Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Blue carbon as a natural climate solution

Abstract

Blue carbon ecosystems (BCEs), including mangrove forests, seagrass meadows and tidal marshes, store carbon and provide co-benefits such as coastal protection and fisheries enhancement. Blue carbon sequestration has therefore been suggested as a natural climate solution. In this Review, we examine the potential for BCEs to act as carbon sinks and the opportunities to protect or restore ecosystems for this function. Globally, BCEs are calculated to store >30,000 Tg C across ~185 million ha, with their conservation potentially avoiding emissions of 304 (141–466) Tg carbon dioxide equivalent (CO2e) per year. Potential BCE restoration has been estimated in the range of 0.2–3.2 million ha for tidal marshes, 8.3–25.4 million ha for seagrasses and 9–13 million ha for mangroves, which could draw down an additional 841 (621–1,064) Tg CO2e per year by 2030, collectively amounting to ~3% of global emissions (based on 2019 and 2020 global annual fossil fuel emissions). Mangrove protection and/or restoration could provide the greatest carbon-related benefits, but better understanding of other BCEs is needed. BCE destruction is unlikely to stop fully, and not all losses can be restored. However, engineering and planning for coastal protection offer opportunities for protection and restoration, especially through valuing co-benefits. BCE prioritization is potentially a cost-effective and scalable natural climate solution, but there are still barriers to overcome before blue carbon project adoption will become widespread.

Key points

  • Blue carbon ecosystems (BCEs), including mangrove forests, tidal marshes and seagrass meadows, are gaining international recognition as a natural climate solution to contribute to climate change mitigation and adaptation targets.

  • Global distribution is estimated as ~36–185 million ha of BCEs, potentially storing ~8,970–32,650 Tg C and providing important co-benefits.

  • Protecting existing BCE could avoid emissions of 304 (141–466) Tg (95% CI bounds) carbon dioxide equivalent (CO2e) per year and large-scale restoration could remove an extra 841 (621–1,064) Tg CO2e per year by 2030, equivalent to ~3% (0.5–0.8% from protection and 2.3–2.5% from restoration) of annual global greenhouse gas emissions.

  • Blue carbon’s potential as a nature-based solution will depend on societal actions; restoring BCE should be a key focus of the UN Decade on Ecosystem Restoration (2021–2030).

  • Emerging blue carbon markets should aim to incorporate the value of co-benefits into financial frameworks to assist with the investments required for restoration and conservation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Blue carbon cycling and notable publications.
Fig. 2: Co-benefits provided by BCEs.
Fig. 3: Global distribution of BCEs.
Fig. 4: Potential distribution of blue carbon soil stocks per country.
Fig. 5: Loss rate, carbon stocks, avoidable fluxes and mitigation potential for each BCE.
Fig. 6: Road map for incorporating data into carbon accounting frameworks and conservation strategies.

References

  1. Nesshöver, C. et al. The science, policy and practice of nature-based solutions: an interdisciplinary perspective. Sci. Total Environ. 579, 1215–1227 (2017).

    Google Scholar 

  2. Chausson, A. et al. Mapping the effectiveness of nature-based solutions for climate change adaptation. Glob. Chang. Biol. 26, 6134–6155 (2020).

    Google Scholar 

  3. Pires, J. C. M. Negative emissions technologies: a complementary solution for climate change mitigation. Sci. Total Environ. 672, 502–514 (2019).

    Google Scholar 

  4. McLaren, D. A comparative global assessment of potential negative emissions technologies. Process Saf. Environ. Prot. 90, 489–500 (2012).

    Google Scholar 

  5. Anderson, K. & Peters, G. The trouble with negative emissions. Science 354, 182–183 (2016).

    Google Scholar 

  6. Nellemann, C. et al. Blue Carbon — The Role of Healthy Oceans in Binding Carbon (UN Environment, 2009).

  7. Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).

    Google Scholar 

  8. Himes-Cornell, A., Grose, S. O. & Pendleton, L. Mangrove ecosystem service values and methodological approaches to valuation: where do we stand? Front. Mar. Sci. 5, 376 (2018).

    Google Scholar 

  9. Friess, D. A. et al. in Oceanography and Marine Biology Vol. 58 Ch. 3 (CRC, 2020).

  10. Lovelock, C. E. & Duarte, C. M. Dimensions of blue carbon and emerging perspectives. Biol. Lett. 15 https://doi.org/10.1098/rsbl.2018.0781 (2019).

  11. Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Chang. 3, 961–968 (2013).

    Google Scholar 

  12. Duarte, C. M., Middelburg, J. J. & Caraco, N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2, 1–8 (2005).

    Google Scholar 

  13. Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).

    Google Scholar 

  14. Krause-Jensen, D. & Duarte, C. M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9, 737–742 (2016).

    Google Scholar 

  15. Macreadie, P. I. et al. Vulnerability of seagrass blue carbon to microbial attack following exposure to warming and oxygen. Sci. Total Environ. 686, 264–275 (2019).

    Google Scholar 

  16. Sippo, J. Z., Lovelock, C. E., Santos, I. R., Sanders, C. J. & Maher, D. T. Mangrove mortality in a changing climate: an overview. Estuar. Coast. Shelf Sci. 215, 241–249 (2018).

    Google Scholar 

  17. Lovelock, C. E. et al. Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Front. Ecol. Environ. 15, 257–265 (2017).

    Google Scholar 

  18. Zhao, Q. et al. Where marine protected areas would best represent 30% of ocean biodiversity. Biol. Conserv. 244, 108536 (2020).

    Google Scholar 

  19. Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).

    Google Scholar 

  20. Bayraktarov, E. et al. The cost and feasibility of marine coastal restoration. Ecol. Appl. 26, 1055–1074 (2016).

    Google Scholar 

  21. Van, T. T. et al. Changes in mangrove vegetation area and character in a war and land use change affected region of Vietnam (Mui Ca Mau) over six decades. Acta Oecol. 63, 71–81 (2015).

    Google Scholar 

  22. Dung, L. V., Tue, N. T., Nhuan, M. T. & Omori, K. Carbon storage in a restored mangrove forest in Can Gio Mangrove Forest Park, Mekong Delta, Vietnam. For. Ecol. Manage. 380, 31–40 (2016).

    Google Scholar 

  23. Nam, V. N., Sasmito, S. D., Murdiyarso, D., Purbopuspito, J. & MacKenzie, R. A. Carbon stocks in artificially and naturally regenerated mangrove ecosystems in the Mekong Delta. Wetl. Ecol. Manag. 24, 231–244 (2016).

    Google Scholar 

  24. Reynolds, L. K., Waycott, M., McGlathery, K. J. & Orth, R. J. Ecosystem services returned through seagrass restoration. Restor. Ecol. 24, 583–588 (2016).

    Google Scholar 

  25. Das, S. Ecological restoration and livelihood: contribution of planted mangroves as nursery and habitat for artisanal and commercial fishery. World Dev. 94, 492–502 (2017).

    Google Scholar 

  26. Kiesel, J. et al. Effective design of managed realignment schemes can reduce coastal flood risks. Estuar. Coast. Shelf Sci. 242, 106844 (2020).

    Google Scholar 

  27. McNally, C. G., Uchida, E. & Gold, A. J. The effect of a protected area on the tradeoffs between short-run and long-run benefits from mangrove ecosystems. Proc. Natl Acad. Sci. USA 108, 13945–13950 (2011).

    Google Scholar 

  28. Chow, J. Mangrove management for climate change adaptation and sustainable development in coastal zones. J. Sustain. For. 37, 139–156 (2018).

    Google Scholar 

  29. Dasgupta, S., Islam, M. S., Huq, M., Huque Khan, Z. & Hasib, M. R. Quantifying the protective capacity of mangroves from storm surges in coastal Bangladesh. PLoS ONE 14, e0214079 (2019).

    Google Scholar 

  30. Sutton-Grier, A. E. & Moore, A. Leveraging carbon services of coastal ecosystems for habitat protection and restoration. Coast. Manag. 44, 259–277 (2016).

    Google Scholar 

  31. Owuor, M. A., Mulwa, R., Otieno, P., Icely, J. & Newton, A. Valuing mangrove biodiversity and ecosystem services: a deliberative choice experiment in Mida Creek, Kenya. Ecosyst. Serv. 40, 101040 (2019).

    Google Scholar 

  32. Mcowen, C. J. et al. A global map of saltmarshes. Biodivers. Data J. 5, e11764 (2018).

    Google Scholar 

  33. Bunting, P. et al. The global mangrove watch — a new 2010 global baseline of mangrove extent. Remote Sens. 10, 1669 (2018).

    Google Scholar 

  34. Jayathilake, D. R. M. & Costello, M. J. A modelled global distribution of the seagrass biome. Biol. Conserv. 226, 120–126 (2018).

    Google Scholar 

  35. McKenzie, L. J. et al. The global distribution of seagrass meadows. Environ. Res. Lett. 15, 74041 (2020).

    Google Scholar 

  36. Trumbore, S. E. Potential responses of soil organic carbon to global environmental change. Proc. Natl Acad. Sci. USA 94, 8284–8291 (1997).

    Google Scholar 

  37. Hamilton, S. E. & Friess, D. A. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nat. Clim. Chang. 8, 240–244 (2018).

    Google Scholar 

  38. Ouyang, X. & Lee, S. Y. Improved estimates on global carbon stock and carbon pools in tidal wetlands. Nat. Commun. 11, 317 (2020).

    Google Scholar 

  39. Kauffman, J. B. et al. Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients. Ecol. Monogr. 90, e01405 (2020).

    Google Scholar 

  40. Simard, M. et al. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 12, 40–45 (2019).

    Google Scholar 

  41. Hutchison, J., Manica, A., Swetnam, R., Balmford, A. & Spalding, M. Predicting global patterns in mangrove forest biomass. Conserv. Lett. 7, 233–240 (2014).

    Google Scholar 

  42. Atwood, T. B. et al. Global patterns in mangrove soil carbon stocks and losses. Nat. Clim. Chang. 7, 523–528 (2017).

    Google Scholar 

  43. Sanderman, J. et al. A global map of mangrove forest soil carbon at 30 m spatial resolution. Environ. Res. Lett. 13, 55002 (2018).

    Google Scholar 

  44. Traganos, D. et al. Towards global-scale seagrass mapping and monitoring using Sentinel-2 on Google Earth Engine: the case study of the Aegean and Ionian Seas. Remote Sens. 10, 1227 (2018).

    Google Scholar 

  45. Hossain, M. S. & Hashim, M. Potential of Earth Observation (EO) technologies for seagrass ecosystem service assessments. Int. J. Appl. Earth Obs. Geoinf. 77, 15–29 (2019).

    Google Scholar 

  46. Atwood, T. B., Witt, A., Mayorga, J., Hammill, E. & Sala, E. Global patterns in marine sediment carbon stocks. Front. Mar. Sci. 7, 165 (2020).

    Google Scholar 

  47. Coastal carbon atlas. Coastal Carbon Research Coordination Network. CCRCN https://ccrcn.shinyapps.io/CoastalCarbonAtlas/_w_8595a9b5/#tab-6425-6 (2019).

  48. UNEP-WCMC. Ocean data viewer: global distribution of seagrasses. UNEP https://doi.org/10.34892/x6r3-d211 (2018).

  49. Hammerstrom, K. K., Kenworthy, W. J., Fonseca, M. S. & Whitfield, P. E. Seed bank, biomass, and productivity of Halophila decipiens, a deep water seagrass on the west Florida continental shelf. Aquat. Bot. 84, 110–120 (2006).

    Google Scholar 

  50. Pergent-Martini, C. et al. Descriptors of Posidonia oceanica meadows: use and application. Ecol. Indic. 5, 213–230 (2005).

    Google Scholar 

  51. Esteban, N., Unsworth, R. K. F., Gourlay, J. B. Q. & Hays, G. C. The discovery of deep-water seagrass meadows in a pristine Indian Ocean wilderness revealed by tracking green turtles. Mar. Pollut. Bull. 134, 99–105 (2018).

    Google Scholar 

  52. York, P. H. et al. Dynamics of a deep-water seagrass population on the Great Barrier Reef: annual occurrence and response to a major dredging program. Sci. Rep. 5, 13167 (2015).

    Google Scholar 

  53. Serrano, O. et al. Australian vegetated coastal ecosystems as global hotspots for climate change mitigation. Nat. Commun. 10, 4313 (2019).

    Google Scholar 

  54. Chmura, G. L., Anisfeld, S. C., Cahoon, D. R. & Lynch, J. C. Global carbon sequestration in tidal, saline wetland soils. Glob. Biogeochem. Cycles 17, 1111 (2003).

    Google Scholar 

  55. Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).

    Google Scholar 

  56. Rogers, K. et al. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature 567, 91–95 (2019).

    Google Scholar 

  57. Rovai, A. S. et al. Global controls on carbon storage in mangrove soils. Nat. Clim. Chang. 8, 534–538 (2018).

    Google Scholar 

  58. Worthington, T. A. et al. A global biophysical typology of mangroves and its relevance for ecosystem structure and deforestation. Sci. Rep. 10, 14652 (2020).

    Google Scholar 

  59. Maher, D. T., Call, M., Santos, I. R. & Sanders, C. J. Beyond burial: lateral exchange is a significant atmospheric carbon sink in mangrove forests. Biol. Lett. 14, 20180200 (2018).

    Google Scholar 

  60. Santos, I. R., Maher, D. T., Larkin, R., Webb, J. R. & Sanders, C. J. Carbon outwelling and outgassing vs. burial in an estuarine tidal creek surrounded by mangrove and saltmarsh wetlands. Limnol. Ocean 64, 996–1013 (2019).

    Google Scholar 

  61. Kelleway, J. J. et al. A national approach to greenhouse gas abatement through blue carbon management. Glob. Environ. Chang. 63, 102083 (2020).

    Google Scholar 

  62. Goldberg, L., Lagomasino, D., Thomas, N. & Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob. Chang. Biol. 68, 5844–5855 (2020).

    Google Scholar 

  63. Richards, D. R. & Friess, D. A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. 113, 344–349 (2016).

    Google Scholar 

  64. Thomas, N. et al. Distribution and drivers of global mangrove forest change, 1996–2010. PLoS ONE 12, e0179302 (2017).

    Google Scholar 

  65. Worthington, T. & Spalding, M. Mangrove restoration potential: a global map highlighting a critical opportunity (OECD, 2018).

  66. Kearney, M. S., Riter, J. C. A. & Turner, R. E. Freshwater river diversions for marsh restoration in Louisiana: twenty-six years of changing vegetative cover and marsh area. Geophys. Res. Lett. 38, 16405 (2011).

    Google Scholar 

  67. Lee, S. Y., Hamilton, S., Barbier, E. B., Primavera, J. & Lewis, R. R. Better restoration policies are needed to conserve mangrove ecosystems. Nat. Ecol. Evol. 3, 870–872 (2019).

    Google Scholar 

  68. Lovelock, C. E. & Brown, B. M. Land tenure considerations are key to successful mangrove restoration. Nat. Ecol. Evol. 3, 1135 (2019).

    Google Scholar 

  69. Herr, D., Blum, J., Himes-Cornell, A. & Sutton-Grier, A. An analysis of the potential positive and negative livelihood impacts of coastal carbon offset projects. J. Environ. Manag. 235, 463–479 (2019).

    Google Scholar 

  70. Mojica Vélez, J. M., Barrasa García, S. & Espinoza Tenorio, A. Policies in coastal wetlands: key challenges. Environ. Sci. Policy 88, 72–82 (2018).

    Google Scholar 

  71. Zeng, Y. et al. Economic and social constraints on reforestation for climate mitigation in Southeast Asia. Nat. Clim. Chang. 10, 842–844 (2020).

    Google Scholar 

  72. van Katwijk, M. M. et al. Global analysis of seagrass restoration: the importance of large-scale planting. J. Appl. Ecol. 53, 567–578 (2016).

    Google Scholar 

  73. Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl Acad. Sci. USA 106, 12377–12381 (2009).

    Google Scholar 

  74. Orth, R. J. et al. A global crisis for seagrass ecosystems. Bioscience 56, 987–996 (2006).

    Google Scholar 

  75. Tan, Y. M. et al. Seagrass restoration is possible: insights and lessons from Australia and New Zealand. Front. Mar. Sci. 7, 617 (2020).

    Google Scholar 

  76. Greiner, J. T., McGlathery, K. J., Gunnell, J. & McKee, B. A. Seagrass restoration enhances ‘blue carbon’ sequestration in coastal waters. PLoS ONE 8, e72469 (2013).

    Google Scholar 

  77. Orth, R. J. et al. Restoration of seagrass habitat leads to rapid recovery of coastal ecosystem services. Sci. Adv. 6, eabc6434 (2020).

    Google Scholar 

  78. Cunha, A. H. et al. Changing paradigms in seagrass restoration. Restor. Ecol. 20, 427–430 (2012).

    Google Scholar 

  79. Rezek, R. J., Furman, B. T., Jung, R. P., Hall, M. O. & Bell, S. S. Long-term performance of seagrass restoration projects in Florida, USA. Sci. Rep. 9, 15514 (2019).

    Google Scholar 

  80. Worthington, T. A. et al. Harnessing big data to support the conservation and rehabilitation of mangrove forests globally. One Earth 2, 429–443 (2020).

    Google Scholar 

  81. Kandus, P. et al. Remote sensing of wetlands in South America: status and challenges. Int. J. Remote Sens. 39, 993–1016 (2018).

    Google Scholar 

  82. Gallant, A. L. The challenges of remote monitoring of wetlands. Remote Sens. 7, 10938–10950 (2015).

    Google Scholar 

  83. Unsworth, R. K. F. et al. Sowing the seeds of seagrass recovery using hessian bags. Front. Ecol. Evol. 7, 311 (2019).

    Google Scholar 

  84. Duarte, C. M., Dennison, W. C., Orth, R. J. W. & Carruthers, T. J. B. The charisma of coastal ecosystems: addressing the imbalance. Estuaries Coasts 31, 233–238 (2008).

    Google Scholar 

  85. de los Santos, C. B. et al. Recent trend reversal for declining European seagrass meadows. Nat. Commun. 10, 3356 (2019).

    Google Scholar 

  86. Hamilton, S. E. & Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 25, 729–738 (2016).

    Google Scholar 

  87. Pendleton, L. et al. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 7, e43542 (2012).

    Google Scholar 

  88. Deegan, L. A. et al. Coastal eutrophication as a driver of salt marsh loss. Nature 490, 388–392 (2012).

    Google Scholar 

  89. Cardoso, P. G., Raffaelli, D. & Pardal, M. A. The impact of extreme weather events on the seagrass Zostera noltii and related Hydrobia ulvae population. Mar. Pollut. Bull. 56, 483–492 (2008).

    Google Scholar 

  90. Rogers, K. Accommodation space as a framework for assessing the response of mangroves to relative sea-level rise. Singap. J. Trop. Geogr. 42, 163–183 (2021).

    Google Scholar 

  91. Marbà, N. & Duarte, C. M. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Glob. Chang. Biol. 16, 2366–2375 (2010).

    Google Scholar 

  92. Lefcheck, J. S., Wilcox, D. J., Murphy, R. R., Marion, S. R. & Orth, R. J. Multiple stressors threaten the imperiled coastal foundation species eelgrass (Zostera marina) in Chesapeake Bay, USA. Glob. Chang. Biol. 23, 3474–3483 (2017).

    Google Scholar 

  93. Arias-Ortiz, A. et al. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Chang. 8, 338–344 (2018).

    Google Scholar 

  94. Kendrick, G. A. et al. A systematic review of how multiple stressors from an extreme event drove ecosystem-wide loss of resilience in an iconic seagrass community. Front. Mar. Sci. 6, 455 (2019).

    Google Scholar 

  95. Duke, N. C. et al. Large-scale dieback of mangroves in Australia’s Gulf of Carpentaria: a severe ecosystem response, coincidental with an unusually extreme weather event. Mar. Freshw. Res. 68, 1816–1829 (2017).

    Google Scholar 

  96. Taillie, P. J. et al. Widespread mangrove damage resulting from the 2017 Atlantic mega hurricane season. Environ. Res. Lett. 15, 64010 (2020).

    Google Scholar 

  97. Asbridge, E., Lucas, R., Rogers, K. & Accad, A. The extent of mangrove change and potential for recovery following severe Tropical Cyclone Yasi, Hinchinbrook Island, Queensland, Australia. Ecol. Evol. 8, 10416–10434 (2018).

    Google Scholar 

  98. Hickey, S. M. et al. Is climate change shifting the poleward limit of mangroves? Estuaries Coasts 40, 1215–1226 (2017).

    Google Scholar 

  99. Saintilan, N., Wilson, N. C., Rogers, K., Rajkaran, A. & Krauss, K. W. Mangrove expansion and salt marsh decline at mangrove poleward limits. Glob. Chang. Biol. 20, 147–157 (2014).

    Google Scholar 

  100. Whitt, A. A. et al. March of the mangroves: drivers of encroachment into southern temperate saltmarsh. Estuar. Coast. Shelf Sci. 240, 106776 (2020).

    Google Scholar 

  101. Cavanaugh, K. C. et al. Sensitivity of mangrove range limits to climate variability. Glob. Ecol. Biogeogr. 27, 925–935 (2018).

    Google Scholar 

  102. Cavanaugh, K. C. et al. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc. Natl Acad. Sci. USA 111, 723–727 (2014).

    Google Scholar 

  103. Coldren, G. A., Langley, J. A., Feller, I. C. & Chapman, S. K. Warming accelerates mangrove expansion and surface elevation gain in a subtropical wetland. J. Ecol. 107, 79–90 (2019).

    Google Scholar 

  104. Yando, E. S. et al. Salt marsh–mangrove ecotones: using structural gradients to investigate the effects of woody plant encroachment on plant–soil interactions and ecosystem carbon pools. J. Ecol. 104, 1020–1031 (2016).

    Google Scholar 

  105. Doughty, C. L. et al. Mangrove range expansion rapidly increases coastal wetland carbon storage. Estuaries Coasts 39, 385–396 (2016).

    Google Scholar 

  106. Lovelock, C. E. et al. Sea level and turbidity controls on mangrove soil surface elevation change. Estuar. Coast. Shelf Sci. 153, 1–9 (2015).

    Google Scholar 

  107. Woodroffe, C. D. et al. Mangrove sedimentation and response to relative sea-level rise. Ann. Rev. Mar. Sci. 8, 243–266 (2016).

    Google Scholar 

  108. Lovelock, C. E. & Reef, R. Variable impacts of climate change on blue carbon. One Earth 3, 195–211 (2020).

    Google Scholar 

  109. Saintilan, N. et al. Thresholds of mangrove survival under rapid sea level rise. Science 368, 1118–1121 (2020).

    Google Scholar 

  110. Nicholls, R. J. Coastal flooding and wetland loss in the 21st century: changes under the SRES climate and socio-economic scenarios. Glob. Environ. Chang. 14, 69–86 (2004).

    Google Scholar 

  111. Schuerch, M. et al. Future response of global coastal wetlands to sea-level rise. Nature 561, 231–234 (2018).

    Google Scholar 

  112. Adame, M. F. et al. Future carbon emissions from global mangrove forest loss. Glob. Chang. Biol. 27, 2856–2866 (2021).

    Google Scholar 

  113. Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    Google Scholar 

  114. Friedlingstein, P. et al. Global Carbon Budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).

    Google Scholar 

  115. Morris, R. L., Boxshall, A. & Swearer, S. E. Climate-resilient coasts require diverse defence solutions. Nat. Clim. Chang. 10, 485–487 (2020).

    Google Scholar 

  116. Macreadie, P. I. et al. The future of blue carbon science. Nat. Commun. 10, 3998 (2019).

    Google Scholar 

  117. Wylie, L., Sutton-Grier, A. E. & Moore, A. Keys to successful blue carbon projects: lessons learned from global case studies. Mar. Policy 65, 76–84 (2016).

    Google Scholar 

  118. Howard, J. F. et al. Clarifying the role of coastal and marine systems in climate mitigation. Front. Ecol. Environ. 15, 42–50 (2017).

    Google Scholar 

  119. Lenihan, H. S. & Peterson, C. H. How habitat degradation through fishery disturbance enhances impacts of hypoxia on oysters reefs. Ecol. Appl. 8, 128–140 (1998).

    Google Scholar 

  120. Ellison, A. M., Felson, A. J. & Friess, D. A. Mangrove rehabilitation and restoration as experimental adaptive management. Front. Mar. Sci. 7, 327 (2020).

    Google Scholar 

  121. Lester, S. E., Dubel, A. K., Hernan, G., McHenry, J. & Rassweiler, A. Spatial planning principles for marine ecosystem restoration. Front. Mar. Sci. 7, 328 (2020).

    Google Scholar 

  122. Herr, D. & Landis, E. Coastal blue carbon ecosystems: opportunities for nationally determined contributions. Policy brief (IUCN, 2016).

  123. Apple Newsroom. Conserving mangroves, a lifeline for the world. Apple (22 April 2019) https://www.apple.com/newsroom/2019/04/conserving-mangroves-a-lifeline-for-the-world

  124. Hochard, J. P., Hamilton, S. & Barbier, E. B. Mangroves shelter coastal economic activity from cyclones. Proc. Natl Acad. Sci. USA 116, 12232–12237 (2019).

    Google Scholar 

  125. Herr, D., von Unger, M., Laffoley, D. & McGivern, A. Pathways for implementation of blue carbon initiatives. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 116–129 (2017).

    Google Scholar 

  126. Friess, D. A. et al. in Sustainable Development Goals: Their Impacts on Forests and People Ch. 14 (eds Katila, P. et al.) 445–481 (Cambridge Univ. Press, 2019).

  127. Waltham, N. J. et al. UN Decade on Ecosystem Restoration 2021–2030 — what chance for success in restoring coastal ecosystems? Front. Mar. Sci. 7, 71 (2020).

    Google Scholar 

  128. Convention on Biological Diversity. Conference of the Parties Decision X/2: strategic plan for biodiversity 2011–2020. CBD https://www.cbd.int/decision/cop/?id=12268 (2011).

  129. United Nations. Transforming our world: the 2030 Agenda for Sustainable Development (UN, 2015).

  130. Brander, L. M. et al. The global costs and benefits of expanding marine protected areas. Mar. Policy 116, 103953 (2020).

    Google Scholar 

  131. Howard, J. F. et al. The potential to integrate blue carbon into MPA design and management. Aquat. Conserv. 27, 100–115 (2017).

    Google Scholar 

  132. Needelman, B. A. et al. The science and policy of the Verified Carbon Standard methodology for tidal wetland and seagrass restoration. Estuaries Coasts 41, 2159–2171 (2018).

    Google Scholar 

  133. Michaelowa, A., Hermwille, L., Obergassel, W. & Butzengeiger, S. Additionality revisited: guarding the integrity of market mechanisms under the Paris Agreement. Clim. Policy 19, 1211–1224 (2019).

    Google Scholar 

  134. Intergovernmental Panel on Climate Change. 2013 Supplement to the 2006 IPCC guidelines for national greenhouse gas inventories: wetlands (IPCC, 2014).

  135. United Nations Environment Programme. Out of the blue: the value of seagrasses to the environment and to people (UNEP, 2020).

  136. Murdiyarso, D. et al. The potential of Indonesian mangrove forests for global climate change mitigation. Nat. Clim. Chang. 5, 1089–1092 (2015).

    Google Scholar 

  137. Jones, T. et al. Madagascar’s mangroves: quantifying nation-wide and ecosystem specific dynamics, and detailed contemporary mapping of distinct ecosystems. Remote Sens. 8, 106 (2016).

    Google Scholar 

  138. Holmquist, J. R. et al. Uncertainty in United States coastal wetland greenhouse gas inventorying. Environ. Res. Lett. 13, 115005 (2018).

    Google Scholar 

  139. Maher, D. T., Drexl, M., Tait, D. R., Johnston, S. G. & Jeffrey, L. C. iAMES: an inexpensive, automated methane ebullition sensor. Environ. Sci. Technol. 53, 6420–6426 (2019).

    Google Scholar 

  140. Primavera, J. H. & Esteban, J. M. A. A review of mangrove rehabilitation in the Philippines: successes, failures and future prospects. Wetl. Ecol. Manag. 16, 345–358 (2008).

    Google Scholar 

  141. Silliman, B. R. et al. Facilitation shifts paradigms and can amplify coastal restoration efforts. Proc. Natl Acad. Sci. USA 112, 14295–14300 (2015).

    Google Scholar 

  142. Enwright, N. M., Griffith, K. T. & Osland, M. J. Barriers to and opportunities for landward migration of coastal wetlands with sea-level rise. Front. Ecol. Environ. 14, 307–316 (2016).

    Google Scholar 

  143. Burkholz, C., Garcias-Bonet, N. & Duarte, C. M. Warming enhances carbon dioxide and methane fluxes from Red Sea seagrass (Halophila stipulacea) sediments. Biogeosciences 17, 1717–1730 (2020).

    Google Scholar 

  144. Bianchi, T. S. et al. Historical reconstruction of mangrove expansion in the Gulf of Mexico: linking climate change with carbon sequestration in coastal wetlands. Estuar. Coast. Shelf Sci. 119, 7–16 (2013).

    Google Scholar 

  145. Apostolaki, E. T. et al. Exotic Halophila stipulacea is an introduced carbon sink for the eastern Mediterranean Sea. Sci. Rep. 9, 9643 (2019).

    Google Scholar 

  146. Bell, J. & Lovelock, C. E. Insuring mangrove forests for their role in mitigating coastal erosion and storm-surge: an Australian case study. Wetlands 33, 279–289 (2013).

    Google Scholar 

  147. Reguero, B. G. et al. Financing coastal resilience by combining nature-based risk reduction with insurance. Ecol. Econ. 169, 106487 (2020).

    Google Scholar 

  148. Thomas, S. Blue carbon: knowledge gaps, critical issues, and novel approaches. Ecol. Econ. 107, 22–38 (2014).

    Google Scholar 

  149. International Partnership for Blue Carbon. Blue carbon partnership. IPBC https://bluecarbonpartnership.org (2017).

  150. Boon, P. I. & Prahalad, V. Ecologists, economics and politics: problems and contradictions in applying neoliberal ideology to nature conservation in Australia. Pac. Conserv. Biol. 23, 115–132 (2017).

    Google Scholar 

  151. Adame, M. F. et al. The undervalued contribution of mangrove protection in Mexico to carbon emission targets. Conserv. Lett. 11, e12445 (2018).

    Google Scholar 

  152. Bell-James, J. & Lovelock, C. E. Legal barriers and enablers for reintroducing tides: an Australian case study in reconverting ponded pasture for climate change mitigation. Land Use Policy 88, 104192 (2019).

    Google Scholar 

  153. Gattuso, J.-P. et al. Ocean solutions to address climate change and its effects on marine ecosystems. Front. Mar. Sci. 5, 337 (2018).

    Google Scholar 

  154. Saderne, V. et al. Role of carbonate burial in blue carbon budgets. Nat. Commun. 10, 1106 (2019).

    Google Scholar 

  155. Duarte, C. M., Wu, J., Xiao, X., Bruhn, A. & Krause-Jensen, D. Can seaweed farming play a role in climate change mitigation and adaptation? Front. Mar. Sci. 4, 100 (2017).

    Google Scholar 

  156. Froehlich, H. E., Afflerbach, J. C., Frazier, M. & Halpern, B. S. Blue growth potential to mitigate climate change through seaweed offsetting. Curr. Biol. 29, 3087–3093.e3 (2019).

    Google Scholar 

  157. Ritchie, H. & Roser, M. CO2 and greenhouse gas emissions. Our World in Data https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions (2017).

  158. Smith, S. V. Marine macrophytes as a global carbon sink. Science 211, 838–840 (1981).

    Google Scholar 

  159. Intergovernmental Panel on Climate Change. Special report on the ocean and cryosphere in a changing climate (IPCC, 2019).

  160. Verified Carbon Standard. VM0007 REDD+ methodology framework (REDD+MF) (VCS, 2020).

  161. Carnell, P. E. et al. Mapping ocean wealth Australia: the value of coastal wetlands to people and nature. The Nature Conservancy https://doi.org/10.21153/carnell2019mapping (2019).

  162. Jänes, H. et al. Stable isotopes infer the value of Australia’s coastal vegetated ecosystems from fisheries. Fish Fish. 21, 80–90 (2020).

    Google Scholar 

  163. Jänes, H. et al. Quantifying fisheries enhancement from coastal vegetated ecosystems. Ecosyst. Serv. 43, 101105 (2020).

    Google Scholar 

  164. Huang, B. et al. Quantifying welfare gains of coastal and estuarine ecosystem rehabilitation for recreational fisheries. Sci. Total Environ. 710, 134680 (2020).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding by Deakin University (to P.I.M. and M.D.P.C.), Qantas (to P.I.M. and M.D.P.C.), HSBC (to P.I.M. and M.D.P.C.), Australian Research Council Discovery Grants (DP200100575; to P.I.M. and C.M.D.), King Abdullah University of Science and Technology under KAUST’s Circular Carbon Economy Initiative (to C.M.D.) and the Early Career Research Fellowship from the Gulf Research Program of the National Academies of Sciences, Engineering, and Medicine (to T.B.A.; the content is solely the responsibility of the authors and does not necessarily represent the official views of the Gulf Research Program of the National Academies of Sciences, Engineering, and Medicine). They also thank N. Yilmaz who helped with creation of the figures.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Peter I. Macreadie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks R. Bhomia and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Macreadie, P.I., Costa, M.D.P., Atwood, T.B. et al. Blue carbon as a natural climate solution. Nat Rev Earth Environ 2, 826–839 (2021). https://doi.org/10.1038/s43017-021-00224-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-021-00224-1

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing