Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The metamorphic and magmatic record of collisional orogens

Abstract

The Cenozoic Himalaya-Tibet orogen is generally regarded as the archetypal continental collision zone and is often used as an analogue for interpreting ancient orogenic events. However, given the wide diversity observed in present-day collisional mountain belts, the extent to which such inferences can be made remains debated. In this Review, we compare the metamorphic and magmatic record of the Himalaya-Tibet orogen to four ancient orogens — the Palaeozoic Caledonian orogen, the Meso-Neoproterozoic Grenville and Sveconorwegian orogens, and the Palaeoproterozoic Trans-Hudson orogen — to establish the controls on the underlying dynamics and the nature of the resulting rock record. The similarities in rock records, and, thus, thermal conditions, are interpreted to result from comparable foreland strengths, resulting in similar maximum crustal thicknesses. Apparent differences in the records are mainly attributed to variation in exposed structural level rather than fundamentally different tectonic processes. We, therefore, suggest that foreland rheology is a critical factor in determining the effectiveness of orogen comparisons. Future research is required to investigate the causes and consequences of lateral variability in mountain belts, in particular, focussing on the record of orogens smaller than those considered here, and to understand if and why mountain building processes have varied through Earth history.

Key points

  • The metamorphic and magmatic rock record of five major orogens — Himalaya-Tibet, Caledonian, Grenville, Sveconorwegian and Trans-Hudson — are compared.

  • Commonalities include pre-collisional accretionary tectonics and magmatism, and post-collisional continental underthrusting, crustal thickening and associated metamorphism.

  • The post-collisional commonalities are likely to be due to similarities in the strengths of the plates bounding the mountain belts supporting similar crustal thicknesses.

  • Differences include the dominant metamorphic grade exposed at the present erosion surface and the preservation of high-pressure and low-temperature rocks.

  • The causes of these differences are mainly attributed to contrasts in exposed structural level, rather than differences in the underlying tectonic processes.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The spatiotemporal development of metamorphic and magmatic rocks during collisional orogenesis.
Fig. 2: The metamorphic and magmatic rock record for five major collisional orogens.
Fig. 3: Geological map of the Himalaya-Tibet orogen.
Fig. 4: Geological maps of the Caledonian orogen.
Fig. 5: Geological maps of the Grenville and Sveconorwegian orogens.
Fig. 6: Geological map of the Trans-Hudson orogen.

References

  1. 1.

    Molnar, P., Boos, W. R. & Battisti, D. S. Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau. Annu. Rev. Earth Planet. Sci. 38, 77–102 (2010).

    Article  Google Scholar 

  2. 2.

    Raymo, M. E. & Ruddiman, W. F. Tectonic forcing of late Cenozoic climate. Nature 359, 117–122 (1992).

    Article  Google Scholar 

  3. 3.

    England, P. & Jackson, J. Uncharted seismic risk. Nat. Geosci. 4, 348–349 (2011).

    Article  Google Scholar 

  4. 4.

    Bilham, R., Gaur, V. K. & Molnar, P. Himalayan seismic hazard. Science 293, 1442–1444 (2001).

    Article  Google Scholar 

  5. 5.

    Hilton, R. G. & West, A. J. Mountains, erosion and the carbon cycle. Nat. Rev. Earth Environ. 1, 284–299 (2020).

    Article  Google Scholar 

  6. 6.

    England, P. & Jackson, J. Active deformation of the continents. Annu. Rev. Earth Planet. Sci. 17, 197–226 (1989).

    Article  Google Scholar 

  7. 7.

    Holland, T. J., Green, E. C. & Powell, R. Melting of peridotites through to granites: a simple thermodynamic model in the system KNCFMASHTOCr. J. Petrol. 59, 881–900 (2018).

    Article  Google Scholar 

  8. 8.

    Kohn, M. J., Engi, M. & Lanari, P. Petrochronology. Methods Appl. Mineral. Soc. Am. Rev. Mineral. Geochem. 83, 575 (2017).

    Google Scholar 

  9. 9.

    Fossen, H., Cavalcante, G. C. G., Pinheiro, R. V. L. & Archanjo, C. J. Deformation–progressive or multiphase? J. Struct. Geol. 125, 82–99 (2019).

    Article  Google Scholar 

  10. 10.

    Hatzfeld, D. & Molnar, P. Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications. Rev. Geophys. 48, RG2005 (2010).

    Article  Google Scholar 

  11. 11.

    Zhang, P.-Z. et al. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology 32, 809–812 (2004).

    Article  Google Scholar 

  12. 12.

    Priestley, K., Ho, T. & Mitra, S. in Himalayan Tectonics: A Modern Synthesis Vol. 483 (eds Searle, M. P. & Treloar, P. J.) 483–516 (The Geological Society of London, 2019).

  13. 13.

    Nábělek, J. et al. Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment. Science 325, 1371–1374 (2009).

    Article  Google Scholar 

  14. 14.

    Dewey, J. F., Shackleton, R. M., Chengfa, C. & Yiyin, S. The tectonic evolution of the Tibetan Plateau. Phil. Trans. R. Soc. Lond. A 327, 379–413 (1988).

    Article  Google Scholar 

  15. 15.

    Yin, A. & Harrison, T. M. Geologic evolution of the Himalayan-Tibetan orogen. Annu. Rev. Earth Planet. Sci. 28, 211–280 (2000).

    Article  Google Scholar 

  16. 16.

    Kohn, M. J. Himalayan metamorphism and its tectonic implications. Annu. Rev. Earth Planet. Sci. 42, 381–419 (2014).

    Article  Google Scholar 

  17. 17.

    Mitchell, R. N. et al. The supercontinent cycle. Nat. Rev. Earth Environ. 2, 358–374 (2021).

    Article  Google Scholar 

  18. 18.

    McKenzie, D. & Priestley, K. Speculations on the formation of cratons and cratonic basins. Earth Planet. Sci. Lett. 435, 94–104 (2016).

    Article  Google Scholar 

  19. 19.

    Rowley, D. B. & Currie, B. S. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature 439, 677–681 (2006).

    Article  Google Scholar 

  20. 20.

    An, W., Hu, X., Garzanti, E., Wang, J. & Liu, Q. New precise dating of the India-Asia collision in the Tibetan Himalaya at 61 Ma. Geophys. Res. Lett. 48, e2020GL090641 (2021).

    Google Scholar 

  21. 21.

    Najman, Y. et al. The Tethyan Himalayan detrital record shows that India–Asia terminal collision occurred by 54 Ma in the Western Himalaya. Earth Planet. Sci. Lett. 459, 301–310 (2017).

    Article  Google Scholar 

  22. 22.

    Green, O. R., Searle, M. P., Corfield, R. I. & Corfield, R. M. Cretaceous-Tertiary carbonate platform evolution and the age of the India-Asia collision along the Ladakh Himalaya (northwest India). J. Geol. 116, 331–353 (2008).

    Article  Google Scholar 

  23. 23.

    St-Onge, M. R., Rayner, N. & Searle, M. P. Zircon age determinations for the Ladakh batholith at Chumathang (Northwest India): implications for the age of the India–Asia collision in the Ladakh Himalaya. Tectonophysics 495, 171–183 (2010).

    Article  Google Scholar 

  24. 24.

    Bouilhol, P., Jagoutz, O., Hanchar, J. M. & Dudàs, F. Ö. Dating the India–Eurasia collision through arc magmatic records. Earth Planet. Sci. Lett. 366, 163–175 (2013).

    Article  Google Scholar 

  25. 25.

    Van Hinsbergen, D. J. et al. Restoration of Cenozoic deformation in Asia and the size of Greater India. Tectonics 30, TC5003 (2011).

    Google Scholar 

  26. 26.

    Weller, O. et al. Quantifying the PTt conditions of north–south Lhasa terrane accretion: new insight into the pre-Himalayan architecture of the Tibetan plateau. J. Metamorph. Geol. 33, 91–113 (2015).

    Article  Google Scholar 

  27. 27.

    Kapp, P. & DeCelles, P. G. Mesozoic–Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses. Am. J. Sci. 319, 159–254 (2019).

    Article  Google Scholar 

  28. 28.

    Kapp, P. et al. Tectonic evolution of the early Mesozoic blueschist-bearing Qiangtang metamorphic belt, central Tibet. Tectonics 22, 1043 (2003).

    Google Scholar 

  29. 29.

    Weller, O. et al. U–Pb zircon geochronology and phase equilibria modelling of a mafic eclogite from the Sumdo complex of south-east Tibet: insights into prograde zircon growth and the assembly of the Tibetan plateau. Lithos 262, 729–741 (2016).

    Article  Google Scholar 

  30. 30.

    Chu, M.-F. et al. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology 34, 745–748 (2006).

    Article  Google Scholar 

  31. 31.

    Palin, R. et al. Monazite geochronology and petrology of kyanite- and sillimanite-grade migmatites from the northwestern flank of the eastern Himalayan syntaxis. Gondwana Res. 26, 323–347 (2014).

    Article  Google Scholar 

  32. 32.

    Chung, S.-L. et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth Sci. Rev. 68, 173–196 (2005).

    Article  Google Scholar 

  33. 33.

    Chan, G. H.-N. et al. Probing the basement of southern Tibet: evidence from crustal xenoliths entrained in a Miocene ultrapotassic dyke. J. Geol. Soc. 166, 45–52 (2009).

    Article  Google Scholar 

  34. 34.

    Hacker, B. R. et al. Hot and dry deep crustal xenoliths from Tibet. Science 287, 2463–2466 (2000).

    Article  Google Scholar 

  35. 35.

    Craig, T., Kelemen, P., Hacker, B. & Copley, A. Reconciling geophysical and petrological estimates of the thermal structure of southern Tibet. Geochem. Geophys. Geosystems 21, e2019GC008837 (2020).

    Article  Google Scholar 

  36. 36.

    McKenzie, D. & Priestley, K. The influence of lithospheric thickness variations on continental evolution. Lithos 102, 1–11 (2008).

    Article  Google Scholar 

  37. 37.

    Brown, L. et al. Bright spots, structure, and magmatism in southern Tibet from INDEPTH seismic reflection profiling. Science 274, 1688–1690 (1996).

    Article  Google Scholar 

  38. 38.

    Weller, O., St-Onge, M., Rayner, N., Searle, M. & Waters, D. Miocene magmatism in the Western Nyainqentanglha mountains of southern Tibet: an exhumed bright spot? Lithos 245, 147–160 (2016).

    Article  Google Scholar 

  39. 39.

    Searle, M. P. et al. Age and anatomy of the Gongga Shan batholith, eastern Tibetan Plateau, and its relationship to the active Xianshui-he fault. Geosphere 12, 948–970 (2016).

    Article  Google Scholar 

  40. 40.

    Kapp, P., Taylor, M., Stockli, D. & Ding, L. Development of active low-angle normal fault systems during orogenic collapse: insight from Tibet. Geology 36, 7–10 (2008).

    Article  Google Scholar 

  41. 41.

    Ainscoe, E. et al. Blind thrusting, surface folding, and the development of geological structure in the Mw 6.3 2015 Pishan (China) earthquake. J. Geophys. Res. Solid Earth 122, 9359–9382 (2017).

    Article  Google Scholar 

  42. 42.

    Wittlinger, G. et al. Teleseismic imaging of subducting lithosphere and Moho offsets beneath western Tibet. Earth Planet. Sci. Lett. 221, 117–130 (2004).

    Article  Google Scholar 

  43. 43.

    Martin, A. J. A review of Himalayan stratigraphy, magmatism, and structure. Gondwana Res. 49, 42–80 (2017).

    Article  Google Scholar 

  44. 44.

    Kellett, D. A., Cottle, J. M. & Larson, K. P. in Himalayan Tectonics: A Modern Synthesis Vol. 483 (eds Searle, M. P. & Treloar, P. J.) 377–400 (The Geological Society of London, 2019).

  45. 45.

    Waters, D. J. in Himalayan Tectonics: A Modern Synthesis Vol. 483 (eds Searle, M. P. & Treloar, P. J.) 325–375 (The Geological Society of London, 2019).

  46. 46.

    DeCelles, P. G., Robinson, D. M. & Zandt, G. Implications of shortening in the Himalayan fold-thrust belt for uplift of the Tibetan Plateau. Tectonics 21, 12-1–12-25 (2002).

    Article  Google Scholar 

  47. 47.

    DeCelles, P. G. et al. Neogene foreland basin deposits, erosional unroofing, and the kinematic history of the Himalayan fold-thrust belt, western Nepal. GSA Bull. 110, 2–21 (1998).

    Article  Google Scholar 

  48. 48.

    Goscombe, B., Gray, D. & Foster, D. A. Metamorphic response to collision in the Central Himalayan Orogen. Gondwana Res. 57, 191–265 (2018).

    Article  Google Scholar 

  49. 49.

    Mottram, C. M., Cottle, J. M. & Kylander-Clark, A. R. C. Campaign-style U-Pb titanite petrochronology: along-strike variations in timing of metamorphism in the Himalayan metamorphic core. Geosci. Front. 10, 827–847 (2019).

    Article  Google Scholar 

  50. 50.

    O’Brien, P. J. in Himalayan Tectonics: A Modern Synthesis Vol. 483 (eds Searle, M. P. & Treloar, P. J.) 183–213 (The Geological Society of London, 2019).

  51. 51.

    Weinberg, R. F. Himalayan leucogranites and migmatites: nature, timing and duration of anatexis. J. Metamorph. Geol. 34, 821–843 (2016).

    Article  Google Scholar 

  52. 52.

    Wang, R., Weinberg, R. F., Zhu, D.-C., Hou, Z.-Q. & Yang, Z.-M. The impact of a tear in the subducted Indian plate on the Miocene geology of the Himalayan-Tibetan orogen. GSA Bull. https://doi.org/10.1130/B36023.1 (2021).

    Article  Google Scholar 

  53. 53.

    Mottram, C. M. et al. Developing an inverted Barrovian sequence; insights from monazite petrochronology. Earth Planet. Sci. Lett. 403, 418–431 (2014).

    Article  Google Scholar 

  54. 54.

    Larson, K. P., Shrestha, S., Soret, M. & Smit, M. The P-T-t-D evolution of the Mahabharat, east-central Nepal: the out-of-sequence development of the Himalaya. Geosci. Front. https://doi.org/10.1016/j.gsf.2020.08.001 (2020).

    Article  Google Scholar 

  55. 55.

    Butler, R. W. H. in Himalayan Tectonics: A Modern Synthesis Vol. 483 (eds. Searle, M. P. & Treloar, P. J.) 215–254 (The Geological Society of London, 2019).

  56. 56.

    Booth, A. L., Chamberlain, C. P., Kidd, W. S. F. & Zeitler, P. K. Constraints on the metamorphic evolution of the eastern Himalayan syntaxis from geochronologic and petrologic studies of Namche Barwa. GSA Bull. 121, 385–407 (2009).

    Article  Google Scholar 

  57. 57.

    Beaumont, C., Jamieson, R. A., Nguyen, M. H. & Lee, B. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414, 738–742 (2001).

    Article  Google Scholar 

  58. 58.

    Jamieson, R. A. & Beaumont, C. On the origin of orogens. GSA Bull. 125, 1671–1702 (2013).

    Article  Google Scholar 

  59. 59.

    Dahlen, F. A. Critical taper model of fold-and-thrust belts and accretionary wedges. Annu. Rev. Earth Planet. Sci. 18, 55–99 (1990).

    Article  Google Scholar 

  60. 60.

    Copley, A., Avouac, J.-P. & Wernicke, B. P. Evidence for mechanical coupling and strong Indian lower crust beneath southern Tibet. Nature 472, 79–81 (2011).

    Article  Google Scholar 

  61. 61.

    Herman, F. et al. Exhumation, crustal deformation, and thermal structure of the Nepal Himalaya derived from the inversion of thermochronological and thermobarometric data and modeling of the topography. J. Geophys. Res. Solid Earth 115, B06407 (2010).

    Google Scholar 

  62. 62.

    Cottle, J. M., Larson, K. P. & Kellett, D. A. How does the mid-crust accommodate deformation in large, hot collisional orogens? A review of recent research in the Himalayan orogen. J. Struct. Geol. 78, 119–133 (2015).

    Article  Google Scholar 

  63. 63.

    Parsons, A. J. et al. Orogen-parallel deformation of the Himalayan midcrust: insights from structural and magnetic fabric analyses of the Greater Himalayan Sequence, Annapurna-Dhaulagiri Himalaya, central Nepal. Tectonics 35, 2515–2537 (2016).

    Article  Google Scholar 

  64. 64.

    Palin, R. M., Reuber, G. S., White, R. W., Kaus, B. J. P. & Weller, O. M. Subduction metamorphism in the Himalayan ultrahigh-pressure Tso Morari massif: an integrated geodynamic and petrological modelling approach. Earth Planet. Sci. Lett. 467, 108–119 (2017).

    Article  Google Scholar 

  65. 65.

    Gee, D. G., Fossen, H., Henriksen, N. & Higgins, A. K. From the early Paleozoic platforms of Baltica and Laurentia to the Caledonide Orogen of Scandinavia and Greenland. Episodes 31, 44–51 (2008).

    Article  Google Scholar 

  66. 66.

    Dalziel, I. W. D. & Dewey, J. F. in Fifty Years of the Wilson Cycle Concept in Plate Tectonics Vol. 470 (eds Wilson, R. W., Houseman, G. A., McCaffrey, K. J. W., Doré, A. G. & Buiter, S. J. H.) 19–38 (The Geological Society of London, 2019).

  67. 67.

    Ramberg, I. B., Bryhni, I., Nottvedt, A. & Rangnes, K. (eds) The Making of a Land-Geology of Norway Vol. 624 (Norwegian Geological Association, 2008).

  68. 68.

    Gee, D. G. & Stephens, M. B. Regional context and tectonostratigraphic framework of the early–middle Paleozoic Caledonide orogen, northwestern Sweden. Geol. Soc. Lond. Mem. 50, 481–494 (2020).

    Article  Google Scholar 

  69. 69.

    Hodges, K. V. Crustal Decoupling in collisional orogenesis: examples from the East Greenland Caledonides and Himalaya. Annu. Rev. Earth Planet. Sci. 44, 685–708 (2016).

    Article  Google Scholar 

  70. 70.

    Streule, M. J., Strachan, R. A., Searle, M. P. & Law, R. D. in Continental Tectonics and Mountain Building: The Legacy of Peach and Horne Vol. 335 (eds Law, R. D., Butler, R. W. H., Holdsworth, R. E., Krabbendam, M. & Strachan, R. A.) 207–232 (The Geological Society of London, 2010).

  71. 71.

    Gee, D. G. in Reference Module in Earth Systems and Environmental Sciences (Elsevier, 2015).

  72. 72.

    Corfu, F., Andersen, T. B. & Gasser, D. in New Perspectives on the Caledonides of Scandinavia and Related Areas Vol. 390 (eds. Corfu, F., Gasser, D. & Chew, D. M.) 9–43 (The Geological Society of London, 2014).

  73. 73.

    Higgins, A. K. & Leslie, A. G. Restoring thrusting in the East Greenland Caledonides. Geology 28, 1019–1022 (2000).

    Article  Google Scholar 

  74. 74.

    Gilotti, J. A. & McClelland, W. C. Geometry, kinematics and timing of extensional faulting in the Greenland Caledonides — A synthesis. Geol. Soc. Am. Mem. 202, 251–271 (2008).

    Google Scholar 

  75. 75.

    Gilotti, J. A., Jones, K. A. & Elvevold, S. Caledonian metamorphic patterns in Greenland. Geol. Soc. Am. Mem. 202, 201–225 (2008).

    Google Scholar 

  76. 76.

    Gilotti, J. A. & Elvevold, S. Extensional exhumation of a high-pressure granulite terrane in Payer Land, Greenland Caledonides: structural, petrologic, and geochronologic evidence from metapelites. Can. J. Earth Sci. 39, 1169–1187 (2002).

    Article  Google Scholar 

  77. 77.

    Strachan, R. A. Evidence in north-east Greenland for late Silurian-early Devonian regional extension during the Caledonian orogeny. Geology 22, 913–916 (1994).

    Article  Google Scholar 

  78. 78.

    Collinson, J. D. et al. Paleoproterozoic and Mesoproterozoic sedimentary and volcanic successions in the northern parts of the East Greenland Caledonian orogen and its foreland. Geol. Soc. Am. Mem. 202, 73–98 (2008).

    Google Scholar 

  79. 79.

    White, A. P., Hodges, K. V., Martin, M. W. & Andresen, A. Geologic constraints on middle-crustal behavior during broadly synorogenic extension in the central East Greenland Caledonides. Int. J. Earth Sci. 91, 187–208 (2002).

    Article  Google Scholar 

  80. 80.

    Andresen, A., Rehnström, E. F. & Holte, M. Evidence for simultaneous contraction and extension at different crustal levels during the Caledonian orogeny in NE Greenland. J. Geol. Soc. 164, 869–880 (2007).

    Article  Google Scholar 

  81. 81.

    Kalsbeek, F. et al. Granites and granites in the East Greenland Caledonides. Geol. Soc. Am. Mem. 202, 227–249 (2008).

    Google Scholar 

  82. 82.

    Kalsbeek, F., Jepsen, H. F. & Nutman, A. P. From source migmatites to plutons: tracking the origin of ca. 435 Ma S-type granites in the East Greenland Caledonian orogen. Lithos 57, 1–21 (2001).

    Article  Google Scholar 

  83. 83.

    Strachan, R. A., Martin, M. W. & Friderichsen, J. D. Evidence for contemporaneous yet contrasting styles of granite magmatism during extensional collapse of the northeast Greenland Caledonides. Tectonics 20, 458–473 (2001).

    Article  Google Scholar 

  84. 84.

    Hallett, B. W., McClelland, W. C. & Gilotti, J. A. The timing of strike-slip deformation along the Storstrømmen shear zone, Greenland Caledonides: U–Pb zircon and titanite geochronology. Geosci. Can. 41, 19–45 (2014).

    Article  Google Scholar 

  85. 85.

    Gilotti, J. A., Nutman, A. P. & Brueckner, H. K. Devonian to Carboniferous collision in the Greenland Caledonides: U-Pb zircon and Sm-Nd ages of high-pressure and ultrahigh-pressure metamorphism. Contrib. Mineral. Petrol. 148, 216–235 (2004).

    Article  Google Scholar 

  86. 86.

    Roberts, D., Nordgulen, O. & Melezhik, V. The Uppermost Allochthon in the Scandinavian Caledonides: from a Laurentian ancestry through Taconian orogeny to Scandian crustal growth on Baltica. Mem. Geol. Soc. Am. 200, 357 (2007).

    Google Scholar 

  87. 87.

    Barnes, C. G. et al. Timing of sedimentation, metamorphism, and plutonism in the Helgeland Nappe Complex, north-central Norwegian Caledonides. Geosphere 3, 683–703 (2007).

    Article  Google Scholar 

  88. 88.

    Barnes, C. et al. Ordovician and Silurian magmatism in the Upper Nappe, Uppermost Allochthon, Helgeland Nappe Complex, north-central Norway. Nor. J. Geol. 91, 121–136 (2011).

    Google Scholar 

  89. 89.

    Augland, L. E., Andresen, A., in New Perspectives on the Caledonides of Scandinavia and Related Areas Vol. 390 (eds Corfu, F., Gasser, D. & Chew, D. M.) 655–678 (The Geological Society of London, 2014).

  90. 90.

    Oalmann, J. A. G., Barnes, C. G. & Hetherington, C. J. Geology of the island of Ylvingen, Nordland, Norway: evidence for pre-Scandian (475 Ma) exhumation in the Helgeland Nappe Complex. Nor. J. Geol. 91, 77–99 (2011).

    Google Scholar 

  91. 91.

    Krogh, E. J., Andresen, A., Bryhni, I., Broks, T. M. & Kristensen, S. E. Eclogites and polyphase PT cycling in the Caledonian Uppermost Allochthon in Troms, northern Norway. J. Metamorph. Geol. 8, 289–309 (1990).

    Article  Google Scholar 

  92. 92.

    Corfu, F., Ravna, E. J. K. & Kullerud, K. A Late Ordovician U–Pb age for the Tromsø Nappe eclogites, Uppermost Allochthon of the Scandinavian Caledonides. Contrib. Mineral. Petrol. 145, 502–513 (2003).

    Article  Google Scholar 

  93. 93.

    Janák, M., Ravna, E. J. K. & Kullerud, K. Constraining peak PT conditions in UHP eclogites: calculated phase equilibria in kyanite- and phengite-bearing eclogite of the Tromsø Nappe, Norway. J. Metamorph. Geol. 30, 377–396 (2012).

    Article  Google Scholar 

  94. 94.

    Furnes, H., Dilek, Y. & Pedersen, R. B. Structure, geochemistry, and tectonic evolution of trench-distal backarc oceanic crust in the western Norwegian Caledonides, Solund-Stavfjord ophiolite (Norway). GSA Bull. 124, 1027–1047 (2012).

    Article  Google Scholar 

  95. 95.

    Slagstad, T. & Kirkland, C. L. Timing of collision initiation and location of the Scandian orogenic suture in the Scandinavian Caledonides. Terra Nova 30, 179–188 (2018).

    Article  Google Scholar 

  96. 96.

    Dunning, G. R. & Pedersen, R. B. U/Pb ages of ophiolites and arc-related plutons of the Norwegian Caledonides: implications for the development of Iapetus. Contrib. Mineral. Petrol. 98, 13–23 (1988).

    Article  Google Scholar 

  97. 97.

    Svenningsen, O. M. Onset of seafloor spreading in the Iapetus Ocean at 608 Ma: precise age of the Sarek Dyke Swarm, northern Swedish Caledonides. Precambrian Res. 110, 241–254 (2001).

    Article  Google Scholar 

  98. 98.

    Gee, D. G., Andréasson, P.-G., Li, Y. & Krill, A. Baltoscandian margin, Sveconorwegian crust lost by subduction during Caledonian collisional orogeny. GFF 139, 36–51 (2017).

    Article  Google Scholar 

  99. 99.

    Andréasson, P.-G., Svenningsen, O. M. & Albrecht, L. Dawn of Phanerozoic orogeny in the North Atlantic tract; Evidence from the Seve-Kalak Superterrane, Scandinavian Caledonides. GFF 120, 159–172 (1998).

    Article  Google Scholar 

  100. 100.

    Andréasson, P.-G. et al. Seve terranes of the Kebnekaise Mts., Swedish Caledonides, and their amalgamation, accretion and affinity. GFF 140, 264–291 (2018).

    Article  Google Scholar 

  101. 101.

    Brueckner, H. K., van Roermund, H. L. M. & Pearson, N. J. An Archean(?) to Paleozoic evolution for a garnet peridotite lens with sub-Baltic shield affinity within the Seve Nappe Complex of Jämtland, Sweden, Central Scandinavian Caledonides. J. Petrol. 45, 415–437 (2004).

    Article  Google Scholar 

  102. 102.

    Gilio, M., Clos, F. & van Roermund, H. L. M. The Friningen Garnet Peridotite (central Swedish Caledonides). A good example of the characteristic PTt path of a cold mantle wedge garnet peridotite. Lithos 230, 1–16 (2015).

    Article  Google Scholar 

  103. 103.

    Kjøll, H. J. et al. Timing of breakup and thermal evolution of a pre-Caledonian Neoproterozoic exhumed magma-rich rifted margin. Tectonics 38, 1843–1862 (2019).

    Article  Google Scholar 

  104. 104.

    Corfu, F., Roberts, R. J., Torsvik, T. H., Ashwal, L. D. & Ramsay, D. M. Peri-Gondwanan elements in the Caledonian Nappes of Finnmark, Northern Norway: implications for the paleogeographic framework of the Scandinavian Caledonides. Am. J. Sci. 307, 434–458 (2007).

    Article  Google Scholar 

  105. 105.

    Fassmer, K. et al. Middle Ordovician subduction of continental crust in the Scandinavian Caledonides: an example from Tjeliken, Seve Nappe Complex, Sweden. Contrib. Mineral. Petrol. 172, 103 (2017).

    Article  Google Scholar 

  106. 106.

    Root, D. & Corfu, F. U–Pb geochronology of two discrete Ordovician high-pressure metamorphic events in the Seve Nappe Complex, Scandinavian Caledonides. Contrib. Mineral. Petrol. 163, 769–788 (2012).

    Article  Google Scholar 

  107. 107.

    Fassmer, K. et al. Diachronous collision in the Seve Nappe Complex: evidence from Lu–Hf geochronology of eclogites (Norrbotten, North Sweden). J. Metamorph. Geol. 39, 819– 842 (2021).

    Article  Google Scholar 

  108. 108.

    Klonowska, I., Janák, M., Majka, J., Froitzheim, N. & Kośmińska, K. Eclogite and garnet pyroxenite from Stor Jougdan, Seve Nappe Complex, Sweden: implications for UHP metamorphism of allochthons in the Scandinavian Caledonides. J. Metamorph. Geol. 34, 103–119 (2016).

    Article  Google Scholar 

  109. 109.

    Bukała, M. et al. UHP metamorphism recorded by phengite eclogite from the Caledonides of northern Sweden: PT path and tectonic implications. J. Metamorph. Geol. 36, 547–566 (2018).

    Article  Google Scholar 

  110. 110.

    Lindqvist, J. E. Thrust-related metamorphism in basement windows of the central Scandinavian Caledonides. J. Geol. Soc. 147, 69–80 (1990).

    Article  Google Scholar 

  111. 111.

    Roffeis, C. & Corfu, F. in New Perspectives on the Caledonides of Scandinavia and Related Areas Vol. 390 (eds Corfu, F., Gasser, D. & Chew, D. M.) 525–539 (The Geological Society of London, 2014).

  112. 112.

    Austrheim, H. Eclogitization of lower crustal granulites by fluid migration through shear zones. Earth Planet. Sci. Lett. 81, 221–232 (1987).

    Article  Google Scholar 

  113. 113.

    Bhowany, K. et al. Phase equilibria modelling constraints on PT conditions during fluid catalysed conversion of granulite to eclogite in the Bergen Arcs, Norway. J. Metamorph. Geol. 36, 315–342 (2018).

    Article  Google Scholar 

  114. 114.

    Glodny, J., Kühn, A. & Austrheim, H. Geochronology of fluid-induced eclogite and amphibolite facies metamorphic reactions in a subduction–collision system, Bergen Arcs, Norway. Contrib. Mineral. Petrol. 156, 27–48 (2008).

    Article  Google Scholar 

  115. 115.

    Beckman, V. et al. in New Perspectives on the Caledonides of Scandinavia and Related Areas Vol. 390 (eds Corfu, F., Gasser, D. & Chew, D. M.) 403–424 (The Geological Society of London, 2014).

  116. 116.

    Krogh, T. E., Kamo, S. L., Robinson, P., Terry, M. P. & Kwok, K. U–Pb zircon geochronology of eclogites from the Scandian Orogen, northern Western Gneiss Region, Norway: 14–20 million years between eclogite crystallization and return to amphibolite-facies conditions. Can. J. Earth Sci. 48, 441–472 (2011).

    Article  Google Scholar 

  117. 117.

    Cuthbert, S. J., Carswell, D. A., Krogh-Ravna, E. J. & Wain, A. Eclogites and eclogites in the Western Gneiss Region, Norwegian Caledonides. Lithos 52, 165–195 (2000).

    Article  Google Scholar 

  118. 118.

    Hacker, B. R. et al. High-temperature deformation during continental-margin subduction & exhumation: the ultrahigh-pressure Western Gneiss Region of Norway. Tectonophysics 480, 149–171 (2010).

    Article  Google Scholar 

  119. 119.

    Austrheim, H., Erambert, M. & Engvik, A. K. Processing of crust in the root of the Caledonian continental collision zone: the role of eclogitization. Tectonophysics 273, 129–153 (1997).

    Article  Google Scholar 

  120. 120.

    Austrheim, H. Fluid and deformation induced metamorphic processes around Moho beneath continent collision zones: examples from the exposed root zone of the Caledonian mountain belt, W-Norway. Tectonophysics 609, 620–635 (2013).

    Article  Google Scholar 

  121. 121.

    Mørk, M. B. E. A gabbro to eclogite transition on Flemsøy, Sunnmøre, western Norway. Chem. Geol. 50, 283–310 (1985).

    Article  Google Scholar 

  122. 122.

    Medaris, L. G., Brueckner, H. K., Cai, Y., Griffin, W. L. & Janák, M. Eclogites in peridotite massifs in the Western Gneiss Region, Scandinavian Caledonides: petrogenesis and comparison with those in the Variscan Moldanubian Zone. Lithos 322, 325–346 (2018).

    Article  Google Scholar 

  123. 123.

    Engvik, A. K., Willemoes-Wissing, B. & Lutro, O. High-temperature, decompressional equilibration of the eclogite facies orogenic root (Western Gneiss Region, Norway). J. Metamorph. Geol. 36, 529–545 (2018).

    Article  Google Scholar 

  124. 124.

    Bender, H., Ring, U., Almqvist, B. S. G., Grasemann, B. & Stephens, M. B. Metamorphic zonation by out-of-sequence thrusting at back-stepping subduction zones: sequential accretion of the caledonian internides, Central Sweden. Tectonics 37, 3545–3576 (2018).

    Article  Google Scholar 

  125. 125.

    Fossen, H. The role of extensional tectonics in the Caledonides of south Norway. J. Struct. Geol. 14, 1033–1046 (1992).

    Article  Google Scholar 

  126. 126.

    Ganzhorn, A. C. et al. Structural, petrological and chemical analysis of syn-kinematic migmatites: insights from the Western Gneiss Region, Norway. J. Metamorph. Geol. 32, 647–673 (2014).

    Article  Google Scholar 

  127. 127.

    Li, Z. X. et al. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Res. 160, 179–210 (2008).

    Article  Google Scholar 

  128. 128.

    Rivers, T. et al. in Tectonic Styles in Canada: The Lithoprobe Perspective Vol. 49 (eds Percival, J. A., Cook, F. A. & Clowes, R. M.) 97–236 (Geological Association of Canada, 2012).

  129. 129.

    Bingen, B. et al. The Sveconorwegian orogeny. Gondwana Res. 90, 273–313 (2021).

    Article  Google Scholar 

  130. 130.

    Möller, C., Andersson, J., Dyck, B. & Antal Lundin, I. Exhumation of an eclogite terrane as a hot migmatitic nappe, Sveconorwegian orogen. Lithos 226, 147–168 (2015).

    Article  Google Scholar 

  131. 131.

    Indares, A. Deciphering the metamorphic architecture and magmatic patterns of large hot orogens: insights from the central Grenville Province. Gondwana Res. 80, 385–409 (2020).

    Article  Google Scholar 

  132. 132.

    Rivers, T. Assembly and preservation of lower, mid, and upper orogenic crust in the Grenville Province — Implications for the evolution of large hot long-duration orogens. Precambrian Res. 167, 237–259 (2008).

    Article  Google Scholar 

  133. 133.

    Rivers, T. Upper-crustal orogenic lid and mid-crustal core complexes: signature of a collapsed orogenic plateau in the hinterland of the Grenville Province. Can. J. Earth Sci. 49, 1–42 (2012).

    Article  Google Scholar 

  134. 134.

    Groulier, P.-A., Indares, A., Dunning, G., Moukhsil, A. & Jenner, G. Syn-orogenic magmatism over 100 m.y. in high crustal levels of the central Grenville Province: characteristics, age and tectonic significance. Lithos 312–313, 128–152 (2018).

    Article  Google Scholar 

  135. 135.

    Cawood, P. A. & Pisarevsky, S. A. Laurentia-Baltica-Amazonia relations during Rodinia assembly. Precambrian Res. 292, 386–397 (2017).

    Article  Google Scholar 

  136. 136.

    Evans, D. A. D. in Ancient Orogens and Modern Analogues Vol. 327 (eds Murphy, J. B., Keppie, J. D. & Hynes, A. J.) 371–404 (The Geological Society of London, 2009).

  137. 137.

    Johansson, Å. From Rodinia to Gondwana with the ‘SAMBA’ model — A distant view from Baltica towards Amazonia and beyond. Precambrian Res. 244, 226–235 (2014).

    Article  Google Scholar 

  138. 138.

    Martin, E. L. et al. The core of Rodinia formed by the juxtaposition of opposed retreating and advancing accretionary orogens. Earth-Sci. Rev. 211, 103413 (2020).

    Article  Google Scholar 

  139. 139.

    Möller, C. & Andersson, J. Metamorphic zoning and behaviour of an underthrusting continental plate. J. Metamorph. Geol. 36, 567–589 (2018).

    Article  Google Scholar 

  140. 140.

    McMenamin, M. A. S. & McMenamin, D. L. S. The Emergence of Animals: The Cambrian Breakthrough (Columbia Univ. Press, 1990).

  141. 141.

    Carr, S. D., Easton, R. M., Jamieson, R. A. & Culshaw, N. G. Geologic transect across the Grenville orogen of Ontario and New York. Can. J. Earth Sci. 37, 193–216 (2000).

    Article  Google Scholar 

  142. 142.

    Marsh, J. H. & Kelly, E. D. Petrogenetic relations among titanium-rich minerals in an anatectic high-P mafic granulite. J. Metamorph. Geol. 35, 717–738 (2017).

    Article  Google Scholar 

  143. 143.

    Indares, A. & Dunning, G. Coronitic metagabbro and eclogite from the Grenville Province of western Quebec: interpretation of U–Pb geochronology and metamorphism. Can. J. Earth Sci. 34, 891–901 (1997).

    Article  Google Scholar 

  144. 144.

    Johnson, T. A., Vervoort, J. D., Ramsey, M. J., Southworth, S. & Mulcahy, S. R. Tectonic evolution of the Grenville Orogen in the central appalachians. Precambrian Res. 346, 105740 (2020).

    Article  Google Scholar 

  145. 145.

    Cao, W., Massonne, H.-J. & Liang, X. Partial melting due to breakdown of phengite and amphibole in retrogressed eclogite of deep Precambrian crust: an example from the Algonquin terrane, western Grenville Province, Canada. Precambrian Res. 352, 105965 (2021).

    Article  Google Scholar 

  146. 146.

    Corrigan, D. & Breemen, O.van U–Pb age constraints for the lithotectonic evolution of the Grenville Province along the Mauricie transect, Quebec. Can. J. Earth Sci. 34, 299–316 (1997).

    Article  Google Scholar 

  147. 147.

    Marsh, J. H. & Culshaw, N. G. Timing and conditions of high-pressure metamorphism in the western Grenville Province: constraints from accessory mineral composition and phase equilibrium modeling. Lithos 200–201, 402–417 (2014).

    Article  Google Scholar 

  148. 148.

    Green, A. G. et al. Crustal structure of the Grenville front and adjacent terranes. Geology 16, 788–792 (1988).

    Article  Google Scholar 

  149. 149.

    Gool, J. A. M., van, Rivers, T. & Calon, T. Grenville Front zone, Gagnon terrane, southwestern Labrador: configuration of a midcrustal foreland fold-thrust belt. Tectonics 27, TC1004 (2008).

    Google Scholar 

  150. 150.

    Connelly, J. N. & Heaman, L. M. U/Pb geochronological constraints on the tectonic evolution of the Grenville Province, western Labrador. Precambrian Res. 63, 123–142 (1993).

    Article  Google Scholar 

  151. 151.

    Indares, A., White, R. W. & Powell, R. Phase equilibria modelling of kyanite-bearing anatectic paragneisses from the central Grenville Province. J. Metamorph. Geol. 26, 815–836 (2008).

    Article  Google Scholar 

  152. 152.

    Gower, C. F., Heaman, L. M., Loveridge, W. D., Schärer, U. & Tucker, R. D. Grenvillian magmatism in the eastern Grenville Province, Canada. Precambrian Res. 51, 315–336 (1991).

    Article  Google Scholar 

  153. 153.

    Maity, B. K. & Rivers, T. in Geological Society of America Abstracts with Programs Vol. 52 (Geological Society of America, 2020).

  154. 154.

    Stephens, M. B. & Weihed, J. B. Sweden: Lithotectonic Framework, Tectonic Evolution and Mineral Resources (The Geological Society, 2020).

  155. 155.

    Stephens, M. B., Wahlgren, C.-H., Weijermars, R. & Cruden, A. R. Left-lateral transpressive deformation and its tectonic implications, Sveconorwegian orogen, Baltic Shield, southwestern Sweden. Precambrian Res. 79, 261–279 (1996).

    Article  Google Scholar 

  156. 156.

    Viola, G., Henderson, I. H. C., Bingen, B. & Hendriks, B. W. H. The Grenvillian–Sveconorwegian orogeny in Fennoscandia: back-thrusting and extensional shearing along the “Mylonite Zone”. Precambrian Res. 189, 368–388 (2011).

    Article  Google Scholar 

  157. 157.

    Slagstad, T. et al. The Sveconorwegian orogeny– Reamalgamation of the fragmented southwestern margin of Fennoscandia. Precambrian Res. 350, 105877 (2020).

    Article  Google Scholar 

  158. 158.

    Drüppel, K., Elsäßer, L., Brandt, S. & Gerdes, A. Sveconorwegian mid-crustal ultrahigh-temperature metamorphism in Rogaland, Norway: U–Pb LA-ICP-MS geochronology and pseudosections of sapphirine granulites and associated paragneisses. J. Petrol. 54, 305–350 (2013).

    Article  Google Scholar 

  159. 159.

    Laurent, A. T., Duchene, S., Bingen, B., Bosse, V. & Seydoux-Guillaume, A.-M. Two successive phases of ultrahigh temperature metamorphism in Rogaland, S. Norway: evidence from Y-in-monazite thermometry. J. Metamorph. Geol. 36, 1009–1037 (2018).

    Article  Google Scholar 

  160. 160.

    Söderlund, U., Hellström, F. A. & Kamo, S. L. Geochronology of high-pressure mafic granulite dykes in SW Sweden: tracking the PTt path of metamorphism using Hf isotopes in zircon and baddeleyite. J. Metamorph. Geol. 26, 539–560 (2008).

    Article  Google Scholar 

  161. 161.

    Bingen, B. et al. Geochronology of high-grade metamorphism in the Sveconorwegian belt, S. Norway: U-Pb, Th-Pb and Re-Os data. Nor. J. Geol. Geol. Foren. 88, 32–42 (2008).

    Google Scholar 

  162. 162.

    Vander Auwera, J. et al. Sveconorwegian massif-type anorthosites and related granitoids result from post-collisional melting of a continental arc root. Earth Sci. Rev. 107, 375–397 (2011).

    Article  Google Scholar 

  163. 163.

    Åreback, H. & Andersson, U. B. Granulite-facies contact metamorphism around the Hakefjorden norite-anorthosite complex, SW Sweden. Nor. Geol. Tidsskr. 82, 29–44 (2002).

    Google Scholar 

  164. 164.

    Söderlund, U., Jarl, L.-G., Persson, P.-O., Stephens, M. B. & Wahlgren, C.-H. Protolith ages and timing of deformation in the eastern, marginal part of the Sveconorwegian orogen, southwestern Sweden. Precambrian Res. 94, 29–48 (1999).

    Article  Google Scholar 

  165. 165.

    Piñán-Llamas, A. P., Andersson, J., Möller, C., Johansson, L. & Hansen, E. Polyphasal foreland-vergent deformation in a deep section of the 1 Ga Sveconorwegian orogen. Precambrian Res. 265, 121–149 (2015).

    Article  Google Scholar 

  166. 166.

    Tual, L., Pinan-Llamas, A. & Möller, C. High-temperature deformation in the basal shear zone of an eclogite-bearing fold nappe, Sveconorwegian orogen, Sweden. Precambrian Res. 265, 104–120 (2015).

    Article  Google Scholar 

  167. 167.

    Tual, L., Pitra, P. & Möller, C. PT evolution of Precambrian eclogite in the Sveconorwegian orogen, SW Sweden. J. Metamorph. Geol. 35, 493–515 (2017).

    Article  Google Scholar 

  168. 168.

    Tual, L., Möller, C. & Whitehouse, M. Tracking the prograde PT path of Precambrian eclogite using Ti-in-quartz and Zr-in-rutile geothermobarometry. Contrib. Mineral. Petrol. 173, 56 (2018).

    Article  Google Scholar 

  169. 169.

    Hansen, E. et al. Partial melting in amphibolites in a deep section of the Sveconorwegian Orogen, SW Sweden. Lithos 236, 27–45 (2015).

    Article  Google Scholar 

  170. 170.

    Beckman, V., Möller, C., Söderlund, U. & Andersson, J. Zircon growth during progressive recrystallization of gabbro to garnet amphibolite, Eastern Segment, Sveconorwegian orogen. J. Petrol. 58, 167–187 (2017).

    Article  Google Scholar 

  171. 171.

    Wahlgren, C.-H., Cruden, A. R. & Stephens, M. B. Kinematics of a major fan-like structure in the eastern part of the Sveconorwegian orogen, Baltic Shield, south-central Sweden. Precambrian Res. 70, 67–91 (1994).

    Article  Google Scholar 

  172. 172.

    Drake, H., Tullborg, E.-L. & Page, L. Distinguished multiple events of fracture mineralisation related to far-field orogenic effects in Paleoproterozoic crystalline rocks, Simpevarp area, SE Sweden. Lithos 110, 37–49 (2009).

    Article  Google Scholar 

  173. 173.

    Söderlund, U. et al. U–Pb baddeleyite ages and Hf, Nd isotope chemistry constraining repeated mafic magmatism in the Fennoscandian Shield from 1.6 to 0.9 Ga. Contrib. Mineral. Petrol. 150, 174 (2005).

    Article  Google Scholar 

  174. 174.

    Hoffman, P. F. United plates of America, the birth of a craton: Early Proterozoic assembly and growth of Laurentia. Annu. Rev. Earth Planet. Sci. 16, 543–603 (1988).

    Article  Google Scholar 

  175. 175.

    Lewry, J. & Stauffer, M. The Early Proterozoic Trans-Hudson Orogen of North America (Geological Association of Canada, 1990).

  176. 176.

    St-Onge, M., Wodicka, N. & Ijewliw, O. Polymetamorphic evolution of the Trans-Hudson Orogen, Baffin Island, Canada: integration of petrological, structural and geochronological data. J. Petrol. 48, 271–302 (2007).

    Article  Google Scholar 

  177. 177.

    St-Onge, M. R., Searle, M. P. & Wodicka, N. Trans-Hudson Orogen of North America and Himalaya-Karakoram-Tibetan Orogen of Asia: structural and thermal characteristics of the lower and upper plates. Tectonics 25, TC4006 (2006).

    Article  Google Scholar 

  178. 178.

    Weller, O. & St-Onge, M. Record of modern-style plate tectonics in the Palaeoproterozoic Trans-Hudson orogen. Nat. Geosci. 10, 305–311 (2017).

    Article  Google Scholar 

  179. 179.

    Corrigan, D., Pehrsson, S., Wodicka, N. & De Kemp, E. in Ancient Orogens and Modern Analogues Vol. 327 (eds Murphy, J. B., Keppie, J. D. & Hynes, A. J.) 457–479 (The Geological Society of London, 2009).

  180. 180.

    St-Onge, M. R., Van Gool, J. A., Garde, A. A. & Scott, D. J. in Earth Accretionary Systems in Space and Time Vol. 318 (eds. Cawood, P. A. & Kroner, A.) 193–235 (The Geological Society of London, 2009).

  181. 181.

    Corrigan, D., Percival, J., Cook, F. & Clowes, R. in Tectonic Styles in Canada: The Lithoprobe Perspective Vol. 49 (eds Percival, J. A., Cook, F. A. & Clowes, R. M.) 239–284 (Geological Association of Canada, 2012).

  182. 182.

    Dumond, G. Tibetan dichotomy exposed in the Canadian Shield: a lower crustal perspective. Earth Planet. Sci. Lett. 544, 116375 (2020).

    Article  Google Scholar 

  183. 183.

    St-Onge, M. et al. Archean and Paleoproterozoic cratonic rocks of Baffin Island. Geol. Surv. Can. Bull. 608, 1–29 (2020).

    Google Scholar 

  184. 184.

    Regis, D. et al. Post-1.9 Ga evolution of the south Rae craton (Northwest Territories, Canada): a Paleoproterozoic orogenic collapse system. Precambrian Res. 355, 106105 (2021).

    Article  Google Scholar 

  185. 185.

    Darbyshire, F., Bastow, I., Petrescu, L., Gilligan, A. & Thompson, D. A tale of two orogens: crustal processes in the Proterozoic Trans-Hudson and Grenville Orogens, eastern Canada. Tectonics 36, 1633–1659 (2017).

    Article  Google Scholar 

  186. 186.

    St-Onge, M. R., Scott, D. J. & Lucas, S. B. Early partitioning of Quebec: microcontinent formation in the Paleoproterozoic. Geology 28, 323–326 (2000).

    Article  Google Scholar 

  187. 187.

    Dunphy, J. M. & Ludden, J. N. Petrological and geochemical characteristics of a Paleoproterozoic magmatic arc (Narsajuaq terrane, Ungava Orogen, Canada) and comparisons to Superior Province granitoids. Precambrian Res. 91, 109–142 (1998).

    Article  Google Scholar 

  188. 188.

    Wodicka, N., St-Onge, M. R., Corrigan, D., Scott, D. J. & Whalen, J. B. Did a proto-ocean basin form along the southeastern Rae cratonic margin? Evidence from U-Pb geochronology, geochemistry (Sm-Nd and whole-rock), and stratigraphy of the Paleoproterozoic Piling Group, northern Canada. GSA Bull. 126, 1625–1653 (2014).

    Article  Google Scholar 

  189. 189.

    Rayner, N. U-Pb zircon geochronology constraints on timing of plutonism and sedimentary provenance from the Clearwater Fiord-Sylvia Grinnell Lake area, southern Baffin Island, Nunavut. Geol. Surv. Can. Open File 8204, 32 (2017).

    Google Scholar 

  190. 190.

    Sanborn-Barrie, M., Young, M. & Whalen, J. B. Geology, Qikiqtarjuaq, Baffin Island, Nunavut. Goverment of Canada https://publications.gc.ca/site/eng/411355/publication.html (2013).

  191. 191.

    Sanborn-Barrie, M., Young, M., Whalen, J., James, D. & St-Onge, M. R. Geology Touak Fiord, Nunavut. Geological Survey of Canada https://doi.org/10.4095/289239 (2011).

  192. 192.

    Allan, M. M. & Pattison, D. R. M. Deformation history and metamorphism of a synformal depression, Longstaff Bluff Formation metaturbidite, central Baffin Island, Nunavut (Natural Resources Canada, Geological Survey of Canada, 2003).

  193. 193.

    Gagné, S., Jamieson, R. A., MacKay, R., Wodicka, N. & Corrigan, D. Texture, composition, and age variations in monazite from the lower amphibolite to the granulite facies, Longstaff Bluff Formation, Baffin Island, Canada. Can. Mineral. 47, 847–869 (2009).

    Article  Google Scholar 

  194. 194.

    Berman, R., Sanborn-Barrie, M., Rayner, N. & Whalen, J. The tectonometamorphic evolution of Southampton Island, Nunavut: insight from petrologic modeling and in situ SHRIMP geochronology of multiple episodes of monazite growth. Precambrian Res. 232, 140–166 (2013).

    Article  Google Scholar 

  195. 195.

    Rayner, N. New (2013–2014) UPb geochronological results from northern Hall Peninsula, southern Baffin Island, Nunavut (Canada-Nunavut Geoscience Office, 2015).

  196. 196.

    St-Onge, M. R., Wodicka, N. & Lucas, S. B. Granulite- and amphibolite-facies metamorphism in a convergent-plate-margin setting: synthesis of the Quebec–Baffin segment of the Trans-Hudson orogen. Can. Mineral. 38, 379–398 (2000).

    Article  Google Scholar 

  197. 197.

    Whalen, J. B., Wodicka, N., Taylor, B. E. & Jackson, G. D. Cumberland batholith, Trans-Hudson Orogen, Canada: petrogenesis and implications for Paleoproterozoic crustal and orogenic processes. Lithos 117, 99–118 (2010).

    Article  Google Scholar 

  198. 198.

    Scott, D. J., Helmstaedt, H. & Bickle, M. J. Purtuniq ophiolite, Cape Smith belt, northern Quebec, Canada: a reconstructed section of Early Proterozoic oceanic crust. Geology 20, 173–176 (1992).

    Article  Google Scholar 

  199. 199.

    Scott, D. J. Geology, U–Pb, and Pb–Pb geochronology of the Lake Harbour area, southern Baffin Island: implications for the Paleoproterozoic tectonic evolution of northeastern Laurentia. Can. J. Earth Sci. 34, 140–155 (1997).

    Article  Google Scholar 

  200. 200.

    Skipton, D. R., St-Onge, M. R., Schneider, D. A. & McFarlane, C. R. M. Tectonothermal evolution of the middle crust in the Trans-Hudson Orogen, Baffin Island, Canada: evidence from petrology and monazite geochronology of sillimanite-bearing migmatites. J. Petrol. 57, 1437–1462 (2016).

    Article  Google Scholar 

  201. 201.

    Weller, O. M., Jackson, S., Miller, W. G. R., St-Onge, M. R. & Rayner, N. Quantitative elemental mapping of granulite-facies monazite: textural insights and implications for petrochronology. J. Metamorph. Geol. 38, 853–880 (2020).

    Article  Google Scholar 

  202. 202.

    Lucas, S. B. Structural evolution of the Cape Smith Thrust Belt and the role of out-of-sequence faulting in the thickening of mountain belts. Tectonics 8, 655–676 (1989).

    Article  Google Scholar 

  203. 203.

    Bégin, N. J. Contrasting mineral isograd sequences in metabasites of the Cape Smith Belt, northern Québec, Canada: three new bathograds for mafic rocks. J. Metamorph. Geol. 10, 685–704 (1992).

    Article  Google Scholar 

  204. 204.

    St-Onge, M. & Lucas, S. Evolution of regional metamorphism in the Cape Smith Thrust Belt (northern Quebec, Canada): interaction of tectonic and thermal processes. J. Metamorph. Geol. 9, 515–534 (1991).

    Article  Google Scholar 

  205. 205.

    St-Onge, M. R. & Ijewliw, O. J. Mineral corona formation during high-P retrogression of granulitic rocks, Ungava Orogen, Canada. J. Petrol. 37, 553–582 (1996).

    Article  Google Scholar 

  206. 206.

    St-Onge, M. R. & Lucas, S. B. Large-scale fluid infiltration, metasomatism and re-equilibration of Archaean basement granulites during Palaeoproterozoic thrust belt construction, Ungava Orogen, Canada. J. Metamorph. Geol. 13, 509–535 (1995).

    Article  Google Scholar 

  207. 207.

    Scott, D. J. & St-Onge, M. R. Constraints on Pb closure temperature in titanite based on rocks from the Ungava orogen, Canada: implications for U-Pb geochronology and P-T-t path determinations. Geology 23, 1123–1126 (1995).

    Article  Google Scholar 

  208. 208.

    Skipton, D., Schneider, D., Kellett, D. & Joyce, N. in Summary of Activities 17–30 (Canada-Nunavut Geoscience Office, 2014).

  209. 209.

    Merdith, A. S. et al. Extending full-plate tectonic models into deep time: linking the Neoproterozoic and the Phanerozoic. Earth Sci. Rev. 214, 103477 (2021).

    Article  Google Scholar 

  210. 210.

    England, P. & McKenzie, D. A thin viscous sheet model for continental deformation. Geophys. J. Int. 70, 295–321 (1982).

    Article  Google Scholar 

  211. 211.

    Artyushkov, E. V. Stresses in the lithosphere caused by crustal thickness inhomogeneities. J. Geophys. Res. 78, 7675–7708 (1973).

    Article  Google Scholar 

  212. 212.

    Flesch, L. M., Haines, A. J. & Holt, W. E. Dynamics of the India-Eurasia collision zone. J. Geophys. Res. Solid Earth 106, 16435–16460 (2001).

    Article  Google Scholar 

  213. 213.

    Molnar, P. & Lyon-Caen, H. Some simple physical aspects of the support, structure, and evolution of mountain belts. Process. Cont. Lithospheric Deform. 218, 179–207 (1988).

    Article  Google Scholar 

  214. 214.

    Copley, A., Boait, F., Hollingsworth, J., Jackson, J. & McKenzie, D. Subparallel thrust and normal faulting in Albania and the roles of gravitational potential energy and rheology contrasts in mountain belts. J. Geophys. Res. Solid Earth 114, B05407 (2009).

    Article  Google Scholar 

  215. 215.

    England, P. & Thompson, A. B. Pressure–temperature–time paths of regional metamorphism I. Heat transfer during the evolution of regions of thickened continental crust. J. Petrol. 25, 894–928 (1984).

    Article  Google Scholar 

  216. 216.

    Copley, A., Avouac, J.-P. & Royer, J.-Y. India-Asia collision and the Cenozoic slowdown of the Indian plate: implications for the forces driving plate motions. J. Geophys. Res. Solid Earth 115, B03410 (2010).

    Article  Google Scholar 

  217. 217.

    Ghosh, A., Holt, W. E., Flesch, L. M. & Haines, A. J. Gravitational potential energy of the Tibetan Plateau and the forces driving the Indian plate. Geology 34, 321–324 (2006).

    Article  Google Scholar 

  218. 218.

    Craig, T. J., Copley, A. & Jackson, J. Thermal and tectonic consequences of India underthrusting Tibet. Earth Planet. Sci. Lett. 353–354, 231–239 (2012).

    Article  Google Scholar 

  219. 219.

    Avouac, J. P., Tapponnier, P., Bai, M., You, H. & Wang, G. Active thrusting and folding along the northern Tien Shan and Late Cenozoic rotation of the Tarim relative to Dzungaria and Kazakhstan. J. Geophys. Res. Solid Earth 98, 6755–6804 (1993).

    Article  Google Scholar 

  220. 220.

    Hacker, B. R. & Gerya, T. V. Paradigms, new and old, for ultrahigh-pressure tectonism. Tectonophysics 603, 79–88 (2013).

    Article  Google Scholar 

  221. 221.

    Govin, G. et al. Timing and mechanism of the rise of the Shillong Plateau in the Himalayan foreland. Geology 46, 279–282 (2018).

    Article  Google Scholar 

  222. 222.

    Clift, P. D. Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean. Earth Planet. Sci. Lett. 241, 571–580 (2006).

    Article  Google Scholar 

  223. 223.

    France-Lanord, C., Derry, L. & Michard, A. Evolution of the Himalaya since Miocene time: isotopic and sedimentological evidence from the Bengal Fan. Geol. Soc. Spec. Publ. 74, 603–621 (1993).

    Article  Google Scholar 

  224. 224.

    Dyck, B. et al. in Himalayan Tectonics: A Modern Synthesis Vol. 483 (eds. Treloar, P. J. & Searle, M. P.) 281–304 (The Geological Society of London, 2019).

  225. 225.

    Pease, V., Percival, J., Smithies, H., Stevens, G. & Van Kranendonk, M. in When Did Plate Tectonics Begin on Planet Earth? Vol. 440 (eds. Condie, K. C. & Pease, V.) 199–228 (Geological Society of America, 2008).

  226. 226.

    Cawood, P. A. et al. Geological archive of the onset of plate tectonics. Phil. Trans. R. Soc. A 376, 20170405 (2018).

    Article  Google Scholar 

  227. 227.

    Parsons, A. J., Hosseini, K., Palin, R. M. & Sigloch, K. Geological, geophysical and plate kinematic constraints for models of the India-Asia collision and the post-Triassic central Tethys oceans. Earth Sci. Rev. 208, 103084 (2020).

    Article  Google Scholar 

  228. 228.

    Henriksen, N. Caledonian Orogen, East Greenland 70°N–82°N: Geological Map of Greenland 1:1 000 000 (Geological Survey of Denmark and Greenland, 2003).

  229. 229.

    Gee, D. G., Kumpulainen, R., Roberts, D., Stephens, M. B. & Zachrisson, E. Scandinavian Caledonides, Tectonostratigraphic Map, Scale 1:2,000,000 (Sveriges Geologiska Undersokning, 1985).

  230. 230.

    Gee, D. G., Juhlin, C., Pascal, C. & Robinson, P. Collisional Orogeny in the Scandinavian Caledonides (COSC). GFF 132, 29–44 (2010).

    Article  Google Scholar 

  231. 231.

    Gower, C., Ryan, A. & Rivers, T. in Mid-Proterozoic Laurentia-Baltica Vol. 38 (eds Gower, C., Rivers, T. & Ryan, A.) 1–20 (Geological Association of Canada, 1990).

  232. 232.

    Weller, O., Dyck, B., St-Onge, M. R., Rayner, N. & Tschirhart, V. Completing the bedrock mapping of southern Baffin Island, Nunavut; plutonic suites and regional stratigraphy. Summ. Act. 2015, 33–48 (2015).

    Google Scholar 

Download references

Acknowledgements

The authors thank P.-G. Andréasson and J. Andersson for discussion. This is NRCan contribution no. 20210115.

Author information

Affiliations

Authors

Contributions

All authors contributed to the manuscript preparation and discussion. O.M.W. led the Himalaya-Tibet orogen section, R.S. the Greenland Caledonian orogen, C.M. the Scandinavian Caledonian orogen, T.R. the Grenville orogen, C.M. the Sveconorwegian orogen, M.R.S-O. the Trans-Hudson orogen and A.C. the comparison of the orogens. C.M.M. led figure drafting.

Corresponding authors

Correspondence to Owen M. Weller or Catherine M. Mottram.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks V. Pease, M. Bickford and A. Collins for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Phase equilibria modelling

A method of calculating the pressure and temperature conditions at which a set of minerals (phases) is in equilibrium within a model system.

Petrochronology

Determining the age of minerals within a petrographic context, such that the age(s) can be linked to stage(s) of metamorphism.

Orogen

Refers to a mountain belt formed by plate convergence. The term orogeny is derived from the ancient Greek words ‘oros’ (mountain) and ‘genesis’ (origin or formation).

Terrane

A fault-bound crustal block distinguished from adjacent domains by distinct geological characteristics, including age, lithology, stratigraphy and geological history.

Molasse

A sedimentary rock type that comprises terrestrial or shallow marine strata deposited in front of rising mountain chains, typically including conglomerates.

Anatexis

Partial melting of rocks due to changes in the ambient pressure and/or temperature beyond the conditions at which rocks start to melt (the solidus).

Barrovian-type

A style of regional metamorphism named after British geologist George Barrow (1853–1932) and relating to pressure–temperature conditions typical of mid-crustal metamorphism during orogenesis.

Nappes

Large, sheet-like bodies of rock that have been moved some kilometres above a thrust fault from its original position (often synonymous with ‘allochthon’).

Allochthonous

A package of rocks that were originally formed or deposited a substantial distance from their current location, and were transported by tectonic processes.

Anchizone

The transitional zone between diagenesis and metamorphism; this is normally characterized by low temperatures (100–200 °C) and pressures (1–2 kbar).

Isothermal decompression

Exhumation of a rock mass at approximately constant temperature, indicating exhumation rates more rapid than rates of heat transfer.

Parautochthonous

A package of rocks that have been displaced a relatively small distance from their original place of formation and can still be correlated with the footwall lithostratigraphic units.

Buchan

A style of regional metamorphism characterized by the presence of andalusite in intermediate-grade pelitic assemblages, indicating lower pressure metamorphic conditions than Barrovian.

In-sequence

When fault age progressively decreases in the direction of transport.

Thin-skinned

When deformation only involves cover (and not basement) units; when both elements are involved, deformation is referred to as thick-skinned.

Prograde

Metamorphic conditions characterized by increasing temperature and (typically) pressure.

Retrogressed

A mineral assemblage that has re-equilibrated (usually partially) on the retrograde path, generally at lower pressure and temperature conditions than the peak assemblage and due to the influx of a hydrous fluid.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Weller, O.M., Mottram, C.M., St-Onge, M.R. et al. The metamorphic and magmatic record of collisional orogens. Nat Rev Earth Environ 2, 781–799 (2021). https://doi.org/10.1038/s43017-021-00218-z

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing