Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A stable isotope toolbox for water and inorganic carbon cycle studies

Abstract

Stable isotopes of hydrogen, carbon and oxygen are used to investigate numerous physical and chemical processes in the water and inorganic carbon cycles. Measuring and comparing natural isotopic variations requires reliable primary reference materials and consistent data treatment. However, these reference materials have changed over time, while advances in technology have led to better constrained isotopic compositions of the reference materials. In this Technical Review, we provide an overview of the historical evolution of such materials, and explain their relationships across time and isotopic scales. Recommendations are provided for the measurement and reporting of isotopic compositions against the consensual VPDB and VSMOW scales in light of the newest carbonate and water reference materials distributed by the International Atomic Energy Agency. Stable isotope fractionation factors and their temperature dependence in processes specific to the water cycle (2H, 18O, 17O) and the CO2–water–carbonate system (13C, 18O) are described, including for carbonate clumped isotope thermometry. Propagation of errors is also addressed for a consistent reporting of real uncertainties of isotopic measurements and calculations. Lastly, current gaps in knowledge on the behaviour of stable isotopes in the water cycle and the CO2–water–carbonate system are highlighted for future studies.

Key points

  • The initial reference materials for H, C, O isotope measurements, Pee Dee Belemnitella (known widely as PDB) and Standard Mean Ocean Water (SMOW) have long been exhausted. However, they can be linked with the present virtual VPDB and VSMOW isotopic scales through careful cross-measurements between original/current reference materials and their newest alternatives.

  • Two generations of reference materials have been successively proposed by the International Atomic Energy Agency to realize the VPDB and VSMOW isotopic scales.

  • Guidelines are provided here for using the isotopic scales and reporting stable isotope compositions.

  • Stable H and O isotopes provide essential tools for understanding the processes governing the water cycle. The precise measurement of 17O versus 18O and its behaviour relative to 2H are new ways to investigate some of the key processes in the water cycle.

  • Oxygen isotope ratios (18O/16O) have historically been used in palaeoclimate studies, particularly ratios from carbonate minerals. The measurement of new isotope combinations that involve multiply substituted isotopologues, such as CO2 mass 47 (Δ47), provide new insight into reaction temperatures and kinetic effects.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Timeline of reference materials for stable H, C, O isotope measurements.
Fig. 2: Reference materials and relationships between isotopic scales for δ18O measurements.
Fig. 3: Isotopes in the water and carbon cycles.
Fig. 4: Fractionation in the CO2–carbonate–water system.
Fig. 5: Δ47 values of carbonate reference materials in clumped isotope studies.

References

  1. 1.

    Hoefs, J. Stable Isotope Geochemistry 8th edn (Springer, 2018).

  2. 2.

    Nier, A. O. A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and potassium. Phys. Rev. 77, 789 (1950).

    Article  Google Scholar 

  3. 3.

    Brand, W. A., Coplen, T. B., Vogl, J., Rosner, M. & Prohaska, T. Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report). Pure Appl. Chem. 86, 425–467 (2014).

    Article  Google Scholar 

  4. 4.

    Friedman, I. & O’Neil, J. R. in Data of Geochemistry 6th edn Ch. KK (ed. Fleischer, M.) (U.S. Government Printing Office, 1977).

  5. 5.

    Coplen, T. B. New guidelines for reporting stable hydrogen, carbon, and oxygen isotope-ratio data. Geochim. Cosmochim. Acta 60, 3359–3360 (1996).

    Article  Google Scholar 

  6. 6.

    Gröning, M., van Duren, M. & Andreescu, L. in Combining and Reporting Analytical Results (eds Belli, M., Fajgeljm A. & Sansone, U.) 62–72 (Royal Society of Chemistry, 2006).

  7. 7.

    Assonov, S., Groening, M., Fajgelj, A., Hélie, J.-F. & Hillaire-Marcel, C. Preparation and characterisation of IAEA-603, a new primary reference material aimed at the VPDB scale realisation for δ13C and δ18O determination. Rapid Commun. Mass. Spectrom. 34, e8867 (2020).

    Article  Google Scholar 

  8. 8.

    Assonov, S., Fajgelj, A., Allison, C. & Gröning, M. On the metrological traceability and hierarchy of stable isotope reference materials aimed at realisation of the VPDB scale: revision of the VPDB δ13C scale based on multipoint scale-anchoring RMs. Rapid Commun. Mass Spectrom. 35, e9018 (2021).

    Google Scholar 

  9. 9.

    Landais, A., Barkan, E., Yakir, D. & Luz, B. The triple isotopic composition of oxygen in leaf water. Geochim. Cosmochim. Acta 70, 4105–4115 (2006).

    Article  Google Scholar 

  10. 10.

    Landais, A., Barkan, E. & Luz, B. Record of δ18O and 17O-excess in ice from Vostok Antarctica during the last 150,000 years. Geophys. Res. Lett. 35, L02709 (2008).

    Google Scholar 

  11. 11.

    Luz, B. & Barkan, E. Variations of 17O/16O and 18O/16O in meteoric waters. Geochim. Cosmochim. Acta 74, 6276–6286 (2010).

    Article  Google Scholar 

  12. 12.

    Passey, B. H. et al. Triple oxygen isotopes in biogenic and sedimentary carbonates. Geochim. Cosmochim. Acta 141, 1–25 (2014).

    Article  Google Scholar 

  13. 13.

    Bao, H., Cao, X. & Hayles, J. A. Triple oxygen isotopes: fundamental relationships and applications. Annu. Rev. Earth Planet. Sci. 44, 463–492 (2016).

    Article  Google Scholar 

  14. 14.

    Ghosh, P. et al. 13C–18O bonds in carbonate minerals: A new kind of paleothermometer. Geochim. Cosmochim. Acta 70, 1439–1456 (2006).

    Article  Google Scholar 

  15. 15.

    Eiler, J. M. “Clumped-isotope” geochemistry — The study of naturally-occurring, multiply-substituted isotopologues. Earth Planet Sci. Lett. 262, 309–327 (2007).

    Article  Google Scholar 

  16. 16.

    Affek, H. P. Clumped isotope paleothermometry: principles, applications, and challenges. Paleontol. Soc. Pap. 18, 101–114 (2012).

    Article  Google Scholar 

  17. 17.

    Spencer, C. & Kim, S.-T. Carbonate clumped isotope paleothermometry: a review of recent advances in CO2 gas evolution, purification, measurement and standardization techniques. Geosci. J. 19, 357–374 (2015).

    Article  Google Scholar 

  18. 18.

    Urey, H. C. The thermodynamic properties of isotopic substances. J. Chem. Soc. https://doi.org/10.1039/JR9470000562 (1947).

    Article  Google Scholar 

  19. 19.

    Epstein, S., Buchsbaum, R., Lowenstam, H. & Urey, H. C. Carbonate-water isotopic temperature scale. Geol. Soc. Am. Bull. 62, 417–426 (1951).

    Article  Google Scholar 

  20. 20.

    Urey, H. C., Lowenstam, H. A., Epstein, S. & McKinney, C. R. Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and the southeastern United States. Geol. Soc. Am. Bull. 62, 399–416 (1951).

    Article  Google Scholar 

  21. 21.

    Craig, H. Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim. Cosmochim. Acta 12, 133–149 (1957).

    Article  Google Scholar 

  22. 22.

    Epstein, S. & Mayeda, T. Variation of O18 content of waters from natural sources. Geochim. Cosmochim. Acta 4, 213–224 (1953).

    Article  Google Scholar 

  23. 23.

    Craig, H. Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 133, 1833–1834 (1961).

    Article  Google Scholar 

  24. 24.

    Friedman, I., O’Neil, J. & Cebula, G. Two new carbonate stable-isotope standards. Geostand. Newsl. 6, 11–12 (1982).

    Article  Google Scholar 

  25. 25.

    Hut, G. Consultants’ group meeting on stable isotope reference samples for geochemical and hydrological investigations. International Atomic Energy Agency https://inis.iaea.org/search/search.aspx?orig_q=RN:18075746 (1987).

  26. 26.

    Assonov, S. Summary and recommendations from the International Atomic Energy Agency Technical Meeting on the Development of Stable Isotope Reference Products (21–25 November 2016). Rapid Commun. Mass. Spectrom. 32, 827–830 (2018).

    Article  Google Scholar 

  27. 27.

    O’Neil, J. R., Adami, L. H. & Epstein, S. Revised value for the O18 fractionation between CO2 and H2O at 25 °C. J. Res. U.S. Geol. Surv. 3, 623–624 (1975).

    Google Scholar 

  28. 28.

    Luz, B. & Barkan, E. Assessment of oceanic productivity with the triple-isotope composition of dissolved oxygen. Science 288, 2028–2031 (2000).

    Article  Google Scholar 

  29. 29.

    Meijer, H. A. J. Stable isotope quality assurance using the ‘Calibrated IRMS’ strategy. Isot. Environ. Health Stud. 45, 150–163 (2009).

    Article  Google Scholar 

  30. 30.

    Luz, B. & Barkan, E. The isotopic composition of atmospheric oxygen. Global Biogeochem. Cycles 25, GB3001 (2011).

    Google Scholar 

  31. 31.

    Luz, B. & Barkan, E. The isotopic ratios 17O/16O and 18O/16O in molecular oxygen and their significance in biogeochemistry. Geochim. Cosmochim. Acta 69, 1099–1110 (2005).

    Article  Google Scholar 

  32. 32.

    Barkan, E. & Luz, B. High-precision measurements of 17O/16O and 18O/16O ratios in CO2. Rapid Commun. Mass. Spectrom. 26, 2733–2738 (2012).

    Article  Google Scholar 

  33. 33.

    Barkan, E. & Luz, B. High precision measurements of 17O/16O and 18O/16O ratios in H2O. Rapid Commun. Mass. Spectrom. 19, 3737–3742 (2005).

    Article  Google Scholar 

  34. 34.

    Stichler, W. Interlaboratory comparison of new materials for carbon and oxygen isotope ratio measurements. International Atomic Energy Agency https://inis.iaea.org/search/search.aspx?orig_q=RN:27021335 (1995).

  35. 35.

    Verkouteren, R. M. & Klinedinst, D. B. Value assignment and uncertainty estimation of selected light stable isotope reference materials: RMs 8543-8545, RMs 8562-8564, and RM 8566. NIST Special Publication 260-149 (2004).

  36. 36.

    Ishimura, T., Tsunogai, U. & Nakagawa, F. Grain-scale heterogeneities in the stable carbon and oxygen isotopic compositions of the international standard calcite materials (NBS 19, NBS 18, IAEA-CO-1, and IAEA-CO-8). Rapid Commun. Mass. Spectrom. 22, 1925–1932 (2008).

    Article  Google Scholar 

  37. 37.

    Hagemann, R., Nief, G. & Roth, E. Absolute isotopic scale for deuterium analysis of natural waters. Absolute D/H ratio for SMOW. Tellus 22, 712–715 (1970).

    Article  Google Scholar 

  38. 38.

    De Wit, J. C., van der Straaten, C. M. & Mook, W. G. Determination of the absolute hydrogen isotopic ratio of V-SMOW and SLAP. Geostand. Newsl. 4, 33–36 (1980).

    Article  Google Scholar 

  39. 39.

    Gonfiantini, R. Advisory group meeting on stable isotope reference samples for geochemical and hydrological investigations, 19-21 September 1983: Report to the Director General (International Atomic Energy Agency, 1984); http://www-naweb.iaea.org/NAALIHL/docs/pub/IAEA-1984-Gonfiantini_AGMeeting-StableIsotopeRM.pdf

  40. 40.

    Meijer, H. A. J., Neubert, R. E. M. & Visser, G. H. Cross contamination in dual inlet isotope ratio mass spectrometers. Int. J. Mass. Spectrom. 198, 45–61 (2000).

    Article  Google Scholar 

  41. 41.

    Meijer, H. A. J. & Li, W. J. The use of electrolysis for accurate δ17O and δ18O isotope measurements in water. Isot. Environ. Health Stud. 34, 349–369 (1998).

    Article  Google Scholar 

  42. 42.

    Landais, A., Winkler, R. & Prié, F. Triple isotopic composition of oxygen in water from ice cores. Application Note 30287, Thermo Scientific (2014).

  43. 43.

    Wostbrock, J. A. G., Cano, E. J. & Sharp, Z. D. An internally consistent triple oxygen isotope calibration of standards for silicates, carbonates and air relative to VSMOW2 and SLAP2. Chem. Geol. 533, 119432 (2020).

    Article  Google Scholar 

  44. 44.

    Schoenemann, S. W., Schauer, A. J. & Steig, E. J. Measurement of SLAP2 and GISP δ17O and proposed VSMOW-SLAP normalization for δ17O and 17Oexcess. Rapid Commun. Mass. Spectrom. 27, 582–590 (2013).

    Article  Google Scholar 

  45. 45.

    Berman, E. S. F., Levin, N. E., Landais, A., Li, S. & Owano, T. Measurement of δ18O, δ17O, and 17O-excess in water by off-axis integrated cavity output spectroscopy and isotope ratio mass spectrometry. Anal. Chem. 85, 10392–10398 (2013).

    Article  Google Scholar 

  46. 46.

    Steig, E. J. et al. Calibrated high-precision 17O-excess measurements using cavity ring-down spectroscopy with laser-current-tuned cavity resonance. Atmos. Meas. Tech. 7, 2421–2435 (2014).

    Article  Google Scholar 

  47. 47.

    Hofmann, M. E. G., Horváth, B. & Pack, A. Triple oxygen isotope equilibrium fractionation between carbon dioxide and water. Earth Planet Sci. Lett. 319, 159–164 (2012).

    Article  Google Scholar 

  48. 48.

    Barkan, E. et al. Calibration of δ17O and 17Oexcess values of three international standards: IAEA-603, NBS19 and NBS18. Rapid Commun. Mass. Spectrom. 33, 737–740 (2019).

    Article  Google Scholar 

  49. 49.

    Fosu, B. R., Subba, R., Peethambaran, R., Bhattacharya, S. K. & Ghosh, P. Technical Note: Developments and applications in triple oxygen isotope analysis of carbonates. ACS Earth Space Chem. 4, 702–710 (2020).

    Article  Google Scholar 

  50. 50.

    Assonov, S., Fajgelj, A., Hélie, J. F. & Gröning, M. Characterisation of new reference materials IAEA-610, IAEA-611 and IAEA-612 aimed at the VPDB δ13C scale realisation with small uncertainty. Rapid Commun. Mass Spectrom. 35, e9014 (2021).

    Google Scholar 

  51. 51.

    Qi, H. et al. USGS44, a new high-purity calcium carbonate reference material for δ13C measurements. Rapid Commun. Mass. Spectrom. 35, e9006 (2021).

    Article  Google Scholar 

  52. 52.

    Coplen, T. B. et al. New guidelines for δ13C measurements. Anal. Chem. 78, 2439–2441 (2006).

    Article  Google Scholar 

  53. 53.

    Assonov, S., Gröning, M. & Fajgelj, A. in 18th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques (GGMT-2015) WMO-GAW Report No. 229 76–80 (International Atomic Energy Agency, 2016).

  54. 54.

    [Anon]. Standard atomic weights of 14 chemical elements revised Chem. Int. 40, 23–24 (2018).

  55. 55.

    Boato, G. Isotope fractionation processes in nature. Summer Course on Nuclear Geology, Varenna, 1960, Vol. 129. Laboratorio di Geologia Nucleare (1961).

  56. 56.

    Kim, S.-T., Coplen, T. B. & Horita, J. Normalization of stable isotope data for carbonate minerals: Implementation of IUPAC guidelines. Geochim. Cosmochim. Acta 158, 276–289 (2015).

    Article  Google Scholar 

  57. 57.

    Coplen, T. B., Kendall, C. & Hopple, J. Comparison of stable isotope reference samples. Nature 302, 236–238 (1983).

    Article  Google Scholar 

  58. 58.

    Sharma, T. & Clayton, R. N. Measurement of O18/O16 ratios of total oxygen of carbonates. Geochim. Cosmochim. Acta 29, 1347–1353 (1965).

    Article  Google Scholar 

  59. 59.

    Wendeberg, M., Richter, J. M., Rothe, M. & Brand, W. A. δ18O anchoring to VPDB: calcite digestion with 18O-adjusted ortho-phosphoric acid. Rapid Commun. Mass. Spectrom. 25, 851–860 (2011).

    Article  Google Scholar 

  60. 60.

    Werner, R. A. & Brand, W. A. Referencing strategies and techniques in stable isotope ratio analysis. Rapid Commun. Mass. Spectrom. 15, 501–519 (2001).

    Article  Google Scholar 

  61. 61.

    Brand, W. A., Assonov, S. & Coplen, T. B. Correction for the 17O interference in δ(13C) measurements when analyzing CO2 with stable isotope mass spectrometry (IUPAC Technical Report). Pure Appl. Chem. 82, 1719–1733 (2010).

    Article  Google Scholar 

  62. 62.

    Assonov, S. S. & Brenninkmeijer, C. A. M. On the 17O correction for CO2 mass spectrometric isotopic analysis. Rapid Commun. Mass. Spectrom. 17, 1007–1016 (2003).

    Article  Google Scholar 

  63. 63.

    Assonov, S. S. & Brenninkmeijer, C. A. M. A redetermination of absolute values for 17RVPDB- CO2 and 17RVSMOW. Rapid Commun. Mass. Spectrom. 17, 1017–1029 (2003).

    Article  Google Scholar 

  64. 64.

    Coplen, T. B. & Kendall, C. Preparation and stable isotope determination of NBS-16 and NBS-17 carbon-dioxide reference samples. Anal. Chem. 54, 2611–2612 (1982).

    Article  Google Scholar 

  65. 65.

    Crotwell, A. Steinbacher, M. & World Meteorological Organization (WMO). 19th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Measurement Techniques (GGMT-2017) (WMO, 2017).

  66. 66.

    Jouzel, J. Water stable isotopes: Atmospheric composition and applications in polar ice core studies. Treatise Geochem. 4, 347 (2003).

    Google Scholar 

  67. 67.

    Craig, H. & Gordon, L. I. in Atmospheric Chemistry 277–374 (Laboratorio di Geologia Nucleare, Universita di Pisà, 1965).

  68. 68.

    Galewsky, J. et al. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle. Rev. Geophys. 54, 809–865 (2016).

    Article  Google Scholar 

  69. 69.

    Gat, J. in Physics and Chemistry of Lakes (eds Lerman, A., Imboden, D. M., & Gat, J. R.) 139–165 (Springer, 1995).

  70. 70.

    Bigeleisen, J. & Mayer, M. G. Calculation of equilibrium constants for isotopic exchange reactions. J. Chem. Phys. 15, 261–267 (1947).

    Article  Google Scholar 

  71. 71.

    Richet, P., Bottinga, Y. & Javoy, M. A review of hydrogen, carbon, nitrogen, oxygen, sulphur, and chlorine stable isotope fractionation among gaseous molecules. Annu. Rev. Earth Planet. Sci. 5, 65–110 (1977).

    Article  Google Scholar 

  72. 72.

    Schauble, E. A., Ghosh, P. & Eiler, J. M. Preferential formation of 13C–18O bonds in carbonate minerals, estimated using first-principles lattice dynamics. Geochim. Cosmochim. Acta 70, 2510–2529 (2006).

    Article  Google Scholar 

  73. 73.

    Méheut, M., Lazzeri, M., Balan, E. & Mauri, F. Equilibrium isotopic fractionation in the kaolinite, quartz, water system: Prediction from first-principles density-functional theory. Geochim. Cosmochim. Acta 71, 3170–3181 (2007).

    Article  Google Scholar 

  74. 74.

    Markland, T. E. & Berne, B. J. Unraveling quantum mechanical effects in water using isotopic fractionation. Proc. Natl Acad. Sci. USA 109, 7988–7991 (2012).

    Article  Google Scholar 

  75. 75.

    Pinilla, C. et al. Equilibrium magnesium isotope fractionation between aqueous Mg2+ and carbonate minerals: Insights from path integral molecular dynamics. Geochim. Cosmochim. Acta 163, 126–139 (2015).

    Article  Google Scholar 

  76. 76.

    Wang, L., Ceriotti, M. & Markland, T. E. Quantum kinetic energy and isotope fractionation in aqueous ionic solutions. Phys. Chem. Chem. Phys. 22, 10490–10499 (2020).

    Article  Google Scholar 

  77. 77.

    Van Hook, W. A. Vapor pressures of the isotopic waters and ices. J. Phys. Chem. 72, 1234–1244 (1968).

    Article  Google Scholar 

  78. 78.

    Johansson, M. A. T. S. & Holmberg, K. E. Separation of heavy water in phase equilibria involving pure water or salt-water systems. Acta Chem. Scand. 23, 765–781 (1969).

    Article  Google Scholar 

  79. 79.

    Chialvo, A. A. & Horita, J. Liquid-vapor equilibrium isotopic fractionation of water: how well can classical water models predict it? J. Chem. Phys. 130, 094509 (2009).

    Article  Google Scholar 

  80. 80.

    Ceriotti, M. & Markland, T. E. Efficient methods and practical guidelines for simulating isotope effects. J. Chem. Phys. 138, 014112 (2013).

    Article  Google Scholar 

  81. 81.

    Majoube, M. Fractionnement en oxygene 18 et en deuterium entre l’eau et sa vapeur. J. Chim. Phys. 68, 1423–1436 (1971).

    Article  Google Scholar 

  82. 82.

    Kakiuchi, M. & Matsuo, S. Direct measurements of D/H and 18O/16O fractionation factors between vapor and liquid water in the temperature range from 10 to 40 °C. Geochem. J. 13, 307–311 (1979).

    Article  Google Scholar 

  83. 83.

    Horita, J. & Wesolowski, D. J. Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature. Geochim. Cosmochim. Acta 58, 3425–3437 (1994).

    Article  Google Scholar 

  84. 84.

    Halas, S. About isotope equilibrium between liquid and vapour phases. Isot. Environ. Health Stud. 44, 129–135 (2008).

    Article  Google Scholar 

  85. 85.

    Merlivat, L. & Nief, G. Isotopic fractionation of solid-vapor and liquid-vapor changes of state of water at temperatures below 0 °C. Tellus 19, 122–127 (1967).

    Article  Google Scholar 

  86. 86.

    Majoube, M. Fractionation factor of 18O between water vapour and ice. Nature 226, 1242 (1970).

    Article  Google Scholar 

  87. 87.

    Majoube, M. Fractionnement en 180 entre la glace et la vapeur d’eau. J. Chim. Phys. 68, 625–636 (1971).

    Article  Google Scholar 

  88. 88.

    Ellehoj, M. D., Steen-Larsen, H. C., Johnsen, S. J. & Madsen, M. B. Ice-vapor equilibrium fractionation factor of hydrogen and oxygen isotopes: Experimental investigations and implications for stable water isotope studies. Rapid Commun. Mass. Spectrom. 27, 2149–2158 (2013).

    Article  Google Scholar 

  89. 89.

    Lamb, K. D. et al. Laboratory measurements of HDO/H2O isotopic fractionation during ice deposition in simulated cirrus clouds. Proc. Natl Acad. Sci. USA 114, 5612–5617 (2017).

    Article  Google Scholar 

  90. 90.

    Matsuo, S., Kuniyoshi, H. & Miyake, Y. Vapor pressure of ice containing D2O. Science 145, 1454–1455 (1964).

    Article  Google Scholar 

  91. 91.

    Jakli, G. & Staschewski, D. Vapour pressure of H218O ice (−50 to 0°C) and H218O water (0 to 170°C). J. Chem. Soc. Faraday Trans. 1 73, 1505–1509 (1977).

    Article  Google Scholar 

  92. 92.

    Jancso, G., Pupezin, J. & Van Hook, W. A. Vapor pressure of ice between +10−2 and −10+20. J. Phys. Chem. 74, 2984–2989 (1970).

    Article  Google Scholar 

  93. 93.

    Matsuo, S. & Matsubaya, O. Vapour pressure of H218O ice. Nature 221, 463–464 (1969).

    Article  Google Scholar 

  94. 94.

    Landais, A. et al. Triple isotopic composition of oxygen in surface snow and water vapor at NEEM (Greenland). Geochim. Cosmochim. Acta 77, 304–316 (2012).

    Article  Google Scholar 

  95. 95.

    Wang, X. & Meijer, H. A. J. Ice–liquid isotope fractionation factors for 18O and 2H deduced from the isotopic correction constants for the triple point of water. Isot. Environ. Health Stud. 54, 304–311 (2018).

    Article  Google Scholar 

  96. 96.

    Shmulovich, K. I., Landwehr, D., Simon, K. & Heinrich, W. Stable isotope fractionation between liquid and vapour in water–salt systems up to 600 °C. Chem. Geol. 157, 343–354 (1999).

    Article  Google Scholar 

  97. 97.

    Taube, H. Use of oxygen isotope effects in the study of hydration of ions. J. Phys. Chem. 58, 523–528 (1954).

    Article  Google Scholar 

  98. 98.

    Stewart, M. K. & Friedman, I. Deuterium fractionation between aqueous salt solutions and water vapor. J. Geophys. Res. Atmos. 80, 3812–3818 (1975).

    Article  Google Scholar 

  99. 99.

    Sofer, Z. & Gat, J. R. Activities and concentrations of oxygen-18 in concentrated aqueous salt solutions: Analytical and geophysical implications. Earth Planet Sci. Lett. 15, 232–238 (1972).

    Article  Google Scholar 

  100. 100.

    Horita, J. Stable isotope thermometry: There is more to it than temperature. Geochem. J. 39, 481–496 (2005).

    Article  Google Scholar 

  101. 101.

    Horita, J., Cole, D. R. & Wesolowski, D. J. The activity-composition relationship of oxygen and hydrogen isotopes in aqueous salt solutions: III. Vapor-liquid water equilibration of NaCl solutions to 350°C. Geochim. Cosmochim. Acta 59, 1139–1151 (1995).

    Article  Google Scholar 

  102. 102.

    Horita, J., Cole, D. R. & Wesolowski, D. J. The activity-composition relationship of oxygen and hydrogen isotopes in aqueous salt solutions: II. Vapor-liquid water equilibration of mixed salt solutions from 50 to 100°C and geochemical implications. Geochim. Cosmochim. Acta 57, 4703–4711 (1993).

    Article  Google Scholar 

  103. 103.

    Horita, J., Wesolowski, D. J. & Cole, D. R. The activity-composition relationship of oxygen and hydrogen isotopes in aqueous salt solutions: I. Vapor-liquid water equilibration of single salt solutions from 50 to 100°C. Geochim. Cosmochim. Acta 57, 2797–2817 (1993).

    Article  Google Scholar 

  104. 104.

    Oerter, E., Singleton, M. & Davisson, M. L. Hydrogen and oxygen stable isotope dynamics of hyper-saline and salt-saturated aqueous solutions. Geochim. Cosmochim. Acta 238, 316–328 (2017).

    Article  Google Scholar 

  105. 105.

    Merlivat, L. Molecular diffusivities of H216O, HD16O, and H218O in gases. J. Chem. Phys. 69, 2864–2871 (1978).

    Article  Google Scholar 

  106. 106.

    Cappa, C. D., Hendricks, M. B., DePaolo, D. J. & Cohen, R. C. Isotopic fractionation of water during evaporation. J. Geophys. Res. Atmos. 108, 4525 (2003).

    Article  Google Scholar 

  107. 107.

    Barkan, E. & Luz, B. Diffusivity fractionations of H216O/H217O and H216O/H218O in air and their implications for isotope hydrology. Rapid Commun. Mass. Spectrom. 21, 2999–3005 (2007).

    Article  Google Scholar 

  108. 108.

    Luz, B., Barkan, E., Yam, R. & Shemesh, A. Fractionation of oxygen and hydrogen isotopes in evaporating water. Geochim. Cosmochim. Acta 73, 6697–6703 (2009).

    Article  Google Scholar 

  109. 109.

    Schmidt, G. A., Hoffmann, G., Shindell, D. T. & Hu, Y. Modeling atmospheric stable water isotopes and the potential for constraining cloud processes and stratosphere-troposphere water exchange. J. Geophys. Res. Atmos. 110, D21314 (2005).

    Article  Google Scholar 

  110. 110.

    Cernusak, L. A., Farquhar, G. D. & Pate, J. S. Environmental and physiological controls over oxygen and carbon isotope composition of Tasmanian blue gum, Eucalyptus globulus. Tree Physiol. 25, 129–146 (2005).

    Article  Google Scholar 

  111. 111.

    Lécuyer, C. et al. D/H fractionation during the sublimation of water ice. Icarus 285, 1–7 (2017).

    Article  Google Scholar 

  112. 112.

    Ebner, P., Steen-Larsen, H. C., Stenni, B., Schneebeli, M. & Steinfeld, A. Experimental observation of transient δ18O interaction between snow and advective airflow under various temperature gradient conditions. Cryosphere Discuss. 11, 1733–1743 (2017).

    Article  Google Scholar 

  113. 113.

    Sokratov, S. A. & Golubev, V. N. Snow isotopic content change by sublimation. J. Glaciol. 55, 823–828 (2009).

    Article  Google Scholar 

  114. 114.

    Ekaykin, A. A., Hondoh, T., Lipenkov, V. Y. & Miyamoto, A. Post-depositional changes in snow isotope content: preliminary results of laboratory experiments. Clim. Past. Discuss. 5, 2239–2267 (2009).

    Google Scholar 

  115. 115.

    Stichler, W. et al. Influence of sublimation on stable isotope records recovered from high-altitude glaciers in the tropical Andes. J. Geophys. Res. Atmos. 106, 22613–22620 (2001).

    Article  Google Scholar 

  116. 116.

    Steen-Larsen, H. C. et al. What controls the isotopic composition of Greenland surface snow? Clim. Past. 10, 377–392 (2014).

    Article  Google Scholar 

  117. 117.

    Ritter, F. et al. Isotopic exchange on the diurnal scale between near-surface snow and lower atmospheric water vapor at Kohnen station, East Antarctica. Cryosphere Discuss. 10, 1647–1663 (2016).

    Article  Google Scholar 

  118. 118.

    Madsen, M. V. et al. Evidence of isotopic fractionation during vapor exchange between the atmosphere and the snow surface in Greenland. J. Geophys. Res. Atmos. 124, 2932–2945 (2019).

    Article  Google Scholar 

  119. 119.

    Steen-Larsen, H. C. et al. Continuous monitoring of summer surface water vapor isotopic composition above the Greenland Ice Sheet. Atmos. Chem. Phys. 13, 4815–4828 (2013).

    Article  Google Scholar 

  120. 120.

    Casado, M. et al. Archival of the water stable isotope signal in East Antarctic ice cores. Cryosphere Discuss. https://doi.org/10.5194/tc-2016-263 (2016).

    Article  Google Scholar 

  121. 121.

    Werner, M., Langebroek, P. M., Carlsen, T., Herold, M. & Lohmann, G. Stable water isotopes in the ECHAM5 general circulation model: Toward high-resolution isotope modeling on a global scale. J. Geophys. Res. Atmos. 116, D15109 (2011).

    Article  Google Scholar 

  122. 122.

    Risi, C., Bony, S., Vimeux, F. & Jouzel, J. Water-stable isotopes in the LMDZ4 general circulation model: Model evaluation for present-day and past climates and applications to climatic interpretations of tropical isotopic records. J. Geophys. Res. Atmos. 115, D12118 (2010).

    Article  Google Scholar 

  123. 123.

    Tindall, J. C., Valdes, P. J. & Sime, L. C. Stable water isotopes in HadCM3: Isotopic signature of El Niño–Southern Oscillation and the tropical amount effect. J. Geophys. Res. Atmos. 114, D04111 (2009).

    Article  Google Scholar 

  124. 124.

    Yoshimura, K., Kanamitsu, M., Noone, D. & Oki, T. Historical isotope simulation using reanalysis atmospheric data. J. Geophys. Res. Atmos. 113, D19108 (2008).

    Article  Google Scholar 

  125. 125.

    Nusbaumer, J., Wong, T. E., Bardeen, C. & Noone, D. Evaluating hydrological processes in the Community Atmosphere Model Version 5 (CAM5) using stable isotope ratios of water. J. Adv. Model. Earth Syst. 9, 949–977 (2017).

    Article  Google Scholar 

  126. 126.

    Risi, C., Landais, A., Winkler, R. & Vimeux, F. Can we determine what controls the spatio-temporal distribution of d-excess and 17O-excess in precipitation using the LMDZ general circulation model? Clim. Past. 9, 2173–2193 (2013).

    Article  Google Scholar 

  127. 127.

    Schoenemann, S. W. & Steig, E. J. Seasonal and spatial variations of 17Oexcess and dexcess in Antarctic precipitation: Insights from an intermediate complexity isotope model. J. Geophys. Res. Atmos. 121, 11,215–11,247 (2016).

    Article  Google Scholar 

  128. 128.

    Jouzel, J. & Merlivat, L. Deuterium and oxygen 18 in precipitation: Modeling of the isotopic effects during snow formation. J. Geophys. Res. Atmos. 89, 11749–11757 (1984).

    Article  Google Scholar 

  129. 129.

    Gallet, J. C., Domine, F., Savarino, J., Dumont, M. & Brun, E. The growth of sublimation crystals and surface hoar on the Antarctic plateau. Cryosphere 8, 1205–1215 (2014).

    Article  Google Scholar 

  130. 130.

    Genthon, C., Six, D., Gallée, H., Grigioni, P. & Pellegrini, A. Two years of atmospheric boundary layer observations on a 45-m tower at Dome C on the Antarctic plateau. J. Geophys. Res. Atmos. 118, 3218–3232 (2013).

    Article  Google Scholar 

  131. 131.

    Style, R. W. & Worster, M. G. Frost flower formation on sea ice and lake ice. Geophys. Res. Lett. 36, L11501 (2009).

    Article  Google Scholar 

  132. 132.

    Gettelman, A., Walden, V. P., Miloshevich, L. M., Roth, W. L. & Halter, B. Relative humidity over Antarctica from radiosondes, satellites, and a general circulation model. J. Geophys. Res. Atmos. 111, D09S13 (2006).

    Article  Google Scholar 

  133. 133.

    Ciais, P. & Jouzel, J. Deuterium and oxygen 18 in precipitation: Isotopic model, including mixed cloud processes. J. Geophys. Res. Atmos. 99, 16793–16803 (1994).

    Article  Google Scholar 

  134. 134.

    Casado, M. et al. Experimental determination and theoretical framework of kinetic fractionation at the water vapour–ice interface at low temperature. Geochim. Cosmochim. Acta 174, 54–69 (2016).

    Article  Google Scholar 

  135. 135.

    Gkinis, V. et al. Water isotopic ratios from a continuously melted ice core sample. Atmos. Meas. Tech. 4, 2531–2542 (2011).

    Article  Google Scholar 

  136. 136.

    Johnsen, S. J. et al. in Physics of Ice Core Records (ed. Hondoh, T.) 121–140 (Hokkaido Univ. Press, 2000).

  137. 137.

    Johnsen, S. J. in Isotopes and Impurities in Snow and Ice 210–219 (International Association of Hydrological Sciences, 1977).

  138. 138.

    van der Wel, L. G., Gkinis, V., Pohjola, V. A. & Meijer, H. A. J. Snow isotope diffusion rates measured in a laboratory experiment. J. Glaciol. 57, 30–38 (2011).

    Article  Google Scholar 

  139. 139.

    Simonsen, S. B. et al. Past surface temperatures at the NorthGRIP drill site from the difference in firn diffusion of water isotopes. Clim. Past. 7, 1327–1335 (2011).

    Article  Google Scholar 

  140. 140.

    Holme, C., Gkinis, V. & Vinther, B. M. Molecular diffusion of stable water isotopes in polar firn as a proxy for past temperatures. Geochim. Cosmochim. Acta 225, 128–145 (2018).

    Article  Google Scholar 

  141. 141.

    Kahle, E. C., Holme, C., Jones, T. R., Gkinis, V. & Steig, E. J. A generalized approach to estimating diffusion length of stable water isotopes from ice-core data. J. Geophys. Res. Earth Surf. 123, 2377–2391 (2018).

    Article  Google Scholar 

  142. 142.

    Gkinis, V., Simonsen, S. B., Buchardt, S. L., White, J. W. C. & Vinther, B. M. Water isotope diffusion rates from the NorthGRIP ice core for the last 16,000 years – Glaciological and paleoclimatic implications. Earth. Planet. Sci. Lett. 405, 132–141 (2014).

    Article  Google Scholar 

  143. 143.

    van der Wel, L. G., Been, H. A., Van de Wal, R. S. W., Smeets, C. J. P. & Meijer, H. A. J. Constraints on the δ2H diffusion rate in firn from field measurements at Summit, Greenland. Cryosphere Discuss. 9, 1089–1103 (2015).

    Article  Google Scholar 

  144. 144.

    van der Wel, G., Fischer, H., Oerter, H., Meyer, H. & Meijer, H. A. J. Estimation and calibration of the water isotope differential diffusion length in ice core records. Cryosphere Discuss. 9, 1601–1616 (2015).

    Article  Google Scholar 

  145. 145.

    Merlivat, L. & Coantic, M. Study of mass transfer at the air-water interface by an isotopic method. J. Geophys. Res. Atmos. 80, 3455–3464 (1975).

    Article  Google Scholar 

  146. 146.

    Merlivat, L. & Jouzel, J. Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. J. Geophys. Res. Ocean. 84, 5029–5033 (1979).

    Article  Google Scholar 

  147. 147.

    Uemura, R., Barkan, E., Abe, O. & Luz, B. Triple isotope composition of oxygen in atmospheric water vapor. Geophys. Res. Lett. 37, L04402 (2010).

    Article  Google Scholar 

  148. 148.

    Benetti, M. et al. Deuterium excess in marine water vapor: Dependency on relative humidity and surface wind speed during evaporation. J. Geophys. Res. Atmos. 119, 584–593 (2014).

    Article  Google Scholar 

  149. 149.

    Pfahl, S. & Wernli, H. Air parcel trajectory analysis of stable isotopes in water vapor in the eastern Mediterranean. J. Geophys. Res. Atmos. 113, D20104 (2008).

    Article  Google Scholar 

  150. 150.

    Steen-Larsen, H. C. et al. Climatic controls on water vapor deuterium excess in the marine boundary layer of the North Atlantic based on 500 days of in situ, continuous measurements. Atmos. Chem. Phys. 14, 7741–7756 (2014).

    Article  Google Scholar 

  151. 151.

    Steen-Larsen, H. C. et al. Moisture sources and synoptic to seasonal variability of North Atlantic water vapor isotopic composition. J. Geophys. Res. Atmos. 120, 5757–5774 (2015).

    Article  Google Scholar 

  152. 152.

    Bonne, J.-L. et al. Resolving the controls of water vapour isotopes in the Atlantic sector. Nat. Commun. 10, 1632 (2019).

    Article  Google Scholar 

  153. 153.

    Cernusak, L. A. et al. Stable isotopes in leaf water of terrestrial plants. Plant Cell Environ. 39, 1087–1102 (2016).

    Article  Google Scholar 

  154. 154.

    Dongmann, G., Nürnberg, H. W., Förstel, H. & Wagener, K. On the enrichment of H218O in the leaves of transpiring plants. Radiat. Environ. Biophys. 11, 41–52 (1974).

    Article  Google Scholar 

  155. 155.

    Farquhar, G. D. & Lloyd, J. in Stable Isotopes and Plant Carbon — Water Relations (eds Ehleringer J. R., Hall A. E., & Farquhar G. D.) 47–70 (Academic, 1993).

  156. 156.

    Farquhar, G. D., Hubick, K. T., Condon, A. G. & Richards, R. A. Cin Stable Isotopes in Ecological Research Vol. 68 21–40 (Springer, 1989).

  157. 157.

    Farquhar, G. D. & Gan, K. S. On the progressive enrichment of the oxygen isotopic composition of water along a leaf. Plant Cell Environ. 26, 1579–1597 (2003).

    Article  Google Scholar 

  158. 158.

    Ripullone, F. et al. Environmental effects on oxygen isotope enrichment of leaf water in cotton leaves. Plant Physiol. 146, 729–736 (2008).

    Article  Google Scholar 

  159. 159.

    Li, S., Levin, N. E., Soderberg, K., Dennis, K. J. & Caylor, K. K. Triple oxygen isotope composition of leaf waters in Mpala, central Kenya. Earth Planet Sci. Lett. 468, 38–50 (2017).

    Article  Google Scholar 

  160. 160.

    Farquhar, G. D. & Cernusak, L. A. On the isotopic composition of leaf water in the non-steady state. Funct. Plant Biol. 32, 293–303 (2005).

    Article  Google Scholar 

  161. 161.

    Pendall, E., Williams, D. G. & Leavitt, S. W. Comparison of measured and modeled variations in pinon pine leaf water isotopic enrichment across a summer moisture gradient. Oecologia 145, 605 (2005).

    Article  Google Scholar 

  162. 162.

    Beck, W. C., Grossman, E. L. & Morse, J. W. Experimental studies of oxygen isotope fractionation in the carbonic acid system at 15°, 25°, and 40°C. Geochim. Cosmochim. Acta 69, 3493–3503 (2005).

    Article  Google Scholar 

  163. 163.

    Kim, S.-T., Hillaire-Marcel, C. & Mucci, A. Mechanisms of equilibrium and kinetic oxygen isotope effects in synthetic aragonite at 25 °C. Geochim. Cosmochim. Acta 70, 5790–5801 (2006).

    Article  Google Scholar 

  164. 164.

    Brenninkmeijer, C. A. M., Kraft, P. & Mook, W. G. Oxygen isotope fractionation between CO2 and H2O. Chem. Geol. 41, 181–190 (1983).

    Article  Google Scholar 

  165. 165.

    Coplen, T. B., Friedman, I. & O’Neil, J. R. Comment on the International Atomic Energy Agency Report on the Advisory Group Meeting on Stable Isotope Reference Samples for Geochemical and Hydrological Investigation, Vienna, Austria (U.S. Geological Survey, 1984).

  166. 166.

    Kim, S.-T. & O’Neil, J. R. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim. Cosmochim. Acta 61, 3461–3475 (1997).

    Article  Google Scholar 

  167. 167.

    Kim, S.-T., O’Neil, J. R., Hillaire-Marcel, C. & Mucci, A. Oxygen isotope fractionation between synthetic aragonite and water: Influence of temperature and Mg2+ concentration. Geochim. Cosmochim. Acta 71, 4704–4715 (2007).

    Article  Google Scholar 

  168. 168.

    Coplen, T. B. Calibration of the calcite–water oxygen-isotope geothermometer at Devils Hole, Nevada, a natural laboratory. Geochim. Cosmochim. Acta 71, 3948–3957 (2007).

    Article  Google Scholar 

  169. 169.

    Tarutani, T., Clayton, R. N. & Mayeda, T. K. Effect of polymorphism and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water. Geochim. Cosmochim. Acta 33, 987–996 (1969).

    Article  Google Scholar 

  170. 170.

    O’Neil, J. R. & Epstein, S. Oxygen isotope fractionation in the system dolomite-calcite-carbon dioxide. Science 152, 198–201 (1966).

    Article  Google Scholar 

  171. 171.

    O’Neil, J. R., Clayton, R. N. & Mayeda, T. K. Oxygen isotope fractionation in divalent metal carbonates. J. Chem. Phys. 51, 5547–5558 (1969).

    Article  Google Scholar 

  172. 172.

    Shackleton, N. Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacial. Colloq. CNRS 219, 203–209 (1974).

    Google Scholar 

  173. 173.

    McCrea, J. M. On the isotopic chemistry of carbonates and a paleotemperature scale. J. Chem. Phys. 18, 849–853 (1950).

    Article  Google Scholar 

  174. 174.

    Kim, S.-T., Mucci, A. & Taylor, B. E. Phosphoric acid fractionation factors for calcite and aragonite between 25 and 75 °C: Revisited. Chem. Geol. 246, 135–146 (2007).

    Article  Google Scholar 

  175. 175.

    Swart, P. K., Burns, S. J. & Leder, J. J. Fractionation of the stable isotopes of oxygen and carbon in carbon dioxide during the reaction of calcite with phosphoric acid as a function of temperature and technique. Chem. Geol. 86, 89–96 (1991).

    Google Scholar 

  176. 176.

    Chacko, T., Mayeda, T. K., Clayton, R. N. & Goldsmith, J. R. Oxygen and carbon isotope fractionations between CO2 and calcite. Geochim. Cosmochim. Acta 55, 2867–2882 (1991).

    Article  Google Scholar 

  177. 177.

    Chacko, T., Cole, D. R. & Horita, J. Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems. Rev. Mineral. Geochem. 43, 1–81 (2001).

    Article  Google Scholar 

  178. 178.

    Romanek, C. S., Grossman, E. L. & Morse, J. W. Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate. Geochim. Cosmochim. Acta 56, 419–430 (1992).

    Article  Google Scholar 

  179. 179.

    Levitt, N. P. et al. Near equilibrium 13C–18O bonding during inorganic calcite precipitation under chemo-stat conditions. Geochem. Geophys. Geosyst. 19, 901–920 (2018).

    Article  Google Scholar 

  180. 180.

    El-Shenawy, M. I., Kim, S.-T. & Schwarcza, H. P. Carbon and oxygen isotope systematics in cave environments: Lessons from an artificial cave “McMaster Cave”. Geochim. Cosmochim. Acta 272, 137–159 (2020).

    Article  Google Scholar 

  181. 181.

    Thode, H., Shima, M., Rees, C. & Krishnamurty, K. Carbon-13 isotope effects in systems containing carbon dioxide, bicarbonate, carbonate, and metal ions. Can. J. Chem. 43, 582–595 (1965).

    Article  Google Scholar 

  182. 182.

    Deuser, W. & Degens, E. Carbon isotope fractionation in the system CO2(gas) — CO2(aqueous) — HCO3(aqueous). Nature 215, 1033–1035 (1967).

    Article  Google Scholar 

  183. 183.

    Vogel, J., Grootes, P. & Mook, W. Isotopic fractionation between gaseous and dissolved carbon dioxide. Z. Phys. A Hadrons Nucl. 230, 225–238 (1970).

    Article  Google Scholar 

  184. 184.

    Mook, W., Bommerson, J. & Staverman, W. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet Sci. Lett. 22, 169–176 (1974).

    Article  Google Scholar 

  185. 185.

    Mook, W. 13C in atmospheric CO2. Neth. J. Sea Res. 20, 211–223 (1986).

    Article  Google Scholar 

  186. 186.

    Leśniak, P. & Sakai, H. Carbon isotope fractionation between dissolved carbonate (CO32−) and CO2(g) at 25° and 40°C. Earth Planet. Sci. Lett. 95, 297–301 (1989).

    Article  Google Scholar 

  187. 187.

    Zhang, J., Quay, P. D. & Wilbur, D. O. Carbon isotope fractionation during gas-water exchange and dissolution of CO2. Geochim. Cosmochim. Acta 59, 107–114 (1995).

    Article  Google Scholar 

  188. 188.

    Szaran, J. Carbon isotope fractionation between dissolved and gaseous carbon dioxide. Chem. Geol. 150, 331–337 (1998).

    Article  Google Scholar 

  189. 189.

    Wendt, I. Fractionation of carbon isotopes and its temperature dependence in the system CO2-gas-CO2 in solution and HCO3-CO2 in solution. Earth Planet. Sci. Lett. 4, 64–68 (1968).

    Article  Google Scholar 

  190. 190.

    Turner, J. Kinetic fractionation of carbon-13 during calcium carbonate precipitation. Geochim. Cosmochim. Acta 46, 1183–1191 (1982).

    Article  Google Scholar 

  191. 191.

    Halas, S., Szaran, J. & Niezgoda, H. Experimental determination of carbon isotope equilibrium fractionation between dissolved carbonate and carbon dioxide. Geochim. Cosmochim. Acta 61, 2691–2695 (1997).

    Article  Google Scholar 

  192. 192.

    Zeebe, R. E. & Wolf-Gladrow, D. CO2 in Seawater: Equilibrium, Kinetics, Isotopes (Gulf Professional Publishing, 2001).

  193. 193.

    Eiler, J. M. & Schauble, E. 18O13C16O in Earth’s atmosphere. Geochim. Cosmochim. Acta 68, 4767–4777 (2004).

    Article  Google Scholar 

  194. 194.

    Affek, H. P., Xu, X. & Eiler, J. M. Seasonal and diurnal variations of 13C18O16O in air: Initial observations from Pasadena, CA. Geochim. Cosmochim. Acta 71, 5033–5043 (2007).

    Article  Google Scholar 

  195. 195.

    Affek, H. P. & Eiler, J. M. Abundance of mass 47 CO2 in urban air, car exhaust, and human breath. Geochim. Cosmochim. Acta 70, 1–12 (2006).

    Article  Google Scholar 

  196. 196.

    Eiler, J. M. Paleoclimate reconstruction using carbonate clumped isotope thermometry. Quat. Sci. Rev. 30, 3575–3588 (2011).

    Article  Google Scholar 

  197. 197.

    Dennis, K. J., Affek, H. P., Passey, B. H., Schrag, D. P. & Eiler, J. M. Defining an absolute reference frame for ‘clumped’ isotope studies of CO2. Geochim. Cosmochim. Acta 75, 7117–7131 (2011).

    Article  Google Scholar 

  198. 198.

    Huntington, K. W. et al. Methods and limitations of ‘clumped’ CO2 isotope (Δ47) analysis by gas-source isotope ratio mass spectrometry. J. Mass. Spectrom. 44, 1318–1329 (2009).

    Article  Google Scholar 

  199. 199.

    Daëron, M., Blamart, D., Peral, M. & Affek, H. P. Absolute isotopic abundance ratios and the accuracy of Δ47 measurements. Chem. Geol. 441, 83–96 (2016).

    Article  Google Scholar 

  200. 200.

    Bernasconi, S. M. et al. Reducing uncertainties in carbonate clumped isotope analysis through consistent carbonate-based standardization. Geochem. Geophys. Geosyst. 19, 2895–2914 (2018).

    Article  Google Scholar 

  201. 201.

    Davies, A. J. & John, C. M. Reducing contamination parameters for clumped isotope analysis: The effect of lowering Porapak™ Q trap temperature to below −50°C. Rapid Commun. Mass. Spectrom. 31, 1313–1323 (2017).

    Article  Google Scholar 

  202. 202.

    Schmid, T. W. & Bernasconi, S. M. An automated method for ‘clumped-isotope’ measurements on small carbonate samples. Rapid Commun. Mass. Spectrom. 24, 1955–1963 (2010).

    Article  Google Scholar 

  203. 203.

    Ghosh, P., Patecki, M., Rothe, M. & Brand, W. A. Calcite-CO2 mixed into CO2-free air: a new CO2-in-air stable isotope reference material for the VPDB scale. Rapid Commun. Mass. Spectrom. 19, 1097–1119 (2005).

    Article  Google Scholar 

  204. 204.

    Fosu, B. R. et al. Acid digestion of carbonates using break seal method for clumped isotope analysis. Rapid Commun. Mass. Spectrom. 33, 203–214 (2019).

    Article  Google Scholar 

  205. 205.

    El-Shenawy, M. I. & Kim, S.-T. Disordering of 13C–18O bonds in CO2 gas over a heated quartz surface at 50–1100 °C: Insights into the abundance of mass 47 (∆47) in CO2 gas at thermodynamic equilibrium. Chem. Geol. 524, 213–227 (2019).

    Article  Google Scholar 

  206. 206.

    Schauer, A. J., Kelson, J., Saenger, C. & Huntington, K. W. Choice of 17O correction affects clumped isotope (Δ47) values of CO2 measured with mass spectrometry. Rapid Commun. Mass. Spectrom. 30, 2607–2616 (2016).

    Article  Google Scholar 

  207. 207.

    Kelson, J. R., Huntington, K. W., Schauer, A. J., Saenger, C. & Lechler, A. R. Toward a universal carbonate clumped isotope calibration: Diverse synthesis and preparatory methods suggest a single temperature relationship. Geochim. Cosmochim. Acta 197, 104–131 (2017).

    Article  Google Scholar 

  208. 208.

    Zaarur, S., Affek, H. P. & Brandon, M. T. A revised calibration of the clumped isotope thermometer. Earth Planet. Sci. Lett. 382, 47–57 (2013).

    Article  Google Scholar 

  209. 209.

    Dawson, R. R. et al. Eggshell geochemistry reveals ancestral metabolic thermoregulation in Dinosauria. Sci. Adv. 6, eaax9361 (2020).

    Article  Google Scholar 

  210. 210.

    Dennis, K. J. & Schrag, D. P. Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration. Geochim. Cosmochim. Acta 74, 4110–4122 (2010).

    Article  Google Scholar 

  211. 211.

    Bonifacie, M. et al. Calibration of the dolomite clumped isotope thermometer from 25 to 350°C, and implications for a universal calibration for all (Ca, Mg, Fe)CO3 carbonates. Geochim. Cosmochim. Acta 200, 255–279 (2017).

    Article  Google Scholar 

  212. 212.

    Petersen, S. V. et al. Effects of improved 17O correction on interlaboratory agreement in clumped isotope calibrations, estimates of mineral-specific offsets, and temperature dependence of acid digestion fractionation. Geochem. Geophys. Geosyst. 20, 3495–3519 (2019).

    Article  Google Scholar 

  213. 213.

    Bernasconi, S. M. et al. InterCarb: A community effort to improve interlaboratory standardization of the carbonate clumped isotope thermometer using carbonate standards. Geochem. Geophys. Geosyst. 22, e2020GC009588 (2021).

    Article  Google Scholar 

  214. 214.

    Pramanik, C., Chatterjee, S., Fosu, B. R. & Ghosh, P. Isotopic fractionation during acid digestion of calcite: A combined ab initio quantum chemical simulation and experimental study. Rapid Commun. Mass. Spectrom. 34, e8790 (2020).

    Google Scholar 

  215. 215.

    Swart, P. K., Murray, S. T., Staudigel, P. T. & Hodell, D. A. Oxygen isotopic exchange between CO2 and phosphoric acid: Implications for the measurement of clumped isotopes in carbonates. Geochem. Geophys. Geosyst. 20, 3730–3750 (2019).

    Article  Google Scholar 

  216. 216.

    Pramanik, C., Ghosh, P., Banerjee, S. & Liang, M. C. Ab initio quantum chemical studies of isotopic fractionation during acid digestion reaction of dolomite for clumped isotope application. Rapid Commun. Mass. Spectrom. 34, e8926 (2020).

    Google Scholar 

  217. 217.

    Laboratorio di Geologia Nucleare. Summer Course on Nuclear Geology 1960: Varenna (IT\ICCU\SBL\0137528) 429 (Laboratorio di Geologia Nucleare, Pisa 1961).

  218. 218.

    Tongiorgi, E. Spoleto Conferences in Nuclear Geology. Proceedings, 1965. Laboratorio di Geologia Nucleare, Consiglio nazionale delle richerche 337 (Università di Pisa, 1970).

  219. 219.

    Gonfiantini, R. Standards for stable isotope measurements in natural compounds. Nature 271, 534–536 (1978).

    Article  Google Scholar 

  220. 220.

    IAEA. Information Sheet on the new International Measurement Standards VSMOW2 and SLAP2. IAEA Isotope Hydrology Laboratory, InfoSheet-VSMOW2-SLAP2 (2007).

  221. 221.

    Yakir, D. The paper trail of the 13C of atmospheric CO2 since the industrial revolution period. Environ. Res. Lett. 6, 034007 (2011).

    Article  Google Scholar 

  222. 222.

    Riebesell, U., Körtzinger, A. & Oschlies, A. Sensitivities of marine carbon fluxes to ocean change. Proc. Natl Acad. Sci. USA 106, 20602–20609 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This Technical Review was prepared as an outgrowth of the consultancy meeting to “Review the Current Status of Stable Isotope Fractionation Factors used in Global Climate Models” set up by the International Atomic Energy Agency (IAEA) and held in Vienna, Austria (September 2017). The participants were (in alphabetical order) Sergey Assonov, Marc Blanchard, Prosenjit Ghosh, Manfred Gröning, Claude Hillaire-Marcel, Sang-Tae Kim, Amaëlle Landais, Christophe Lécuyer, Harro A. J. Meijer and Hans Christian Steen-Larsen. The IAEA-Vienna supported all expenses for the consultancy committee meeting in Vienna. We owe special thanks to the three reviewers who contributed with pertinent comments and suggestions on the final version of the Technical Review.

Author information

Affiliations

Authors

Contributions

S.A., P.G., C.H.-M., S.-T.K., A.L. and C.L. (in alphabetical order) wrote the Technical Review using notes and drafts produced during the IAEA-Vienna consultancy meeting. All authors provided feedback during the preparation of this Technical Review.

Corresponding authors

Correspondence to Claude Hillaire-Marcel or Sang-Tae Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

R a

Molar ratio between two isotopes in compound ‘a’, where R is usually the ratio of heavier isotope/lighter isotope.

Reference materials

(RMs). Materials for which an isotopic composition has been assigned by a responsible institution (such as the IAEA, the IUPAC).

PDB

The Pee Dee Belemnitella, the original belemnite fossil from the Cretaceous Pee Dee Formation (USA) analysed by Urey’s group in 1951.

SMOW

Standard Mean Ocean Water; the mean value of marine samples analysed in 1953. It was established as a reference scale in 1961 and realized through the reference material NSB 1.

Isotopologue

A molecule that differs only in its isotopic composition.

Primary RMs

Reference materials that have the lowest possible uncertainty on the current scale realization.

IAEA-603

A Carrara marble carbonate characterized by the IAEA against NBS 19; it replaces NBS 19.

VSMOW

Vienna Standard Mean Ocean Water; a reference material prepared by R. Weiss and H. Craig in 1968 for the IAEA from distilled ocean water mixed with other water to best match the isotopic composition of SMOW.

VPDB

The Vienna Pee Dee Belemnitella, a virtual reference carbonate, where the abbreviation is used to name the respective scale.

Rostrum

The beak (or beak-like) part of a skeleton, here, of a fossil belemnite.

NBS 20

A reference material prepared from a slab of Jurassic limestone from Solnhofen, Germany, that was discontinued because of δ18O drifts.

δ

Isotopic composition of any compound (a) versus a given scale-zero (VPDB or VSMOW), where δa = [(Ra − RVPDB)/RVPDB)] = [(Ra/RVPDB) − 1)] and δ in ‰ = [(Ra/RVPDB) − 1)] × 103.

NBS 19

Also known as TS-Limestone, a reference material prepared from a slab of Carrara marble calibrated against PDB through NBS 20, but is now exhausted.

VSMOW2

VSMOW replacement reference water calibrated by the IAEA in 2009.

SLAP

Standard Light Antarctic Precipitation; the reference water depleted in heavy isotopes versus VSMOW calibrated by the IAEA.

SLAP2

SLAP replacement reference water calibrated by the IAEA in 2009.

17Oexcess

The extent to which the abundance of the 17O-bearing isotopologue of a material is different from that expected based on the abundance of the 18O-bearing isotopologue.

λ

The slope of a reference line for defining an 17O anomaly (or excess) in a ln(1 + δ17O) versus ln(1 + δ18O) system; in water cycle studies, the recommended λ value is 0.528.

NBS 18

A reference material, collected by B. Taylor and prepared by Friedman and others, from a carbonatite from Fen, Norway.

SI

Système International d’unités. In this system, isotope scales and measurement data should be defined and realized as mol/mol ratios of isotope entities.

Linearity issues

When the relation between assigned R values versus those measured with a given instrument differs from a 1:1 linear relationship.

LSVEC

Carbon and Lithium Isotopes in Lithium Carbonate; a lithium carbonate material in use as reference material for Li isotopes, and, for several years, also for carbon, though it is no longer in official use for carbon.

NIST

Formerly the National Bureau of Standards, now the National Institute of Standards and Technology (USA).

α

Isotope fractionation factor; αa-b = Ra/Rb.

Quantum partition function

A term from quantum statistical mechanics describing the energy state of a molecule with a given combination of isotopes; it differs between isotopic combinations, making it essential for theoretical quantification of isotope effects.

Harmonic approximation

An approximation that describes the bonds inside molecules such that the energy levels of the molecule are those of a perfect harmonic oscillator.

Anharmonicity

The deviation of a system from being a harmonic oscillator; anharmonic effects are particularly important for light elements such as hydrogen.

Memory effects

The influence on the measurement results of a sample caused by a previous sample residue in the measuring instrument.

Firn

A state of solid water, with a density between that of fresh snow and solid ice, which is formed at the top 50–100 m of glaciers and ice caps as a result of the pressure of fresh snow above it.

Tortuosity

A quantity describing the shape and effective lengths of pore channels in porous substances.

Differential diffusion

A measure for the difference in diffusion rate for various isotopologues, mostly used for the diffusion rate difference between 2H1H16O and 1H1H18O in snow and firn.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hillaire-Marcel, C., Kim, ST., Landais, A. et al. A stable isotope toolbox for water and inorganic carbon cycle studies. Nat Rev Earth Environ 2, 699–719 (2021). https://doi.org/10.1038/s43017-021-00209-0

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing