Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Towards sustainable extraction of technology materials through integrated approaches

Abstract

The transition to a low-carbon economy will be material-intensive. Production of these materials (from mining to manufacturing) incurs environmental costs that vary widely, depending on the geology, mineralogy, extraction routes, type of product, purity of product, background system or manufacturing infrastructure. Understanding the impacts of the raw materials underpinning the low-carbon economy is essential for eliminating any dissonance between the benefits of renewable technologies and the impacts associated with the production of the raw materials. In this Review, we propose an integrated life cycle assessment and geometallurgical approach to optimize the technical performance and reduce the environmental impact of raw material extraction. Life cycle assessments are an effective way of understanding the system-wide impacts associated with material production, from ore in the ground to a refined chemical product ready to be used in advanced technologies such as batteries. In the geometallurgy approach, geologists select exploration targets with resource characteristics that lend themselves to lower environmental impacts, often considering factors throughout the exploration and development process. Combining these two approaches allows for more accurate and dynamic optimization of technology materials resource efficiency, based on in situ ore properties and process simulations. By applying these approaches at the development phase of projects, a future low-carbon economy can be achieved that is built from ingredients with a lower environmental impact.

Key points

  • The 2020s will see substantial demand growth for lithium, cobalt, nickel, graphite, rare-earth elements, manganese, vanadium and other materials, due to the transition to renewable energy.

  • Production of battery grade or equivalent purity technology metals can have an extensive range of climate change and environmental impacts.

  • The impacts of technology material production are rooted in geology. Consideration of geology and mineralogy allows a better understanding of the main drivers for technical recovery (both gangue and ore), which influences the process routes needed to manufacture technology materials.

  • Different process routes have different environmental impacts, which can be quantified and compared using life cycle environmental impact methodologies.

  • Life cycle assessment can be used to uncover hotspots in the development phase for mitigation before new operations are built.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Examples of low-carbon technologies that require transition materials.
Fig. 2: The production phases for technology materials.
Fig. 3: Overview of the main geological deposit types for REEs, lithium, cobalt, nickel, graphite and manganese.
Fig. 4: Variations in life cycle assessment.
Fig. 5: Integrated LCA–geometallurgical approach.

References

  1. Sovacool, B. K. et al. Sustainable minerals and metals for a low-carbon future. Science 367, 30–33 (2020).

    Article  Google Scholar 

  2. Hund, K., La Porta, D., Fabregas, T. P., Laing, T. & Drexhage, J. Minerals for climate action: the mineral intensity of the clean energy transition (World Bank, 2020).

  3. International Energy Agency. Energy technology perspectives 2017: catalysing energy technology transformations (IEA, 2017).

  4. Lèbre, É. et al. The social and environmental complexities of extracting energy transition metals. Nat. Commun. 11, 4823 (2020).

    Article  Google Scholar 

  5. Mancini, L. & Sala, S. Social impact assessment in the mining sector: review and comparison of indicators frameworks. Resour. Policy 57, 98–111 (2018).

    Article  Google Scholar 

  6. International Renewable Energy Agency. Global renewables outlook: energy transformation 2050 (IRENA, 2020).

  7. International Bank for Reconstruction and Development & The World Bank. The growing role of minerals and metals for a low carbon future (World Bank, 2017). Identified the relationship between the low-carbon economy and the increased demand in minerals and metals needed for this technology transition.

  8. Pastukhova, M. & Westphal, K. Governing the global energy transformation. Lect. Notes Energy 73, 341–364 (2020).

    Article  Google Scholar 

  9. Giurco, D., Dominish, E., Florin, N., Watari, T. & McLellan, B. in Achieving the Paris Climate Agreement Goals (ed. Teske, S.) 437–457 (Springer, 2019).

  10. Ali, S. H. et al. Corrigendum: Mineral supply for sustainable development requires resource governance. Nature 547, 246 (2017).

    Article  Google Scholar 

  11. Graedel, T. E., Harper, E. M., Nassar, N. T. & Reck, B. K. On the materials basis of modern society. Proc. Natl Acad. Sci. USA 112, 6295–6300 (2015). Identified the growing trend for complexity of materials in modern society.

    Article  Google Scholar 

  12. Wall, F., Rollat, A. & Pell, R. S. Responsible sourcing of critical metals. Element 13, 313–318 (2017). Identified the connection between geology and LCA for critical metals for selecting projects with favourable conditions for lower environmental impacts.

    Article  Google Scholar 

  13. Deng, J., Bae, C., Denlinger, A. & Miller, T. Electric vehicles batteries: requirements and challenges. Joule 4, 511–515 (2020).

    Article  Google Scholar 

  14. Xu, C. et al. Future material demand for automotive lithium-based batteries. Commun. Mater. 1, 99 (2020).

    Article  Google Scholar 

  15. Hausfather, Z. Factcheck: how electric vehicles help to tackle climate change. CarbonBrief https://www.carbonbrief.org/factcheck-how-electric-vehicles-help-to-tackle-climate-change (2020).

  16. Dai, Q., Kelly, J. C., Gaines, L. & Wang, M. Life cycle analysis of lithium-ion batteries for automotive applications. Batteries 5, 48 (2019).

    Article  Google Scholar 

  17. Zhang, H., Lu, W. & Li, X. Progress and perspectives of flow battery technologies. Electrochem. Energy Rev. 2, 492–506 (2019).

    Article  Google Scholar 

  18. Voncken, J. H. L. The Rare Earth Elements: An Introduction (Springer, 2016).

  19. Ma, B. M. et al. Recent development in bonded NdFeB magnets. J. Magn. Magn. Mater. 239, 418–423 (2002).

    Article  Google Scholar 

  20. Cui, J. et al. Current progress and future challenges in rare-earth-free permanent magnets. Acta Mater. 158, 118–137 (2018).

    Article  Google Scholar 

  21. Goodenough, K. M., Wall, F. & Merriman, D. The rare earth elements: demand, global resources, and challenges for resourcing future generations. Nat. Resour. Res. 27, 201–216 (2018).

    Article  Google Scholar 

  22. Roskill. Rare earths: global industry, markets and outlook to 2026 (Roskill Information Services, 2016).

  23. Mudd, G. M. Global trends and environmental issues in nickel mining: sulfides versus laterites. Ore Geol. Rev. 38, 9–26 (2010). Identified the trend in global nickel resources and reserves from sulfides to laterites and provided insight on how this might impact the environmental performance of nickel production.

    Article  Google Scholar 

  24. Elshkaki, A., Graedel, T. E., Ciacci, L. & Reck, B. K. Copper demand, supply, and associated energy use to 2050. Glob. Environ. Change 39, 305–315 (2016).

    Article  Google Scholar 

  25. Elshkaki, A., Lei, S. & Chen, W.-Q. Material-energy-water nexus: modelling the long term implications of aluminium demand and supply on global climate change up to 2050. Environ. Res. 181, 108964 (2020).

    Article  Google Scholar 

  26. Dai, Q., Kelly, J. C., Dunn, J. & Benavides, P. Update of bill-of-materials and cathode materials production for lithium-ion batteries in the GREET model (Argonne National Laboratory, 2018).

  27. Lewis, L. H., Sellers, C. H. & Panchanathan, V. Factors affecting coercivity in rare-earth-based advanced permanent magnet materials (Brookhaven National Laboratory, 1997).

  28. NPCS Board of Consultants & Engineers. Handbook on Rare Earth Metals and Alloys (Asia Pacific Business Press, 2009).

  29. Liu, H., Zhang, Y., Luan, Y., Yu, H. & Li, D. Research progress in preparation and purification of rare earth metals. Metals 10, 1376 (2020).

    Article  Google Scholar 

  30. Warner, J. T. The Handbook of Lithium-Ion Battery Pack Design: Chemistry, Components, Types and Terminology (Elsevier, 2015).

  31. Yuan, X., Liu, H. & Zhang, J. Lithium-Ion Batteries: Advanced Materials and Technologies (CRC, 2016).

  32. Lu, L., Han, X., Li, J., Hua, J. & Ouyang, M. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sour. 226, 272–288 (2013).

    Article  Google Scholar 

  33. Kumar, V. Lithium-ion battery supply chain technology development and investment opportunities (Benchmark Mineral Intelligence, 2020).

  34. Ambrose, H. & Kendall, A. Understanding the future of lithium: Part 2, temporally and spatially resolved life-cycle assessment modeling. J. Ind. Ecol. 24, 90–100 (2020).

    Article  Google Scholar 

  35. Weng, Z., Jowitt, S. M., Mudd, G. M. & Haque, N. A detailed assessment of global rare earth element resources: opportunities and challenges. Econ. Geol. 110, 1925–1952 (2015).

    Article  Google Scholar 

  36. Verplanck, P. L., Mariano, A. N. & Mariano, A. Jr. in Rare Earth and Critical Elements in Ore Deposits (Society of Economic Geologists, 2016).

  37. Dostal, J. Rare earth element deposits of alkaline igneous rocks. Resources 6, 34 (2017).

    Article  Google Scholar 

  38. Chakhmouradian, A. R. & Zaitsev, A. N. Rare earth mineralization in igneous rocks: sources and processes. Elements 8, 347–353 (2012).

    Article  Google Scholar 

  39. Spandler, C., Slezak, P. & Nazari-Dehkordi, T. Tectonic significance of Australian rare earth element deposits. Earth Sci. Rev. 207, 103219 (2020).

    Article  Google Scholar 

  40. Mudd, G. M. & Jowitt, S. M. Rare earth elements from heavy mineral sands: assessing the potential of a forgotten resource. Appl. Earth Sci. 125, 107–113 (2016).

    Article  Google Scholar 

  41. Sengupta, D. & Van Gosen, B. S. Placer-type rare earth element deposits. Rev. Econ. Geol. 18, 81–100 (2016).

    Google Scholar 

  42. Borst, A. M. et al. Adsorption of rare earth elements in regolith-hosted clay deposits. Nat. Commun. 11, 4386 (2020).

    Article  Google Scholar 

  43. Rahardja, S., Artuso, F. & Maw, A. K. M. Reforming export licenses in Myanmar: recommendations for Ministry of Commerce (World Bank, 2020).

  44. Sanematsu, K., Kon, Y., Imai, A., Watanabe, K. & Watanabe, Y. Geochemical and mineralogical characteristics of ion-adsorption type REE mineralization in Phuket, Thailand. Miner. Deposita 48, 437–451 (2013).

    Article  Google Scholar 

  45. Estrade, G., Marquis, E., Smith, M., Goodenough, K. & Nason, P. REE concentration processes in ion adsorption deposits: evidence from the Ambohimirahavavy alkaline complex in Madagascar. Ore Geol. Rev. 112, 103027 (2019).

    Article  Google Scholar 

  46. Jordens, A., Cheng, Y. P. & Waters, K. E. A review of the beneficiation of rare earth element bearing minerals. Miner. Eng. 41, 97–114 (2013).

    Article  Google Scholar 

  47. Jha, M. K. et al. Review on hydrometallurgical recovery of rare earth metals. Hydrometallurgy 165, 2–26 (2016).

    Article  Google Scholar 

  48. Davris, P. et al. Leaching of rare earth elements from eudialyte concentrate by suppressing silica gel formation. Miner. Eng. 108, 115–122 (2017).

    Article  Google Scholar 

  49. Bowell, R. J., Lagos, L., de los Hoyos, C. R. & Declercq, J. Classification and characteristics of natural lithium resources. Elements 16, 259–264 (2020).

    Article  Google Scholar 

  50. Munk, L. A. et al. Lithium brines: a global perspective. Rev. Economic Geol. 18, 339–365 (2016).

    Google Scholar 

  51. Kesler, S. E. et al. Global lithium resources: relative importance of pegmatite, brine and other deposits. Ore Geol. Rev. 48, 55–69 (2012).

    Article  Google Scholar 

  52. Linnen, R. L., Van Lichtervelde, M. & Černý, P. Granitic pegmatites as sources of strategic metals. Elements 8, 275–280 (2012).

    Article  Google Scholar 

  53. Mohr, S. H., Mudd, G. M. & Giurco, D. Lithium resources and production: critical assessment and global projections. Minerals 2, 65–84 (2012).

    Article  Google Scholar 

  54. Castor, S. B. & Henry, C. D. Lithium-rich claystone in the McDermitt Caldera, Nevada, USA: geologic, mineralogical, and geochemical characteristics and possible origin. Minerals 10, 68 (2020).

    Article  Google Scholar 

  55. Gourcerol, B., Gloaguen, E., Melleton, J., Tuduri, J. & Galiegue, X. Re-assessing the European lithium resource potential–A review of hard-rock resources and metallogeny. Ore Geol. Rev. 109, 494–519 (2019).

    Article  Google Scholar 

  56. Flexer, V., Baspineiro, C. F. & Galli, C. I. Lithium recovery from brines: a vital raw material for green energies with a potential environmental impact in its mining and processing. Sci. Total Environ. 639, 1188–1204 (2018).

    Article  Google Scholar 

  57. Chagnes, A. & Swiatowska, J. Lithium Process Chemistry: Resources, Extraction, Batteries, and Recycling (Elsevier, 2015).

  58. Dessemond, C., Lajoie-Leroux, F., Soucy, G., Laroche, N. & Magnan, J.-F. Spodumene: the lithium market, resources and processes. Minerals 9, 334 (2019).

    Article  Google Scholar 

  59. Karrech, A., Azadi, M. R., Elchalakani, M., Shahin, M. A. & Seibi, A. C. A review on methods for liberating lithium from pegmatities. Miner. Eng. 145, 106085 (2020).

    Article  Google Scholar 

  60. Meng, F., McNeice, J., Zadeh, S. S. & Ghahreman, A. Review of lithium production and recovery from minerals, brines, and lithium-ion batteries. Miner. Process. Extr. Metall. Rev. 42, 123–141 (2021).

    Article  Google Scholar 

  61. Horn, S. et al. Cobalt resources in Europe and the potential for new discoveries. Ore Geol. Rev. 130, 103915 (2020).

    Article  Google Scholar 

  62. Dominy, S. C., O’Connor, L., Parbhakar-Fox, A., Glass, H. J. & Purevgerel, S. Geometallurgy — A route to more resilient mine operations. Minerals 8, 560 (2018). Providing a guideline and an overview on how to approach geometallurgy to understand mine operations and increase resilience of the operation.

    Article  Google Scholar 

  63. Dehaine, Q., Michaux, S. P., Pokki, J., Kivinen, M. & Butcher, A. Battery minerals from Finland: Improving the supply chain for the EU battery industry using a geometallurgical approach. Eur. Geol. https://doi.org/10.5281/zenodo.3938855 (2020).

  64. Dunham, S., Vann, J. & Coward, S. in Proceedings of the First AusIMM International Geometallurgy Conference (Australasian Institute of Mining and Metallurgy, 2011).

  65. Dehaine, Q., Tijsseling, L. T., Glass, H. J., Törmänen, T. & Butcher, A. R. Geometallurgy of cobalt ores: a review. Miner. Eng. 160, 106656 (2021).

    Article  Google Scholar 

  66. Cailteux, J. L. H., Kampunzu, A. B., Lerouge, C., Kaputo, A. K. & Milesi, J. P. Genesis of sediment-hosted stratiform copper–cobalt deposits, central African Copperbelt. J. Afr. Earth Sci. 42, 134–158 (2005).

    Article  Google Scholar 

  67. Lusty, P. A. J. & Murton, B. J. Deep-ocean mineral deposits: metal resources and windows into earth processes. Elements 14, 301–306 (2018).

    Article  Google Scholar 

  68. Schmidt, T., Buchert, M. & Schebek, L. Investigation of the primary production routes of nickel and cobalt products used for Li-ion batteries. Resour. Conserv. Recycl. 112, 107–122 (2016).

    Article  Google Scholar 

  69. Crundwell, F., Moats, M., Ramachandran, V., Robinson, T. & Davenport, W. G Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals (Elsevier, 2011).

  70. Mudd, G. M. & Jowitt, S. M. A detailed assessment of global nickel resource trends and endowments. Econ. Geol. 109, 1813–1841 (2014).

    Article  Google Scholar 

  71. Norgate, T. & Jahanshahi, S. Assessing the energy and greenhouse gas footprints of nickel laterite processing. Miner. Eng. 24, 698–707 (2011).

    Article  Google Scholar 

  72. Riekkola-Vanhanen, M. Talvivaara mining company–From a project to a mine. Miner. Eng. 48, 2–9 (2013).

    Article  Google Scholar 

  73. Cannon, W. F., Kimball, B. E. & Corathers, L. A. in Critical Mineral Resources of the United States — Economic and Environmental Geology and Prospects for Future Supply Vol. L (USGS, 2017).

  74. Beukes, N. J., Swindell, E. P. W. & Wabo, H. Manganese deposits of Africa. Episodes J. Int. Geosci. 39, 285–317 (2016).

    Article  Google Scholar 

  75. Paulikas, D., Katona, S., Ilves, E. & Ali, S. H. Life cycle climate change impacts of producing battery metals from land ores versus deep-sea polymetallic nodules. J. Clean. Prod. 275, 123822 (2020).

    Article  Google Scholar 

  76. Jara, A. D., Betemariam, A., Woldetinsae, G. & Kim, J. Y. Purification, application and current market trend of natural graphite: a review. Int. J. Min. Sci. Technol. 29, 671–689 (2019).

    Article  Google Scholar 

  77. Olson, D. W., Virta, R. L., Mahdavi, M., Sangine, E. S. & Fortier, S. M. Natural graphite demand and supply — Implications for electric vehicle battery requirements. Geol. Soc. Am. Spec. Pap. 520, 67–77 (2016).

    Google Scholar 

  78. Magampa, P. P., Manyala, N. & Focke, W. W. Properties of graphite composites based on natural and synthetic graphite powders and a phenolic novolac binder. J. Nucl. Mater. 436, 76–83 (2013).

    Article  Google Scholar 

  79. Luque, F. J. et al. Vein graphite deposits: geological settings, origin, and economic significance. Miner. Deposita 49, 261–277 (2014).

    Article  Google Scholar 

  80. Cui, N., Sun, L., Bagas, L., Xiao, K. & Xia, J. Geological characteristics and analysis of known and undiscovered graphite resources of China. Ore Geol. Rev. 91, 1119–1129 (2017).

    Article  Google Scholar 

  81. Wurm, C., Oettinger, O., Wittkaemper, S., Zauter, R. & Vuorilehto, K. in Lithium-Ion Batteries: Basics and Applications (ed. Korthauer, R.) 43–58 (Springer, 2018).

  82. Dante, R. C. Handbook of Friction Materials and their Applications (Woodhead, 2015).

  83. Acheson, E. G. Process of making graphite. US Patent 711,031-A (1902).

  84. Wissler, M. Graphite and carbon powders for electrochemical applications. J. Power Sources 156, 142–150 (2006).

    Article  Google Scholar 

  85. Kim, T., Lee, J. & Lee, K.-H. Full graphitization of amorphous carbon by microwave heating. RSC Adv. 6, 24667–24674 (2016).

    Article  Google Scholar 

  86. Van der Voet, E., Van Oers, L., Verboon, M. & Kuipers, K. Environmental implications of future demand scenarios for metals: methodology and application to the case of seven major metals. J. Ind. Ecol. 23, 141–155 (2019).

    Article  Google Scholar 

  87. British Standards Institution. Environmental management. Life cycle assessment. Principles and framework. BSI https://linkresolver.bsigroup.com/junction/resolve/000000000001139131?restype=undated (2015).

  88. Hunt, R. G., Franklin, W. E. & Hunt, R. G. LCA — How it came about. Int. J. Life Cycle Assess. 1, 4–7 (1996).

    Article  Google Scholar 

  89. Farjana, S. H., Huda, N. & Mahmud, M. A. P. Life cycle assessment of cobalt extraction process. J. Sustain. Min. 18, 150–161 (2019).

    Article  Google Scholar 

  90. European Commission. ILCD Handbook: General Guide on Life Cycle Assessment: Detailed Guidance (Publications Office of the European Union, 2010).

  91. British Standards Institution. Greenhouse gases. Carbon footprint of products. Requirements and guidelines for quantification and communication. BSI https://linkresolver.bsigroup.com/junction/resolve/000000000030297217?restype=undated (2015).

  92. Fenner, A. E. et al. The carbon footprint of buildings: a review of methodologies and applications. Renew. Sustain. Energy Rev. 94, 1142–1152 (2018).

    Article  Google Scholar 

  93. Greenhouse Gas Protocol. Product life cycle accounting and reporting standard. GHG Protocol https://ghgprotocol.org/product-standard (2011).

  94. Meinrenken, C. J. et al. Carbon emissions embodied in product value chains and the role of Life Cycle Assessment in curbing them. Sci. Rep. 10, 6184 (2020).

    Article  Google Scholar 

  95. Weidema, B. P., Thrane, M., Christensen, P., Schmidt, J. & Løkke, S. Carbon footprint: a catalyst for life cycle assessment? J. Ind. Ecol. 12, 3–6 (2008).

    Article  Google Scholar 

  96. Heijungs, R. Ecodesign — carbon footprint — life cycle assessment — life cycle sustainability analysis. A flexible framework for a continuum of tools. Environ. Clim. Technol. 4, 42–46 (2010).

    Google Scholar 

  97. Nansai, K. et al. Global flows of critical metals necessary for low-carbon technologies: the case of neodymium, cobalt, and platinum. Environ. Sci. Technol. 48, 1391–1400 (2014).

    Article  Google Scholar 

  98. Jiang, S. et al. Environmental impacts of lithium production showing the importance of primary data of upstream process in life-cycle assessment. J. Environ. Manage. 262, 110253 (2020).

    Article  Google Scholar 

  99. Zaimes, G. G., Hubler, B. J., Wang, S. & Khanna, V. Environmental life cycle perspective on rare earth oxide production. ACS Sustain. Chem. Eng. 3, 237–244 (2015).

    Article  Google Scholar 

  100. Pell, R., Wall, F., Yan, X., Li, J. & Zeng, X. Mineral processing simulation based-environmental life cycle assessment for rare earth project development: A case study on the Songwe Hill project. J. Environ. Manage. 249, 109353 (2019).

    Article  Google Scholar 

  101. Pell, R., Wall, F., Yan, X., Li, J. & Zeng, X. Temporally explicit life cycle assessment as an environmental performance decision making tool in rare earth project development. Miner. Eng. 135, 64–73 (2019).

    Article  Google Scholar 

  102. Vahidi, E., Navarro, J. & Zhao, F. An initial life cycle assessment of rare earth oxides production from ion-adsorption clays. Resour. Conserv. Recycl. 113, 1–11 (2016).

    Article  Google Scholar 

  103. Deng, H. & Kendall, A. Life cycle assessment with primary data on heavy rare earth oxides from ion-adsorption clays. Int. J. Life Cycle Assess. 24, 1643–1652 (2019).

    Article  Google Scholar 

  104. Browning, C., Northey, S., Haque, N., Bruckard, W. & Cooksey, M. in REWAS 2016 (eds Kirchain, R. E. et al.) 83–88 (Springer, 2016).

  105. Sprecher, B. et al. Life cycle inventory of the production of rare earths and the subsequent production of NdFeB rare earth permanent magnets. Environ. Sci. Technol. 48, 3951–3958 (2014).

    Article  Google Scholar 

  106. Vahidi, E. & Zhao, F. Environmental life cycle assessment on the separation of rare earth oxides through solvent extraction. J. Environ. Manage. 203, 255–263 (2017).

    Article  Google Scholar 

  107. Joyce, P. J., Goronovski, A., Tkaczyk, A. H. & Björklund, A. A framework for including enhanced exposure to naturally occurring radioactive materials (NORM) in LCA. Int. J. Life Cycle Assess. 22, 1078–1095 (2017).

    Article  Google Scholar 

  108. Pell, R. et al. The CO2 Impact of the 2020s Battery Quality Lithium Hydroxide Supply Chain (Minviro, 2019).

  109. Notter, D. A. et al. Contribution of Li-ion batteries to the environmental impact of electric vehicles. Environ. Sci. Technol. 44, 6550–6556 (2010).

    Article  Google Scholar 

  110. Schomberg, A. C., Bringezu, S. & Flörke, M. Extended life cycle assessment reveals the spatially-explicit water scarcity footprint of a lithium-ion battery storage. Commun. Earth Environ. 2, 11 (2021).

    Article  Google Scholar 

  111. Corenthal, L. G., Boutt, D. F., Hynek, S. A. & Munk, L. A. Regional groundwater flow and accumulation of a massive evaporite deposit at the margin of the Chilean Altiplano. Geophys. Res. Lett. 43, 8017–8025 (2016).

    Article  Google Scholar 

  112. Aldunate, C. A. Caracterización hidrogeológica e hidroquímica del sector sur del Salar de Atacama, II región de Antofagasta, Chile (Universidad de Málaga, 2014).

  113. Risacher, F. & Fritz, B. Origin of salts and brine evolution of bolivian and chilean salars. Aquat. Geochem. 15, 123–157 (2009).

    Article  Google Scholar 

  114. Valdés-Pineda, R. et al. Water governance in Chile: availability, management and climate change. J. Hydrol. 519, 2538–2567 (2014).

    Article  Google Scholar 

  115. Cobalt Institute. The environmental performance of refined cobalt. Life cycle inventory and life cycle assessment of refined cobalt (Cobalt Institute, 2016).

  116. Mudd, G. M., Weng, Z., Jowitt, S. M., Turnbull, I. D. & Graedel, T. E. Quantifying the recoverable resources of by-product metals: the case of cobalt. Ore Geol. Rev. 55, 87–98 (2013).

    Article  Google Scholar 

  117. Dai, Q., Kelly, J. C. & Elgowainy, A. Cobalt life cycle analysis update for the GREET model (Argonne National Laboratory, 2019).

  118. Pell, R. & Tijsseling, T. First cobalt refinery — life cycle assessment (Minviro, 2020).

  119. Mistry, M., Gediga, J. & Boonzaier, S. Life cycle assessment of nickel products. Int. J. Life Cycle Assess. 21, 1559–1572 (2016).

    Article  Google Scholar 

  120. Farjana, S. H., Huda, N., Mahmud, M. A. P. & Lang, C. A global life cycle assessment of manganese mining processes based on EcoInvent database. Sci. Total Environ. 688, 1102–1111 (2019).

    Article  Google Scholar 

  121. Wernet, G. et al. The ecoinvent database version 3 (part I): overview and methodology. Int. J. Life Cycle Assess. 21, 1218–1230 (2016).

    Article  Google Scholar 

  122. Zhang, R. et al. Life cycle assessment of electrolytic manganese metal production. J. Clean. Prod. 253, 119951 (2020).

    Article  Google Scholar 

  123. Zhang, Q. Q., Gong, X. Z. & Meng, X. C. Environment impact analysis of natural graphite anode material production. Mater. Sci. Forum 913, 1011–1017 (2018).

    Article  Google Scholar 

  124. Steinberg, W. S., Geyser, W. & Nell, J. The history and development of the pyrometallurgical processes at Evraz Highveld Steel & Vanadium. J. South. Afr. Inst. Min. Metall. 111, 705–710 (2011).

    Google Scholar 

  125. Weber, S., Peters, J. F., Baumann, M. & Weil, M. Life cycle assessment of a vanadium redox flow battery. Environ. Sci. Technol. 52, 10864–10873 (2018).

    Article  Google Scholar 

  126. Koltun, P. & Klymenko, V. Cradle-to-gate life cycle assessment of the production of separated mix of rare earth oxides based on Australian production route. Min. Miner. Depos. 14, 1–15 (2020).

    Article  Google Scholar 

  127. Villares, M., Işıldar, A., van der Giesen, C. & Guinée, J. Does ex ante application enhance the usefulness of LCA? A case study on an emerging technology for metal recovery from e-waste. Int. J. Life Cycle Assess. 22, 1618–1633 (2017).

    Article  Google Scholar 

  128. Schenck, R. & White, P. Environmental Life Cycle Assessment: Measuring the Environmental Performance of Products (American Center for Life Cycle Assessment, 2014).

  129. Maier, M., Mueller, M. & Yan, X. Introducing a localised spatio-temporal LCI method with wheat production as exploratory case study. J. Clean. Prod. 140, 492–501 (2017).

    Article  Google Scholar 

  130. Wall, F. & Pell, R. in Handbook on the Physics and Chemistry of Rare Earths (eds Bünzli, J.-C. & Pecharsky, V. K.) 155–194 (Elsevier, 2020).

  131. Williams, S. R. & Richardson, J. M. in Proceedings of the 36th Annual Meeting of the Canadian Mineral Processors Conference 241–268 (SGS Minerals Services, 2004).

  132. Dominy, S. C. & O’Connor, L. in Proceedings of the Third AusIMM International Geometallurgy Conference (Australasian Institute of Mining and Metallurgy, 2016).

  133. Lund, C. & Lamberg, P. Geometallurgy–a tool for better resource efficiency. Eur. Geol. 37, 39–43 (2014).

    Google Scholar 

  134. Lishchuk, V., Koch, P.-H., Ghorbani, Y. & Butcher, A. R. Towards integrated geometallurgical approach: critical review of current practices and future trends. Miner. Eng. 145, 106072 (2020).

    Article  Google Scholar 

  135. Beaumont, C. & Musingwini, C. Application of geometallurgical modelling to mine planning in a copper-gold mining operation for improving ore quality and mineral processing efficiency. J. South. Afr. Inst. Min. Metall. 119, 243–252 (2019).

    Article  Google Scholar 

  136. Dehaine, Q., Filippov, L. O., Glass, H. J. & Rollinson, G. Rare-metal granites as a potential source of critical metals: a geometallurgical case study. Ore Geol. Rev. 104, 384–402 (2019).

    Article  Google Scholar 

  137. Parbhakar-Fox, A., Glen, J. & Raimondo, B. A geometallurgical approach to tailings management: an example from the Savage River Fe-ore mine, Western Tasmania. Minerals 8, 454 (2018).

    Article  Google Scholar 

  138. Brough, C. P., Warrender, R., Bowell, R. J., Barnes, A. & Parbhakar-Fox, A. The process mineralogy of mine wastes. Miner. Eng. 52, 125–135 (2013).

    Article  Google Scholar 

  139. Segura-Salazar, J., Lima, F. M. & Tavares, L. M. Life Cycle Assessment in the minerals industry: current practice, harmonization efforts, and potential improvement through the integration with process simulation. J. Clean. Prod. 232, 174–192 (2019).

    Article  Google Scholar 

  140. Parbhakar-Fox, A. in Environmental Indicators in Metal Mining (ed. Lottermoser, B.) 73–96 (Springer, 2017).

  141. Parbhakar-Fox, A., Lottermoser, B. & Bradshaw, D. Evaluating waste rock mineralogy and microtexture during kinetic testing for improved acid rock drainage prediction. Miner. Eng. 52, 111–124 (2013).

    Article  Google Scholar 

  142. Reuter, M. A., van Schaik, A. & Gediga, J. Simulation-based design for resource efficiency of metal production and recycling systems: cases-copper production and recycling, e-waste (LED lamps) and nickel pig iron. Int. J. Life Cycle Assess. 20, 671–693 (2015).

    Article  Google Scholar 

  143. Abadías Llamas, A. et al. Simulation-based exergy, thermo-economic and environmental footprint analysis of primary copper production. Miner. Eng. 131, 51–65 (2019).

    Article  Google Scholar 

  144. Suvio, P., Kotiranta, T., Kauppi, J. & Jansson, K. in Proceedings of the 13th International Mine Water Association (IMWA) Congress 226–236 (LUT Scientific and Expertise Publications, 2017).

  145. Elomaa, H., Rintala, L., Aromaa, J. & Lundström, M. Process simulation based life cycle assessment of cyanide-free refractory gold concentrate processing — Case study: cupric chloride leaching. Miner. Eng. 157, 106559 (2020).

    Article  Google Scholar 

  146. Elomaa, H., Sinisalo, P., Rintala, L., Aromaa, J. & Lundström, M. Process simulation and gate-to-gate life cycle assessment of hydrometallurgical refractory gold concentrate processing. Int. J. Life Cycle Assess. 25, 456–477 (2020).

    Article  Google Scholar 

  147. Pell, R. et al. Environmental optimisation of mine scheduling through life cycle assessment integration. Resour. Conserv. Recycl. 142, 267–276 (2019). Development of a methodology to schedule a mine by integrating environmental parameters such as global warming potential within the cost model.

    Article  Google Scholar 

  148. Maennling, N. & Toledano, P. The renewable power of the mine (Columbia Center on Sustainable Investment, 2018).

  149. Gallios, G. P. & Matis, K. A. Mineral Processing and the Environment (Springer, 2013).

  150. Jenssen, M. M. & de Boer, L. Implementing life cycle assessment in green supplier selection: a systematic review and conceptual model. J. Clean. Prod. 229, 1198–1210 (2019).

    Article  Google Scholar 

  151. Garrett, D. E. Natural Soda Ash: Occurrences, Process and Use (Springer, 1992).

  152. Steinhauser, G. Cleaner production in the Solvay Process: general strategies and recent developments. J. Clean. Prod. 16, 833–841 (2008).

    Article  Google Scholar 

  153. Liu, Z. National carbon emissions from the industry process: production of glass, soda ash, ammonia, calcium carbide and alumina. Appl. Energy 166, 239–244 (2016).

    Article  Google Scholar 

  154. Nuss, P. & Eckelman, M. J. Life cycle assessment of metals: a scientific synthesis. PLoS ONE 9, e101298 (2014). An overview of the benchmark LCA values for elements from the periodic table.

    Article  Google Scholar 

  155. Baars, J., Domenech, T., Bleischwitz, R., Melin, H. E. & Heidrich, O. Circular economy strategies for electric vehicle batteries reduce reliance on raw materials. Nat. Sustain. 4, 71–79 (2021).

    Article  Google Scholar 

  156. Zeng, X., Ali, S. H., Tian, J. & Li, J. Mapping anthropogenic mineral generation in China and its implications for a circular economy. Nat. Commun. 11, 1544 (2020).

    Article  Google Scholar 

  157. Jin, H. et al. Life cycle assessment of emerging technologies on value recovery from hard disk drives. Resour. Conserv. Recycl. 157, 104781 (2020).

    Article  Google Scholar 

  158. Mohr, M., Peters, J. F., Baumann, M. & Weil, M. Toward a cell-chemistry specific life cycle assessment of lithium-ion battery recycling processes. J. Ind. Ecol. 24, 1310–1322 (2020).

    Article  Google Scholar 

  159. Falagán, C., Grail, B. M. & Johnson, D. B. New approaches for extracting and recovering metals from mine tailings. Miner. Eng. 106, 71–78 (2017).

    Article  Google Scholar 

  160. Bobicki, E. R. Pre-treatment of Ultramafic Nickel Ores for Improved Mineral Carbon Sequestration (University of Alberta, 2014).

  161. Intergovernmental Panel on Climate Change. Global warming of 1.5 °C (IPCC, 2019).

  162. Kelemen, P., Benson, S. M., Pilorgé, H., Psarras, P. & Wilcox, J. An overview of the status and challenges of CO2 storage in minerals and geological formations. Front. Clim. 1, 9 (2019).

    Article  Google Scholar 

  163. Harrison, A. L., Power, I. M. & Dipple, G. M. Accelerated carbonation of brucite in mine tailings for carbon sequestration. Environ. Sci. Technol. 47, 126–134 (2013).

    Article  Google Scholar 

  164. Snæbjörnsdóttir, S. Ó. et al. Carbon dioxide storage through mineral carbonation. Nat. Rev. Earth Environ. 1, 90–102 (2020).

    Article  Google Scholar 

  165. National Academies of Sciences, Engineering, and Medicine. Negative Emissions Technologies and Reliable Sequestration: A Research Agenda (National Academies, 2019).

  166. Wilson, S. A. et al. Offsetting of CO2 emissions by air capture in mine tailings at the Mount Keith Nickel Mine, Western Australia: rates, controls and prospects for carbon neutral mining. Int. J. Greenh. Gas Control 25, 121–140 (2014).

    Article  Google Scholar 

  167. Gras, A. et al. Isotopic evidence of passive mineral carbonation in mine wastes from the Dumont Nickel Project (Abitibi, Quebec). Int. J. Greenh. Gas Control 60, 10–23 (2017).

    Article  Google Scholar 

  168. International Energy Agency. The role of critical minerals in clean energy transitions (IEA, 2021). Identifies the critical minerals and materials that will be needed for the clean energy transition.

  169. Habib, K., Hansdóttir, S. T. & Habib, H. Critical metals for electromobility: global demand scenarios for passenger vehicles, 2015–2050. Resour. Conserv. Recycl. 154, 104603 (2020).

    Article  Google Scholar 

  170. Livent. Lithium hydroxide monohydrate, battery grade CAS no.1310-66-3 (Livent, 2018).

  171. Asenbauer, J. et al. The success story of graphite as a lithium-ion anode material — fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustain. Energy Fuels 4, 5387–5416 (2020).

    Article  Google Scholar 

  172. Glazier, S. L., Li, J., Louli, A. J., Allen, J. P. & Dahn, J. R. An analysis of artificial and natural graphite in lithium ion pouch cells using ultra-high precision coulometry, isothermal microcalorimetry, gas evolution, long term cycling and pressure measurements. J. Electrochem. Soc. 164, A3545–A3555 (2017).

    Article  Google Scholar 

  173. Nam, K. H. in AC Motor Control and Electric Vehicle Applications 133–163 (CRC, 2017)

  174. Gorman, M. R. & Dzombak, D. A. A review of sustainable mining and resource management: transitioning from the life cycle of the mine to the life cycle of the mineral. Resour. Conserv. Recycl. 137, 281–291 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

F.W. and X.Y. were part-funded by the UKRI Interdisciplinary Circular Economy Centre for Technology Metals (EP/V011855/1). Q.D. acknowledges the support from Business Finland funded BATTRACE project (grant no. 1019/31/2020). K.G.’s contribution was part-funded by NERC grant (NE/V006932/1) LiFT. K.G. publishes with the permission of the BGS Executive Director. The authors thank D. Teagle for their review and useful suggestions.

Author information

Authors and Affiliations

Authors

Contributions

R.P. wrote and edited the article. All other authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Robert Pell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks S. Ali, R. Valenta, L. O’Connor and the other, anonymous, reviewer for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Technology materials

Any material that is in demand, available and used for the purposes of furthering technology and engineered systems.

Carbon footprint

The amount of carbon dioxide released into the atmosphere as a result of the activities of a product or process.

Life cycle assessment

(LCA). A methodology for assessing environmental impacts associated with all the stages of the life cycle of a commercial product, process or service.

Power trains

Mechanisms that transmit the drive from the engine of a vehicle to its axle.

Battery quality

A specification for chemical products, usually implying low impurity concentrations and adequate particle size distribution, that indicates that the product can be used to make advanced battery components.

Class 1 nickel

Refers to nickel products that have a nickel purity of a minimum of 99.8%.

Life cycle impact assessment

(LCIA). A methodology for converting inventory data from a life cycle assessment into a set of potential impacts.

Life cycle inventory

(LCI). Inventory of input and output flows for a product system such as water, energy and raw materials, and releases to air, land and water.

Geometallurgy

Combining geology or geostatistics with metallurgy (or, more specifically, extractive metallurgy) to create a spatially or geologically based predictive model for mineral processing plants.

CAPEX

Capital expenditures (CAPEX) that are major purchases a company makes, designed to be used in the long term.

OPEX

Operating expenses (OPEX) refer to day-to-day expenses that are incurred during business activities.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pell, R., Tijsseling, L., Goodenough, K. et al. Towards sustainable extraction of technology materials through integrated approaches. Nat Rev Earth Environ 2, 665–679 (2021). https://doi.org/10.1038/s43017-021-00211-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-021-00211-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing