Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Physical manifestations and ecological implications of Arctic Atlantification

Abstract

The Atlantic gateway to the Arctic Ocean is influenced by vigorous inflows of Atlantic Water. The high-latitude impacts of these inflows have strengthened owing to climate change, particularly since 2000, driving so-called ‘Atlantification’ — a transition of Arctic waters to a state more closely resembling that of the Atlantic. In this Review, we discuss the physical and ecological manifestations of Atlantification in a hotspot region of climate change spanning the southern Barents Sea to the Eurasian Basin. Atlantification is driven by anomalous Atlantic Water inflows and is modulated by local processes, including: reduced atmospheric cooling, which amplifies warming in the southern Barents Sea; reduced freshwater input and stronger influence of ice import in the northern Barents Sea; and enhanced upper ocean mixing and air–ice–ocean coupling in the Eurasian Basin. Ecosystem responses to Atlantification encompass increased production, northward expansion of boreal species (borealization), an increased importance of the pelagic compartment populated by new species, an increasingly connected food web and a gradual reduction of the ice-associated ecosystem compartment. Considering the complex evidence supporting Atlantification, dedicated, multidisciplinary observations and advanced modelling experiments targeting large-scale changes in the system and specific mechanisms responsible for local and remote changes are urgently needed.

Key points

  • The inflow of warm and salty Atlantic Water into the Atlantic gateway to the Arctic, which spans from the southern Barents Sea and the Fram Strait towards the eastern Eurasian Basin, is a major oceanic heat source to the Arctic Ocean.

  • Atlantification is related to the progression of temperature anomalies, which are strongly modified in transit owing to feedbacks and regional processes not necessarily forced by changes in the Atlantic Water flow.

  • Changes in the Barents Sea include warming and a receding seasonal sea ice cover, increasing importance of boreal species and altered food web linkages; all are expected to be exacerbated by future warming.

  • The observed changes in ecosystem properties goes in the direction of an increased capacity to adjust to Atlantification, at the cost of Arctic species, and greater sensitivity to environmental perturbations.

  • Changes in the Eurasian Basin will likely amplify feedback mechanisms, thus enhancing the coupling between ocean, sea ice and atmosphere, with consequences for decreasing sea ice and higher primary and secondary production.

  • Future research addressing changes in the Arctic Ocean halocline and the denser waters below it, and changes in phenology and adaptive capacity of the ecosystems, should be of high priority.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Physical and ecological characteristics and changes in the Atlantic gateway to the Arctic.
Fig. 2: Evidence of Arctic Atlantification.
Fig. 3: Physical processes associated with Atlantification.
Fig. 4: Physical drivers of Atlantification.
Fig. 5: Borealization of the northern Barents Sea.
Fig. 6: Feeding connections in the Barents Sea.

Similar content being viewed by others

References

  1. Serreze, M. C. & Francis, J. A. The Arctic amplification debate. Clim. Change 76, 241–264 (2006).

    Google Scholar 

  2. Bekryaev, R. V., Polyakov, I. V. & Alexeev, V. A. Role of polar amplification in long-term surface air temperature variations and modern Arctic warming. J. Clim. 23, 3888–3906 (2010).

    Google Scholar 

  3. Goosse, H. et al. Quantifying climate feedbacks in polar regions. Nat. Commun. 9, 1919 (2018).

    Google Scholar 

  4. Meredith, M. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate Ch. 3 (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2019).

  5. Polyakov, I. V. et al. Borealization of the Arctic Ocean in response to anomalous advection from sub-Arctic seas. Front. Mar. Sci. 7, 491 (2020).

    Google Scholar 

  6. Polyakov, I. V. et al. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science 356, 285–291 (2017).

    Google Scholar 

  7. Polyakov, I. V. et al. Weakening of cold halocline layer exposes sea ice to oceanic heat in the eastern Arctic Ocean. J. Clim. 33, 8107–8123 (2020).

    Google Scholar 

  8. Lind, S., Ingvaldsen, R. B. & Furevik, T. Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. Nat. Clim. Change 8, 634–639 (2018).

    Google Scholar 

  9. González-Pola, C., Larsen, K. M. H., Fratantoni, P. & Beszczynska-Möller, A. (eds) ICES Report on Ocean Climate 2018. ICES Cooperative Research Report No. 349 (International Council for the Exploration of the Sea, 2019).

  10. Smedsrud, L. H. et al. The role of the Barents Sea in the Arctic climate system. Rev. Geophys. 51, 415–449 (2013).

    Google Scholar 

  11. Skagseth, Ø. et al. Reduced efficiency of the Barents Sea cooling machine. Nat. Clim. Change 10, 661–666 (2020).

    Google Scholar 

  12. Tsubouchi, T. et al. Increased ocean heat transport into the Nordic Seas and Arctic Ocean over the period 1993–2016. Nat. Clim. Change 11, 21–26 (2021).

    Google Scholar 

  13. Wang, Q. et al. Intensification of the Atlantic Water supply to the Arctic Ocean through Fram Strait induced by Arctic sea ice decline. Geophys. Res. Lett. 47, e2019GL086682 (2020).

    Google Scholar 

  14. Oziel, L. et al. Faster Atlantic currents drive poleward expansion of temperate phytoplankton in the Arctic Ocean. Nat. Commun. 11, 1705 (2020).

    Google Scholar 

  15. Aagaard, K., Coachman, L. K. & Carmack, E. On the halocline of the Arctic Ocean. Deep Sea Res. 28, 529–545 (1981).

    Google Scholar 

  16. Rudels, B., Anderson, L. G. & Jones, E. P. Formation and evolution of the surface mixed layer and halocline of the Arctic Ocean. J. Geophys. Res. Oceans 101, 8807–8821 (1996).

    Google Scholar 

  17. Fer, I. Weak vertical diffusion allows maintenance of cold halocline in the central Arctic. Atmos. Ocean. Sci. Lett. 2, 148–152 (2009).

    Google Scholar 

  18. Wassmann, P. et al. The contiguous domains of Arctic Ocean advection: trails of life and death. Prog. Oceanogr. 139, 42–65 (2015).

    Google Scholar 

  19. Wassmann, P., Duarte, C., Augusti, S. & Sejr, M. K. Footprints of climate change in the Arctic marine ecosystem. Glob. Change Biol. 17, 1235–1249 (2011).

    Google Scholar 

  20. Orlova, E. L. et al. Climatic and ecological drivers of euphausiid community structure vary spatially in the Barents Sea: relationships from a long time series (1952–2009). Front. Mar. Sci. 1, 74 (2015).

    Google Scholar 

  21. Neukermans, G., Oziel, L. & Babin, M. Increased intrusion of warming Atlantic water leads to rapid expansion of temperate phytoplankton in the Arctic. Glob. Change Biol. 24, 2545–2553 (2018).

    Google Scholar 

  22. Vernet, M., Carstensen, J., Reigstad, M. & Svensen, C. Editorial: carbon bridge to the Arctic. Front. Mar. Sci. 7, 204 (2020).

    Google Scholar 

  23. Orlova, E. L. et al. in The Formation of Bioproductivity in the Northern Barents Sea in the Period of Warming in the Arctic [Russian] (ed. Karasev, A. B.) 93–125 (PINRO Press, 2014).

  24. Fossheim, M. et al. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Clim. Change 5, 673–677 (2015).

    Google Scholar 

  25. Berge, J. et al. First records of Atlantic mackerel (Scomber scombrus) from the Svalbard archipelago, Norway, with possible explanations for the extensions of its distribution. Arctic 68, 54–61 (2015).

    Google Scholar 

  26. Hamilton, C. D. et al. Contrasting changes in space use induced by climate change in two Arctic marine mammal species. Biol. Lett. 15, 20180834 (2019).

    Google Scholar 

  27. Moore, S. E., Haug, T., Víkingsson, G. A. & Stenson, G. B. Baleen whale ecology in arctic and subarctic seas in an era of rapid habitat alteration. Prog. Oceanogr. 176, 102118 (2019).

    Google Scholar 

  28. Descamps, S. et al. Climate change impacts on wildlife in a high Arctic archipelago–Svalbard, Norway. Glob. Change Biol. 23, 490–502 (2017).

    Google Scholar 

  29. Vihtakari, M. et al. Black-legged kittiwakes as messengers of Atlantification in the Arctic. Sci. Rep. 8, 1178 (2018).

    Google Scholar 

  30. Kortsch, S., Primicerio, R., Fossheim, M., Dolgov, A. V. & Aschan, M. Climate change alters the structure of Arctic marine food webs due to poleward shifts of boreal generalists. Proc. R. Soc. B Biol. Sci. 282, 20151546 (2015).

    Google Scholar 

  31. Frainer, A. et al. Climate-driven changes in functional biogeography of Arctic marine fish communities. Proc. Natl Acad. Sci. USA 114, 12202–12207 (2017).

    Google Scholar 

  32. Pecuchet, L. et al. Novel feeding interactions amplify the impact of species redistribution on an Arctic food web. Glob. Change Biol. 26, 4894–4906 (2020).

    Google Scholar 

  33. Årthun, M. et al. Climate based multi-year predictions of the Barents Sea cod stock. PLoS ONE 13, e0206319 (2018).

    Google Scholar 

  34. Olsen, E., Holen, S., Hoel, A. H., Buhl-Mortensen, L. & Røttingen, I. How integrated ocean governance in the Barents Sea was created by a drive for increased oil production. Mar. Policy 71, 293–300 (2016).

    Google Scholar 

  35. Boitsov, V. D., Karsakov, A. L. & Trofimov, A. G. Atlantic water temperature and climate in the Barents Sea, 2000–2009. ICES J. Mar. Sci. 69, 833–840 (2012).

    Google Scholar 

  36. Matishov, G. et al. Climate and cyclic hydrobiological changes of the Barents Sea from the twentieth to twenty-first centuries. Polar Biol. 35, 1773–1790 (2012).

    Google Scholar 

  37. Schlichtholz, P. Subsurface ocean flywheel of coupled climate variability in the Barents Sea hotspot of global warming. Sci. Rep 9, 13692 (2019).

    Google Scholar 

  38. Woodgate, R. A. et al. The Arctic Ocean boundary current along the Eurasian slope and the adjacent Lomonosov Ridge: water mass properties, transports and transformations from moored instruments. Deep Sea Res. 48, 1757–1792 (2001).

    Google Scholar 

  39. Schauer, U., Fahrbach, E., Osterhus, S. & Rohardt, G. Arctic warming through the Fram Strait: Oceanic heat transport from 3 years of measurements. J. Geophys. Res. Oceans 109, C06026 (2004).

    Google Scholar 

  40. Karcher, M. J., Gerdes, R., Kauker, F. & Köberle, C. Arctic warming: evolution and spreading of the 1990s warm event in the Nordic seas and the Arctic Ocean. J. Geophys. Res. Oceans 108, 3034 (2003).

    Google Scholar 

  41. Quadfasel, D., Sy, A., Wells, D. & Tunik, A. Warming in the Arctic. Nature 350, 385–385 (1991).

    Google Scholar 

  42. Carmack, E. C., Macdonald, R. W., Perkin, R. G., Mclaughlin, F. A. & Pearson, R. J. Evidence for warming of Atlantic water in the southern Canadian Basin of the Arctic Ocean: results from the Larsen-93 expedition. Geophys. Res. Lett. 22, 1061–1064 (1995).

    Google Scholar 

  43. Steele, M. & Boyd, T. Retreat of the cold halocline layer in the Arctic Ocean. J. Geophys. Res. Oceans 103, 10419–10435 (1998).

    Google Scholar 

  44. Morison, J. et al. Changing Arctic Ocean freshwater pathways. Nature 481, 66–70 (2012).

    Google Scholar 

  45. Polyakov, I. V. et al. One more step toward a warmer Arctic. Geophys. Res. Lett. 32, L17605 (2005).

    Google Scholar 

  46. Mayer, M. et al. An improved estimate of the coupled Arctic energy budget. J. Clim. 32, 7915–7934 (2019).

    Google Scholar 

  47. Sandø, A. B., Nilsen, J. E. Ø., Gao, Y. & Lohmann, K. Importance of heat transport and local air-sea heat fluxes for Barents Sea climate variability. J. Geophys. Res. Oceans 115, C07013 (2010).

    Google Scholar 

  48. Smedsrud, L. H., Ingvaldsen, R., Nilsen, J. E. Ø. & Skagseth, Ø. Heat in the Barents Sea: transport, storage, and surface fluxes. Ocean Sci. 6, 219–234 (2010).

    Google Scholar 

  49. Årthun, M., Eldevik, T., Smedsrud, L. H., Skagseth, Ø. & Ingvaldsen, R. B. Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat. J. Clim. 25, 4736–4743 (2012).

    Google Scholar 

  50. Oziel, L., Sirven, J. & Gascard, J. C. The Barents Sea frontal zones and water masses variability (1980–2011). Ocean Sci. 12, 169–184 (2016).

    Google Scholar 

  51. Barton, B. I., Lenn, Y.-D. & Lique, C. Observed Atlantification of the Barents Sea causes the polar front to limit the expansion of winter sea ice. J. Phys. Oceanogr. 48, 1849–1866 (2018).

    Google Scholar 

  52. Onarheim, I. H., Eldevik, T., Smedsrud, L. H. & Stroeve, J. C. Seasonal and regional manifestation of Arctic sea ice loss. J. Clim. 31, 4917–4932 (2018).

    Google Scholar 

  53. Ivanov, V. et al. Contribution of convection-induced heat flux to winter ice decay in the western Nansen Basin. J. Geophys. Res. Oceans 123, 6581–6597 (2018).

    Google Scholar 

  54. Kohnemann, S. H. E., Heinemann, G., Bromwich, D. H. & Gutjahr, O. Extreme warming in the Kara Sea and Barents Sea during the winter period 2000–16. J. Clim. 30, 8913–8927 (2017).

    Google Scholar 

  55. Isaksen, K. et al. Recent warming on Spitsbergen — influence of atmospheric circulation and sea ice cover. J. Geophys. Res. Atmos. 121, 11,913–11,931 (2016).

    Google Scholar 

  56. Onarheim, I. H., Smedsrud, L. H., Ingvaldsen, R. B. & Nilsen, F. Loss of sea ice during winter north of Svalbard. Tellus A 66, 23933 (2014).

    Google Scholar 

  57. Polyakov, I. V. et al. Arctic Ocean warming contributes to reduced polar ice cap. J. Phys. Oceanogr. 40, 2743–2756 (2010).

    Google Scholar 

  58. Arrigo, K. R. & van Dijken, G. L. Continued increases in Arctic Ocean primary production. Prog. Oceanogr. 136, 60–70 (2015).

    Google Scholar 

  59. Kahru, M., Lee, Z., Mitchell, B. G. & Nevison, C. D. Effects of sea ice cover on satellite-detected primary production in the Arctic Ocean. Biol. Lett. 12, 20160223 (2016).

    Google Scholar 

  60. Assmy, P. et al. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice. Sci. Rep 7, 40850 (2017).

    Google Scholar 

  61. Dalpadado, P. et al. Climate effects on temporal and spatial dynamics of phytoplankton and zooplankton in the Barents Sea. Prog. Oceanogr. 185, 102320 (2020).

    Google Scholar 

  62. Makarevich, P. R. Planktonic Algae Communities of Estuarine Ecosystems. The Barents, Kara and Azov Seas Vol. 223 [Russian] (Nauka Publishing, 2007).

  63. Makarevich, P. R. & Druzhkova, E. I. Seasonal Cycling Processes in Coastal Planktonic Algae Communities of Northern Seas Vol. 280 [Russian] (Southern Scientific Center of the Russian Academy of Science, 2010).

  64. Ardyna, M. et al. Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms. Geophys. Res. Lett. 41, 6207–6212 (2014).

    Google Scholar 

  65. Aarflot, J. M., Skjoldal, H. R., Dalpadado, P. & Skern-Mauritzen, M. Contribution of Calanus species to the mesozooplankton biomass in the Barents Sea. ICES J. Mar. Sci. 75, 2342–2354 (2017).

    Google Scholar 

  66. Stige, L. C., Eriksen, E., Dalpadado, P. & Ono, K. Direct and indirect effects of sea ice cover on major zooplankton groups and planktivorous fishes in the Barents Sea. ICES J. Mar. Sci. 76, i24–i36 (2019).

    Google Scholar 

  67. Eriksen, E. et al. The Barents Sea euphausiids: methodological aspects of monitoring and estimation of abundance and biomass. ICES J. Mar. Sci. 73, 1533–1544 (2016).

    Google Scholar 

  68. Eriksen, E., Skjoldal, H. R., Gjøsæter, H. & Primicerio, R. Spatial and temporal changes in the Barents Sea pelagic compartment during the recent warming. Prog. Oceanogr. 151, 206–226 (2017).

    Google Scholar 

  69. Orlova, E. L., Nesterova, V. N. & Dolgov, A. V. Euphausiids and their role in feeding of Arcto-Norwegian cod (80–90s) [Russian]. Probl. Fish. 2, 86–103 (2001).

    Google Scholar 

  70. Orlova, E. L., Rudneva, G. B., Dolgov, A. V. & Nesterova, V. N. Hyperiids and their role in diet of the Barents Sea fish [Russian]. Probl. Fish. 5, 633–655 (2004).

    Google Scholar 

  71. Gjøsæter, H., Ingvaldsen, R. & Christiansen, J. S. Acoustic scattering layers reveal a faunal connection across the Fram Strait. Prog. Oceanogr. 185, 102348 (2020).

    Google Scholar 

  72. Hop, H. & Gjøsæter, H. Polar cod (Boreogadus saida) and capelin (Mallotus villosus) as key species in marine food webs of the Arctic and the Barents Sea. Mar. Biol. Res. 9, 878–894 (2013).

    Google Scholar 

  73. Huserbråten, M. B. O., Eriksen, E., Gjøsæter, H. & Vikebø, F. Polar cod in jeopardy under the retreating Arctic sea ice. Commun. Biol. 2, 407 (2019).

    Google Scholar 

  74. Kjesbu, O. S. et al. Synergies between climate and management for Atlantic cod fisheries at high latitudes. Proc. Natl Acad. Sci. USA 111, 3478–3483 (2014).

    Google Scholar 

  75. Haug, T. et al. Future harvest of living resources in the Arctic Ocean north of the Nordic and Barents Seas: a review of possibilities and constraints. Fish. Res. 188, 38–57 (2017).

    Google Scholar 

  76. Ingvaldsen, R. B., Gjosaeter, H., Ona, E. & Michalsen, K. Atlantic cod (Gadus morhua) feeding over deep water in the high Arctic. Polar Biol. 40, 2105–2111 (2017).

    Google Scholar 

  77. Dolgov, A. V. et al. Atlas and Identification Guide of the Kara Sea Fish [Russian] (PINRO Press, 2018).

  78. Chernova, N. V. Catching of Greenland halibut Reinhardtius hippoglossoides (Pleuronectidae) on the shelf edge of the Laptev and East Siberian Seas. J. Ichthyol. 57, 219–227 (2017).

    Google Scholar 

  79. Randelhoff, A. et al. Seasonality of the physical and biogeochemical hydrography in the inflow to the Arctic Ocean through Fram Strait. Front. Mar. Sci. 5, 224 (2018).

    Google Scholar 

  80. Wassmann, P., Slagstad, D. & Ellingsen, I. Advection of mesozooplankton into the northern Svalbard shelf region. Front. Mar. Sci. 6, 458 (2019).

    Google Scholar 

  81. Basedow, S. L. et al. Seasonal variation in transport of zooplankton into the Arctic basin through the Atlantic gateway, Fram Strait. Front. Mar. Sci. 5, 194 (2018).

    Google Scholar 

  82. Gjøsæter, H., Wiebe, P. H., Knutsen, T. & Ingvaldsen, R. B. Evidence of diel vertical migration of mesopelagic sound-scattering organisms in the Arctic. Front. Mar. Sci. 4, 332 (2017).

    Google Scholar 

  83. Knutsen, T., Wiebe, P. H., Gjosaeter, H., Ingvaldsen, R. B. & Lien, G. High latitude epipelagic and mesopelagic scattering layers — a reference for future Arctic ecosystem change. Front. Mar. Sci. 4, 334 (2017).

    Google Scholar 

  84. Geoffroy, M. et al. Mesopelagic sound scattering layers of the high Arctic: seasonal variations in biomass, species assemblage, and trophic relationships. Front. Mar. Sci. 6, 364 (2019).

    Google Scholar 

  85. Leopold, P., Renaud, P. E., Ambrose, W. G. & Berge, J. High Arctic Mytilus spp.: occurrence, distribution and history of dispersal. Polar Biol. 42, 237–244 (2019).

    Google Scholar 

  86. Geoffroy, M. et al. Increased occurrence of the jellyfish Periphylla periphylla in the European high Arctic. Polar Biol. 41, 2615–2619 (2018).

    Google Scholar 

  87. Mańko, M. K., Gluchowska, M. & Weydmann-Zwolicka, A. Footprints of Atlantification in the vertical distribution and diversity of gelatinous zooplankton in the Fram Strait (Arctic Ocean). Prog. Oceanogr. 189, 102414 (2020).

    Google Scholar 

  88. Weydmann-Zwolicka, A. et al. Zooplankton and sediment fluxes in two contrasting fjords reveal Atlantification of the Arctic. Sci. Total Environ. 773, 145599 (2021).

    Google Scholar 

  89. Slagstad, D., Wassmann, P. F. J. & Ellingsen, I. Physical constrains and productivity in the future Arctic Ocean. Front. Mar. Sci. 2, 85 (2015).

    Google Scholar 

  90. Berge, J., Johnsen, G. & Cohen, J. (eds) Polar Night Marine Ecology Vol. 4 (Springer, 2020).

  91. David, C. et al. Under-ice distribution of polar cod Boreogadus saida in the central Arctic Ocean and their association with sea-ice habitat properties. Polar Biol. 39, 981–994 (2016).

    Google Scholar 

  92. Snoeijs-Leijonmalm, P. et al. A deep scattering layer under the North Pole pack ice. Prog. Oceanogr. 194, 102560 (2021).

    Google Scholar 

  93. Asbjørnsen, H., Årthun, M., Skagseth, Ø. & Eldevik, T. Mechanisms of ocean heat anomalies in the Norwegian Sea. J. Geophys. Res. Oceans 124, 2908–2923 (2019).

    Google Scholar 

  94. Furevik, T. Annual and interannual variability of Atlantic Water temperatures in the Norwegian and Barents Seas: 1980–1996. Deep Sea Res. 48, 383–404 (2001).

    Google Scholar 

  95. Schlichtholz, P. & Houssais, M. N. Forcing of oceanic heat anomalies by air-sea interactions in the Nordic Seas area. J. Geophys. Res. Oceans 116, C01006 (2011).

    Google Scholar 

  96. Yashayaev, I. & Seidov, D. The role of the Atlantic Water in multidecadal ocean variability in the Nordic and Barents Seas. Prog. Oceanogr. 132, 68–127 (2015).

    Google Scholar 

  97. Årthun, M. & Eldevik, T. On anomalous ocean heat transport toward the Arctic and associated climate predictability. J. Clim. 29, 689–704 (2016).

    Google Scholar 

  98. Rudels, B., Muench, R. D., Gunn, J., Schauer, U. & Friedrich, H. J. Evolution of the Arctic Ocean boundary current north of the Siberian shelves. J. Mar. Syst. 25, 77–99 (2000).

    Google Scholar 

  99. Holliday, N. P. et al. Reversal of the 1960s to 1990s freshening trend in the northeast North Atlantic and Nordic seas. Geophys. Res. Lett. 35, L03614 (2008).

    Google Scholar 

  100. Muilwijk, M., Smedsrud, L. H., Ilicak, M. & Drange, H. Atlantic Water heat transport variability in the 20th century Arctic Ocean from a global ocean model and observations. J. Geophys. Res. Oceans 123, 8159–8179 (2018).

    Google Scholar 

  101. Rinke, A. et al. Extreme cyclone events in the Arctic: wintertime variability and trends. Environ. Res. Lett. 12, 094006 (2017).

    Google Scholar 

  102. Wickström, S., Jonassen, M. O., Vihma, T. & Uotila, P. Trends in cyclones in the high-latitude North Atlantic during 1979–2016. Q. J. R. Meteorol. Soc. 146, 762–779 (2020).

    Google Scholar 

  103. Lien, V. S., Vikebø, F. B. & Skagseth, Ø. One mechanism contributing to co-variability of the Atlantic inflow branches to the Arctic. Nat. Commun. 4, 1488 (2013).

    Google Scholar 

  104. Lien, V. S., Schlichtholz, P., Skagseth, Ø. & Vikebø, F. B. Wind-driven Atlantic water flow as a direct mode for reduced Barents Sea ice cover. J. Clim. 30, 803–812 (2017).

    Google Scholar 

  105. Schlichtholz, P. Influence of oceanic heat variability on sea ice anomalies in the Nordic Seas. Geophys. Res. Lett. 38, L05705 (2011).

    Google Scholar 

  106. Wang, Q. et al. Ocean heat transport into the Barents Sea: distinct controls on the upward trend and interannual variability. Geophys. Res. Lett. 46, 13180–13190 (2019).

    Google Scholar 

  107. Kwok, R. Outflow of Arctic Ocean sea ice into the Greenland and Barents Seas: 1979–2007. J. Clim. 22, 2438–2457 (2009).

    Google Scholar 

  108. Ellingsen, I., Slagstad, D. & Sundfjord, A. Modification of water masses in the Barents Sea and its coupling to ice dynamics: a model study. Ocean Dyn. 59, 1095–1108 (2009).

    Google Scholar 

  109. Herbaut, C., Houssais, M.-N., Close, S. & Blaizot, A.-C. Two wind-driven modes of winter sea ice variability in the Barents Sea. Deep Sea Res. 106, 97–115 (2015).

    Google Scholar 

  110. Årthun, M., Eldevik, T. & Smedsrud, L. H. The role of Atlantic heat transport in future Arctic winter sea ice loss. J. Clim. 32, 3327–3341 (2019).

    Google Scholar 

  111. Aagaard, K. & Woodgate, R. A. Some thoughts on the freezing and melting of sea ice and their effects on the ocean. Ocean Model. 3, 127–135 (2001).

    Google Scholar 

  112. Steele, M., Morison, J. H. & Curtin, T. B. Halocline water formation in the Barents Sea. J. Geophys. Res. Oceans 100, 881–894 (1995).

    Google Scholar 

  113. Rudels, B., Jones, E. P., Schauer, U. & Eriksson, P. Atlantic sources of the Arctic Ocean surface and halocline waters. Polar Res. 23, 181–208 (2004).

    Google Scholar 

  114. Aksenov, Y., Bacon, S., Coward, A. C. & Nurser, A. J. G. The North Atlantic inflow to the Arctic Ocean: high-resolution model study. J. Mar. Syst. 79, 1–22 (2010).

    Google Scholar 

  115. Ivanov, V. et al. Arctic Ocean heat impact on regional ice decay: a suggested positive feedback. J. Phys. Oceanogr. 46, 1437–1456 (2016).

    Google Scholar 

  116. Polyakov, I. V. et al. Intensification of near-surface currents and shear in the Eastern Arctic Ocean. Geophys. Res. Lett. 47, e2020GL089469 (2020).

    Google Scholar 

  117. Nishino, S., Shimada, K., Itoh, M., Yamamoto-Kawai, M. & Chiba, S. East–west differences in water mass, nutrient, and chlorophyll a distributions in the sea ice reduction region of the western Arctic ocean. J. Geophys. Res. Oceans 113, C00A01 (2008).

    Google Scholar 

  118. Nishino, S., Itoh, M., Williams, W. J. & Semiletov, I. Shoaling of the nutricline with an increase in near-freezing temperature water in the Makarov Basin. J. Geophys. Res. Oceans 118, 635–649 (2013).

    Google Scholar 

  119. Barber, D. G. et al. Selected physical, biological and biogeochemical implications of a rapidly changing Arctic marginal ice zone. Prog. Oceanogr. 139, 122–150 (2015).

    Google Scholar 

  120. Macias-Fauria, M. & Post, E. Effects of sea ice on Arctic biota: an emerging crisis discipline. Biol. Lett. 14, 20170702 (2018).

    Google Scholar 

  121. Dybwad, C. et al. Carbon export in the seasonal sea ice zone north of Svalbard from winter to late summer. Front. Mar. Sci. 7, 1137 (2021).

    Google Scholar 

  122. Eriksen, E., Prozorkevich, D., Trofimov, A. & Howell, D. Biomass of Scyphozoan jellyfish, and its spatial association with 0-group fish in the Barents Sea. PLoS ONE 7, e33050 (2012).

    Google Scholar 

  123. Dolgov, A. V. & Benzik, A. N. in The Formation of Bioproductivity in the Northern Barents Sea in the Period of Warming in the Arctic (ed. Karasev, A. B.) (PINRO Press, 2014).

  124. Descôteaux, R. et al. Meroplankton diversity, seasonality and life-history traits across the Barents Sea Polar Front revealed by high-throughput DNA barcoding. Front. Mar. Sci. 8, 609 (2021).

    Google Scholar 

  125. Gluchowska, M. et al. Interannual zooplankton variability in the main pathways of the Atlantic water flow into the Arctic Ocean (Fram Strait and Barents Sea branches). ICES J. Mar. Sci. 74, 1921–1936 (2017).

    Google Scholar 

  126. Eriksen, E. et al. The record-warm Barents Sea and 0-group fish response to abnormal conditions. Front. Mar. Sci. 7, 338 (2020).

    Google Scholar 

  127. Frainer, A. et al. Increased functional diversity warns of ecological transition in the Arctic. Proc. Royal Soc. B https://doi.org/10.1098/rspb.2021.0054 (2021).

    Article  Google Scholar 

  128. Dalpadado, P. et al. Climate effects on Barents Sea ecosystem dynamics. ICES J. Mar. Sci. 69, 1303–1316 (2012).

    Google Scholar 

  129. Jørgensen, L. L. et al. Impact of multiple stressors on sea bed fauna in a warming Arctic. Mar. Ecol. Prog. Ser. 608, 1–12 (2019).

    Google Scholar 

  130. Søreide, J. E., Leu, E., Berge, J., Graeve, M. & S., F.-P. Timing of blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic. Glob. Change Biol. 16, 3154–3163 (2010).

    Google Scholar 

  131. Leu, E., Søreide, J. E., Hessen, D. O., Falk-Petersen, S. & Berge, J. Consequences of changing sea-ice cover for primary and secondary producers in the European Arctic shelf seas: timing, quantity, and quality. Prog. Oceanogr. 90, 18–32 (2011).

    Google Scholar 

  132. van Leeuwe, M. A. et al. Microalgal community structure and primary production in Arctic and Antarctic sea ice: a synthesis. Elementa 6, 4 (2018).

    Google Scholar 

  133. Descamps, S. et al. Diverging phenological responses of Arctic seabirds to an earlier spring. Glob. Change Biol. 25, 4081–4091 (2019).

    Google Scholar 

  134. Lannuzel, D. et al. The future of Arctic sea-ice biogeochemistry and ice-associated ecosystems. Nat. Clim. Change 10, 983–992 (2020).

    Google Scholar 

  135. Johannesen, E. et al. Resource-driven colonization by cod in a high Arctic food web. Ecol. Evol. 10, 14272–14281 (2020).

    Google Scholar 

  136. Wiedmann, M. A., Primicerio, R., Dolgov, A., Ottesen, C. A. M. & Aschan, M. Life history variation in Barents Sea fish: implications for sensitivity to fishing in a changing environment. Ecol. Evol. 4, 3596–3611 (2014).

    Google Scholar 

  137. Al-Habahbeh, A. K. et al. Arctic coastal benthos long-term responses to perturbations under climate warming. Philos. Trans. A Math. Phys. Eng. Sci. https://doi.org/10.1098/rsta.2019.0355 (2020).

    Article  Google Scholar 

  138. Kortsch, S. et al. Food-web structure varies along environmental gradients in a high-latitude marine ecosystem. Ecography 42, 295–308 (2019).

    Google Scholar 

  139. Holt, R. E., Bogstad, B., Durant, J. M., Dolgov, A. V. & Ottersen, G. Barents Sea cod (Gadus morhua) diet composition: long-term interannual, seasonal, and ontogenetic patterns. ICES J. Mar. Sci. 76, 1641–1652 (2019).

    Google Scholar 

  140. Levin, S. A. & Lubchenco, J. Resilience, robustness, and marine ecosystem-based management. Bioscience 58, 27–32 (2008).

    Google Scholar 

  141. Aune, M. et al. Functional roles and redundancy of demersal Barents Sea fish: ecological implications of environmental change. PLoS ONE 13, e0207451 (2018).

    Google Scholar 

  142. Asbjørnsen, H., Årthun, M., Skagseth, Ø. & Eldevik, T. Mechanisms underlying recent Arctic Atlantification. Geophys. Res. Lett. 47, e2020GL088036 (2020).

    Google Scholar 

  143. Bengtsson, L., Semenov, V. A. & Johannessen, O. M. The early twentieth-century warming in the Arctic — a possible mechanism. J. Clim. 17, 4045–4057 (2004).

    Google Scholar 

  144. Andriashev, A. P. Fishes of the Northern Seas of the USSR [Russian] (Akad. Nauk. SSSR, 1954).

  145. Drinkwater, K. F. The regime shift of the 1920s and 1930s in the North Atlantic. Prog. Oceanogr. 68, 134–151 (2006).

    Google Scholar 

  146. Drinkwater, K. F. et al. The Atlantic Multidecadal Oscillation: its manifestations and impacts with special emphasis on the Atlantic region north of 60°N. J. Mar. Syst. 133, 117–130 (2014).

    Google Scholar 

  147. Frajka-Williams, E., Beaulieu, C. & Duchez, A. Emerging negative Atlantic Multidecadal Oscillation index in spite of warm subtropics. Sci. Rep 7, 11224 (2017).

    Google Scholar 

  148. Onarheim, I. H. & Årthun, M. Toward an ice-free Barents Sea. Geophys. Res. Lett. 44, 8387–8395 (2017).

    Google Scholar 

  149. Shu, Q., Wang, Q., Song, Z. & Qiao, F. The poleward enhanced Arctic Ocean cooling machine in a warming climate. Nat. Commun. 12, 2966 (2021).

    Google Scholar 

  150. Skaret, G., Dalpadado, P., Hjøllo, S. S., Skogen, M. D. & Strand, E. Calanus finmarchicus abundance, production and population dynamics in the Barents Sea in a future climate. Prog. Oceanogr. 125, 26–39 (2014).

    Google Scholar 

  151. Orkney, A., Platt, T., Narayanaswamy, B. E., Kostakis, I. & Bouman, H. A. Bio-optical evidence for increasing Phaeocystis dominance in the Barents Sea. Philos. Trans. A Math. Phys. Eng. Sci. 378, 20190357 (2020).

    Google Scholar 

  152. Lalande, C., Nöthig, E.-M. & Fortier, L. Algal export in the Arctic Ocean in times of global warming. Geophys. Res. Lett. 46, 5959–5967 (2019).

    Google Scholar 

  153. Sundby, S., Drinkwater, K. F. & Kjesbu, O. S. The North Atlantic spring-bloom system — where the changing climate meets the winter dark. Front. Mar. Sci. 3, 28 (2016).

    Google Scholar 

  154. Falk-Petersen, S., Pavlov, V., Timofeev, S. & Sargent, J. R. in Arctic Alpine Ecosystems and People in a Changing Environment (eds Ørbæk, J. B. et al.) 147–166 (Springer, 2007).

  155. Renaud, P. E. et al. Pelagic food-webs in a changing Arctic: a trait-based perspective suggests a mode of resilience. ICES J. Mar. Sci. 75, 1871–1881 (2018).

    Google Scholar 

  156. Hobbs, L., Banas, N. S., Cottier, F. R., Berge, J. & Daase, M. Eat or sleep: availability of winter prey explains mid-winter and spring activity in an Arctic Calanus population. Front. Mar. Sci. 7, 744 (2020).

    Google Scholar 

  157. Gjøsæter, H. The population biology and exploitation of capelin (Mallotus villosus) in the Barents Sea. Sarsia 83, 453–496 (1998).

    Google Scholar 

  158. Orlova, E. L., Boitsov, V. D. & Nesterova, V. N. The influence of hydrographic conditions on the structure and functioning of the trophic complex plankton–pelagic fishes–cod [Russian]. Murmansk Print. Comp. 190 (2010).

  159. Cheung, W. W. L. et al. Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish. 10, 235–251 (2009).

    Google Scholar 

  160. Hollowed, A. B., Planque, B. & Loeng, H. Potential movement of fish and shellfish stocks from the sub-Arctic to the Arctic Ocean. Fish. Oceanogr. 22, 355–370 (2013).

    Google Scholar 

  161. Lam, V. W. Y., Cheung, W. W. L., Reygondeau, G. & Sumaila, U. R. Projected change in global fisheries revenues under climate change. Sci. Rep 6, 32607 (2016).

    Google Scholar 

  162. Barton, B. I., Lique, C. & Lenn, Y.-D. Water mass properties derived from satellite observations in the Barents Sea. J. Geophys. Res. Oceans 125, e2019JC015449 (2020).

    Google Scholar 

  163. Lien, V. S. & Trofimov, A. G. Formation of Barents Sea branch water in the north-eastern Barents Sea. Polar Res. 32, 18905 (2013).

    Google Scholar 

  164. Ingvaldsen, R. B., Asplin, L. & Loeng, H. Velocity field of the western entrance to the Barents Sea. J. Geophys. Res. Oceans 109, C03021 (2004).

    Google Scholar 

  165. Beszczynska-Möller, A., Fahrbach, E., Schauer, U. & Hansen, E. Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010. ICES J. Mar. Sci. 69, 852–863 (2012).

    Google Scholar 

  166. Renner, A. H. H. et al. Variability and redistribution of heat in the Atlantic water boundary current north of Svalbard. J. Geophys. Res. Oceans 123, 6373–6391 (2018).

    Google Scholar 

  167. Pérez-Hernández, M. D. et al. Structure, transport, and seasonality of the Atlantic Water boundary current north of Svalbard: results from a yearlong mooring array. J. Geophys. Res. Oceans 124, 1679–1698 (2019).

    Google Scholar 

  168. Athanase, M. et al. Atlantic water modification north of Svalbard in the mercator physical system from 2007 to 2020. J. Geophys. Res. Oceans 125, e2020JC016463 (2020).

    Google Scholar 

  169. Årthun, M., Ingvaldsen, R. B., Smedsrud, L. H. & Schrum, C. Dense water formation and circulation in the Barents Sea. Deep Sea Res. 58, 801–817 (2011).

    Google Scholar 

  170. Rudels, B. et al. Circulation and transformation of Atlantic water in the Eurasian Basin and the contribution of the Fram Strait inflow branch to the Arctic Ocean heat budget. Prog. Oceanogr. 132, 128–152 (2015).

    Google Scholar 

  171. Shu, Q., Qiao, F., Song, Z., Zhao, J. & Li, X. Projected freshening of the Arctic Ocean in the 21st century. J. Geophys. Res. Oceans 123, 9232–9244 (2018).

    Google Scholar 

  172. Schauer, U., Loeng, H., Rudels, B., Ozhigin, V. & Dieck, W. Atlantic water flow through the Barents and Kara Seas. Deep Sea Res. 49, 2281–2298 (2002).

    Google Scholar 

  173. Dmitrenko, I. A. et al. Atlantic water flow into the Arctic Ocean through the St. Anna Trough in the northern Kara Sea. J. Geophys. Res. Oceans 120, 5158–5178 (2015).

    Google Scholar 

  174. Dmitrenko, I. A. et al. Heat loss from the Atlantic water layer in the northern Kara Sea: causes and consequences. Ocean Sci. 10, 719–730 (2014).

    Google Scholar 

  175. Francis, J. A. & Hunter, E. Drivers of declining sea ice in the Arctic winter: a tale of two seas. Geophys. Res. Lett. 34, L17503 (2007).

    Google Scholar 

  176. Nakanowatari, T., Sato, K. & Inoue, J. Predictability of the Barents Sea ice in early winter: remote effects of oceanic and atmospheric thermal conditions from the North Atlantic. J. Clim. 27, 8884–8901 (2014).

    Google Scholar 

  177. Steele, M. & Ermold, W. Loitering of the retreating sea ice edge in the Arctic Seas. J. Geophys. Res. Oceans 120, 7699–7721 (2015).

    Google Scholar 

  178. Blackport, R. & Screen, J. A. Influence of Arctic sea ice loss in autumn compared to that in winter on the atmospheric circulation. Geophys. Res. Lett. 46, 2213–2221 (2019).

    Google Scholar 

  179. Graham, R. M. et al. Winter storms accelerate the demise of sea ice in the Atlantic sector of the Arctic Ocean. Sci. Rep 9, 9222 (2019).

    Google Scholar 

  180. Lind, S., Ingvaldsen, R. B. & Furevik, T. Arctic layer salinity controls heat loss from deep Atlantic layer in seasonally ice-covered areas of the Barents Sea. Geophys. Res. Lett. 43, 5233–5242 (2016).

    Google Scholar 

  181. Sandø, A. B., Johansen, G. O., Aglen, A., Stiansen, J. E. & Renner, A. H. H. Climate change and new potential spawning sites for Northeast Arctic cod. Front. Mar. Sci. 7, 28 (2020).

    Google Scholar 

  182. Huse, G. & Ellingsen, I. Capelin migrations and climate change–a modelling analysis. Clim. Change 87, 177–197 (2008).

    Google Scholar 

  183. Cavalieri, D. J., Parkinson, C. L. G. P. & Zwally, H. J. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data, version 1. [North, daily, 1979–2019] (NASA National Snow and Ice Data Center Distributed Active Archive Center, 1996).

  184. Loeng, H. Features of the physical oceanographic conditions of the Barents Sea. Polar Res. 10, 5–18 (1991).

    Google Scholar 

  185. Lind, S. & Ingvaldsen, R. B. Variability and impacts of Atlantic Water entering the Barents Sea from the north. Deep Sea Res. 62, 70–88 (2012).

    Google Scholar 

  186. Schauer, U., Muench, R. D., Rudels, B. & Timokhov, L. Impact of eastern Arctic shelf waters on the Nansen Basin intermediate layers. J. Geophys. Res. Oceans 102, 3371–3382 (1997).

    Google Scholar 

  187. Randelhoff, A., Sundfjord, A. & Reigstad, M. Seasonal variability and fluxes of nitrate in the surface waters over the Arctic shelf slope. Geophys. Res. Lett. 42, 3442–3449 (2015).

    Google Scholar 

  188. Wassmann, P. et al. Towards a unifying pan-Arctic perspective: a conceptual modelling toolkit. Prog. Oceanogr. 189, 102455 (2020).

    Google Scholar 

  189. Bluhm, B. A. et al. The Pan-Arctic continental slope: sharp gradients of physical processes affect pelagic and benthic ecosystems. Front. Mar. Sci. 7, 886 (2020).

    Google Scholar 

Download references

Acknowledgements

R.B.I., K.M.A., R.P. and M.F. acknowledge support from the Research Council of Norway through the Nansen Legacy project (276730) and the project for Monitoring the Marine Climate at the Institute of Marine Research in Norway. I.V.P. is supported by the NABOS (Nansen and Amundsen Basins Observational System) project, with support from NSF (grants AON-1203473, AON-1724523 and AON-1947162). The authors are also grateful to ICES Working Group on Oceanic Hydrography (WGOH) for collecting, providing and assessing long time series of hydrography in the Nordic and Barents seas. The authors thank J. Aarflot, Ø. Skagseth, P. Dalpadado and L. C. Stige for providing data for the figures, and P. Dalpadado, M. Skern-Mauritzen, L. L. Jørgensen, A. Sundfjord and L. H. Smedsrud for their help in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the article.

Corresponding author

Correspondence to Randi B. Ingvaldsen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks Benjamin Barton, Laurent Oziel, David Barber and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ingvaldsen, R.B., Assmann, K.M., Primicerio, R. et al. Physical manifestations and ecological implications of Arctic Atlantification. Nat Rev Earth Environ 2, 874–889 (2021). https://doi.org/10.1038/s43017-021-00228-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-021-00228-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing