Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Combatting global grassland degradation

Abstract

Grasslands are under severe threat from ongoing degradation, undermining their capacity to support biodiversity, ecosystem services and human well-being. Yet, grasslands are largely ignored in sustainable development agendas. In this Perspective, we examine the current state of global grasslands and explore the extent and dominant drivers of their degradation. Socio-ecological solutions are needed to combat degradation and promote restoration. Important strategies include: increasing recognition of grasslands in global policy; developing standardized indicators of degradation; using scientific innovation for effective restoration at regional and landscape scales; and enhancing knowledge transfer and data sharing on restoration experiences. Stakeholder needs can be balanced through standardized assessment and shared understanding of the potential ecosystem service trade-offs in degraded and restored grasslands. The integration of these actions into sustainability policy will aid in halting degradation and enhancing restoration success, and protect the socio-economic, cultural and ecological benefits that grasslands provide.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Degraded grasslands.
Fig. 2: Standardized assessment of grassland degradation and restoration.
Fig. 3: Assessing ecosystem service trade-offs in degraded and restored European grasslands.
Fig. 4: Assessing ecosystem service trade-offs in degraded and restored grasslands in arid and semi-arid Eastern Africa.

Similar content being viewed by others

References

  1. Suttie, J. M. Reynolds, S. G. & Batello, C. Grasslands of the World (FAO, 2005).

  2. O’Mara, F. P. The role of grasslands in food security and climate change. Ann. Bot. 110, 1263–1270 (2012).

    Article  Google Scholar 

  3. Wilsey, B. J. The Biology of Grasslands (Oxford Univ. Press, 2018).

  4. White, R. P. Murray, S., Rohweder, M., Prince, S. D. & Thompson, K. M. Grassland Ecosystems (World Resources Institute, 2000).

  5. Gibbs, H. K. & Salmon, J. M. Mapping the world’s degraded lands. Appl. Geogr. 57, 12–21 (2015).

    Article  Google Scholar 

  6. Lark, T. J., Spawn, S. A., Bougie, M. & Gibbs, H. K. Cropland expansion in the United States produces marginal yields at high costs to wildlife. Nat. Commun. 11, 4295 (2020).

    Article  Google Scholar 

  7. Abberton, M., Conant, R. & Batello, C. (eds) Grassland Carbon Sequestration: Management, Policy and Economics (FAO, 2010).

  8. Gang, C. et al. Quantitative assessment of the contributions of climate change and human activities on global grassland degradation. Environ. Earth Sci. 72, 4273–4282 (2014).

    Article  Google Scholar 

  9. Dong, S., Kassam, K.-A. S., Tourrand, J. F. & Boone, R. B. (eds) Building Resilience of Human-Natural Systems of Pastoralism in the Developing World (Springer, 2016).

  10. Bengtsson, J. et al. Grasslands — more important for ecosystem services than you might think. Ecosphere 10, e02582 (2019).

    Article  Google Scholar 

  11. Kwon, H. Y. et al. in Economics of Land Degradation and Improvement – A Global Assessment for Sustainable Development (eds Nkonya, E., Mirzabaev, A. & von Braun, J.) 197–214 (Springer, 2015).

  12. Murphy, B. P., Andersen, A. N. & Parr, C. L. The underestimated biodiversity of tropical grassy biomes. Philos. Trans. R. Soc. B 371, 20150319 (2016).

    Article  Google Scholar 

  13. Smith, P. et al. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B 363, 789–813 (2008).

    Article  Google Scholar 

  14. Mermoz, S., Bouvet, A., Toan, T. L. & Herold, M. Impacts of the forest definitions adopted by African countries on carbon conservation. Environ. Res. Lett. 13, 104014 (2018).

    Article  Google Scholar 

  15. Erdős, L. et al. The edge of two worlds: A new review and synthesis on Eurasian forest-steppes. Appl. Veg. Sci. 21, 345–362 (2018).

    Article  Google Scholar 

  16. Dengler, J., Janišová, M., Török, P. & Wellstein, C. Biodiversity of Palaearctic grasslands: a synthesis. Agric. Ecosyst. Environ. 182, 1–14 (2014).

    Article  Google Scholar 

  17. Bullock, J. M. et al. in The UK National Ecosystem Assessment Technical Report (UNEP-WCMC, 2011).

  18. Parr, C. L., Lehmann, C. E. R., Bond, W. J., Hoffmann, W. A. & Andersen, A. N. Tropical grassy biomes: misunderstood, neglected, and under threat. Trends Ecol. Evol. 29, 205–213 (2014).

    Article  Google Scholar 

  19. Venter, Z. S., Cramer, M. D. & Hawkins, H. J. Drivers of woody plant encroachment over Africa. Nat. Commun. 9, 2272 (2018).

    Article  Google Scholar 

  20. Palchan, D. & Torfstein, A. A drop in Sahara dust fluxes records the northern limits of the African Humid Period. Nat. Commun. 10, 3803 (2019).

    Article  Google Scholar 

  21. Wilson, J. B., Peet, R. K., Dengler, J. & Pärtel, M. Plant species richness: the world records. J. Veg. Sci. 23, 796–802 (2012).

    Article  Google Scholar 

  22. Eriksson, O. & Cousins, S. A. Historical landscape perspectives on grasslands in Sweden and the Baltic region. Land 3, 300–321 (2014).

    Article  Google Scholar 

  23. Bråthen, K., Pugnaire. F. I. & Bardgett, R. D. The paradox of forbs in grasslands and their legacy of the Mammoth steppe. Front. Ecol. Environ. (in the press).

  24. Shava, S. & Masuku, S. Living currency: The multiple roles of livestock in livelihood sustenance and exchange in the context of rural indigenous communities in southern Africa. South. Afr. J. Environ. Educ. https://doi.org/10.4314/sajee.v35i1.16 (2019).

    Article  Google Scholar 

  25. FAO. Livestock Keepers – Guardians of Biodiversity (FAO, 2009).

  26. Bond, W. J. Ancient grasslands at risk. Science 351, 120–122 (2016).

    Article  Google Scholar 

  27. Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).

    Article  Google Scholar 

  28. Arbieu, U., Grünewald, C., Martín-López, B., Schleuning, M. & Böhning-Gaese, K. Large mammal diversity matters for wildlife tourism in Southern African Protected Areas: Insights for management. Ecosyst. Serv. 31, 481–490 (2018).

    Article  Google Scholar 

  29. Lavorel, S. et al. Historical trajectories in land use pattern and grassland ecosystem services in two European alpine landscapes. Reg. Environ. Change 17, 2251–2264 (2017).

    Article  Google Scholar 

  30. Scurlock, J. M. O. & Hall, D. O. The global carbon sink: a grassland perspective. Glob. Change Biol. 4, 229–233 (1998).

    Article  Google Scholar 

  31. Chang, J. et al. Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands. Nat. Commun. 12, 118 (2021).

    Article  Google Scholar 

  32. Goldstein, A. Protecting irrecoverable carbon in Earth’s ecosystems. Nat. Clim. Change 10, 287–295 (2020).

    Article  Google Scholar 

  33. Conant, R. T., Cerri, C. E., Osborne, B. B. & Paustian, K. Grassland management impacts on soil carbon stocks: a new synthesis. Ecol. Appl. 27, 662–668 (2017).

    Article  Google Scholar 

  34. IPBES. The IPBES Assessment Report on Land Degradation and Restoration (IPBES, 2018).

  35. Cao, J. et al. Grassland degradation on the Qinghai-Tibetan Plateau: reevaluation of causative factors. Rangel. Ecol. Manag. 72, 988–995 (2019).

    Article  Google Scholar 

  36. Andrade, B. O. et al. Grassland degradation and restoration: a conceptual framework of stages and thresholds illustrated by southern Brazilian grasslands. Nat. Conserv. 13, 95–104 (2015).

    Article  Google Scholar 

  37. Okpara, U. T. et al. A social-ecological systems approach is necessary to achieve land degradation neutrality. Environ. Sci. Policy 89, 59–66 (2018).

    Article  Google Scholar 

  38. Castro, A. J. et al. Ecosystem service trade-offs from supply to social demand: A landscape-scale spatial analysis. Landsc. Urban Plan. 132, 102–110 (2014).

    Article  Google Scholar 

  39. Felipe-Lucia, M. R. et al. Ecosystem services flows: why stakeholders’ power relationships matter. PLoS One 10, e0132232 (2015).

    Article  Google Scholar 

  40. Manning, P. et al. Redefining ecosystem multifunctionality. Nat. Ecol. Evol. 2, 427–436 (2018).

    Article  Google Scholar 

  41. Wang, S. et al. Management and land use change effects on soil carbon in northern China’s grasslands: a synthesis. Agric. Ecosyst. Environ. 142, 329–340 (2011).

    Article  Google Scholar 

  42. Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).

    Article  Google Scholar 

  43. Bullock, J. M., Aronson, J., Newton, A. C., Pywell, R. F. & Rey-Benayas, J. M. Restoration of ecosystem services and biodiversity: conflicts and opportunities. Trends Ecol. Evol. 26, 541–549 (2011).

    Article  Google Scholar 

  44. Ridding, L. E., Watson, S. C. L., Newton, A. C., Rowland, C. S. & Bullock, J. M. Ongoing, but slowing, habitat loss in a rural landscape over 85 years. Landsc. Ecol. 35, 257–273 (2020).

    Article  Google Scholar 

  45. Hilker, T., Natsagdorj, E., Waring, R. H., Lyapustin, A. & Wang, Y. J. Satellite observed widespread decline in Mongolian grasslands largely due to overgrazing. Glob. Chang. Biol. 20, 418–428 (2014).

    Article  Google Scholar 

  46. Poschlod, P. & WallisDeVries, M. F. The historical and socioeconomic perspective of calcareous grasslands - lessons from the distant and recent past. Biol. Conserv. 104, 361–376 (2002).

    Article  Google Scholar 

  47. Stevens, C. J., Dise, N. B., Mountford, J. O. & Gowing, D. J. Impact of nitrogen deposition on the species richness of grasslands. Science 303, 1876–1879 (2004).

    Article  Google Scholar 

  48. Aune, S., Bryn, A. & Hovstad, K. A. Loss of semi-natural grassland in a boreal landscape: impacts of agricultural intensification and abandonment. J. Land Use Sci. 13, 375–390 (2018).

    Article  Google Scholar 

  49. Veldman, J. W. et al. Where tree planting and forest expansion are bad for biodiversity and ecosystem services. Bioscience 65, 1011–1018 (2015).

    Article  Google Scholar 

  50. Shukla, P. R. et al. (eds) Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (CGIAR, 2019).

  51. Burrell, A. L., Evans, J. P. & De Kauwe, M. G. Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification. Nat. Commun. 11, 3853 (2020).

    Article  Google Scholar 

  52. Archer, S. R. et al. in Rangeland Systems: Processes, Management and Challenges (ed. Briske, D. D.) 25–84 (Springer, 2017).

  53. Zhang, G. et al. Exacerbated grassland degradation and desertification in Central Asia during 2000–2014. Ecol. Appl. 28, 442–456 (2018).

    Article  Google Scholar 

  54. Dudley, N. et al. Grassland and Savannah Ecosystems: An Urgent Need for Conservation and Sustainable Management (WWF Deutschland, 2020).

  55. Henderson, K. A. et al. Landowner perceptions of the value of natural forest and natural grassland in a mosaic ecosystem in southern Brazil. Sustain. Sci. 11, 321–330 (2016).

    Article  Google Scholar 

  56. Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).

    Article  Google Scholar 

  57. Durigan, G., Pilon, N. A. P., Assis, G. B., Souza, F. M. & Baitello, J. B. Plantas Pequenas do Cerrado: Biodiversidade Negligenciada. (Instituto Florestal, Secretaria do Meio Ambiente, 2018).

  58. Assandri, G., Bogliani, G., Pedrini, P. & Brambilla, M. Toward the next Common Agricultural Policy reform: Determinants of avian communities in hay meadows reveal current policy’s inadequacy for biodiversity conservation in grassland ecosystems. J. Appl. Ecol. 56, 604–617 (2019).

    Article  Google Scholar 

  59. Liang, L., Chen, F., Shi, L. & Niu, S. NDVI-derived forest area change and its driving factors in China. PLoS One 13, e0205885 (2018).

    Article  Google Scholar 

  60. Cao, S. et al. Damage caused to the environment by reforestation policies in arid and semi-arid areas of China. Ambio 39, 279–283 (2010).

    Article  Google Scholar 

  61. Cao, S., Wang, G. & Chen, l Questionable value of planting thirsty trees in dry regions. Nature 465, 31 (2010).

    Article  Google Scholar 

  62. Zastrow, M. China’s tree-planting drive could falter in a warming world. Nature 573, 474–475 (2019).

    Article  Google Scholar 

  63. Landau, E., da Silva, G. A., Moura, L., Hirsch, A., & Guimaraes, D. Dinâmica da produção agropecuária e da paisagem natural no Brasil nas últimas décadas: sistemas agrícolas, paisagem natural e análise integrada do espaço rural (Embrapa Milho e Sorgo-Livro científico (ALICE), 2020).

  64. Wolff, S., Schrammeijer, E. A., Schulp, C. J. & Verburg, P. H. Meeting global land restoration and protection targets: What would the world look like in 2050? Glob. Environ. Change 52, 259–272 (2018).

    Article  Google Scholar 

  65. Bastin, J. F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    Article  Google Scholar 

  66. Veldman, J. W. et al. Comment on “The global tree restoration potential”. Science 366, eaay7976 (2019).

    Article  Google Scholar 

  67. Dass, P., Houlton, B. Z., Wang, Y. & Warlind, D. Grasslands may be more reliable carbon sinks than forests in California. Environ. Res. Lett. 13, 074027 (2018).

    Article  Google Scholar 

  68. Jackson, R. B., Banner, J. L., Jobbágy, E. G., Pockman, W. T. & Wall, D. H. Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418, 623–626 (2002).

    Article  Google Scholar 

  69. Jackson, R. B. et al. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annu. Rev. Ecol. Evol. Syst. 48, 419–445 (2017).

    Article  Google Scholar 

  70. Berthrong, S. T., Jobbágy, E. G. & Jackson, R. B. A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecol. Appl. 19, 2228–2241 (2009).

    Article  Google Scholar 

  71. Kirschbaum, M. U. F. et al. Implications of albedo changes following afforestation on the benefits of forests as carbon sinks. Biogeosciences 8, 3687–3696 (2011).

    Article  Google Scholar 

  72. Conant, R. T. Challenges and Opportunities for Carbon Sequestration in Grassland Systems. A Technical Report on Grassland Management and Climate Change Mitigation (FAO, 2010).

  73. Wu, G. L. et al. Trade-off between vegetation type, soil erosion control and surface water in global semi-arid regions: A meta-analysis. J. Appl. Ecol. 57, 875–885 (2020).

    Article  Google Scholar 

  74. Veldman, J. W. et al. Tyranny of trees in grassy biomes. Science 347, 484–485 (2015).

    Article  Google Scholar 

  75. Burrascano, S. et al. Current European policies are unlikely to jointly foster carbon sequestration and protect biodiversity. Biol. Conserv. 201, 370–376 (2016).

    Article  Google Scholar 

  76. Vanak, A. T., Hiremath, A. & Rai, N. Wastelands of the mind: Identity crisis of India’s tropical savannas. Curr. Conserv. 7, 16–23 (2014).

    Google Scholar 

  77. Ratnam, J., Tomlinson, K. W., Rasquinha, D. N. & Sankaran, M. Savannahs of Asia: antiquity, biogeography, and an uncertain future. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150305 (2016).

    Article  Google Scholar 

  78. Overbeck, G. E. et al. Conservation in Brazil needs to include non-forest ecosystems. Divers. Distrib. 21, 1455–1460 (2015).

    Article  Google Scholar 

  79. Kumar, D. et al. Misinterpretation of Asian savannas as degraded forest can mislead management and conservation policy under climate change. Biol. Conserv. 241, 108293 (2020).

    Article  Google Scholar 

  80. Kemp, D. R. et al. Innovative grassland management systems for environmental and livelihood benefits. Proc. Natl Acad. Sci. USA 110, 8369–8374 (2013).

    Article  Google Scholar 

  81. Scholes, R. et al. (eds) Summary for Policymakers of the Assessment Report on Land Degradation and Restoration of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2018).

  82. Lamarque, P. et al. Stakeholder perceptions of grassland ecosystem services in relation to knowledge on soil fertility and biodiversity. Reg. Environ. Change 11, 791–804 (2011).

    Article  Google Scholar 

  83. Hauck, J., Schmidt, J. & Werner, A. Using social network analysis to identify key stakeholders in agricultural biodiversity governance and related land-use decisions at regional and local level. Ecol. Soc. 21, 49 (2016).

    Article  Google Scholar 

  84. Reid, R. S., Fernández-Giménez, M. E. & Galvin, K. A. Dynamics and resilience of rangelands and pastoral peoples around the globe. Annu. Rev. Environ. Resour. 39, 217–242 (2014).

    Article  Google Scholar 

  85. Quétier, F., Rivoal, F., Marty, P., De Chazal, J. & Lavorel, S. Social representations of an alpine grassland landscape and socio-political discourses on rural development. Reg. Environ. Change 10, 119–130 (2010).

    Article  Google Scholar 

  86. Linders, T. E. W. et al. Stakeholder priorities determine the impact of an alien tree invasion on ecosystem multifunctionality. People Nat. 3, 658–672 (2021).

    Article  Google Scholar 

  87. Gos, P. & Lavorel, S. Stakeholders’ expectations on ecosystem services affect the assessment of ecosystem services hotspots and their congruence with biodiversity. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 8, 93–106 (2012).

    Article  Google Scholar 

  88. Fontana, V. et al. Comparing land-use alternatives: Using the ecosystem services concept to define a multi-criteria decision analysis. Ecol. Econ. 93, 128–136 (2013).

    Article  Google Scholar 

  89. Jellinek, S. et al. Integrating diverse social and ecological motivations to achieve landscape restoration. J. Appl. Ecol. 56, 246–252 (2019).

    Article  Google Scholar 

  90. Lavorel, S. & Grigulis, K. How fundamental plant functional trait relationships scale-up to trade-offs and synergies in ecosystem services. J. Ecol. 100, 128–140 (2012).

    Article  Google Scholar 

  91. Stürck, J. et al. Simulating and delineating future land change trajectories across Europe. Reg. Environ. Change 18, 733–749 (2018).

    Article  Google Scholar 

  92. Lavorel, S. in Grasslands and Climate Change (eds Gibson, D. J. & Newman, J. A.) 131–146) (Cambridge Univ. Press, 2018).

  93. Ayanu, Y. et al. Ecosystem engineer unleashed: Prosopis juliflora threatening ecosystem services? Reg. Environ. Change 15, 155–167 (2015).

    Article  Google Scholar 

  94. Mbaabu, P. R. et al. Restoration of degraded grasslands, but not invasion by Prosopis juliflora, avoids trade-offs between climate change mitigation and other ecosystem services. Sci. Rep. 10, 20391 (2020).

    Article  Google Scholar 

  95. Sayer, J. A. et al. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proc. Natl Acad. Sci. USA 110, 8349–8356 (2013).

    Article  Google Scholar 

  96. Flintan, F. & Cullis, A. Introductory Guidelines to Participatory Rangeland Management in Pastoral Areas (Save the Children USA, 2010).

  97. Robinson, L. W. et al. Participatory Rangeland Management Toolkit for Kenya (ILRI, 2018).

  98. Roba, G. & David, J. Participatory Rangeland Management Planning: A Field Guide (IUCN, 2018).

  99. Langemeyer, J., Gómez-Baggethun, E., Haase, D., Scheuer, S. & Elmqvist, T. Bridging the gap between ecosystem service assessments and land-use planning through Multi-Criteria Decision Analysis (MCDA). Environ. Sci. Policy 62, 45–56 (2016).

    Article  Google Scholar 

  100. Adem Esmail, B. & Geneletti, D. Multi-criteria decision analysis for nature conservation: A review of 20 years of applications. Methods Ecol. Evol. 9, 42–53 (2018).

    Article  Google Scholar 

  101. Martin-Lopez, B. et al. A novel tele-coupling framework to assess social relations across spatial scales for ecosystem services research. J. Environ. Manage. 241, 251–263 (2019).

    Article  Google Scholar 

  102. Joseph, L. N., Maloney, R. F. & Possingham, H. P. Optimal allocation of resources among threatened species: a project prioritization protocol. Conserv. Biol. 23, 328–338 (2009).

    Article  Google Scholar 

  103. Wortley, L., Hero, J. M. & Howes, M. Evaluating ecological restoration success: a review of the literature. Restor. Ecol. 21, 537–543 (2013).

    Article  Google Scholar 

  104. Cameron, A. Restoration of ecosystems and ecosystem services, in Ecosystem Services and Poverty Alleviation: Trade-offs and Governance (eds Schreckenberg, K., Mace, G. & Poudyal. M.) (Routledge, 2018).

  105. Suding, K. N. Toward an era of restoration in ecology: successes, failures, and opportunities ahead. Annu. Rev. Ecol. Evol. Syst. 42, 465–487 (2011).

    Article  Google Scholar 

  106. Mekuria, W., Veldkamp, E., Corre, M. D. & Haile, M. Restoration of ecosystem carbon stocks following exclosure establishment in communal grazing lands in Tigray, Ethiopia. Soil Sci. Soc. Am. J. 75, 246–256 (2011).

    Article  Google Scholar 

  107. Mekuria, W. & Aynekulu, E. Exclosure land management for restoration of the soils in degraded communal grazing lands in northern Ethiopia. Land Degrad. Dev. 24, 528–538 (2011).

    Article  Google Scholar 

  108. Hu, Y. & Nacun, B. An analysis of land-use change and grassland degradation from a policy perspective in Inner Mongolia, China, 1990–2015. Sustainability 10, 4048 (2018).

    Article  Google Scholar 

  109. Nedessa, B., Ali, J. & Nyborg, I. Exploring Ecological and Socio-Economic Issues for the Improvement of Area Enclosure Management (Drylands Coordination Group, 2005).

  110. Schweiger, A. K. et al. Plant spectral diversity integrates functional and phylogenetic components of biodiversity and predicts ecosystem function. Nat. Ecol. Evol. 2, 976–982 (2018).

    Article  Google Scholar 

  111. Vågen, T. G. & Winowiecki, L. A. Mapping of soil organic carbon stocks for spatially explicit assessments of climate change mitigation potential. Environ. Res. Lett. 8, 015011 (2013).

    Article  Google Scholar 

  112. Xia, J. et al. Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006. Remote Sens. 6, 1783–1802 (2014).

    Article  Google Scholar 

  113. Spawn, S. A. et al. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data 7, 112 (2020).

    Article  Google Scholar 

  114. Bellocchi, G. & Chabbi, A. Grassland management for sustainable agroecosystems. Agronomy 10, 78 (2020).

    Article  Google Scholar 

  115. Plas, F. et al. Towards the development of general rules describing landscape heterogeneity – multifunctionality relationships. J. Appl. Ecol. 56, 168–179 (2019).

    Article  Google Scholar 

  116. Kimberley, A. et al. Functional rather than structural connectivity explains grassland plant diversity patterns following landscape scale habitat loss. Landsc. Ecol. 36, 265–280 (2021).

    Article  Google Scholar 

  117. Gilarranz, L. J., Rayfield, B., Liñán-Cembrano, G., Bascompte, J. & Gonzalez, A. Effects of network modularity on the spread of perturbation impact in experimental metapopulations. Science 357, 199–201 (2017).

    Article  Google Scholar 

  118. Smith, F. P., Prober, S. M., House, A. P. N. & McIntyre, S. Maximizing retention of native biodiversity in Australian agricultural landscapes — The 10:20:40:30 guidelines. Agric. Ecosyst. Environ. 166, 35–45 (2013).

    Article  Google Scholar 

  119. Auffret, A. G. et al. Plant functional connectivity — integrating landscape structure and effective dispersal. J. Ecol. 105, 1648–1656 (2017).

    Article  Google Scholar 

  120. Isaac, N. J. B. et al. Defining and delivering resilient ecological networks: Nature conservation in England. J. Appl. Ecol. 55, 2537–2543 (2018).

    Article  Google Scholar 

  121. Vörösmarty, C. J. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).

    Article  Google Scholar 

  122. Barbier, E. B. The economic linkages between rural poverty and land degradation: some evidence from Africa. Agric. Ecosyst. Environ. 82, 355–370 (2000).

    Article  Google Scholar 

  123. Kardol, P. & Wardle, D. A. How understanding aboveground–belowground linkages can assist restoration ecology. Trends Ecol. Evol. 25, 670–679 (2010).

    Article  Google Scholar 

  124. Bardgett, R. D. Plant trait-based approaches for interrogating belowground function. Biol. Environ. 117, 1–13 (2017).

    Article  Google Scholar 

  125. Isbell, F. et al. Benefits of increasing plant diversity in sustainable agroecosystems. J. Ecol. 105, 871–879 (2017).

    Article  Google Scholar 

  126. Manning, P. et al. Transferring biodiversity-ecosystem function research to the management of ‘real-world’ ecosystems. Adv. Ecol. Res. 61, 323–356 (2019).

    Article  Google Scholar 

  127. Jochum, M. et al. The results of biodiversity–ecosystem functioning experiments are realistic. Nat. Ecol. Evol. 4, 1485–1494 (2020).

    Article  Google Scholar 

  128. Cole et al. Grassland biodiversity restoration increase resistance of carbon fluxes to drought. J. Appl. Ecol. 56, 1806–1816 (2019).

    Article  Google Scholar 

  129. Yang, Y., Tilman, D., Furey, G. & Lehman, C. Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nat. Commun. 10, 718 (2018).

    Article  Google Scholar 

  130. Fry, E. L. et al. Soil multifunctionality and drought resistance are determined by plant structural traits in restoring grassland. Ecology 99, 2260–2271 (2018).

    Article  Google Scholar 

  131. Gould, I. J., Quinton, J. N., Weigelt, A., De Deyn, G. B. & Bardgett, R. D. Plant diversity and root traits benefit physical properties key to soil function in grasslands. Ecol. Lett. 19, 1140–1149 (2016).

    Article  Google Scholar 

  132. Wubs, E. R., van der Putten, W. H., Bosch, M. & Bezemer, T. M. Soil inoculation steers restoration of terrestrial ecosystems. Nat. Plants 2, 16107 (2016).

    Article  Google Scholar 

  133. Pilon, N. A., Assis, G. B., Souza, F. M. & Durigan, G. Native remnants can be sources of plants and topsoil to restore dry and wet cerrado grasslands. Restor. Ecol. 27, 569–580 (2019).

    Article  Google Scholar 

  134. Wang, L. et al. Diversifying livestock promotes multidiversity and multifunctionality in managed grasslands. Proc. Natl Acad. Sci. USA 116, 201807354 (2019).

    Google Scholar 

  135. Wang, X. et al. High ecosystem multifunctionality under moderate grazing is associated with high plant but low bacterial diversity in a semi-arid steppe grassland. Plant Soil 448, 265–276 (2020).

    Article  Google Scholar 

  136. Pocock, M. J. O., Evans, D. M. & Memmott, J. The robustness and restoration of a network of ecological networks. Science 335, 973–977 (2012).

    Article  Google Scholar 

  137. Buisson, E. et al. Resilience and restoration of tropical and subtropical grasslands, savannas, and grassy woodlands. Biol. Rev. 94, 590–609 (2019).

    Article  Google Scholar 

  138. Lee, M., Manning, P., Rist, J., Power, S. A. & Marsh, C. A global comparison of grassland biomass responses to CO2 and nitrogen enrichment. Philos. Trans. R. Soc. B 365, 2047–2056 (2010).

    Article  Google Scholar 

  139. Craven, D. et al. Multiple facets of biodiversity drive the diversity–stability relationship. Nat. Ecol. Evol. 2, 1579–1587 (2018).

    Article  Google Scholar 

  140. Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evol. 5, 65–73 (2014).

    Article  Google Scholar 

  141. Fraser, L. H. et al. Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science 349, 302–305 (2015).

    Article  Google Scholar 

  142. Spake, R. et al. An analytical framework for spatially targeted management of natural capital. Nat. Sustain. 2, 90–97 (2019).

    Article  Google Scholar 

  143. Dudley et al. Grasslands and savannahs in the UN Decade on Ecosystem Restoration. Restor. Ecol. 28, 1313–1317 (2020).

    Article  Google Scholar 

  144. Yengoh, G. T., Dent, D., Olsson, L., Tengberg, A. E. & Tucker, C. J. III. Use of the Normalized Difference Vegetation Index (NDVI) to Assess Land Degradation at Multiple Scales: Current Status, Future Trends, and Practical Considerations (Springer, 2015).

  145. Buchhorn, M. et al. Copernicus Global Land Service: Land Cover 100m, epoch 2015, Globe (Version V2.0.2) [data set]. Zenodo https://doi.org/10.5281/zenodo.3243509 (2019).

    Article  Google Scholar 

  146. Rossiter, J., Wondie Minale, M., Andarge, W. & Twomlow, S. A communities Eden–grazing Exclosure success in Ethiopia. Int. J. Agric. Sustain. 15, 514–526 (2017).

    Article  Google Scholar 

  147. Durigan, G. et al. Invasão por Pinus spp: Ecologia, Prevenção, Controle e Restauração (Instituto Florestal, 2020).

  148. Wang, Z. et al. Effect of manipulating animal stocking rate on the carbon storage capacity in a degraded desert steppe. Ecol. Res. 32, 1001–1009 (2017).

    Article  Google Scholar 

  149. Wang, Z. et al. Effects of stocking rate on the variability of peak standing crop in a desert steppe of Eurasia grassland. Environ. Manag. 53, 266–273 (2014).

    Article  Google Scholar 

  150. Zhang, R. et al. Grazing induced changes in plant diversity is a critical factor controlling grassland productivity in the Desert Steppe, Northern China. Agric. Ecosyst. Environ. 265, 73–83 (2018).

    Article  Google Scholar 

  151. Wang, Z. et al. Impact of stocking rate and rainfall on sheep performance in a desert steppe. Rangel. Ecol. Manag. 64, 249–256 (2011).

    Article  Google Scholar 

  152. Li, Z. et al. Identifying management strategies to improve sustainability and household income for herders on the desert steppe in Inner Mongolia, China. Agric. Syst. 132, 62–72 (2015).

    Article  Google Scholar 

  153. Shao, Q., Cao, W., Fan, J., Huang, L. & Xu, X. Effects of an ecological conservation and restoration project in the Three-River Source Region, China. J. Geogr. Sci. 27, 183–204 (2017).

    Article  Google Scholar 

  154. Li, X. L. et al. Restoration prospects for Heitutan degraded grassland in the Sanjiangyuan. J. Mt. Sci. 10, 687–698 (2013).

    Article  Google Scholar 

  155. Xu, Y. et al. Trade-offs and cost-benefit of ecosystem services of revegetated degraded alpine meadows over time on the Qinghai-Tibetan Plateau. Agric. Ecosyst. Environ. 279, 130–138 (2019).

    Article  Google Scholar 

  156. Dong, S. K. et al. Farmer and professional attitudes to the large-scale ban on livestock grazing of grasslands in China. Environ. Conserv. 34, 246–254 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

R.D.B. and N.O. acknowledge support from BBSRC in the form of a Global Challenge Research Fund Impact Acceleration Account (GCRF-IAA) award (BB/GCRF-IAA/14) and a GCRF Foundation Award (BB/P022987/1) “Restoring soil function and resilience to degraded grasslands”, and the N8 via an AgriFood Programme pump priming grant. U.S. acknowledges support from the Swiss Programme for Research on Global Issues for Development (r4d) “Woody invasive alien species in East Africa: assessing and mitigating their negative impact on ecosystem services and rural livelihood” (grant number 400440_152085) and core financial support from CABI and its member countries (http://www.cabi.org/about-cabi/who-we-work-with/key-donors/).

Author information

Authors and Affiliations

Authors

Contributions

R.D.B. conceived the idea and gained funding with input from N.O. R.D.B. wrote the paper, with significant input from J.M.B., P.M., U.S. and S. Lavorel. G.L.P. and P.M. designed the figures. All authors contributed to the development of ideas and writing of the paper.

Corresponding author

Correspondence to Richard D. Bardgett.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks Peter Török, Johannes Isselstein and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bardgett, R.D., Bullock, J.M., Lavorel, S. et al. Combatting global grassland degradation. Nat Rev Earth Environ 2, 720–735 (2021). https://doi.org/10.1038/s43017-021-00207-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-021-00207-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing