska. Glob. Chang. Biol. 20, 1211–1224 (2014).

    Google Scholar 

  72. Hinkel, K. M. et al. Thermokarst lakes on the Arctic coastal plain of Alaska: geomorphic controls on bathymetry. Permafr. Periglac. Process. 23, 218–230 (2012).

    Google Scholar 

  73. Mackay, J. R. Catastrophic lake drainage, Tuktoyaktuk Peninsula area, District of Mackenzie. Curr. Res. D Geol. Surv. Canada 88, 83–90 (1988).

    Google Scholar 

  74. Burn, C. R. & Smith, M. W. Development of thermokarst lakes during the holocene at sites near Mayo, Yukon territory. Permafr. Periglac. Process. 1, 161–175 (1990).

    Google Scholar 

  75. Lara, M. J. & Chipman, M. L. Periglacial lake origin influences the likelihood of lake drainage in northern Alaska. Remote Sens. 13, 852 (2021).

    Google Scholar 

  76. Edwards, M., Grosse, G., Jones, B. M. & McDowell, P. The evolution of a thermokarst-lake landscape: Late Quaternary permafrost degradation and stabilization in interior Alaska. Sediment. Geol. 340, 3–14 (2016).

    Google Scholar 

  77. Bouchard, F. et al. Thermokarst lake inception and development in syngenetic ice-wedge polygon terrain during a cooling climatic trend, Bylot Island (Nunavut), eastern Canadian Arctic. Cryosphere 14, 2607–2627 (2020).

    Google Scholar 

  78. Arp, C. D., Jones, B. M., Urban, F. E. & Grosse, G. Hydrogeomorphic processes of thermokarst lakes with grounded-ice and floating-ice regimes on the Arctic coastal plain, Alaska. Hydrol. Process. 25, 2422–2438 (2011).

    Google Scholar 

  79. O’Neill, H. B., Roy-Leveillee, P., Lebedeva, L. & Ling, F. Recent advances (2010–2019) in the study of taliks. Permafr. Periglac. Process. 31, 346–357 (2020).

    Google Scholar 

  80. Rangel, R. C. et al. Geophysical observations of taliks below drained lake basins on the Arctic Coastal Plain of Alaska. J. Geophys. Res. Solid Earth 126, e2020JB020889 (2021).

    Google Scholar 

  81. Parsekian, A. D. et al. Detecting unfrozen sediments below thermokarst lakes with surface nuclear magnetic resonance. Geophys. Res. Lett. 40, 535–540 (2013).

    Google Scholar 

  82. Jones, B. M. et al. Identifying historical and future potential lake drainage events on the western Arctic coastal plain of Alaska. Permafr. Periglac. Process. 31, 110–127 (2020).

    Google Scholar 

  83. Yoshikawa, K. & Hinzman, L. D. Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska. Permafr. Periglac. Process. 14, 151–160 (2003).

    Google Scholar 

  84. Lantz, T. C. & Turner, K. W. Changes in lake area in response to thermokarst processes and climate in Old Crow Flats, Yukon. J. Geophys. Res. Biogeosci. 120, 513–524 (2015).

    Google Scholar 

  85. Hinkel, K. M. et al. Methods to assess natural and anthropogenic thaw lake drainage on the western Arctic coastal plain of northern Alaska. J. Geophys. Res. Earth Surf. 112, F02S16 (2007).

    Google Scholar 

  86. Jones, B. M. & Arp, C. D. Observing a catastrophic thermokarst lake drainage in northern Alaska. Permafr. Periglac. Process. 26, 119–128 (2015).

    Google Scholar 

  87. Irrgang, A. et al. Drivers, dynamics and impacts of changing Arctic coasts. Nat. Rev. Earth Environ. 3 https://doi.org/10.1038/s43017-021-00232-1 (2022).

  88. Veremeeva, A. & Glushkova, N. Formation of relief in the regions of Ice Complex deposits distribution: remote sensing and GIS studies in the Kolyma lowland tundra. Earths Cryosphere XX, 14–24 (2016).

    Google Scholar 

  89. Mackay, J. R. A full-scale field experiment (1978–1995) on the growth of permafrost by means of lake drainage, western Arctic coast: a discussion of the method and some results. Can. J. Earth Sci. 34, 17–33 (1997).

    Google Scholar 

  90. Mackay, J. R. & Burn, C. R. The first 20 years (1978-1979 to 1998-1999) of active-layer development, Illisarvik experimental drained lake site, western Arctic coast, Canada. Can. J. Earth Sci. 39, 1657–1674 (2002).

    Google Scholar 

  91. Wilson, M. A., Burn, C. R. & Humphreys, E. R. in 18th International Conference on Cold Regions Engineering and 8th Canadian Permafrost Conference 687–695 (American Society of Civil Engineers, 2019).

  92. Mackay, J. R. & Burn, C. R. The first 20 years (1978-1979 to 1998–1999) of ice-wedge growth at the Illisarvik experimental drained lake site, western Arctic coast, Canada. Can. J. Earth Sci. 39, 95–111 (2002).

    Google Scholar 

  93. Regmi, P., Grosse, G., Jones, M. C., Jones, B. M. & Anthony, K. W. Characterizing post-drainage succession in thermokarst lake basins on the Seward Peninsula, Alaska with TerraSAR-X backscatter and landsat-based NDVI data. Remote Sens. 4, 3741–3765 (2012).

    Google Scholar 

  94. Wetterich, S. et al. Holocene thermokarst and pingo development in the Kolyma Lowland (NE Siberia). Permafr. Periglac. Process. 29, 182–198 (2018).

    Google Scholar 

  95. Heijmans, M. M. P. D. et al. Tundra vegetation change and impacts on permafrost. Nat. Rev. Earth Environ. 3 https://doi.org/10.1038/s43017-021-00233-0 (2022).

  96. Kokelj, S. V., Lantz, T. C., Tunnicliffe, J., Segal, R. & Lacelle, D. Climate-driven thaw of permafrost preserved glacial landscapes, northwestern Canada. Geology 45, 371–374 (2017).

    Google Scholar 

  97. Lindgren, A., Hugelius, G. & Kuhry, P. Extensive loss of past permafrost carbon but a net accumulation into present-day soils. Nature 560, 219–222 (2018).

    Google Scholar 

  98. Brosius, L. S. et al. Spatiotemporal patterns of northern lake formation since the Last Glacial Maximum. Quat. Sci. Rev. 253, 106773 (2021).

    Google Scholar 

  99. Grosse, G. et al. Geological and geomorphological evolution of a sedimentary periglacial landscape in Northeast Siberia during the Late Quaternary. Geomorphology 86, 25–51 (2007).

    Google Scholar 

  100. Smith, L. C., Sheng, Y. & MacDonald, G. M. A first pan-Arctic assessment of the influence of glaciation, permafrost, topography and peatlands on northern hemisphere lake distribution. Permafr. Periglac. Process. 18, 201–208 (2007).

    Google Scholar 

  101. Anderson, L., Edwards, M., Shapley, M. D., Finney, B. P. & Langdon, C. Holocene thermokarst lake dynamics in northern interior Alaska: the interplay of climate, fire, and subsurface hydrology. Front. Earth Sci. 7, 53 (2019).

    Google Scholar 

  102. Schirrmeister, L., Froese, D., Tumskoy, V., Grosse, G. & Wetterich, S. in Encyclopedia of Quaternary Science (Second Edition) (eds Elias, S. A. & Mock, C. J.) 542–552 (Elsevier, 2013).

  103. Gaglioti, B. V. et al. Aeolian stratigraphy describes ice-age paleoenvironments in unglaciated Arctic Alaska. Quat. Sci. Rev. 182, 175–190 (2018).

    Google Scholar 

  104. Walter, K. M., Edwards, M. E., Grosse, G., Zimov, S. A. & Chapin, F. S. Thermokarst lakes as a source of atmospheric CH4 during the last deglaciation. Science 318, 633–636 (2007).

    Google Scholar 

  105. Kaplina, T. N. Alas complex of northern Yakutia. Kriosf. Zemli 13, 3–17 (2009).

    Google Scholar 

  106. Bouchard, F. et al. Paleolimnology of thermokarst lakes: a window into permafrost landscape evolution. Arct. Sci. 3, 91–117 (2017).

    Google Scholar 

  107. Lenz, J. et al. Evidence of multiple thermokarst lake generations from an 11 800-year-old permafrost core on the northern Seward Peninsula, Alaska. Boreas 45, 584–603 (2016).

    Google Scholar 

  108. Loisel, J. et al. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. Holocene 24, 1028–1042 (2014).

    Google Scholar 

  109. Treat, C. C. & Jones, M. C. Near-surface permafrost aggradation in Northern Hemisphere peatlands shows regional and global trends during the past 6000 years. Holocene 28, 998–1010 (2018).

    Google Scholar 

  110. Jones, M. C., Grosse, G., Jones, B. M. & Walter Anthony, K. Peat accumulation in drained thermokarst lake basins in continuous, ice-rich permafrost, northern Seward Peninsula, Alaska. J. Geophys. Res. Biogeosci. 117, G00M07 (2012).

    Google Scholar 

  111. Fuchs, M. et al. Organic carbon and nitrogen stocks along a thermokarst lake sequence in Arctic Alaska. J. Geophys. Res. Biogeosci. 124, 1230–1247 (2019).

    Google Scholar 

  112. Anthony, K. M. W. et al. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature 511, 452–456 (2014).

    Google Scholar 

  113. Andreev, A. A. et al. Late Saalian and Eemian palaeoenvironmental history of the Bol’shoy Lyakhovsky Island (Laptev Sea region, Arctic Siberia). Boreas 33, 319–348 (2004).

    Google Scholar 

  114. Bergstedt, H. et al. Remote sensing-based statistical approach for defining drained lake basins in a continuous permafrost region, North Slope of Alaska. Remote Sens. 13, 2539 (2021).

    Google Scholar 

  115. Lindgren, P. R., Farquharson, L. M., Romanovsky, V. E. & Grosse, G. Landsat-based lake distribution and changes in western Alaska permafrost regions between the 1970s and 2010s. Environ. Res. Lett. 16, 025006 (2021).

    Google Scholar 

  116. Nitze, I. et al. Landsat-based trend analysis of lake dynamics across northern permafrost regions. Remote Sens. 9, 640 (2017).

    Google Scholar 

  117. Nitze, I., Grosse, G., Jones, B. M., Romanovsky, V. E. & Boike, J. Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic. Nat. Commun. 9, 5423 (2018).

    Google Scholar 

  118. Swanson, D. K. Thermokarst and precipitation drive changes in the area of lakes and ponds in the National Parks of northwestern Alaska, 1984–2018. Arct. Antarct. Alp. Res. 51, 265–279 (2019).

    Google Scholar 

  119. Veremeeva, A. Quaternary deposits map of Yana-Indigirka and Kolyma lowlands tundra zone, R-55-57, based on Landsat imagery. PANGAEA https://doi.org/10.1594/PANGAEA.927292 (2021).

    Article  Google Scholar 

  120. Boike, J. et al. Satellite-derived changes in the permafrost landscape of central Yakutia, 2000–2011: wetting, drying, and fires. Glob. Planet. Change 139, 116–127 (2016).

    Google Scholar 

  121. Jones, B. M. et al. Increase in beaver dams controls surface water and thermokarst dynamics in an Arctic tundra region, Baldwin Peninsula, northwestern Alaska. Environ. Res. Lett. 15, 075005 (2020).

    Google Scholar 

  122. Morgenstern, A. et al. Thermo-erosional valleys in Siberian ice-rich permafrost. Permafr. Periglac. Process. 32, 59–75 (2021).

    Google Scholar 

  123. in’t Zandt, M. H., Liebner, S. & Welte, C. U. Roles of thermokarst lakes in a warming world. Trends Microbiol. 28, 769–779 (2020).

    Google Scholar 

  124. Kessler, M. A., Plug, L. J. & Walter Anthony, K. M. Simulating the decadal- to millennial-scale dynamics of morphology and sequestered carbon mobilization of two thermokarst lakes in NW Alaska. J. Geophys. Res. Biogeosci. 117, G00M06 (2012).

    Google Scholar 

  125. Nitze, I., Cooley, S. W., Duguay, C. R., Jones, B. M. & Grosse, G. The catastrophic thermokarst lake drainage events of 2018 in northwestern Alaska: fast-forward into the future. Cryosphere 14, 4279–4297 (2020).

    Google Scholar 

  126. Briggs, M. A. et al. New permafrost is forming around shrinking Arctic lakes, but will it last? Geophys. Res. Lett. 41, 1585–1592 (2014).

    Google Scholar 

  127. Kaverin, D. A. et al. Long-term changes in the ground thermal regime of an artificially drained thaw-lake basin in the Russian European north. Permafr. Periglac. Process. 29, 49–59 (2018).

    Google Scholar 

  128. Bring, A. et al. Arctic terrestrial hydrology: a synthesis of processes, regional effects, and research challenges. J. Geophys. Res. Biogeosci. 121, 621–649 (2016).

    Google Scholar 

  129. Walvoord, M. A. & Kurylyk, B. L. Hydrologic impacts of thawing permafrost — a review. Vadose Zone J. 15, 1–20 (2016).

    Google Scholar 

  130. Lafrenière, M. J. & Lamoureux, S. F. Effects of changing permafrost conditions on hydrological processes and fluvial fluxes. Earth Sci. Rev. 191, 212–223 (2019).

    Google Scholar 

  131. Ala-aho, P. et al. Permafrost and lakes control river isotope composition across a boreal Arctic transect in the Western Siberian lowlands. Environ. Res. Lett. 13, 034028 (2018).

    Google Scholar 

  132. Woo, M.-K. & Guan, X. J. Hydrological connectivity and seasonal storage change of tundra ponds in a polar oasis environment, Canadian High Arctic. Permafr. Periglac. Process. 17, 309–323 (2006).

    Google Scholar 

  133. Karlsson, J. M., Lyon, S. W. & Destouni, G. Thermokarst lake, hydrological flow and water balance indicators of permafrost change in Western Siberia. J. Hydrol. 464–465, 459–466 (2012).

    Google Scholar 

  134. Hiyama, T., Asai, K., Kolesnikov, A. B., Gagarin, L. A. & Shepelev, V. V. Estimation of the residence time of permafrost groundwater in the middle of the Lena River basin, eastern Siberia. Environ. Res. Lett. 8, 035040 (2013).

    Google Scholar 

  135. Olenchenko, V., Gagarin, L., Khristoforov, I. I., Kolesnikov, A. B. & Efremov, V. S. The structure of a site with thermo-suffosion processes within Bestyakh terrace of the Lena River, according to geophysical data. Earths Cryosphere 21, 16–26 (2017).

    Google Scholar 

  136. Riordan, B., Verbyla, D. & McGuire, A. D. Shrinking ponds in subarctic Alaska based on 1950–2002 remotely sensed images. J. Geophys. Res. Biogeosci. 111, 1G04002 (2006).

    Google Scholar 

  137. Pohl, S., Marsh, P., Onclin, C. & Russell, M. The summer hydrology of a small upland tundra thaw lake: implications to lake drainage. Hydrol. Process. 23, 2536–2546 (2009).

    Google Scholar 

  138. Turner, K. W., Wolfe, B. B. & Edwards, T. W. D. Characterizing the role of hydrological processes on lake water balances in the Old Crow Flats, Yukon Territory, Canada, using water isotope tracers. J. Hydrol. 386, 103–117 (2010).

    Google Scholar 

  139. Arp, C. D., Whitman, M. S., Kemnitz, R. & Stuefer, S. L. Evidence of hydrological intensification and regime change from northern Alaskan watershed runoff. Geophys. Res. Lett. 47, e2020GL089186 (2020).

    Google Scholar 

  140. Beel, C. R. et al. Emerging dominance of summer rainfall driving High Arctic terrestrial-aquatic connectivity. Nat. Commun. 12, 1448 (2021).

    Google Scholar 

  141. Iijima, Y., Nakamura, T., Park, H., Tachibana, Y. & Fedorov, A. N. Enhancement of Arctic storm activity in relation to permafrost degradation in eastern Siberia. Int. J. Climatol. 36, 4265–4275 (2016).

    Google Scholar 

  142. Kuhn, C. & Butman, D. Declining greenness in Arctic-boreal lakes. Proc. Natl Acad. Sci. USA 118, e2021219118 (2021).

    Google Scholar 

  143. Bowling, L. C., Kane, D. L., Gieck, R. E., Hinzman, L. D. & Lettenmaier, D. P. The role of surface storage in a low-gradient Arctic watershed. Water Resour. Res. 39, 1087 (2003).

    Google Scholar 

  144. Wik, M., Varner, R. K., Anthony, K. W., MacIntyre, S. & Bastviken, D. Climate-sensitive northern lakes and ponds are critical components of methane release. Nat. Geosci. 9, 99–105 (2016).

    Google Scholar 

  145. Heslop, J. K. et al. Thermokarst lake methanogenesis along a complete talik profile. Biogeosciences 12, 4317–4331 (2015).

    Google Scholar 

  146. Walter, K. M., Zimov, S. A., Chanton, J. P., Verbyla, D. & Chapin, F. S. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443, 71–75 (2006).

    Google Scholar 

  147. Lara, M. J. et al. Polygonal tundra geomorphological change in response to warming alters future CO2 and CH4 flux on the Barrow Peninsula. Glob. Chang. Biol. 21, 1634–1651 (2015).

    Google Scholar 

  148. Sepulveda-Jauregui, A., Walter Anthony, K. M., Martinez-Cruz, K., Greene, S. & Thalasso, F. Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska. Biogeosciences 12, 3197–3223 (2015).

    Google Scholar 

  149. Elder, C. D. et al. Greenhouse gas emissions from diverse Arctic Alaskan lakes are dominated by young carbon. Nat. Clim. Chang. 8, 166–171 (2018).

    Google Scholar 

  150. Miner, K. R. et al. Permafrost carbon emissions in a changing Arctic. Nat. Rev. Earth. Environ. 3 https://doi.org/10.1038/s43017-021-00230-3 (2022).

  151. Walter Anthony, K. et al. Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s. Nat. Geosci. 9, 679–682 (2016).

    Google Scholar 

  152. Bogard, M. J. et al. Negligible cycling of terrestrial carbon in many lakes of the arid circumpolar landscape. Nat. Geosci. 12, 180–185 (2019).

    Google Scholar 

  153. Shirokova, L. S. et al. Lichen, moss and peat control of C, nutrient and trace metal regime in lakes of permafrost peatlands. Sci. Total Environ. 782, 146737 (2021).

    Google Scholar 

  154. Hughes-Allen, L. et al. Seasonal patterns in greenhouse gas emissions from thermokarst lakes in Central Yakutia (Eastern Siberia). Limnol. Oceanogr. 66, S98–S116 (2021).

    Google Scholar 

  155. Lindgren, P. R., Grosse, G., Walter Anthony, K. M. & Meyer, F. J. Detection and spatiotemporal analysis of methane ebullition on thermokarst lake ice using high-resolution optical aerial imagery. Biogeosciences 13, 27–44 (2016).

    Google Scholar 

  156. Engram, M. et al. Remote sensing northern lake methane ebullition. Nat. Clim. Chang. 10, 511–517 (2020).

    Google Scholar 

  157. Matthews, E., Johnson, M. S., Genovese, V., Du, J. & Bastviken, D. Methane emission from high latitude lakes: methane-centric lake classification and satellite-driven annual cycle of emissions. Sci. Rep. 10, 12465 (2020).

    Google Scholar 

  158. Zona, D. et al. Characterization of the carbon fluxes of a vegetated drained lake basin chronosequence on the Alaskan Arctic Coastal Plain. Glob. Chang. Biol. 16, 1870–1882 (2010).

    Google Scholar 

  159. Zona, D. et al. Increased CO2 loss from vegetated drained lake tundra ecosystems due to flooding. Glob. Biogeochem. Cycles 26, GB2004 (2012).

    Google Scholar 

  160. Treat, C. C. et al. Predicted vulnerability of carbon in permafrost peatlands with future climate change and permafrost thaw in Western Canada. J. Geophys. Res. Biogeosci. 126, e2020JG005872 (2021).

    Google Scholar 

  161. Frolking, S. & Roulet, N. T. Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions. Glob. Chang. Biol. 13, 1079–1088 (2007).

    Google Scholar 

  162. Wickland, K. et al. in AGU Fall Meeting Abstracts 2009 U41C-0057 (American Geophysical Union, 2009).

  163. Berkes, F., Folke, C. & Colding, J. Linking Social and Ecological Systems: Management Practices and Social Mechanisms for Building Resilience (Cambridge Univ. Press, 2000).

  164. Heino, J. et al. Lakes in the era of global change: moving beyond single-lake thinking in maintaining biodiversity and ecosystem services. Biol. Rev. 96, 89–106 (2021).

    Google Scholar 

  165. White, D. M., Gerlach, S. C., Loring, P., Tidwell, A. C. & Chambers, M. C. Food and water security in a changing arctic climate. Environ. Res. Lett. 2, 045018 (2007).

    Google Scholar 

  166. Medeiros, A. S., Wood, P., Wesche, S. D., Bakaic, M. & Peters, J. F. Water security for northern peoples: review of threats to Arctic freshwater systems in Nunavut, Canada. Reg. Environ. Change 17, 635–647 (2017).

    Google Scholar 

  167. Daley, K. et al. Chemical and microbial characteristics of municipal drinking water supply systems in the Canadian Arctic. Environ. Sci. Pollut. Res. 25, 32926–32937 (2018).

    Google Scholar 

  168. Gora, L. S. et al. Microbiological water quality in a decentralized Arctic drinking water system. Environ. Sci. Water Res. Technol. 6, 1855–1868 (2020).

    Google Scholar 

  169. Martin, D. et al. Drinking water and potential threats to human health in Nunavik: adaptation strategies under climate change conditions. Arctic 60, 195–202 (2007).

    Google Scholar 

  170. Vinokurova, D. E. & Prokhorova, M. N. Features of reindeer husbandry and trends in changing the number of domestic deer in the Republic of Sakha (Yakutia) [Russian]. Issues Mod. Econ. 126–135 (2013).

  171. Zakharova, E. A. et al. Recent dynamics of hydro-ecosystems in thermokarst depressions in Central Siberia from satellite and in situ observations: Importance for agriculture and human life. Sci. Total Environ. 615, 1290–1304 (2018).

    Google Scholar 

  172. Rees, W. G., Stammler, F. M., Danks, F. S. & Vitebsky, P. Vulnerability of European reindeer husbandry to global change. Clim. Change 87, 199 (2007).

    Google Scholar 

  173. Jones, B. M. et al. Arctic lake physical processes and regimes with implications for winter water availability and management in the national petroleum reserve Alaska. Environ. Manag. 43, 1071–1084 (2009).

    Google Scholar 

  174. Prowse, T. D. et al. Implications of climate change for economic development in northern Canada: Energy, resource, and transportation sectors. Ambio 38, 272–281 (2009).

    Google Scholar 

  175. Instanes, A. et al. Changes to freshwater systems affecting Arctic infrastructure and natural resources. J. Geophys. Res. Biogeosci. 121, 567–585 (2016).

    Google Scholar 

  176. Hjort, J. et al. Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nat. Commun. 9, 5147 (2018).

    Google Scholar 

  177. Hjort, J. et al. Impacts of permafrost degradation on infrastructure. Nat. Rev. Earth Environ. 3 https://doi.org/10.1038/s43017-021-00247-8 (2022).

  178. Streletskiy, D. A., Suter, L. J., Shiklomanov, N. I., Porfiriev, B. N. & Eliseev, D. O. Assessment of climate change impacts on buildings, structures and infrastructure in the Russian regions on permafrost. Environ. Res. Lett. 14, 025003 (2019).

    Google Scholar 

  179. O’Neill, H. B. et al. Permafrost thaw and northern development. Nat. Clim. Chang. 10, 722–723 (2020).

    Google Scholar 

  180. Rajendran, S. et al. Monitoring oil spill in Norilsk, Russia using satellite data. Sci. Rep. 11, 3817 (2021).

    Google Scholar 

  181. Holgerson, M. A. & Raymond, P. A. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nat. Geosci. 9, 222–226 (2016).

    Google Scholar 

  182. Thornton, B. F., Wik, M. & Crill, P. M. Double-counting challenges the accuracy of high-latitude methane inventories. Geophys. Res. Lett. 43, 12,569–12,577 (2016).

    Google Scholar 

  183. Bruhwiler, L., Parmentier, F.-J. W., Crill, P., Leonard, M. & Palmer, P. I. The Arctic carbon cycle and its response to changing climate. Curr. Clim. Change Rep. 7, 14–34 (2021).

    Google Scholar 

  184. Rautio, M. et al. Shallow freshwater ecosystems of the circumpolar Arctic. Écoscience 18, 204–222 (2011).

    Google Scholar 

  185. Meltofte, H. et al. Arctic Biodiversity Assessment 2013: Synthesis (CAFF, 2013).

  186. Vincent, W. F. & Laybourn-Parry, J. Polar Lakes and Rivers: Limnology of Arctic and Antarctic Aquatic Ecosystems (Oxford Univ. Press, 2008).

  187. Smith, P. A. et al. Status and trends of tundra birds across the circumpolar Arctic. Ambio 49, 732–748 (2020).

    Google Scholar 

  188. Stanford, J. A., Lorang, M. S. & Hauer, F. R. The shifting habitat mosaic of river ecosystems. Int. Ver. Theor. Angew. Limnol. Verh. 29, 123–136 (2005).

    Google Scholar 

  189. Thorp, J. H., Thoms, M. C. & Delong, M. D. The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Res. Appl. 22, 123–147 (2006).

    Google Scholar 

  190. Kleindl, W. J., Rains, M. C., Marshall, L. A. & Hauer, F. R. Fire and flood expand the floodplain shifting habitat mosaic concept. Freshw. Sci. 34, 1366–1382 (2015).

    Google Scholar 

  191. Lim, I. E., Wilson, S. K., Holmes, T. H., Noble, M. M. & Fulton, C. J. Specialization within a shifting habitat mosaic underpins the seasonal abundance of a tropical fish. Ecosphere 7, e01212 (2016).

    Google Scholar 

  192. Mouw, J. E. B. et al. Recruitment and successional dynamics diversify the shifting habitat mosaic of an Alaskan floodplain. River Res. Appl. 29, 671–685 (2013).

    Google Scholar 

  193. Vonk, J. E. et al. Reviews and syntheses: effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences 12, 7129–7167 (2015).

    Google Scholar 

  194. Brennan, S. R. et al. Shifting habitat mosaics and fish production across river basins. Science 364, 783–786 (2019).

    Google Scholar 

  195. Johaneman, T. M. et al. Classifying connectivity to guide aquatic habitat management in an arctic coastal plain watershed experiencing land use and climate change. Arct. Antarct. Alp. Res. 52, 476–490 (2020).

    Google Scholar 

  196. Scott, R. W., Tank, S. E., Wang, X. & Quinlan, R. Are different benthic communities in Arctic delta lakes distinguishable along a hydrological connectivity gradient using a rapid bioassessment approach? Arct. Sci. 6, 463–487 (2020).

    Google Scholar 

  197. Stralberg, D. et al. Climate-change refugia in boreal North America: what, where, and for how long? Front. Ecol. Environ. 18, 261–270 (2020).

    Google Scholar 

  198. Tarasenko, T. V., Kravtsova, V. I. & Pizhankova, E. I. Study of thermokarst lakes dynamics in the coastal part of the Yana-Indigirka Lowland using remote data. In Proceedings of the Conference Geocryological Mapping: Problems and Prospects 135–138 (Lomonosov Moscow State Univ., 2013).

  199. Grosse, G., Schirrmeister, L., Kunitsky, V. V. & Hubberten, H.-W. The use of CORONA images in remote sensing of periglacial geomorphology: an illustration from the NE Siberian coast. Permafr. Periglac. Process. 16, 163–172 (2005).

    Google Scholar 

  200. Grosse, G., Schirrmeister, L. & Malthus, T. J. Application of Landsat-7 satellite data and a DEM for the quantification of thermokarst-affected terrain types in the periglacial Lena–Anabar coastal lowland. Polar Res. 25, 51–67 (2006).

    Google Scholar 

  201. Jones, B. M. et al. Recent Arctic tundra fire initiates widespread thermokarst development. Sci. Rep. 5, 15865 (2015).

    Google Scholar 

  202. Amante, C. & Eakins, B. W. ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA technical memorandum NESDIS NGDC-24. Natl Geophys. Data Center NOAA 10, V5C8276M (2009).

    Google Scholar 

Download references

Acknowledgements

B.M.J., L.M.F., M.Z.K., B.V.G. and A.L.B. were supported by NSF grant OPP-1806213. B.M.J. and B.V.G. were supported by NSF grant OPP-1850578. B.M.J. was supported by NSF grant OPP-1903735. M.Z.K. was supported by NSF grant OPP-1820883. A.D.P. was supported by NSF grant OPP-1806202. K.M.H. was supported by NSF grant OPP-1806287. G.G. received support through BMBF KoPf Synthesis (03F0834B). P.R.-L. was supported by Gouvernement du Québec under the 2030 Plan for a Green Economy, Sentinel North programme of Université Laval (Canada First Research Excellence Fund) and ArcticNet, a Network of Centres of Excellence of Canada. Additional support was provided by an Action Groups award from the International Permafrost Association and the Teshekpuk Lake Observatory through the National Fish and Wildlife Foundation (NFWF-8006.19.063445). The authors would like to thank H. Foss for the graphical contributions to Fig. 3.

Author information

Authors and Affiliations

Authors

Contributions

B.M.J. led the synthesis and organized the international collaborative author team. All co-authors provided input on the manuscript text, figures, discussion of scientific content, regional expertise and contributed equally to all aspects of the article.

Corresponding author

Correspondence to Benjamin M. Jones.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks Y. Iijima and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Periglacial

Processes influenced by intense freeze–thaw and/or permafrost.

Taliks

Ground in permafrost regions that remains unfrozen year round.

Thermokarst lake

Lake that forms as a result of subsidence of the land surface due to the melting of ground ice.

Bank overtopping

The process of water spilling over the lake bank, promoting lateral drainage.

Piping or tunnel flow

Drainage through open frost cracks, underground erosional channels or layers of permeable material in taliks.

Pingos

A perennial frost mound consisting of a core of massive ice, produced primarily by injection of water, and covered with soil and vegetation.

Bølling–Allerød warming

An abrupt warm period that occurred during the final stages of the last glacial period.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, B.M., Grosse, G., Farquharson, L.M. et al. Lake and drained lake basin systems in lowland permafrost regions. Nat Rev Earth Environ 3, 85–98 (2022). https://doi.org/10.1038/s43017-021-00238-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-021-00238-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing