Abstract
Arctic permafrost stores nearly 1,700 billion metric tons of frozen and thawing carbon. Anthropogenic warming threatens to release an unknown quantity of this carbon to the atmosphere, influencing the climate in processes collectively known as the permafrost carbon feedback. In this Review, we discuss advances in tracking permafrost carbon dynamics, including mechanisms of abrupt thaw, instrumental observations of carbon release and model predictions of the permafrost carbon feedback. Abrupt thaw and thermokarst could emit a substantial amount of carbon to the atmosphere rapidly (days to years), mobilizing the deep legacy carbon sequestered in Yedoma. Carbon dioxide emissions are proportionally larger than other greenhouse gas emissions in the Arctic, but expansion of anoxic conditions within thawed permafrost and soils stands to increase the proportion of future methane emissions. Increasingly frequent wildfires in the Arctic will also lead to a notable but unpredictable carbon flux. More detailed monitoring though in situ, airborne and satellite observations will provide a deeper understanding of the Arctic’s future role as a carbon source or sink, and the subsequent impact on the Earth system.
Key points
-
Tundra fire and abrupt thaw events are increasingly driving the release of permafrost carbon into the atmosphere.
-
Observational tools improve carbon flux estimates across scales, but scaling remains a major challenge.
-
Satellite systems scheduled to come online by 2025 will provide high-frequency data and enable better monitoring of permafrost carbon emissions.
-
Earth system models must include permafrost dynamics to enable accurate permafrost carbon feedback projections.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Olefeldt, D. et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7, 13043 (2016).
Lindgren, A., Hugelius, G. & Kuhry, P. Extensive loss of past permafrost carbon but a net accumulation into present-day soils. Nature 560, 219–222 (2018).
Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).
Walter Anthony, K. et al. Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s. Nat. Geosci. 9, 679–682 (2016).
Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).
Gasser, T. et al. Path-dependent reductions in CO2 emission budgets caused by permafrost carbon release. Nat. Geosci. 11, 830–835 (2018).
McGuire, A. D. et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc. Natl Acad. Sci. USA 115, 3882–3887 (2018).
Heffernan, L., Estop-Aragonés, C., Knorr, K. H., Talbot, J. & Olefeldt, D. Long-term impacts of permafrost thaw on carbon storage in peatlands: deep losses offset by surficial accumulation. J. Geophys. Res. Biogeosci. 125, e2019JG005501 (2020).
Chadburn, S. E. et al. An observation-based constraint on permafrost loss as a function of global warming. Nat. Clim. Chang. 7, 340–344 (2017).
Bartsch, A. et al. Can C-band synthetic aperture radar be used to estimate soil organic carbon storage in tundra? Biogeosciences 13, 5453–5470 (2016).
Obu, J. et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth Sci. Rev. 193, 299–316 (2019).
Commane, R. et al. Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra. Proc. Natl Acad. Sci. USA 114, 5361–5366 (2017).
Natali, S. M. et al. Permafrost carbon feedbacks threaten global climate goals. Proc. Natl. Acad. Sci. USA 118, e2100163118 (2021).
Zona, D. et al. Cold season emissions dominate the Arctic tundra methane budget. Proc. Natl Acad. Sci. USA 113, 40–45 (2016).
Comyn-Platt, E. et al. Carbon budgets for 1.5 and 2°C targets lowered by natural wetland and permafrost feedbacks. Nat. Geosci. 11, 568–573 (2018).
Heslop, J. K. K. et al. A synthesis of methane dynamics in thermokarst lake environments. Earth Sci. Rev. 210, 103365 (2020).
Keuper, F. et al. Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming. Nat. Geosci. 13, 560–565 (2020).
Nitze, I., Grosse, G., Jones, B. M., Romanovsky, V. E. & Boike, J. Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic. Nat. Commun. 9, 5423 (2018).
Lara, M. J. et al. Local-scale Arctic tundra heterogeneity affects regional-scale carbon dynamics. Nat. Commun. 11, 4925 (2020).
Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).
Rey, D. M. et al. Wildfire-initiated talik development exceeds current thaw projections: observations and models from Alaska’s continuous permafrost zone. Geophys. Res. Lett. 47, e2020GL087565 (2020).
Kim, J. S., Kug, J. S., Jeong, S. J., Park, H. & Schaepman-Strub, G. Extensive fires in southeastern Siberian permafrost linked to preceding Arctic Oscillation. Sci. Adv. 6, eaax3308 (2020).
Vonk, J. E., Tank, S. E. & Walvoord, M. A. Integrating hydrology and biogeochemistry across frozen landscapes. Nat. Commun. 10, 5377 (2019).
Saunois, M. et al. The global methane budget 2000–2017. Earth Syst. Sci. Data 12, 1561–1623 (2020).
Williams, J. W., Ordonez, A. & Svenning, J. C. A unifying framework for studying and managing climate-driven rates of ecological change. Nat. Ecol. Evol. 5, 17–26 (2021).
Schwab, M. S. et al. An abrupt aging of dissolved organic carbon in large Arctic rivers. Geophys. Res. Lett. 47, e2020GL088823 (2020).
Walter Anthony, K. M. et al. Decadal-scale hotspot methane ebullition within lakes following abrupt permafrost thaw. Environ. Res. Lett. 16, 35010 (2021).
Goldstein, A. et al. Protecting irrecoverable carbon in Earth’s ecosystems. Nat. Clim. Chang. 10, 287–295 (2020).
Turner, M. G. et al. Climate change, ecosystems and abrupt change: science priorities. Phil. Trans. R. Soc. B 375, 20190105 (2020).
Fountain, A. G. et al. The disappearing cryosphere: impacts and ecosystem responses to rapid cryosphere loss. Bioscience 62, 405–415 (2012).
Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 6, 221–233 (2012).
Zou, D. et al. A new map of permafrost distribution on the Tibetan Plateau. Cryosphere 11, 2527–2542 (2012).
Sayedi, S. S. et al. Subsea permafrost carbon stocks and climate change sensitivity estimated by expert assessment. Environ. Res. Lett. 15, 124075 (2020).
Smith, S. L., O’Neill, H. B., Isaksen, K., Noetzli, J. & Romanovsky, V. E. The changing thermal state of permafrost. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00240-1 (2022).
Strauss, J. et al. Deep Yedoma permafrost: a synthesis of depositional characteristics and carbon vulnerability. Earth Sci. Rev. 172, 75–86 (2017).
Strauss, J. et al. The deep permafrost carbon pool of the Yedoma region in Siberia and Alaska. Geophys. Res. Lett. 40, 6165–6170 (2013).
Elder, C. D. et al. Greenhouse gas emissions from diverse Arctic Alaskan lakes are dominated by young carbon. Nat. Clim. Chang. 8, 166–171 (2018).
Martens, J. et al. Remobilization of old permafrost carbon to Chukchi Sea sediments during the end of the last deglaciation. Glob. Biogeochem. Cycles 33, 2–14 (2019).
Vonk, J. E. et al. Reviews and syntheses: effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences 12, 7129–7167 (2015).
Turetsky, M. R. et al. Permafrost collapse is accelerating carbon release. Nature 569, 32–24 (2019).
Wild, B. et al. Rivers across the Siberian Arctic unearth the patterns of carbon release from thawing permafrost. Proc. Natl Acad. Sci. USA 116, 10280–10285 (2019).
Mishra, U. et al. Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks. Sci. Adv. 7, 5236–5260 (2021).
Treat, C. C. et al. Tundra landscape heterogeneity, not interannual variability, controls the decadal regional carbon balance in the Western Russian Arctic. Global Chang. Biol. 24, 5188–5204 (2018).
Siewert, M. B., Lantuit, H., Richter, A. & Hugelius, G. Permafrost causes unique fine-scale spatial variability across tundra soils. Glob. Biogeochem. Cycles 35, e2020GB006659 (2021).
Niittynen, P. et al. Fine-scale tundra vegetation patterns are strongly related to winter thermal conditions. Nat. Clim. Chang. 10, 1143–1148 (2020).
Hope, C. & Schaefer, K. Economic impacts of carbon dioxide and methane released from thawing permafrost. Nat. Clim. Chang. 6, 56–59 (2016).
Farquharson, L. M. et al. Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian High Arctic. Geophys. Res. Lett. 46, 6681–6689 (2019).
Biskaborn, B. K. et al. Permafrost is warming at a global scale. Nat. Commun. 10, 264 (2019).
Hood, E., Battin, T. J., Fellman, J., O’Neel, S. & Spencer, R. G. M. Storage and release of organic carbon from glaciers and ice sheets. Nat. Geosci. 8, 91–96 (2015).
Tanski, G. et al. Rapid CO2 release from eroding permafrost in seawater. Geophys. Res. Lett. 46, 11244–11252 (2019).
Liljedahl, A. K., Gädeke, A., O’Neel, S., Gatesman, T. A. & Douglas, T. A. Glacierized headwater streams as aquifer recharge corridors, subarctic Alaska. Geophys. Res. Lett. 44, 6876–6885 (2017).
Yumashev, D. et al. Climate policy implications of nonlinear decline of Arctic land permafrost and other cryosphere elements. Nat. Commun. 10, 1900 (2019).
Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).
Nauta, A. L. et al. Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source. Nat. Clim. Chang. 5, 67–70 (2015).
Anthony, K. W. et al. 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nat. Commun. 9, 3262 (2018).
Hugelius, G. et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl Acad. Sci. USA 117, 201916387 (2020).
Christensen, T. R., Arora, V. K., Gauss, M., Höglund-Isaksson, L. & Parmentier, F. J. W. Tracing the climate signal: mitigation of anthropogenic methane emissions can outweigh a large Arctic natural emission increase. Sci. Rep. 9, 1146 (2019).
United Nations Framework Convention on Climate Change. Total aggregate greenhouse gas emissions of individual nations, annex 1. World Resources Institute https://www.wri.org/resources/data-sets/climate-watch-cait-unfccc-annex-i-ghg-emissions-data (2008).
Lewkowicz, A. G. & Way, R. G. Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nat. Commun. 10, 1329 (2019).
Knoblauch, C., Beer, C., Liebner, S., Grigoriev, M. N. & Pfeiffer, E. M. Methane production as key to the greenhouse gas budget of thawing permafrost. Nat. Clim. Chang. 8, 309–312 (2018).
Jones, B. M. et al. Lake and drained lake basin systems in lowland permafrost regions. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00238-9 (2022).
Matthews, E., Johnson, M. S., Genovese, V., Du, J. & Bastviken, D. Methane emission from high latitude lakes: methane-centric lake classification and satellite-driven annual cycle of emissions. Sci. Rep. 10, 12465 (2020).
Lamontagne-Hallé, P., McKenzie, J. M., Kurylyk, B. L. & Zipper, S. C. Changing groundwater discharge dynamics in permafrost regions. Environ. Res. Lett. 13, 084017 (2018).
Nitzbon, J. et al. Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate. Nat. Commun. 11, 2201 (2020).
Jeong, S. J. et al. Accelerating rates of Arctic carbon cycling revealed by long-term atmospheric CO2 measurements. Sci. Adv. 4, eaao1167 (2018).
Disher, B. S., Connon, R. F., Haynes, K. M., Hopkinson, C. & Quinton, W. L. The hydrology of treed wetlands in thawing discontinuous permafrost regions. Ecohydrology 14, e2296 (2021).
Parazoo, N. C. et al. Detecting regional patterns of changing CO2 flux in Alaska. Proc. Natl Acad. Sci. USA 113, 7733–7738 (2016).
Silva, J. L. A., Souza, A. F., Caliman, A., Voigt, E. L. & Lichston, J. E. Weak whole-plant trait coordination in a seasonally dry South American stressful environment. Ecol. Evol. 8, 4–12 (2018).
Ward, C. P. & Cory, R. M. Chemical composition of dissolved organic matter draining permafrost soils. Geochim. Cosmochim. Acta 167, 63–79 (2015).
Johnston, E. R. et al. Responses of tundra soil microbial communities to half a decade of experimental warming at two critical depths. Proc. Natl Acad. Sci. USA 116, 15096–15105 (2019).
Stein, L. Y. The long-term relationship between microbial metabolism and greenhouse gases. Trends Microbiol. 28, 500–511 (2020).
Feng, J. et al. Warming-induced permafrost thaw exacerbates tundra soil carbon decomposition mediated by microbial community. Microbiome 8, 3 (2020).
Estop-Aragonés, C. et al. Assessing the potential for mobilization of old soil carbon after permafrost thaw: a synthesis of 14C measurements from the northern permafrost region. Glob. Biogeochem. Cycles 34, e2020GB006672 (2020).
Wik, M., Varner, R. K., Anthony, K. W., MacIntyre, S. & Bastviken, D. Climate-sensitive northern lakes and ponds are critical components of methane release. Nat. Geosci. 9, 99–105 (2016).
Schaefer, K., Lantuit, H., Romanovsky, V. E., Schuur, E. A. G. & Witt, R. The impact of the permafrost carbon feedback on global climate. Environ. Res. Lett. 9, 085003 (2014).
Xue, K. et al. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nat. Clim. Chang. 6, 595–600 (2016).
Bay, S. K. et al. Trace gas oxidizers are widespread and active members of soil microbial communities. Nat. Microbiol. 6, 246–256 (2021).
Singleton, C. M. et al. Methanotrophy across a natural permafrost thaw environment. ISME J. 12, 2544–2558 (2018).
Kwon, M. J. et al. Plants, microorganisms, and soil temperatures contribute to a decrease in methane fluxes on a drained Arctic floodplain. Glob. Chang. Biol. 23, 2396–2412 (2017).
Jin, X.-Y. et al. Impacts of climate-induced permafrost degradation on vegetation: a review. Adv. Clim. Chang. Res. 12, 29–47 (2020).
Song, X. et al. Soil moisture as a key factor in carbon release from thawing permafrost in a boreal forest. Geoderma 357, 113975 (2020).
Zhu, Y. et al. Disproportionate increase in freshwater methane emissions induced by experimental warming. Nat. Clim. Chang. 10, 685–690 (2020).
Watts, J. D., Kimball, J. S., Bartsch, A. & McDonald, K. C. Surface water inundation in the boreal-Arctic: potential impacts on regional methane emissions. Environ. Res. Lett. 9, 075001 (2014).
Thompson, R. L. et al. Methane fluxes in the high northern latitudes for 2005–2013 estimated using a Bayesian atmospheric inversion. Atmos. Chem. Phys. 17, 3553–3572 (2017).
Oh, Y. et al. Reduced net methane emissions due to microbial methane oxidation in a warmer Arctic. Nat. Clim. Chang. 10, 317–321 (2020).
Street, L. E. et al. Plant carbon allocation drives turnover of old soil organic matter in permafrost tundra soils. Glob. Chang. Biol. 26, 4559–4571 (2020).
Natali, S. M. et al. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Chang. 9, 852–857 (2019).
Hu, Y., Fernandez-Anez, N., Smith, T. E. L. & Rein, G. Review of emissions from smouldering peat fires and their contribution to regional haze episodes. Int. J. Wildland Fire 27, 293–312 (2018).
Abbott, B. W. et al. Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. Environ. Res. Lett. 11, 034014 (2016).
Mack, M. C. et al. Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees. Science 372, 280–283 (2021).
Holloway, J. E. et al. Impact of wildfire on permafrost landscapes: a review of recent advances and future prospects. Permafr. Periglac. Process. 31, 371–382 (2020).
McCarty, J. L., Smith, T. E. L. & Turetsky, M. R. Arctic fires re-emerging. Nat. Geosci. 13, 658–660 (2020).
Scholten, R. C., Jandt, R., Miller, E. A., Rogers, B. M. & Veraverbeke, S. Overwintering fires in boreal forests. Nature 593, 399–404 (2021).
Koven, C. D. et al. A simplified, data-constrained approach to estimate the permafrost carbon-climate feedback. Phil. Trans. R. Soc. A 373, 20140423 (2015).
MacDougall, A. H. & Knutti, R. Projecting the release of carbon from permafrost soils using a perturbed parameter ensemble modelling approach. Biogeosciences 13, 2123–2136 (2016).
Cooper, M. D. A. et al. Limited contribution of permafrost carbon to methane release from thawing peatlands. Nat. Clim. Chang. 7, 507–511 (2017).
Andresen, C. G. et al. Soil moisture and hydrology projections of the permafrost region–a model intercomparison. Cryosphere 14, 445–459 (2020).
Bartsch, A., Pointner, G., Ingeman-Nielsen, T. & Lu, W. Towards circumpolar mapping of Arctic settlements and infrastructure based on Sentinel-1 and Sentinel-2. Remote Sens. 12, 2368 (2020).
Swingedouw, D. et al. Early warning from space for a few key tipping points in physical, biological, and social-ecological systems. Surv. Geophys. 41, 1237–1284 (2020).
Elder, C. D. et al. Airborne mapping reveals emergent power law of Arctic methane emissions. Geophys. Res. Lett. 47, e2019GL085707 (2020).
Byrne, B. et al. Improved constraints on northern extratropical CO2 fluxes obtained by combining surface-based and space-based atmospheric CO2 measurements. J. Geophys. Res. Atmos. 125, e2019JD032029 (2020).
Karlson, M. et al. Delineating northern peatlands using Sentinel-1 time series and terrain indices from local and regional digital elevation models. Remote Sens. Environ. 231, 111252 (2019).
Cusworth, D. H. et al. Synthesis of methane observations across scales: strategies for deploying a multitiered observing network. Geophys. Res. Lett. 47, e2020GL087869 (2020).
Bale, N. J. et al. Fatty acid and hopanoid adaption to cold in the methanotroph methylovulum psychrotolerans. Front. Microbiol. 10, 589 (2019).
Mackelprang, R. et al. Microbial survival strategies in ancient permafrost: insights from metagenomics. ISME J. 11, 2305–2318 (2017).
Siliakus, M. F., van der Oost, J. & Kengen, S. W. M. Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure. Extremophiles 21, 651–670 (2017).
Johnson, S. S. et al. Ancient bacteria show evidence of DNA repair. Proc. Natl Acad. Sci. USA 104, 14401–14405 (2007).
Hueffer, K., Drown, D., Romanovsky, V. & Hennessy, T. Factors contributing to anthrax outbreaks in the circumpolar north. Ecohealth 17, 174–180 (2020).
Miner, K. R. et al. Emergent biogeochemical risks from Arctic permafrost degradation. Nat. Clim. Chang. 11, 809–819 (2021).
Perron, G. G. et al. Functional characterization of bacteria isolated from ancient Arctic soil exposes diverse resistance mechanisms to modern antibiotics. PLoS ONE 10, e0069533 (2015).
MacKelprang, R. et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480, 368–371 (2011).
Burkert, A., Douglas, T. A., Waldrop, M. P. & Mackelprang, R. Changes in the active, dead, and dormant microbial community structure across a pleistocene permafrost chronosequence. Appl. Environ. Microbiol. 85, e02646-18 (2019).
Jansson, J. K. & Hofmockel, K. S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 18, 35–46 (2020).
Hultman, J. et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521, 208–212 (2015).
Schadel, C. et al. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nat. Clim. Chang. 6, 950–953 (2016).
Lee, H. et al. A spatially explicit analysis to extrapolate carbon fluxes in upland tundra where permafrost is thawing. Glob. Chang. Biol. 17, 1379–1393 (2011).
Euskirchen, E. S., Edgar, C. W., Turetsky, M. R., Waldrop, M. P. & Harden, J. W. Differential response of carbon fluxes to climate in three peatland ecosystems that vary in the presence and stability of permafrost. J. Geophys. Res. Biogeosci. 119, 1576–1595 (2014).
Euskirchen, E. S., Bret-Harte, M. S., Shaver, G. R., Edgar, C. W. & Romanovsky, V. E. Long-term release of carbon dioxide from arctic tundra ecosystems in Alaska. Ecosystems 20, 960–974 (2017).
Karlsson, J. et al. Carbon emission from Western Siberian inland waters. Nat. Commun. 12, 825 (2021).
Schuur, E. A. G. et al. Tundra underlain by thawing permafrost persistently emits carbon to the atmosphere over 15 years of measurements. J. Geophys. Res. Biogeosci. 126, e2020JG006044 (2021).
Oechel, W. C. et al. Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature 406, 978–981 (2000).
Heijmans, M. M. P. D. et al. Tundra vegetation change and impacts on permafrost. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00233-0 (2022).
Kanevskiy, M. et al. Patterns and rates of riverbank erosion involving ice-rich permafrost (yedoma) in northern Alaska. Geomorphology 253, 370–384 (2016).
Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).
Schimel, D. & Schneider, F. D. Flux towers in the sky: global ecology from space. New Phytol. 224, 570–584 (2019).
Humphrey, V. et al. Soil moisture–atmosphere feedback dominates land carbon uptake variability. Nature 592, 65–69 (2021).
Jammet, M. et al. Year-round CH4 and CO2 flux dynamics in two contrasting freshwater ecosystems of the subarctic. Biogeosciences 14, 5189–5216 (2017).
Kohnert, K., Serafimovich, A., Metzger, S., Hartmann, J. & Sachs, T. Strong geologic methane emissions from discontinuous terrestrial permafrost in the Mackenzie Delta, Canada. Sci. Rep. 7, 5828 (2017).
Sayres, D. S. et al. Arctic regional methane fluxes by ecotope as derived using eddy covariance from a low-flying aircraft. Atmos. Chem. Phys. 17, 8619–8633 (2017).
Ueyama, M. et al. Upscaling terrestrial carbon dioxide fluxes in Alaska with satellite remote sensing and support vector regression. J. Geophys. Res. Biogeosci. 118, 1266–1281 (2013).
Davidson, S. J. et al. Upscaling CH4 fluxes using high-resolution imagery in Arctic tundra ecosystems. Remote Sens. 9, 1227 (2017).
Peltola, O. et al. Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations. Earth Syst. Sci. Data 11, 1263–1289 (2019).
Chang, R. Y. W. et al. Methane emissions from Alaska in 2012 from CARVE airborne observations. Proc. Natl Acad. Sci. USA 111, 16694–16699 (2014).
Saeki, T. et al. Carbon flux estimation for Siberia by inverse modeling constrained by aircraft and tower CO2 measurements. J. Geophys. Res. Atmos. 118, 1100–1122 (2013).
Kim, J. et al. Impact of Siberian observations on the optimization of surface CO2 flux. Atmos. Chem. Phys. 17, 2881–2899 (2017).
O’Shea, S. J. et al. Methane and carbon dioxide fluxes and their regional scalability for the European Arctic wetlands during the MAMM project in summer 2012. Atmos. Chem. Phys. 14, 13159–13174 (2014).
Gottwald, M. & Bovensmann, H. SCIAMACHY — Exploring the Changing Earth’s Atmosphere (Springer, 2011).
Siewert, M. B. High-resolution digital mapping of soil organic carbon in permafrost terrain using machine learning: a case study in a sub-Arctic peatland environment. Biogeosciences 15, 1663–1682 (2018).
Arndt, K. A. et al. Arctic greening associated with lengthening growing seasons in Northern Alaska. Environ. Res. Lett. 14, 125018 (2019).
Widhalm, B., Bartsch, A. & Heim, B. A novel approach for the characterization of tundra wetland regions with C-band SAR satellite data. Int. J. Remote Sens. 36, 5537–5556 (2015).
Varon, D. J. et al. High-frequency monitoring of anomalous methane point sources with multispectral Sentinel-2 satellite observations. Atmos. Meas. Tech. 14, 2771–2785 (2021).
Bartsch, A., Hofler, A., Kroisleitner, C. & Trofaier, A. M. Land cover mapping in northern high latitude permafrost regions with satellite data: achievements and remaining challenges. Remote Sens. 8, 979 (2016).
Flato, G. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Ch. 9 (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).
Kivimäki, E. et al. Evaluation and analysis of the seasonal cycle and variability of the trend from GOSAT methane retrievals. Remote Sens. 11, 882 (2019).
Lindqvist, H. et al. Does GOSAT capture the true seasonal cycle of carbon dioxide? Atmos. Chem. Phys. 15, 13023–13040 (2015).
Chadburn, S. et al. Carbon stocks and fluxes in the high latitudes: using site-level data to evaluate Earth system models. Biogeosciences 14, 5143–5169 (2017).
Graven, H. D. et al. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341, 1085–1089 (2013).
Aas, K. S. et al. Thaw processes in ice-rich permafrost landscapes represented with laterally coupled tiles in a land surface model. Cryosphere 13, 591–609 (2019).
Westermann, S. et al. Transient modeling of the ground thermal conditions using satellite data in the Lena River delta, Siberia. Cryosphere 11, 1441–1463 (2017).
Houweling, S. et al. An intercomparison of inverse models for estimating sources and sinks of CO2 using GOSAT measurements. J. Geophys. Res. 120, 5253–5266 (2015).
Houweling, S. et al. Global inverse modeling of CH4 sources and sinks: an overview of methods. Atmos. Chem. Phys. 17, 235–256 (2017).
Tsuruta, A. et al. Global methane emission estimates for 2000–2012 from CarbonTracker Europe-CH4 v1.0. Geosci. Model Dev. 10, 1261–1289 (2017).
Virkkala, A. M., Abdi, A. M., Luoto, M. & Metcalfe, D. B. Identifying multidisciplinary research gaps across Arctic terrestrial gradients. Environ. Res. Lett. 14, 124061 (2019).
Hakkarainen, J., Ialongo, I., Maksyutov, S. & Crisp, D. Analysis of four years of global XCO2 anomalies as seen by Orbiting Carbon Observatory-2. Remote Sens. 11, 850 (2019).
Fisher, J. B. et al. Missing pieces to modeling the Arctic-Boreal puzzle. Environ. Res. Lett. 13, 020202 (2018).
McGuire, A. D. et al. An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions. Biogeosciences 9, 3185–3204 (2012).
Lenton, T. M. & Williams, H. T. P. On the origin of planetary-scale tipping points. Trends Ecol. Evol. 28, 380–382 (2013).
Lenton, T. M. Arctic climate tipping points. Ambio 41, 10–22 (2012).
Lenton, T. M. et al. Climate tipping points — too risky to bet against. Nature 575, 592–595 (2019).
Fleisher, A. J., Long, D. A., Liu, Q., Gameson, L. & Hodges, J. T. Optical measurement of radiocarbon below unity fraction modern by linear absorption spectroscopy. J. Phys. Chem. Lett. 8, 4550–4556 (2017).
Genoud, G. et al. Laser spectroscopy for monitoring of radiocarbon in atmospheric samples. Anal. Chem. 91, 12315–12320 (2019).
Levin, I. et al. Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2. Tellus B Chem. Phys. Meteorol. 62, 26–46 (2010).
Voigt, C. et al. Warming of subarctic tundra increases emissions of all three important greenhouse gases — carbon dioxide, methane, and nitrous oxide. Glob. Chang. Biol. 23, 3121–3138 (2017).
Mu, C. C. et al. Permafrost collapse shifts alpine tundra to a carbon source but reduces N2O and CH4 release on the northern Qinghai-Tibetan Plateau. Geophys. Res. Lett. 44, 8945–8952 (2017).
Krogh, S. A., Pomeroy, J. W. & Marsh, P. Diagnosis of the hydrology of a small Arctic basin at the tundra-taiga transition using a physically based hydrological model. J. Hydrol. 550, 685–703 (2017).
Burke, E. J., Zhang, Y. & Krinner, G. Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change. Cryosphere 14, 3155–3174 (2020).
Treat, C. C., Bloom, A. A. & Marushchak, M. E. Nongrowing season methane emissions — a significant component of annual emissions across northern ecosystems. Glob. Chang. Biol. 24, 3331–3343 (2018).
Kelley, J. J., Weaver, D. F. & Smith, B. P. The variation of carbon dioxide under the snow in the Arctic. Ecology 49, 358–361 (1968).
Du, J. et al. Assessing global surface water inundation dynamics using combined satellite information from SMAP, AMSR2 and Landsat. Remote Sens. Environ. 213, 1–17 (2018).
Webb, E. E. et al. Increased wintertime CO2 loss as a result of sustained tundra warming. J. Geophys. Res. Biogeosci. 121, 249–265 (2016).
Grosse, G., Goetz, S., McGuire, A. D., Romanovsky, V. E. & Schuur, E. A. G. Changing permafrost in a warming world and feedbacks to the Earth system. Environ. Res. Lett. 11, 040201 (2016).
Kleinen, T. & Brovkin, V. Pathway-dependent fate of permafrost region carbon. Environ. Res. Lett. 13, 094001 (2018).
Anthony, K. M. W. et al. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature 511, 452–456 (2014).
Crichton, K. A., Bouttes, N., Roche, D. M., Chappellaz, J. & Krinner, G. Permafrost carbon as a missing link to explain CO2 changes during the last deglaciation. Nat. Geosci. 9, 683–686 (2016).
Tesi, T. et al. Massive remobilization of permafrost carbon during post-glacial warming. Nat. Commun. 7, 13653 (2016).
McClain, M. E. et al. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6, 301–312 (2003).
Bernhardt, E. S. et al. Control points in ecosystems: moving beyond the hot spot hot moment concept. Ecosystems 20, 665–682 (2016).
Kuze, A. et al. Update on GOSAT TANSO-FTS performance, operations, and data products after more than 6 years in space. Atmos. Meas. Tech. 9, 2445–2461 (2016).
Eldering, A. et al. The Orbiting Carbon Observatory-2 early science investigations of regional carbon dioxide fluxes. Science 358, eaam5745 (2017).
Yang, D. et al. First global carbon dioxide maps produced from TanSat measurements. Adv. Atmos. Sci. 35, 621–623 (2018).
Glumb, R., Davis, G. & Lietzke, C. in IEEE International Geoscience and Remote Sensing Symposium 1238–1240 (IEEE, 2014).
Lorente, A. et al. Methane retrieved from TROPOMI: improvement of the data product and validation of the first 2 years of measurements. Atmos. Meas. Tech. 14, 665–684 (2021).
Ehret, G. et al. MERLIN: a French–German space lidar mission dedicated to atmospheric methane. Remote Sens. 9, 1052 (2017).
Bousquet, P. et al. Error budget of the MEthane Remote LIdar missioN and its impact on the uncertainties of the global methane budget. J. Geophys. Res. Atmos. 123, 11,766–11,785 (2018).
Bezy, J.-L. et al. in IEEE International Geoscience and Remote Sensing Symposium 8400–8403 (IEEE, 2019).
Ingmann, P. et al. Requirements for the GMES atmosphere service and ESA’s implementation concept: Sentinels-4/-5 and -5p. Remote Sens. Environ. 120, 58–69 (2012).
Nassar, R. et al. The atmospheric imaging mission for northern regions: AIM-North. Can. J. Remote Sens. 45, 423–442 (2019).
Polonsky, I. N., O’Brien, D. M., Kumer, J. B., O’Dell, C. W. & the geoCARB Team. Performance of a geostationary mission, geoCARB, to measure CO2, CH4 and CO column-averaged concentrations. Atmos. Meas. Tech. 7, 959–981 (2014).
Chahine, M. T. et al. Improving weather forecasting and providing new data on greenhouse gases. Bull. Am. Meteorol. Soc. 87, 911–926 (2006).
Clerbaux, C. et al. Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder. Atmos. Chem. Phys. 9, 6041–6054 (2009).
Han, Y. et al. Suomi NPP CrIS measurements, sensor data record algorithm, calibration and validation activities, and record data quality. J. Geophys. Res. Atmos. 118, 734–12,748 (2013).
Zou, C. Z. et al. The reprocessed Suomi NPP satellite observations. Remote Sens. 12, 2891 (2020).
Obu, J. et al. ESA Permafrost Climate Change Initiative (Permafrost_CCI): permafrost climate research data package v1 (CEDA, 2020).
Voigt, C. et al. Nitrous oxide emissions from permafrost-affected soils. Nat. Rev. Earth Environ. 1, 420–434 (2020).
Arctic Climate Impact Assessment. Impacts of a Warming Arctic: Arctic Climate Impact Assessment (Cambridge Univ. Press, 2004).
Acknowledgements
A portion of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). This work is part of the NASA-ESA Arctic Methane and Permafrost Challenge (AMPAC). J.T. acknowledges funding from the Academy of Finland (projects 312125, 337552).
Author information
Authors and Affiliations
Contributions
All authors contributed to the writing and revision of this paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Earth & Environment thanks Maija Marushchak, Joshua Dean and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Active layer
-
In permafrost environments, the top layer of substrate that often freezes in winter and thaws in the spring and summer (less than 50 cm thick in the tundra and up to 3 m in boreal regions).
- Talik
-
A layer of soil that is unfrozen year-round within the permafrost. Often found below lakes, wetlands or rivers.
- Permafrost carbon feedback
-
(PCF). The accelerated release of carbon into the atmosphere from the thawing of the permafrost.
- Abrupt thaw
-
Rapid permafrost thaw that occurs on timescales of a few days to a few years.
- Thermokarst
-
An erosional landscape process of abrupt thaw, resulting in permafrost structural collapse.
- Yedoma
-
Carbon-rich (at least 210 PgC globally), Pleistocene-era permafrost containing up to 90% ice.
- RCP4.5
-
The median Representative Concentration Pathway (RCP) used by the Intergovernmental Panel on Climate Change (IPCC) for climate modelling on the IPCC Fifth Assessment Report in 2014.
- RCP8.5
-
The highest carbon emission scenario Representative Concentration Pathway (RCP) used by the Intergovernmental Panel on Climate Change (IPCC) for climate modelling on the IPCC Fifth Assessment Report in 2014.
- Ebullition
-
The action of bubbling or boiling.
- Aerenchymous transference
-
Movement of gas through air spaces found in aquatic plants.
- Rhizome priming
-
The stimulation of microbial organic matter remineralization due to plant root activity.
- Zombie fires
-
Fires that burn year to year and extend through the winter into the early spring, before wildfire season.
- Zero curtain
-
The transition of water to ice is slowed due to latent heat release in the surrounding soil, despite sub-zero air temperatures.
Rights and permissions
About this article
Cite this article
Miner, K.R., Turetsky, M.R., Malina, E. et al. Permafrost carbon emissions in a changing Arctic. Nat Rev Earth Environ 3, 55–67 (2022). https://doi.org/10.1038/s43017-021-00230-3
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s43017-021-00230-3
This article is cited by
-
Effect of carbon reduction policies on economic growth from a dual carbon perspective
Energy Informatics (2024)
-
Remotely sensing potential climate change tipping points across scales
Nature Communications (2024)
-
Ecological restoration is crucial in mitigating carbon loss caused by permafrost thawing on the Qinghai-Tibet Plateau
Communications Earth & Environment (2024)
-
Temperature responses of ecosystem respiration
Nature Reviews Earth & Environment (2024)
-
Earlier spring greening in Northern Hemisphere terrestrial biomes enhanced net ecosystem productivity in summer
Communications Earth & Environment (2024)