Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drivers and impacts of changes in China’s drylands

Abstract

China has 6.6 million km2 of drylands that support approximately 580 million people. These drylands are at risk of desertification. In this Review, the changes observed in China’s drylands are synthesized, with a focus on their drivers and the effects of 13 large-scale land conservation and restoration programmes aimed at mitigating them, including the Three-North Shelterbelt Development Program and Grain for Green Program. After the implementation of the first large-scale restoration programme in 1978, 45.76% of China’s drylands experienced statistically significant land improvement or vegetation greenness, as identified by the Normalized Difference Vegetation Index. However, activities associated with restoration and conservation projects, such as afforestation, also impose substantial water pressure. Desertification thus remained prevalent during 1980–2015, with 11.43% drylands (especially in north-eastern and north-western drylands) experiencing land degradation or vegetation brownness. Drylands remain at risk of expansion owing to increasing aridity, particularly in semi-arid areas. Future trade-offs between the effects of CO2 fertilization and increased aridity on dryland vegetation cover are still poorly understood. Long-term experiments on the interactions between physical–chemical–biological processes across spatial and temporal scales, such as large-scale field surveys using standardized protocols, are needed to better manage drylands in China and globally.

Key points

  • China has 6.6 million km2 of drylands, which are at risk of expansion owing to increased aridity, potentially affecting the livelihoods of 580 million people.

  • Wind, water and freeze–thaw erosion emerge as major active desertification processes; wind erosion is most serious, with rates exceeding 5,000 tonnes km−2 year−1.

  • China has implemented large-scale land conservation and restoration programmes to combat desertification, greening the drylands. However, large-scale ecological restoration projects also impose substantial pressure on these water-limited environments.

  • From 1980 to 2015, 45.76% of China’s drylands experienced notable land improvement, whereas 11.43% underwent desertification.

  • Plant species richness has positive effects on dryland ecosystem functioning, particularly on plant productivity and soil carbon content.

  • Research is needed to examine interactions between different drivers of environmental change, particularly investigating relationships between CO2 fertilization and increased aridity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distribution and characteristics of China’s drylands.
Fig. 2: Dryland ecosystem change in China.
Fig. 3: Feedback in dryland ecosystems.
Fig. 4: Thirteen major dryland conservation and restoration programmes in China.
Fig. 5: Dryland ecosystem shifts, water fluxes and ecosystem services.
Fig. 6: Spatial variations in climatic and hydrological change.

Similar content being viewed by others

References

  1. Reynolds, J. F. et al. Global desertification: building a science for dryland development. Science 316, 847–851 (2007).

    Article  Google Scholar 

  2. Berdugo, M., Kéfi, S., Soliveres, S. & Maestre, F. T. Plant spatial patterns identify alternative ecosystem multifunctionality states in global drylands. Nat. Ecol. Evol. 1, 0003 (2017).

    Article  Google Scholar 

  3. Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).

    Article  Google Scholar 

  4. Bestelmeyer, B. T. et al. Desertification, land use, and the transformation of global drylands. Front. Ecol. Environ. 13, 28–36 (2015).

    Article  Google Scholar 

  5. Huang, K. et al. Enhanced peak growth of global vegetation and its key mechanisms. Nat. Ecol. Evol. 2, 1897 (2018).

    Article  Google Scholar 

  6. Maestre, F. T. et al. Structure and functioning of dryland ecosystems in a changing world. Annu. Rev. Ecol. Evol. Syst. 47, 215–237 (2016).

    Article  Google Scholar 

  7. Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).

    Article  Google Scholar 

  8. Middleton, N. & Sternberg, T. Climate hazards in drylands: a review. Earth Sci. Rev. 126, 48–57 (2013).

    Article  Google Scholar 

  9. Park, C.-E. et al. Keeping global warming within 1.5 C constrains emergence of aridification. Nat. Clim. Change 8, 70–74 (2018).

    Article  Google Scholar 

  10. Pra˘va˘lie, R., Bandoc, G., Patriche, C. & Sternberg, T. Recent changes in global drylands: evidences from two major aridity databases. Catena 178, 209–231 (2019).

    Article  Google Scholar 

  11. Huang, J. et al. Declines in global ecological security under climate change. Ecol. Indic. 117, 106651 (2020).

    Article  Google Scholar 

  12. Delgado-Baquerizo, M. et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502, 672–676 (2013).

    Article  Google Scholar 

  13. He, B., Wang, S., Guo, L. & Wu, X. Aridity change and its correlation with greening over drylands. Agric. For. Meteorol. 278, 107663 (2019).

    Article  Google Scholar 

  14. Zhang, C., Yang, Y., Yang, D. & Wu, X. Multidimensional assessment of global dryland changes under future warming in climate projections. J. Hydrol. 592, 125618 (2020).

    Article  Google Scholar 

  15. Pra˘va˘lie, R. Exploring the multiple land degradation pathways across the planet. Earth Sci. Rev. 220, 103689 (2021).

    Article  Google Scholar 

  16. Balvanera, P. et al. Linking biodiversity and ecosystem services: current uncertainties and the necessary next steps. Bioscience 64, 49–57 (2014).

    Article  Google Scholar 

  17. UNCCD. United Nations Convention to Combat Desertification — Global Land Outlook (UNCCD, 2017).

  18. Pra˘va˘lie, R. Drylands extent and environmental issues. A global approach. Earth Sci. Rev. 161, 259–278 (2016).

    Article  Google Scholar 

  19. Yang, X. et al. Quaternary environmental changes in the drylands of China — a critical review. Quat. Sci. Rev. 30, 3219–3233 (2011).

    Article  Google Scholar 

  20. Chen, X., Hu, R., Jiang, F., Wang, Y. & Zhang, J. Physical Geography in China’s Drylands (Science, 2015).

  21. Ci, L. & Yang, X. Desertification and its Control in China (Springer, 2010).

  22. Huang, J. et al. Dryland climate change: recent progress and challenges. Rev. Geophys. 55, 719–778 (2017).

    Article  Google Scholar 

  23. Smith, W. K. et al. Remote sensing of dryland ecosystem structure and function: progress, challenges, and opportunities. Remote Sens. Environ. 233, 111401 (2019).

    Article  Google Scholar 

  24. Fu, B. et al. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China. Annu. Rev. Earth Planet. Sci. 45, 223–243 (2017).

    Article  Google Scholar 

  25. D’Odorico, P., Porporato, A. & Runyan, C. W. Dryland Ecohydrology Vol. 9 (Springer, 2006).

  26. Brauman, K. A., Daily, G. C., Duarte, T. K. E. & Mooney, H. A. The nature and value of ecosystem services: an overview highlighting hydrologic services. Annu. Rev. Environ. Resour. 32, 67–98 (2007).

    Article  Google Scholar 

  27. Wang, X., Chen, F., Hasi, E. & Li, J. Desertification in China: an assessment. Earth Sci. Rev. 88, 188–206 (2008).

    Article  Google Scholar 

  28. Stringer, L. C. et al. Climate change impacts on water security in global drylands. One Earth 4, 851–864 (2021).

    Article  Google Scholar 

  29. Qi, J., Chen, J., Wan, S. & Ai, L. Understanding the coupled natural and human systems in dryland East Asia. Environ. Res. Lett. 7, 015202 (2012).

    Article  Google Scholar 

  30. Chi, W., Zhao, Y., Kuang, W. & He, H. Impacts of anthropogenic land use/cover changes on soil wind erosion in China. Sci. Total Environ. 668, 204–215 (2019).

    Article  Google Scholar 

  31. Shi, P., Yan, P., Yuan, Y. & Nearing, M. A. Wind erosion research in China: past, present and future. Prog. Phys. Geogr. 28, 366–386 (2004).

    Article  Google Scholar 

  32. Cheng, L. et al. Estimation of the costs of desertification in China: a critical review. Land. Degrad. Dev. 29, 975–983 (2018).

    Article  Google Scholar 

  33. Bryan, B. A. et al. China’s response to a national land-system sustainability emergency. Nature 559, 193 (2018).

    Article  Google Scholar 

  34. Scott, R. L., Jenerette, G. D., Potts, D. L. & Huxman, T. E. Effects of seasonal drought on net carbon dioxide exchange from a woody-plant-encroached semiarid grassland. J. Geophys. Res. Biogeosci. 114, G4 (2009).

    Article  Google Scholar 

  35. Scott, R. L. et al. When vegetation change alters ecosystem water availability. Glob. Change Biol. 20, 2198–2210 (2014).

    Article  Google Scholar 

  36. Zhang, L. et al. Significant methane ebullition from alpine permafrost rivers on the East Qinghai–Tibet Plateau. Nat. Geosci. 13, 349–354 (2020).

    Article  Google Scholar 

  37. Wang, T. et al. Permafrost thawing puts the frozen carbon at risk over the Tibetan Plateau. Sci. Adv. 6, eaaz3513 (2020).

    Article  Google Scholar 

  38. Arndt, S. K. et al. Contrasting patterns of leaf solute accumulation and salt adaptation in four phreatophytic desert plants in a hyperarid desert with saline groundwater. J. Arid. Environ. 59, 259–270 (2004).

    Article  Google Scholar 

  39. Deng, L., Shangguan, Z.-P., Wu, G.-L. & Chang, X.-F. Effects of grazing exclusion on carbon sequestration in China’s grassland. Earth Sci. Rev. 173, 84–95 (2017).

    Article  Google Scholar 

  40. Dai, A. Drought under global warming: a review. Wiley Interdiscip. Rev. Clim. Change 2, 45–65 (2011).

    Article  Google Scholar 

  41. Fu, C., Jiang, Z., Guan, Z., He, J. & Xu, Z. F. Regional Climate Studies of China (Springer Science & Business Media, 2008).

  42. Zhao, J., Zhang, Q., Zhu, X., Shen, Z. & Yu, H. Drought risk assessment in China: evaluation framework and influencing factors. Geogr. Sustain. 1, 220–228 (2020).

    Google Scholar 

  43. Huang, J., Xie, Y., Guan, X., Li, D. & Ji, F. The dynamics of the warming hiatus over the northern hemisphere. Clim. Dyn. 48, 429–446 (2017).

    Article  Google Scholar 

  44. Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).

    Article  Google Scholar 

  45. Liu, M., Shen, Y., Qi, Y., Wang, Y. & Geng, X. Changes in precipitation and drought extremes over the past half century in China. Atmosphere 10, 203 (2019).

    Article  Google Scholar 

  46. Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).

    Article  Google Scholar 

  47. Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 1–12 (2018).

    Article  Google Scholar 

  48. Li, Y., Huang, J., Ji, M. & Ran, J. Dryland expansion in northern China from 1948 to 2008. Adv. Atmos. Sci. 32, 870–876 (2015).

    Article  Google Scholar 

  49. Lian, X. et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 2, 232–250 (2021).

    Article  Google Scholar 

  50. Posner, S. M., McKenzie, E. & Ricketts, T. H. Policy impacts of ecosystem services knowledge. Proc. Natl Acad. Sci. USA 113, 1760–1765 (2016).

    Article  Google Scholar 

  51. Costanza, R. et al. Twenty years of ecosystem services: how far have we come and how far do we still need to go? Ecosyst. Serv. 28, 1–16 (2017).

    Article  Google Scholar 

  52. Ouyang, Z. et al. Improvements in ecosystem services from investments in natural capital. Science 352, 1455–1459 (2016).

    Article  Google Scholar 

  53. Cao, S. Why large-scale afforestation efforts in China have failed to solve the desertification problem. Environ. Sci. Technol. 42, 1826–1831 (2008).

    Article  Google Scholar 

  54. Liu, J., Li, S., Ouyang, Z., Tam, C. & Chen, X. Ecological and socioeconomic effects of China’s policies for ecosystem services. Proc. Natl Acad. Sci. USA 105, 9477–9482 (2008).

    Article  Google Scholar 

  55. Wang, X., Zhang, C., Hasi, E. & Dong, Z. Has the Three Norths Forest Shelterbelt Program solved the desertification and dust storm problems in arid and semiarid China? J. Arid. Environ. 74, 13–22 (2010).

    Article  Google Scholar 

  56. Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).

    Article  Google Scholar 

  57. Chen, L., Wei, W., Fu, B. & Lü, Y. Soil and water conservation on the Loess Plateau in China: review and perspective. Prog. Phys. Geogr. 31, 389–403 (2007).

    Article  Google Scholar 

  58. Lü, Y. et al. A policy-driven large scale ecological restoration: quantifying ecosystem services changes in the Loess Plateau of China. PLoS ONE 7, e31782 (2012).

    Article  Google Scholar 

  59. McVicar, T. R. et al. Parsimoniously modelling perennial vegetation suitability and identifying priority areas to support China’s re-vegetation program in the Loess Plateau: matching model complexity to data availability. For. Ecol. Manag. 259, 1277–1290 (2010).

    Article  Google Scholar 

  60. Chen, Y. et al. Balancing green and grain trade. Nat. Geosci. 8, 739–741 (2015).

    Article  Google Scholar 

  61. Xiao, J. et al. Responses of four dominant dryland plant species to climate change in the Junggar Basin, northwest China. Ecol. Evol. 9, 13596–13607 (2019).

    Article  Google Scholar 

  62. Zastrow, M. China’s tree-planting drive could falter in a warming world. Nature 573, 474–476 (2019).

    Article  Google Scholar 

  63. Feng, X. et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change 6, 1019–1022 (2016).

    Article  Google Scholar 

  64. Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).

    Article  Google Scholar 

  65. Chappell, A., Baldock, J. & Sanderman, J. The global significance of omitting soil erosion from soil organic carbon cycling schemes. Nat. Clim. Change 6, 187 (2016).

    Article  Google Scholar 

  66. Yue, Y. et al. Lateral transport of soil carbon and land-atmosphere CO2 flux induced by water erosion in China. Proc. Natl Acad. Sci. USA 113, 6617–6622 (2016).

    Article  Google Scholar 

  67. Peng, S. et al. Asymmetric effects of daytime and night-time warming on northern hemisphere vegetation. Nature 501, 88–92 (2013).

    Article  Google Scholar 

  68. Cao, S. et al. Excessive reliance on afforestation in China’s arid and semi-arid regions: lessons in ecological restoration. Earth Sci. Rev. 104, 240–245 (2011).

    Article  Google Scholar 

  69. Wang, G., Innes, J. L., Lei, J., Dai, S. & Wu, S. China’s forestry reforms. Science 318, 1556 (2007).

    Article  Google Scholar 

  70. Li, M. M. et al. An overview of the “Three-North” Shelterbelt project in China. Forestry Stud. China 14, 70–79 (2012).

    Article  Google Scholar 

  71. Wang, Y., Shao, M. A., Zhu, Y. & Liu, Z. Impacts of land use and plant characteristics on dried soil layers in different climatic regions on the Loess Plateau of China. Agric. For. Meteorol. 151, 437–448 (2011).

    Article  Google Scholar 

  72. Wang, S. et al. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 9, 38–41 (2016).

    Article  Google Scholar 

  73. Zhao, G., Mu, X., Wen, Z., Wang, F. & Gao, P. Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. Land Degrad. Dev. 24, 499–510 (2013).

    Article  Google Scholar 

  74. Fu, B. et al. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecol. Complex. 8, 284–293 (2011).

    Article  Google Scholar 

  75. Huang, L. & Shao, M. Advances and perspectives on soil water research in China’s Loess Plateau. Earth Sci. Rev. 199, 102962 (2019).

    Article  Google Scholar 

  76. Wang, L. & D’Odorico, P. Water limitations to large-scale desert agroforestry projects for carbon sequestration. Proc. Natl Acad. Sci. USA 116, 24925–24926 (2019).

    Article  Google Scholar 

  77. Bai, Y., Han, X., Wu, J., Chen, Z. & Li, L. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature 431, 181–184 (2004).

    Article  Google Scholar 

  78. Wu, Z., Dijkstra, P., Koch, G. W., Peñuelas, J. & Hungate, B. A. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob. Change Biol. 17, 927–942 (2011).

    Article  Google Scholar 

  79. Zhenghu, D., Honglang, X., Xinrong, L., Zhibao, D. & Gang, W. Evolution of soil properties on stabilized sands in the Tengger Desert, China. Geomorphology 59, 237–246 (2004).

    Article  Google Scholar 

  80. Wang, Y., Shao, M. A. & Shao, H. A preliminary investigation of the dynamic characteristics of dried soil layers on the Loess Plateau of China. J. Hydrol. 381, 9–17 (2010).

    Article  Google Scholar 

  81. Huang, J., Wang, T., Wang, W., Li, Z. & Yan, H. Climate effects of dust aerosols over East Asian arid and semiarid regions. J. Geophys. Res. Atmos. 119, 11–398 (2014).

    Article  Google Scholar 

  82. Cheng, S., Guan, X., Huang, J., Ji, F. & Guo, R. Long-term trend and variability of soil moisture over East Asia. J. Geophys. Res. Atmos. 120, 8658–8670 (2015).

    Article  Google Scholar 

  83. Wang, S., Fu, B., Chen, H. & Liu, Y. Regional development boundary of China’s Loess Plateau: water limit and land shortage. Land Use Policy 74, 130–136 (2018).

    Article  Google Scholar 

  84. Zhang, S. et al. Excessive afforestation and soil drying on China’s Loess Plateau. J. Geophys. Res. Biogeosci. 123, 923–935 (2018).

    Article  Google Scholar 

  85. Jia, X., Shao, M., Yu, D., Zhang, Y. & Binley, A. Spatial variations in soil-water carrying capacity of three typical revegetation species on the Loess Plateau, China. Agric. Ecosyst. Environ. 273, 25–35 (2019).

    Article  Google Scholar 

  86. Piao, S., Fang, J., Liu, H. & Zhu, B. NDVI-indicated decline in desertification in China in the past two decades. Geophys. Res. Lett. 32, L06402 (2005).

    Article  Google Scholar 

  87. Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Envir. 1, 14–27 (2020).

    Article  Google Scholar 

  88. Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).

    Article  Google Scholar 

  89. D’Odorico, P., Bhattachan, A., Davis, K. F., Ravi, S. & Runyan, C. W. Global desertification: drivers and feedbacks. Adv. Water Resour. 51, 326–344 (2013).

    Article  Google Scholar 

  90. Xue, Y. in Dryland Ecohydrology 139–169 (Springer, 2019).

  91. Peng, S.-S. et al. Afforestation in China cools local land surface temperature. Proc. Natl Acad. Sci. USA 111, 2915–2919 (2014).

    Article  Google Scholar 

  92. Li, S. G. et al. Micrometeorological changes following establishment of artificially established artemisia vegetation on desertified sandy land in the Horqin sandy land, China and their implication on regional environmental change. J. Arid. Environ. 52, 101–119 (2002).

    Article  Google Scholar 

  93. Li, Y. et al. Divergent hydrological response to large-scale afforestation and vegetation greening in China. Sci. Adv. 4, eaar4182 (2018).

    Article  Google Scholar 

  94. Xue, Y. The impact of desertification in the Mongolian and the Inner Mongolian grassland on the regional climate. J. Clim. 9, 2173–2189 (1996).

    Article  Google Scholar 

  95. Chen, L., Ma, Z. & Zhao, T. Modeling and analysis of the potential impacts on regional climate due to vegetation degradation over arid and semi-arid regions of China. Clim. Change 144, 461–473 (2017).

    Article  Google Scholar 

  96. Peng, D. et al. The influences of drought and land-cover conversion on inter-annual variation of NPP in the Three-North Shelterbelt Program zone of China based on MODIS data. PLoS ONE 11, e0158173 (2016).

    Article  Google Scholar 

  97. Wang, F., Pan, X., Wang, D., Shen, C. & Lu, Q. Combating desertification in China: past, present and future. Land Use Policy 31, 311–313 (2013).

    Article  Google Scholar 

  98. Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).

    Article  Google Scholar 

  99. Tong, X. et al. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nat. Sustain. 1, 44–50 (2018).

    Article  Google Scholar 

  100. Lu, F. et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl Acad. Sci. USA 115, 4039–4044 (2018).

    Article  Google Scholar 

  101. Deng, L., Liu, G. & Shangguan, Z. Land-use conversion and changing soil carbon stocks in China’s ‘Grain-for-Green’ Program: a synthesis. Glob. Change Biol. 20, 3544–3556 (2014).

    Article  Google Scholar 

  102. Zhao, Y., Wu, J., He, C. & Ding, G. Linking wind erosion to ecosystem services in drylands: a landscape ecological approach. Landsc. Ecol. 32, 2399–2417 (2017).

    Article  Google Scholar 

  103. Gao, Y., Dang, P., Zhao, Q., Liu, J. & Liu, J. Effects of vegetation rehabilitation on soil organic and inorganic carbon stocks in the Mu Us Desert, northwest China. Land Degrad. Dev. 29, 1031–1040 (2018).

    Article  Google Scholar 

  104. Xu, J., Chen, J., Liu, Y. & Fan, F. Identification of the geographical factors influencing the relationships between ecosystem services in the Belt and Road region from 2010 to 2030. J. Clean. Prod. 275, 124153 (2020).

    Article  Google Scholar 

  105. Viña, A., McConnell, W. J., Yang, H., Xu, Z. & Liu, J. Effects of conservation policy on China’s forest recovery. Sci. Adv. 2, e1500965 (2016).

    Article  Google Scholar 

  106. Xu, W. et al. Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl Acad. Sci. USA 114, 1601–1606 (2017).

    Article  Google Scholar 

  107. Xu, J. China’s new forests aren’t as green as they seem. Nature 477, 371–371 (2011).

    Article  Google Scholar 

  108. Hua, F. et al. Opportunities for biodiversity gains under the world’s largest reforestation programme. Nat. Commun. 7, 1–11 (2016).

    Article  Google Scholar 

  109. Kong, Z.-H., Stringer, L. C., Paavola, J. & Lu, Q. Situating China in the global effort to combat desertification. Land 10, 702 (2021).

    Article  Google Scholar 

  110. Cao, S. et al. Greening China naturally. Ambio 40, 828–831 (2011).

    Article  Google Scholar 

  111. Chen, H., Shao, M. & Li, Y. Soil desiccation in the Loess Plateau of China. Geoderma 143, 91–100 (2008).

    Article  Google Scholar 

  112. Chu, X., Zhan, J., Li, Z., Zhang, F. & Qi, W. Assessment on forest carbon sequestration in the Three-North Shelterbelt Program region, China. J. Clean. Prod. 215, 382–389 (2019).

    Article  Google Scholar 

  113. Yang, H., Huang, Q., Zhang, J., Songer, M. & Liu, J. Range-wide assessment of the impact of China’s nature reserves on giant panda habitat quality. Sci. Total. Environ. 769, 145081 (2021).

    Article  Google Scholar 

  114. Feng, C. et al. Which management measures lead to better performance of China’s protected areas in reducing forest loss? Sci. Total Environ. 764, 142895 (2021).

    Article  Google Scholar 

  115. Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    Article  Google Scholar 

  116. Luedeling, E. et al. Forest restoration: overlooked constraints. Science 366, 315–315 (2019).

    Article  Google Scholar 

  117. Stenzel, F., Gerten, D., Werner, C. & Jägermeyr, J. Freshwater requirements of large-scale bioenergy plantations for limiting global warming to 1.5 °C. Environ. Res. Lett. 14, 084001 (2019).

    Article  Google Scholar 

  118. Morton, S. et al. A fresh framework for the ecology of arid Australia. J. Arid. Environ. 75, 313–329 (2011).

    Article  Google Scholar 

  119. Sankaran, M. et al. Determinants of woody cover in African savannas. Nature 438, 846–849 (2005).

    Article  Google Scholar 

  120. Kotiaho, J. S. & Halme, P. The IPBES Assessment Report on Land Degradation and Restoration (Univ. of Jyväskylä, 2018).

  121. Bhattachan, A., D’Odorico, P., Dintwe, K., Okin, G. S. & Collins, S. L. Resilience and recovery potential of duneland vegetation in the southern Kalahari. Ecosphere 5, 1–14 (2014).

    Article  Google Scholar 

  122. Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166 (2016).

    Article  Google Scholar 

  123. Yu, G. et al. Construction and progress of Chinese terrestrial ecosystem carbon, nitrogen and water fluxes coordinated observation. J. Geogr. Sci. 26, 803–826 (2016).

    Article  Google Scholar 

  124. Fu, B. et al. Chinese ecosystem research network: progress and perspectives. Ecol. Complex. 7, 225–233 (2010).

    Article  Google Scholar 

  125. Wang, C. et al. Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands. Nat. Commun. 5, 4799 (2014).

    Article  Google Scholar 

  126. Fu, B. et al. The Global-DEP conceptual framework — research on dryland ecosystems to promote sustainability. Curr. Opin. Environ. Sustain. 48, 17–28 (2021).

    Article  Google Scholar 

  127. Assessment, M. E. Ecosystems and Human Well-Being Vol. 5 (Island, 2005).

  128. Zhu, Q., Castellano, M. J. & Yang, G. Coupling soil water processes and the nitrogen cycle across spatial scales: potentials, bottlenecks and solutions. Earth Sci. Rev. 187, 248–258 (2018).

    Article  Google Scholar 

  129. Fu, B. Promoting geography for sustainability. Geogr. Sustain. 1, 1–7 (2020).

    Google Scholar 

  130. Fu, B. et al. The research priorities of resources and environmental sciences. Geogr. Sustain. 2, 87–94 (2021).

    Google Scholar 

  131. Li, C., Zhang, C., Luo, G. & Chen, X. Modeling the carbon dynamics of the dryland ecosystems in Xinjiang, China from 1981 to 2007 — the spatiotemporal patterns and climate controls. Ecol. Model. 267, 148–157 (2013).

    Article  Google Scholar 

  132. Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).

    Article  Google Scholar 

  133. Zhang, Y., Zhao, R., Liu, Y., Huang, K. & Zhu, J. Sustainable wildlife protection on the Qingzang Plateau. Geogr. Sustain. 2, 40–47 (2021).

    Google Scholar 

  134. Wang, X., Chen, F. & Dong, Z. The relative role of climatic and human factors in desertification in semiarid China. Glob. Environ. Change 16, 48–57 (2006).

    Article  Google Scholar 

  135. An, S. et al. Soil quality degradation processes along a deforestation chronosequence in the Ziwuling area, China. Catena 75, 248–256 (2008).

    Article  Google Scholar 

  136. Huang, J. et al. Global desertification vulnerability to climate change and human activities. Land Degrad. Dev. 31, 1380–1391 (2020).

    Article  Google Scholar 

  137. Sun, D. et al. The effects of land use change on soil infiltration capacity in China: a meta-analysis. Sci. Total Environ. 626, 1394–1401 (2018).

    Article  Google Scholar 

  138. Ren, C. et al. Linkages of C:N:P stoichiometry and bacterial community in soil following afforestation of former farmland. For. Ecol. Manag. 376, 59–66 (2016).

    Article  Google Scholar 

  139. Fu, Q. & Feng, S. Responses of terrestrial aridity to global warming. J. Geophys. Res. Atmos. 119, 7863–7875 (2014).

    Article  Google Scholar 

  140. Feng, S. & Fu, Q. Expansion of global drylands under a warming climate. Atmos. Chem. Phys. 13, 10081–10094 (2013).

    Article  Google Scholar 

  141. Huang, J., Yu, H., Dai, A., Wei, Y. & Kang, L. Drylands face potential threat under 2 °C global warming target. Nat. Clim. Change 7, 417–422 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This research is jointly funded by the National Natural Science Foundation of China Project (grant 41991235), China’s Second Scientific Research Project on the Qinghai–Tibet Plateau (grant 2019QZKK0405) and the Fundamental Research Funds for the Central Universities (2019NTST33).

Author information

Authors and Affiliations

Authors

Contributions

C.L., B.F., S.W. and L.C.S. formulated the review and identified the themes to be covered. C.L. drafted the figures and wrote the first draft of the manuscript. Y.W. Z.L., Y.L. and W.Z conducted data analysis of land degradation in China’s drylands. B.F., S.W. and L.C.S. reviewed and edited the manuscript before submission. All authors made substantial contributions to the discussion of content.

Corresponding author

Correspondence to Bojie Fu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks J. Huang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Desertification

A type of land degradation in drylands induced by climatic variations and human activities.

Ecological security

The capability of an ecosystem to maintain its stability under external stress.

Aridity index

The mean annual precipitation divided by potential evapotranspiration.

Aridification

A long-term process that drives increasing dryness.

Soil erosion modulus

An indicator to describe the soil erosion rate per square kilometre per year.

Sandification

An environmental change whereby an environment becomes sandy.

Habitat quality

An indicator that approximates the biodiversity of a landscape through estimating the extent of habit, vegetation types and their degradation states.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Fu, B., Wang, S. et al. Drivers and impacts of changes in China’s drylands. Nat Rev Earth Environ 2, 858–873 (2021). https://doi.org/10.1038/s43017-021-00226-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-021-00226-z

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene