Abstract
The Atlantic gateway to the Arctic Ocean is influenced by vigorous inflows of Atlantic Water. The high-latitude impacts of these inflows have strengthened owing to climate change, particularly since 2000, driving so-called ‘Atlantification’ — a transition of Arctic waters to a state more closely resembling that of the Atlantic. In this Review, we discuss the physical and ecological manifestations of Atlantification in a hotspot region of climate change spanning the southern Barents Sea to the Eurasian Basin. Atlantification is driven by anomalous Atlantic Water inflows and is modulated by local processes, including: reduced atmospheric cooling, which amplifies warming in the southern Barents Sea; reduced freshwater input and stronger influence of ice import in the northern Barents Sea; and enhanced upper ocean mixing and air–ice–ocean coupling in the Eurasian Basin. Ecosystem responses to Atlantification encompass increased production, northward expansion of boreal species (borealization), an increased importance of the pelagic compartment populated by new species, an increasingly connected food web and a gradual reduction of the ice-associated ecosystem compartment. Considering the complex evidence supporting Atlantification, dedicated, multidisciplinary observations and advanced modelling experiments targeting large-scale changes in the system and specific mechanisms responsible for local and remote changes are urgently needed.
Key points
-
The inflow of warm and salty Atlantic Water into the Atlantic gateway to the Arctic, which spans from the southern Barents Sea and the Fram Strait towards the eastern Eurasian Basin, is a major oceanic heat source to the Arctic Ocean.
-
Atlantification is related to the progression of temperature anomalies, which are strongly modified in transit owing to feedbacks and regional processes not necessarily forced by changes in the Atlantic Water flow.
-
Changes in the Barents Sea include warming and a receding seasonal sea ice cover, increasing importance of boreal species and altered food web linkages; all are expected to be exacerbated by future warming.
-
The observed changes in ecosystem properties goes in the direction of an increased capacity to adjust to Atlantification, at the cost of Arctic species, and greater sensitivity to environmental perturbations.
-
Changes in the Eurasian Basin will likely amplify feedback mechanisms, thus enhancing the coupling between ocean, sea ice and atmosphere, with consequences for decreasing sea ice and higher primary and secondary production.
-
Future research addressing changes in the Arctic Ocean halocline and the denser waters below it, and changes in phenology and adaptive capacity of the ecosystems, should be of high priority.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Serreze, M. C. & Francis, J. A. The Arctic amplification debate. Clim. Change 76, 241–264 (2006).
Bekryaev, R. V., Polyakov, I. V. & Alexeev, V. A. Role of polar amplification in long-term surface air temperature variations and modern Arctic warming. J. Clim. 23, 3888–3906 (2010).
Goosse, H. et al. Quantifying climate feedbacks in polar regions. Nat. Commun. 9, 1919 (2018).
Meredith, M. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate Ch. 3 (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2019).
Polyakov, I. V. et al. Borealization of the Arctic Ocean in response to anomalous advection from sub-Arctic seas. Front. Mar. Sci. 7, 491 (2020).
Polyakov, I. V. et al. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science 356, 285–291 (2017).
Polyakov, I. V. et al. Weakening of cold halocline layer exposes sea ice to oceanic heat in the eastern Arctic Ocean. J. Clim. 33, 8107–8123 (2020).
Lind, S., Ingvaldsen, R. B. & Furevik, T. Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. Nat. Clim. Change 8, 634–639 (2018).
González-Pola, C., Larsen, K. M. H., Fratantoni, P. & Beszczynska-Möller, A. (eds) ICES Report on Ocean Climate 2018. ICES Cooperative Research Report No. 349 (International Council for the Exploration of the Sea, 2019).
Smedsrud, L. H. et al. The role of the Barents Sea in the Arctic climate system. Rev. Geophys. 51, 415–449 (2013).
Skagseth, Ø. et al. Reduced efficiency of the Barents Sea cooling machine. Nat. Clim. Change 10, 661–666 (2020).
Tsubouchi, T. et al. Increased ocean heat transport into the Nordic Seas and Arctic Ocean over the period 1993–2016. Nat. Clim. Change 11, 21–26 (2021).
Wang, Q. et al. Intensification of the Atlantic Water supply to the Arctic Ocean through Fram Strait induced by Arctic sea ice decline. Geophys. Res. Lett. 47, e2019GL086682 (2020).
Oziel, L. et al. Faster Atlantic currents drive poleward expansion of temperate phytoplankton in the Arctic Ocean. Nat. Commun. 11, 1705 (2020).
Aagaard, K., Coachman, L. K. & Carmack, E. On the halocline of the Arctic Ocean. Deep Sea Res. 28, 529–545 (1981).
Rudels, B., Anderson, L. G. & Jones, E. P. Formation and evolution of the surface mixed layer and halocline of the Arctic Ocean. J. Geophys. Res. Oceans 101, 8807–8821 (1996).
Fer, I. Weak vertical diffusion allows maintenance of cold halocline in the central Arctic. Atmos. Ocean. Sci. Lett. 2, 148–152 (2009).
Wassmann, P. et al. The contiguous domains of Arctic Ocean advection: trails of life and death. Prog. Oceanogr. 139, 42–65 (2015).
Wassmann, P., Duarte, C., Augusti, S. & Sejr, M. K. Footprints of climate change in the Arctic marine ecosystem. Glob. Change Biol. 17, 1235–1249 (2011).
Orlova, E. L. et al. Climatic and ecological drivers of euphausiid community structure vary spatially in the Barents Sea: relationships from a long time series (1952–2009). Front. Mar. Sci. 1, 74 (2015).
Neukermans, G., Oziel, L. & Babin, M. Increased intrusion of warming Atlantic water leads to rapid expansion of temperate phytoplankton in the Arctic. Glob. Change Biol. 24, 2545–2553 (2018).
Vernet, M., Carstensen, J., Reigstad, M. & Svensen, C. Editorial: carbon bridge to the Arctic. Front. Mar. Sci. 7, 204 (2020).
Orlova, E. L. et al. in The Formation of Bioproductivity in the Northern Barents Sea in the Period of Warming in the Arctic [Russian] (ed. Karasev, A. B.) 93–125 (PINRO Press, 2014).
Fossheim, M. et al. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Clim. Change 5, 673–677 (2015).
Berge, J. et al. First records of Atlantic mackerel (Scomber scombrus) from the Svalbard archipelago, Norway, with possible explanations for the extensions of its distribution. Arctic 68, 54–61 (2015).
Hamilton, C. D. et al. Contrasting changes in space use induced by climate change in two Arctic marine mammal species. Biol. Lett. 15, 20180834 (2019).
Moore, S. E., Haug, T., Víkingsson, G. A. & Stenson, G. B. Baleen whale ecology in arctic and subarctic seas in an era of rapid habitat alteration. Prog. Oceanogr. 176, 102118 (2019).
Descamps, S. et al. Climate change impacts on wildlife in a high Arctic archipelago–Svalbard, Norway. Glob. Change Biol. 23, 490–502 (2017).
Vihtakari, M. et al. Black-legged kittiwakes as messengers of Atlantification in the Arctic. Sci. Rep. 8, 1178 (2018).
Kortsch, S., Primicerio, R., Fossheim, M., Dolgov, A. V. & Aschan, M. Climate change alters the structure of Arctic marine food webs due to poleward shifts of boreal generalists. Proc. R. Soc. B Biol. Sci. 282, 20151546 (2015).
Frainer, A. et al. Climate-driven changes in functional biogeography of Arctic marine fish communities. Proc. Natl Acad. Sci. USA 114, 12202–12207 (2017).
Pecuchet, L. et al. Novel feeding interactions amplify the impact of species redistribution on an Arctic food web. Glob. Change Biol. 26, 4894–4906 (2020).
Årthun, M. et al. Climate based multi-year predictions of the Barents Sea cod stock. PLoS ONE 13, e0206319 (2018).
Olsen, E., Holen, S., Hoel, A. H., Buhl-Mortensen, L. & Røttingen, I. How integrated ocean governance in the Barents Sea was created by a drive for increased oil production. Mar. Policy 71, 293–300 (2016).
Boitsov, V. D., Karsakov, A. L. & Trofimov, A. G. Atlantic water temperature and climate in the Barents Sea, 2000–2009. ICES J. Mar. Sci. 69, 833–840 (2012).
Matishov, G. et al. Climate and cyclic hydrobiological changes of the Barents Sea from the twentieth to twenty-first centuries. Polar Biol. 35, 1773–1790 (2012).
Schlichtholz, P. Subsurface ocean flywheel of coupled climate variability in the Barents Sea hotspot of global warming. Sci. Rep 9, 13692 (2019).
Woodgate, R. A. et al. The Arctic Ocean boundary current along the Eurasian slope and the adjacent Lomonosov Ridge: water mass properties, transports and transformations from moored instruments. Deep Sea Res. 48, 1757–1792 (2001).
Schauer, U., Fahrbach, E., Osterhus, S. & Rohardt, G. Arctic warming through the Fram Strait: Oceanic heat transport from 3 years of measurements. J. Geophys. Res. Oceans 109, C06026 (2004).
Karcher, M. J., Gerdes, R., Kauker, F. & Köberle, C. Arctic warming: evolution and spreading of the 1990s warm event in the Nordic seas and the Arctic Ocean. J. Geophys. Res. Oceans 108, 3034 (2003).
Quadfasel, D., Sy, A., Wells, D. & Tunik, A. Warming in the Arctic. Nature 350, 385–385 (1991).
Carmack, E. C., Macdonald, R. W., Perkin, R. G., Mclaughlin, F. A. & Pearson, R. J. Evidence for warming of Atlantic water in the southern Canadian Basin of the Arctic Ocean: results from the Larsen-93 expedition. Geophys. Res. Lett. 22, 1061–1064 (1995).
Steele, M. & Boyd, T. Retreat of the cold halocline layer in the Arctic Ocean. J. Geophys. Res. Oceans 103, 10419–10435 (1998).
Morison, J. et al. Changing Arctic Ocean freshwater pathways. Nature 481, 66–70 (2012).
Polyakov, I. V. et al. One more step toward a warmer Arctic. Geophys. Res. Lett. 32, L17605 (2005).
Mayer, M. et al. An improved estimate of the coupled Arctic energy budget. J. Clim. 32, 7915–7934 (2019).
Sandø, A. B., Nilsen, J. E. Ø., Gao, Y. & Lohmann, K. Importance of heat transport and local air-sea heat fluxes for Barents Sea climate variability. J. Geophys. Res. Oceans 115, C07013 (2010).
Smedsrud, L. H., Ingvaldsen, R., Nilsen, J. E. Ø. & Skagseth, Ø. Heat in the Barents Sea: transport, storage, and surface fluxes. Ocean Sci. 6, 219–234 (2010).
Årthun, M., Eldevik, T., Smedsrud, L. H., Skagseth, Ø. & Ingvaldsen, R. B. Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat. J. Clim. 25, 4736–4743 (2012).
Oziel, L., Sirven, J. & Gascard, J. C. The Barents Sea frontal zones and water masses variability (1980–2011). Ocean Sci. 12, 169–184 (2016).
Barton, B. I., Lenn, Y.-D. & Lique, C. Observed Atlantification of the Barents Sea causes the polar front to limit the expansion of winter sea ice. J. Phys. Oceanogr. 48, 1849–1866 (2018).
Onarheim, I. H., Eldevik, T., Smedsrud, L. H. & Stroeve, J. C. Seasonal and regional manifestation of Arctic sea ice loss. J. Clim. 31, 4917–4932 (2018).
Ivanov, V. et al. Contribution of convection-induced heat flux to winter ice decay in the western Nansen Basin. J. Geophys. Res. Oceans 123, 6581–6597 (2018).
Kohnemann, S. H. E., Heinemann, G., Bromwich, D. H. & Gutjahr, O. Extreme warming in the Kara Sea and Barents Sea during the winter period 2000–16. J. Clim. 30, 8913–8927 (2017).
Isaksen, K. et al. Recent warming on Spitsbergen — influence of atmospheric circulation and sea ice cover. J. Geophys. Res. Atmos. 121, 11,913–11,931 (2016).
Onarheim, I. H., Smedsrud, L. H., Ingvaldsen, R. B. & Nilsen, F. Loss of sea ice during winter north of Svalbard. Tellus A 66, 23933 (2014).
Polyakov, I. V. et al. Arctic Ocean warming contributes to reduced polar ice cap. J. Phys. Oceanogr. 40, 2743–2756 (2010).
Arrigo, K. R. & van Dijken, G. L. Continued increases in Arctic Ocean primary production. Prog. Oceanogr. 136, 60–70 (2015).
Kahru, M., Lee, Z., Mitchell, B. G. & Nevison, C. D. Effects of sea ice cover on satellite-detected primary production in the Arctic Ocean. Biol. Lett. 12, 20160223 (2016).
Assmy, P. et al. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice. Sci. Rep 7, 40850 (2017).
Dalpadado, P. et al. Climate effects on temporal and spatial dynamics of phytoplankton and zooplankton in the Barents Sea. Prog. Oceanogr. 185, 102320 (2020).
Makarevich, P. R. Planktonic Algae Communities of Estuarine Ecosystems. The Barents, Kara and Azov Seas Vol. 223 [Russian] (Nauka Publishing, 2007).
Makarevich, P. R. & Druzhkova, E. I. Seasonal Cycling Processes in Coastal Planktonic Algae Communities of Northern Seas Vol. 280 [Russian] (Southern Scientific Center of the Russian Academy of Science, 2010).
Ardyna, M. et al. Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms. Geophys. Res. Lett. 41, 6207–6212 (2014).
Aarflot, J. M., Skjoldal, H. R., Dalpadado, P. & Skern-Mauritzen, M. Contribution of Calanus species to the mesozooplankton biomass in the Barents Sea. ICES J. Mar. Sci. 75, 2342–2354 (2017).
Stige, L. C., Eriksen, E., Dalpadado, P. & Ono, K. Direct and indirect effects of sea ice cover on major zooplankton groups and planktivorous fishes in the Barents Sea. ICES J. Mar. Sci. 76, i24–i36 (2019).
Eriksen, E. et al. The Barents Sea euphausiids: methodological aspects of monitoring and estimation of abundance and biomass. ICES J. Mar. Sci. 73, 1533–1544 (2016).
Eriksen, E., Skjoldal, H. R., Gjøsæter, H. & Primicerio, R. Spatial and temporal changes in the Barents Sea pelagic compartment during the recent warming. Prog. Oceanogr. 151, 206–226 (2017).
Orlova, E. L., Nesterova, V. N. & Dolgov, A. V. Euphausiids and their role in feeding of Arcto-Norwegian cod (80–90s) [Russian]. Probl. Fish. 2, 86–103 (2001).
Orlova, E. L., Rudneva, G. B., Dolgov, A. V. & Nesterova, V. N. Hyperiids and their role in diet of the Barents Sea fish [Russian]. Probl. Fish. 5, 633–655 (2004).
Gjøsæter, H., Ingvaldsen, R. & Christiansen, J. S. Acoustic scattering layers reveal a faunal connection across the Fram Strait. Prog. Oceanogr. 185, 102348 (2020).
Hop, H. & Gjøsæter, H. Polar cod (Boreogadus saida) and capelin (Mallotus villosus) as key species in marine food webs of the Arctic and the Barents Sea. Mar. Biol. Res. 9, 878–894 (2013).
Huserbråten, M. B. O., Eriksen, E., Gjøsæter, H. & Vikebø, F. Polar cod in jeopardy under the retreating Arctic sea ice. Commun. Biol. 2, 407 (2019).
Kjesbu, O. S. et al. Synergies between climate and management for Atlantic cod fisheries at high latitudes. Proc. Natl Acad. Sci. USA 111, 3478–3483 (2014).
Haug, T. et al. Future harvest of living resources in the Arctic Ocean north of the Nordic and Barents Seas: a review of possibilities and constraints. Fish. Res. 188, 38–57 (2017).
Ingvaldsen, R. B., Gjosaeter, H., Ona, E. & Michalsen, K. Atlantic cod (Gadus morhua) feeding over deep water in the high Arctic. Polar Biol. 40, 2105–2111 (2017).
Dolgov, A. V. et al. Atlas and Identification Guide of the Kara Sea Fish [Russian] (PINRO Press, 2018).
Chernova, N. V. Catching of Greenland halibut Reinhardtius hippoglossoides (Pleuronectidae) on the shelf edge of the Laptev and East Siberian Seas. J. Ichthyol. 57, 219–227 (2017).
Randelhoff, A. et al. Seasonality of the physical and biogeochemical hydrography in the inflow to the Arctic Ocean through Fram Strait. Front. Mar. Sci. 5, 224 (2018).
Wassmann, P., Slagstad, D. & Ellingsen, I. Advection of mesozooplankton into the northern Svalbard shelf region. Front. Mar. Sci. 6, 458 (2019).
Basedow, S. L. et al. Seasonal variation in transport of zooplankton into the Arctic basin through the Atlantic gateway, Fram Strait. Front. Mar. Sci. 5, 194 (2018).
Gjøsæter, H., Wiebe, P. H., Knutsen, T. & Ingvaldsen, R. B. Evidence of diel vertical migration of mesopelagic sound-scattering organisms in the Arctic. Front. Mar. Sci. 4, 332 (2017).
Knutsen, T., Wiebe, P. H., Gjosaeter, H., Ingvaldsen, R. B. & Lien, G. High latitude epipelagic and mesopelagic scattering layers — a reference for future Arctic ecosystem change. Front. Mar. Sci. 4, 334 (2017).
Geoffroy, M. et al. Mesopelagic sound scattering layers of the high Arctic: seasonal variations in biomass, species assemblage, and trophic relationships. Front. Mar. Sci. 6, 364 (2019).
Leopold, P., Renaud, P. E., Ambrose, W. G. & Berge, J. High Arctic Mytilus spp.: occurrence, distribution and history of dispersal. Polar Biol. 42, 237–244 (2019).
Geoffroy, M. et al. Increased occurrence of the jellyfish Periphylla periphylla in the European high Arctic. Polar Biol. 41, 2615–2619 (2018).
Mańko, M. K., Gluchowska, M. & Weydmann-Zwolicka, A. Footprints of Atlantification in the vertical distribution and diversity of gelatinous zooplankton in the Fram Strait (Arctic Ocean). Prog. Oceanogr. 189, 102414 (2020).
Weydmann-Zwolicka, A. et al. Zooplankton and sediment fluxes in two contrasting fjords reveal Atlantification of the Arctic. Sci. Total Environ. 773, 145599 (2021).
Slagstad, D., Wassmann, P. F. J. & Ellingsen, I. Physical constrains and productivity in the future Arctic Ocean. Front. Mar. Sci. 2, 85 (2015).
Berge, J., Johnsen, G. & Cohen, J. (eds) Polar Night Marine Ecology Vol. 4 (Springer, 2020).
David, C. et al. Under-ice distribution of polar cod Boreogadus saida in the central Arctic Ocean and their association with sea-ice habitat properties. Polar Biol. 39, 981–994 (2016).
Snoeijs-Leijonmalm, P. et al. A deep scattering layer under the North Pole pack ice. Prog. Oceanogr. 194, 102560 (2021).
Asbjørnsen, H., Årthun, M., Skagseth, Ø. & Eldevik, T. Mechanisms of ocean heat anomalies in the Norwegian Sea. J. Geophys. Res. Oceans 124, 2908–2923 (2019).
Furevik, T. Annual and interannual variability of Atlantic Water temperatures in the Norwegian and Barents Seas: 1980–1996. Deep Sea Res. 48, 383–404 (2001).
Schlichtholz, P. & Houssais, M. N. Forcing of oceanic heat anomalies by air-sea interactions in the Nordic Seas area. J. Geophys. Res. Oceans 116, C01006 (2011).
Yashayaev, I. & Seidov, D. The role of the Atlantic Water in multidecadal ocean variability in the Nordic and Barents Seas. Prog. Oceanogr. 132, 68–127 (2015).
Årthun, M. & Eldevik, T. On anomalous ocean heat transport toward the Arctic and associated climate predictability. J. Clim. 29, 689–704 (2016).
Rudels, B., Muench, R. D., Gunn, J., Schauer, U. & Friedrich, H. J. Evolution of the Arctic Ocean boundary current north of the Siberian shelves. J. Mar. Syst. 25, 77–99 (2000).
Holliday, N. P. et al. Reversal of the 1960s to 1990s freshening trend in the northeast North Atlantic and Nordic seas. Geophys. Res. Lett. 35, L03614 (2008).
Muilwijk, M., Smedsrud, L. H., Ilicak, M. & Drange, H. Atlantic Water heat transport variability in the 20th century Arctic Ocean from a global ocean model and observations. J. Geophys. Res. Oceans 123, 8159–8179 (2018).
Rinke, A. et al. Extreme cyclone events in the Arctic: wintertime variability and trends. Environ. Res. Lett. 12, 094006 (2017).
Wickström, S., Jonassen, M. O., Vihma, T. & Uotila, P. Trends in cyclones in the high-latitude North Atlantic during 1979–2016. Q. J. R. Meteorol. Soc. 146, 762–779 (2020).
Lien, V. S., Vikebø, F. B. & Skagseth, Ø. One mechanism contributing to co-variability of the Atlantic inflow branches to the Arctic. Nat. Commun. 4, 1488 (2013).
Lien, V. S., Schlichtholz, P., Skagseth, Ø. & Vikebø, F. B. Wind-driven Atlantic water flow as a direct mode for reduced Barents Sea ice cover. J. Clim. 30, 803–812 (2017).
Schlichtholz, P. Influence of oceanic heat variability on sea ice anomalies in the Nordic Seas. Geophys. Res. Lett. 38, L05705 (2011).
Wang, Q. et al. Ocean heat transport into the Barents Sea: distinct controls on the upward trend and interannual variability. Geophys. Res. Lett. 46, 13180–13190 (2019).
Kwok, R. Outflow of Arctic Ocean sea ice into the Greenland and Barents Seas: 1979–2007. J. Clim. 22, 2438–2457 (2009).
Ellingsen, I., Slagstad, D. & Sundfjord, A. Modification of water masses in the Barents Sea and its coupling to ice dynamics: a model study. Ocean Dyn. 59, 1095–1108 (2009).
Herbaut, C., Houssais, M.-N., Close, S. & Blaizot, A.-C. Two wind-driven modes of winter sea ice variability in the Barents Sea. Deep Sea Res. 106, 97–115 (2015).
Årthun, M., Eldevik, T. & Smedsrud, L. H. The role of Atlantic heat transport in future Arctic winter sea ice loss. J. Clim. 32, 3327–3341 (2019).
Aagaard, K. & Woodgate, R. A. Some thoughts on the freezing and melting of sea ice and their effects on the ocean. Ocean Model. 3, 127–135 (2001).
Steele, M., Morison, J. H. & Curtin, T. B. Halocline water formation in the Barents Sea. J. Geophys. Res. Oceans 100, 881–894 (1995).
Rudels, B., Jones, E. P., Schauer, U. & Eriksson, P. Atlantic sources of the Arctic Ocean surface and halocline waters. Polar Res. 23, 181–208 (2004).
Aksenov, Y., Bacon, S., Coward, A. C. & Nurser, A. J. G. The North Atlantic inflow to the Arctic Ocean: high-resolution model study. J. Mar. Syst. 79, 1–22 (2010).
Ivanov, V. et al. Arctic Ocean heat impact on regional ice decay: a suggested positive feedback. J. Phys. Oceanogr. 46, 1437–1456 (2016).
Polyakov, I. V. et al. Intensification of near-surface currents and shear in the Eastern Arctic Ocean. Geophys. Res. Lett. 47, e2020GL089469 (2020).
Nishino, S., Shimada, K., Itoh, M., Yamamoto-Kawai, M. & Chiba, S. East–west differences in water mass, nutrient, and chlorophyll a distributions in the sea ice reduction region of the western Arctic ocean. J. Geophys. Res. Oceans 113, C00A01 (2008).
Nishino, S., Itoh, M., Williams, W. J. & Semiletov, I. Shoaling of the nutricline with an increase in near-freezing temperature water in the Makarov Basin. J. Geophys. Res. Oceans 118, 635–649 (2013).
Barber, D. G. et al. Selected physical, biological and biogeochemical implications of a rapidly changing Arctic marginal ice zone. Prog. Oceanogr. 139, 122–150 (2015).
Macias-Fauria, M. & Post, E. Effects of sea ice on Arctic biota: an emerging crisis discipline. Biol. Lett. 14, 20170702 (2018).
Dybwad, C. et al. Carbon export in the seasonal sea ice zone north of Svalbard from winter to late summer. Front. Mar. Sci. 7, 1137 (2021).
Eriksen, E., Prozorkevich, D., Trofimov, A. & Howell, D. Biomass of Scyphozoan jellyfish, and its spatial association with 0-group fish in the Barents Sea. PLoS ONE 7, e33050 (2012).
Dolgov, A. V. & Benzik, A. N. in The Formation of Bioproductivity in the Northern Barents Sea in the Period of Warming in the Arctic (ed. Karasev, A. B.) (PINRO Press, 2014).
Descôteaux, R. et al. Meroplankton diversity, seasonality and life-history traits across the Barents Sea Polar Front revealed by high-throughput DNA barcoding. Front. Mar. Sci. 8, 609 (2021).
Gluchowska, M. et al. Interannual zooplankton variability in the main pathways of the Atlantic water flow into the Arctic Ocean (Fram Strait and Barents Sea branches). ICES J. Mar. Sci. 74, 1921–1936 (2017).
Eriksen, E. et al. The record-warm Barents Sea and 0-group fish response to abnormal conditions. Front. Mar. Sci. 7, 338 (2020).
Frainer, A. et al. Increased functional diversity warns of ecological transition in the Arctic. Proc. Royal Soc. B https://doi.org/10.1098/rspb.2021.0054 (2021).
Dalpadado, P. et al. Climate effects on Barents Sea ecosystem dynamics. ICES J. Mar. Sci. 69, 1303–1316 (2012).
Jørgensen, L. L. et al. Impact of multiple stressors on sea bed fauna in a warming Arctic. Mar. Ecol. Prog. Ser. 608, 1–12 (2019).
Søreide, J. E., Leu, E., Berge, J., Graeve, M. & S., F.-P. Timing of blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic. Glob. Change Biol. 16, 3154–3163 (2010).
Leu, E., Søreide, J. E., Hessen, D. O., Falk-Petersen, S. & Berge, J. Consequences of changing sea-ice cover for primary and secondary producers in the European Arctic shelf seas: timing, quantity, and quality. Prog. Oceanogr. 90, 18–32 (2011).
van Leeuwe, M. A. et al. Microalgal community structure and primary production in Arctic and Antarctic sea ice: a synthesis. Elementa 6, 4 (2018).
Descamps, S. et al. Diverging phenological responses of Arctic seabirds to an earlier spring. Glob. Change Biol. 25, 4081–4091 (2019).
Lannuzel, D. et al. The future of Arctic sea-ice biogeochemistry and ice-associated ecosystems. Nat. Clim. Change 10, 983–992 (2020).
Johannesen, E. et al. Resource-driven colonization by cod in a high Arctic food web. Ecol. Evol. 10, 14272–14281 (2020).
Wiedmann, M. A., Primicerio, R., Dolgov, A., Ottesen, C. A. M. & Aschan, M. Life history variation in Barents Sea fish: implications for sensitivity to fishing in a changing environment. Ecol. Evol. 4, 3596–3611 (2014).
Al-Habahbeh, A. K. et al. Arctic coastal benthos long-term responses to perturbations under climate warming. Philos. Trans. A Math. Phys. Eng. Sci. https://doi.org/10.1098/rsta.2019.0355 (2020).
Kortsch, S. et al. Food-web structure varies along environmental gradients in a high-latitude marine ecosystem. Ecography 42, 295–308 (2019).
Holt, R. E., Bogstad, B., Durant, J. M., Dolgov, A. V. & Ottersen, G. Barents Sea cod (Gadus morhua) diet composition: long-term interannual, seasonal, and ontogenetic patterns. ICES J. Mar. Sci. 76, 1641–1652 (2019).
Levin, S. A. & Lubchenco, J. Resilience, robustness, and marine ecosystem-based management. Bioscience 58, 27–32 (2008).
Aune, M. et al. Functional roles and redundancy of demersal Barents Sea fish: ecological implications of environmental change. PLoS ONE 13, e0207451 (2018).
Asbjørnsen, H., Årthun, M., Skagseth, Ø. & Eldevik, T. Mechanisms underlying recent Arctic Atlantification. Geophys. Res. Lett. 47, e2020GL088036 (2020).
Bengtsson, L., Semenov, V. A. & Johannessen, O. M. The early twentieth-century warming in the Arctic — a possible mechanism. J. Clim. 17, 4045–4057 (2004).
Andriashev, A. P. Fishes of the Northern Seas of the USSR [Russian] (Akad. Nauk. SSSR, 1954).
Drinkwater, K. F. The regime shift of the 1920s and 1930s in the North Atlantic. Prog. Oceanogr. 68, 134–151 (2006).
Drinkwater, K. F. et al. The Atlantic Multidecadal Oscillation: its manifestations and impacts with special emphasis on the Atlantic region north of 60°N. J. Mar. Syst. 133, 117–130 (2014).
Frajka-Williams, E., Beaulieu, C. & Duchez, A. Emerging negative Atlantic Multidecadal Oscillation index in spite of warm subtropics. Sci. Rep 7, 11224 (2017).
Onarheim, I. H. & Årthun, M. Toward an ice-free Barents Sea. Geophys. Res. Lett. 44, 8387–8395 (2017).
Shu, Q., Wang, Q., Song, Z. & Qiao, F. The poleward enhanced Arctic Ocean cooling machine in a warming climate. Nat. Commun. 12, 2966 (2021).
Skaret, G., Dalpadado, P., Hjøllo, S. S., Skogen, M. D. & Strand, E. Calanus finmarchicus abundance, production and population dynamics in the Barents Sea in a future climate. Prog. Oceanogr. 125, 26–39 (2014).
Orkney, A., Platt, T., Narayanaswamy, B. E., Kostakis, I. & Bouman, H. A. Bio-optical evidence for increasing Phaeocystis dominance in the Barents Sea. Philos. Trans. A Math. Phys. Eng. Sci. 378, 20190357 (2020).
Lalande, C., Nöthig, E.-M. & Fortier, L. Algal export in the Arctic Ocean in times of global warming. Geophys. Res. Lett. 46, 5959–5967 (2019).
Sundby, S., Drinkwater, K. F. & Kjesbu, O. S. The North Atlantic spring-bloom system — where the changing climate meets the winter dark. Front. Mar. Sci. 3, 28 (2016).
Falk-Petersen, S., Pavlov, V., Timofeev, S. & Sargent, J. R. in Arctic Alpine Ecosystems and People in a Changing Environment (eds Ørbæk, J. B. et al.) 147–166 (Springer, 2007).
Renaud, P. E. et al. Pelagic food-webs in a changing Arctic: a trait-based perspective suggests a mode of resilience. ICES J. Mar. Sci. 75, 1871–1881 (2018).
Hobbs, L., Banas, N. S., Cottier, F. R., Berge, J. & Daase, M. Eat or sleep: availability of winter prey explains mid-winter and spring activity in an Arctic Calanus population. Front. Mar. Sci. 7, 744 (2020).
Gjøsæter, H. The population biology and exploitation of capelin (Mallotus villosus) in the Barents Sea. Sarsia 83, 453–496 (1998).
Orlova, E. L., Boitsov, V. D. & Nesterova, V. N. The influence of hydrographic conditions on the structure and functioning of the trophic complex plankton–pelagic fishes–cod [Russian]. Murmansk Print. Comp. 190 (2010).
Cheung, W. W. L. et al. Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish. 10, 235–251 (2009).
Hollowed, A. B., Planque, B. & Loeng, H. Potential movement of fish and shellfish stocks from the sub-Arctic to the Arctic Ocean. Fish. Oceanogr. 22, 355–370 (2013).
Lam, V. W. Y., Cheung, W. W. L., Reygondeau, G. & Sumaila, U. R. Projected change in global fisheries revenues under climate change. Sci. Rep 6, 32607 (2016).
Barton, B. I., Lique, C. & Lenn, Y.-D. Water mass properties derived from satellite observations in the Barents Sea. J. Geophys. Res. Oceans 125, e2019JC015449 (2020).
Lien, V. S. & Trofimov, A. G. Formation of Barents Sea branch water in the north-eastern Barents Sea. Polar Res. 32, 18905 (2013).
Ingvaldsen, R. B., Asplin, L. & Loeng, H. Velocity field of the western entrance to the Barents Sea. J. Geophys. Res. Oceans 109, C03021 (2004).
Beszczynska-Möller, A., Fahrbach, E., Schauer, U. & Hansen, E. Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010. ICES J. Mar. Sci. 69, 852–863 (2012).
Renner, A. H. H. et al. Variability and redistribution of heat in the Atlantic water boundary current north of Svalbard. J. Geophys. Res. Oceans 123, 6373–6391 (2018).
Pérez-Hernández, M. D. et al. Structure, transport, and seasonality of the Atlantic Water boundary current north of Svalbard: results from a yearlong mooring array. J. Geophys. Res. Oceans 124, 1679–1698 (2019).
Athanase, M. et al. Atlantic water modification north of Svalbard in the mercator physical system from 2007 to 2020. J. Geophys. Res. Oceans 125, e2020JC016463 (2020).
Årthun, M., Ingvaldsen, R. B., Smedsrud, L. H. & Schrum, C. Dense water formation and circulation in the Barents Sea. Deep Sea Res. 58, 801–817 (2011).
Rudels, B. et al. Circulation and transformation of Atlantic water in the Eurasian Basin and the contribution of the Fram Strait inflow branch to the Arctic Ocean heat budget. Prog. Oceanogr. 132, 128–152 (2015).
Shu, Q., Qiao, F., Song, Z., Zhao, J. & Li, X. Projected freshening of the Arctic Ocean in the 21st century. J. Geophys. Res. Oceans 123, 9232–9244 (2018).
Schauer, U., Loeng, H., Rudels, B., Ozhigin, V. & Dieck, W. Atlantic water flow through the Barents and Kara Seas. Deep Sea Res. 49, 2281–2298 (2002).
Dmitrenko, I. A. et al. Atlantic water flow into the Arctic Ocean through the St. Anna Trough in the northern Kara Sea. J. Geophys. Res. Oceans 120, 5158–5178 (2015).
Dmitrenko, I. A. et al. Heat loss from the Atlantic water layer in the northern Kara Sea: causes and consequences. Ocean Sci. 10, 719–730 (2014).
Francis, J. A. & Hunter, E. Drivers of declining sea ice in the Arctic winter: a tale of two seas. Geophys. Res. Lett. 34, L17503 (2007).
Nakanowatari, T., Sato, K. & Inoue, J. Predictability of the Barents Sea ice in early winter: remote effects of oceanic and atmospheric thermal conditions from the North Atlantic. J. Clim. 27, 8884–8901 (2014).
Steele, M. & Ermold, W. Loitering of the retreating sea ice edge in the Arctic Seas. J. Geophys. Res. Oceans 120, 7699–7721 (2015).
Blackport, R. & Screen, J. A. Influence of Arctic sea ice loss in autumn compared to that in winter on the atmospheric circulation. Geophys. Res. Lett. 46, 2213–2221 (2019).
Graham, R. M. et al. Winter storms accelerate the demise of sea ice in the Atlantic sector of the Arctic Ocean. Sci. Rep 9, 9222 (2019).
Lind, S., Ingvaldsen, R. B. & Furevik, T. Arctic layer salinity controls heat loss from deep Atlantic layer in seasonally ice-covered areas of the Barents Sea. Geophys. Res. Lett. 43, 5233–5242 (2016).
Sandø, A. B., Johansen, G. O., Aglen, A., Stiansen, J. E. & Renner, A. H. H. Climate change and new potential spawning sites for Northeast Arctic cod. Front. Mar. Sci. 7, 28 (2020).
Huse, G. & Ellingsen, I. Capelin migrations and climate change–a modelling analysis. Clim. Change 87, 177–197 (2008).
Cavalieri, D. J., Parkinson, C. L. G. P. & Zwally, H. J. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data, version 1. [North, daily, 1979–2019] (NASA National Snow and Ice Data Center Distributed Active Archive Center, 1996).
Loeng, H. Features of the physical oceanographic conditions of the Barents Sea. Polar Res. 10, 5–18 (1991).
Lind, S. & Ingvaldsen, R. B. Variability and impacts of Atlantic Water entering the Barents Sea from the north. Deep Sea Res. 62, 70–88 (2012).
Schauer, U., Muench, R. D., Rudels, B. & Timokhov, L. Impact of eastern Arctic shelf waters on the Nansen Basin intermediate layers. J. Geophys. Res. Oceans 102, 3371–3382 (1997).
Randelhoff, A., Sundfjord, A. & Reigstad, M. Seasonal variability and fluxes of nitrate in the surface waters over the Arctic shelf slope. Geophys. Res. Lett. 42, 3442–3449 (2015).
Wassmann, P. et al. Towards a unifying pan-Arctic perspective: a conceptual modelling toolkit. Prog. Oceanogr. 189, 102455 (2020).
Bluhm, B. A. et al. The Pan-Arctic continental slope: sharp gradients of physical processes affect pelagic and benthic ecosystems. Front. Mar. Sci. 7, 886 (2020).
Acknowledgements
R.B.I., K.M.A., R.P. and M.F. acknowledge support from the Research Council of Norway through the Nansen Legacy project (276730) and the project for Monitoring the Marine Climate at the Institute of Marine Research in Norway. I.V.P. is supported by the NABOS (Nansen and Amundsen Basins Observational System) project, with support from NSF (grants AON-1203473, AON-1724523 and AON-1947162). The authors are also grateful to ICES Working Group on Oceanic Hydrography (WGOH) for collecting, providing and assessing long time series of hydrography in the Nordic and Barents seas. The authors thank J. Aarflot, Ø. Skagseth, P. Dalpadado and L. C. Stige for providing data for the figures, and P. Dalpadado, M. Skern-Mauritzen, L. L. Jørgensen, A. Sundfjord and L. H. Smedsrud for their help in preparing the manuscript.
Author information
Authors and Affiliations
Contributions
All authors contributed equally to the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Earth & Environment thanks Benjamin Barton, Laurent Oziel, David Barber and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
About this article
Cite this article
Ingvaldsen, R.B., Assmann, K.M., Primicerio, R. et al. Physical manifestations and ecological implications of Arctic Atlantification. Nat Rev Earth Environ 2, 874–889 (2021). https://doi.org/10.1038/s43017-021-00228-x
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s43017-021-00228-x
This article is cited by
-
Datascape: exploring heterogeneous dataspace
Scientific Reports (2024)
-
Decline in the West Greenland population of a zooplanktivorous seabird, the little auk Alle alle
Scientific Reports (2024)
-
Ecological genomics in the Northern krill uncovers loci for local adaptation across ocean basins
Nature Communications (2024)
-
Biogeographic gradients of picoplankton diversity indicate increasing dominance of prokaryotes in warmer Arctic fjords
Communications Biology (2024)
-
Eastward journey: a second capture and first genetically confirmed record of Greenland shark Somniosus microcephalus in the Laptev Sea (Siberian Arctic)
Environmental Biology of Fishes (2024)