Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tropical teleconnection impacts on Antarctic climate changes

Abstract

Over the modern satellite era, substantial climatic changes have been observed in the Antarctic, including atmospheric and oceanic warming, ice sheet thinning and a general Antarctic-wide expansion of sea ice, followed by a more recent rapid loss. Although these changes, featuring strong zonal asymmetry, are partially influenced by increasing greenhouse gas emissions and stratospheric ozone depletion, tropical–polar teleconnections are believed to have a role through Rossby wave dynamics. In this Review, we synthesize understanding of tropical teleconnections to the Southern Hemisphere extratropics arising from the El Niño–Southern Oscillation, Interdecadal Pacific Oscillation and Atlantic Multidecadal Oscillation, focusing on the mechanisms and long-term climatic impacts. These teleconnections have contributed to observed Antarctic and Southern Ocean changes, including regional rapid surface warming, pre-2015 sea ice expansion and its sudden reduction thereafter, changes in ocean heat content and accelerated thinning of most of the Antarctic ice sheet. However, due to limited observations and inherent model biases, uncertainties remain in understanding and assessing the importance of these teleconnections versus those arising from greenhouse gases, ozone recovery and internal variability. Sustained pan-Antarctic efforts towards long-term observations, and more realistic dynamics and parameterizations in high-resolution climate models, offer opportunities to reduce these uncertainties.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tropical–polar teleconnection patterns on interannual timescales.
Fig. 2: Teleconnection patterns triggered by decadal sea surface temperature variability.
Fig. 3: Teleconnection-induced Antarctic climate changes.
Fig. 4: Observed climate changes around Antarctica.
Fig. 5: Present-day and future eastern Pacific teleconnections.

Similar content being viewed by others

References

  1. Domingues, C. M. et al. Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453, 1090–1093 (2008).

    Article  Google Scholar 

  2. Gille, S. T. Decadal-scale temperature trends in the Southern Hemisphere ocean. J. Clim. 21, 4749–4765 (2008).

    Article  Google Scholar 

  3. Spence, P. et al. Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. Geophys. Res. Lett. 41, 4601–4610 (2014).

    Article  Google Scholar 

  4. Bromwich, D. H. et al. Central West Antarctica among the most rapidly warming regions on Earth. Nat. Geosci. 6, 139–145 (2013).

    Article  Google Scholar 

  5. Steig, E. J. et al. Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature 457, 459–462 (2009).

    Article  Google Scholar 

  6. Paolo, F. S., Fricker, H. A. & Padman, L. Volume loss from Antarctic ice shelves is accelerating. Science 348, 327–331 (2015).

    Article  Google Scholar 

  7. Rignot, E. et al. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nat. Geosci. 1, 106–110 (2008).

    Article  Google Scholar 

  8. Meehl, G. A. et al. Sustained ocean changes contributed to sudden Antarctic sea ice retreat in late 2016. Nat. Commun. 10, 14 (2019).

    Article  Google Scholar 

  9. Parkinson, C. L. A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic. Proc. Natl Acad. Sci. USA 116, 14414–14423 (2019).

    Article  Google Scholar 

  10. Stammerjohn, S. E., Martinson, D. G., Smith, R. C., Yuan, X. & Rind, D. Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and Southern Annular Mode variability. J. Geophys. Res. Oceans 113, C03S90 (2008).

    Article  Google Scholar 

  11. Stuecker, M. F., Bitz, C. M. & Armour, K. C. Conditions leading to the unprecedented low Antarctic sea ice extent during the 2016 austral spring season. Geophys. Res. Lett. 44, 9008–9019 (2017).

    Article  Google Scholar 

  12. Turner, J. et al. Unprecedented springtime retreat of Antarctic sea ice in 2016. Geophys. Res. Lett. 44, 6868–6875 (2017).

    Article  Google Scholar 

  13. Kennicutt, M. C. II et al. Sustained Antarctic research: a 21st century imperative. One Earth 1, 95–113 (2019).

    Article  Google Scholar 

  14. Kennicutt, M. C. et al. A roadmap for Antarctic and Southern Ocean science for the next two decades and beyond. Antarctic Sci. 27, 3–18 (2015).

    Article  Google Scholar 

  15. Dutrieux, P. et al. Strong sensitivity of Pine Island ice-shelf melting to climatic variability. Science 343, 174–178 (2014).

    Article  Google Scholar 

  16. Joughin, I. & Alley, R. B. Stability of the West Antarctic ice sheet in a warming world. Nat. Geosci. 4, 506–513 (2011).

    Article  Google Scholar 

  17. Anilkumar, N., Chacko, R., Sabu, P. & George, J. V. Freshening of Antarctic Bottom Water in the Indian ocean sector of Southern ocean. Deep. Sea Res. Part II Top. Stud. Oceanogr. 118, 162–169 (2015).

    Article  Google Scholar 

  18. Haumann, F. A., Gruber, N., Münnich, M., Frenger, I. & Kern, S. Sea-ice transport driving Southern Ocean salinity and its recent trends. Nature 537, 89–92 (2016).

    Article  Google Scholar 

  19. Ohshima, K. I. et al. Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley polynya. Nat. Geosci. 6, 235–240 (2013).

    Article  Google Scholar 

  20. Wang, G. et al. Compounding tropical and stratospheric forcing of the record low Antarctic sea-ice in 2016. Nat. Commun. 10, 13 (2019).

    Article  Google Scholar 

  21. Jones, M. E. et al. Sixty years of widespread warming in the southern middle and high latitudes (1957–2016). J. Clim. 32, 6875–6898 (2019).

    Article  Google Scholar 

  22. Thompson, D. W. & Solomon, S. Interpretation of recent Southern Hemisphere climate change. Science 296, 895–899 (2002).

    Article  Google Scholar 

  23. Thompson, D. W. et al. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci. 4, 741–749 (2011).

    Article  Google Scholar 

  24. Wang, G., Cai, W. & Purich, A. Trends in Southern Hemisphere wind-driven circulation in CMIP5 models over the 21st century: Ozone recovery versus greenhouse forcing. J. Geophys. Res. Oceans 119, 2974–2986 (2014).

    Article  Google Scholar 

  25. Arblaster, J. M. & Meehl, G. A. Contributions of external forcings to southern annular mode trends. J. Clim. 19, 2896–2905 (2006).

    Article  Google Scholar 

  26. Lecomte, O. et al. Vertical ocean heat redistribution sustaining sea-ice concentration trends in the Ross Sea. Nat. Commun. 8, 258 (2017).

    Article  Google Scholar 

  27. Zhang, L., Delworth, T. L., Cooke, W. & Yang, X. Natural variability of Southern Ocean convection as a driver of observed climate trends. Nat. Clim. Change 9, 59–65 (2019).

    Article  Google Scholar 

  28. Li, X., Holland, D. M., Gerber, E. P. & Yoo, C. Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice. Nature 505, 538–542 (2014).

    Article  Google Scholar 

  29. Shepherd, A. et al. Mass balance of the antarctic ice sheet from 1992 to 2017. Nature 558, 219–222 (2018).

    Article  Google Scholar 

  30. Cavalieri, D. J., Parkinson, C. L. & Vinnikov, K. Y. 30-Year satellite record reveals contrasting Arctic and Antarctic decadal sea ice variability. Geophys. Res. Lett. 30, 1970 (2003).

    Article  Google Scholar 

  31. King, J. Climate science: A resolution of the Antarctic paradox. Nature 505, 491–492 (2014).

    Article  Google Scholar 

  32. Simpkins, G. R., Ciasto, L. M. & England, M. H. Observed variations in multidecadal Antarctic sea ice trends during 1979–2012. Geophys. Res. Lett. 40, 3643–3648 (2013).

    Article  Google Scholar 

  33. Bamber, J. L., Westaway, R. M., Marzeion, B. & Wouters, B. The land ice contribution to sea level during the satellite era. Environ. Res. Lett. 13, 063008 (2018).

    Article  Google Scholar 

  34. Schmidtko, S., Heywood, K. J., Thompson, A. F. & Aoki, S. Multidecadal warming of Antarctic waters. Science 346, 1227–1231 (2014).

    Article  Google Scholar 

  35. Smith, B. et al. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science 368, 1239–1242 (2020).

    Article  Google Scholar 

  36. Turner, J., Phillips, T., Hosking, J. S., Marshall, G. J. & Orr, A. The Amundsen Sea low. Int. J. Climatol. 33, 1818–1829 (2013).

    Article  Google Scholar 

  37. Ding, Q., Steig, E. J., Battisti, D. S. & Küttel, M. Winter warming in West Antarctica caused by central tropical Pacific warming. Nat. Geosci. 4, 398–403 (2011).

    Article  Google Scholar 

  38. Meehl, G. A., Hu, A., Santer, B. D. & Xie, S.-P. Contribution of the Interdecadal Pacific Oscillation to twentieth-century global surface temperature trends. Nat. Clim. Change 6, 1005–1008 (2016).

    Article  Google Scholar 

  39. Raphael, M. et al. The Amundsen Sea low: Variability, change, and impact on Antarctic climate. Bull. Am. Meteorol. Soc. 97, 111–121 (2016).

    Article  Google Scholar 

  40. Ding, Q., Steig, E. J., Battisti, D. S. & Wallace, J. M. Influence of the tropics on the Southern Annular Mode. J. Clim. 25, 6330–6348 (2012).

    Article  Google Scholar 

  41. Fogt, R. L. & Bromwich, D. H. Decadal variability of the ENSO teleconnection to the high-latitude South Pacific governed by coupling with the southern annular mode. J. Clim. 19, 979–997 (2006).

    Article  Google Scholar 

  42. Fogt, R. L., Bromwich, D. H. & Hines, K. M. Understanding the SAM influence on the South Pacific ENSO teleconnection. Clim. Dyn. 36, 1555–1576 (2011).

    Article  Google Scholar 

  43. Hoskins, B. J. & Ambrizzi, T. Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci. 50, 1661–1671 (1993).

    Article  Google Scholar 

  44. Hoskins, B. J. & Karoly, D. J. The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci. 38, 1179–1196 (1981).

    Article  Google Scholar 

  45. L’Heureux, M. L. & Thompson, D. W. Observed relationships between the El Niño–Southern Oscillation and the extratropical zonal-mean circulation. J. Clim. 19, 276–287 (2006).

    Article  Google Scholar 

  46. Schneider, D. P., Deser, C. & Okumura, Y. An assessment and interpretation of the observed warming of West Antarctica in the austral spring. Clim. Dyn. 38, 323–347 (2012).

    Article  Google Scholar 

  47. Meehl, G. A., Arblaster, J. M., Bitz, C. M., Chung, C. T. & Teng, H. Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability. Nat. Geosci. 9, 590–595 (2016).

    Article  Google Scholar 

  48. Lefebvre, W., Goosse, H., Timmermann, R. & Fichefet, T. Influence of the Southern Annular Mode on the sea ice–ocean system. J. Geophys. Res. Oceans 109, C09005 (2004).

    Article  Google Scholar 

  49. White, W. B. & Peterson, R. G. An Antarctic circumpolar wave in surface pressure, wind, temperature and sea-ice extent. Nature 380, 699–702 (1996).

    Article  Google Scholar 

  50. Ding, M. et al. Towards more snow days in summer since 2001 at the Great Wall Station, Antarctic Peninsula: The role of the Amundsen Sea low. Adv. Atmos. Sci. 37, 494–504 (2020).

    Article  Google Scholar 

  51. Welhouse, L. J., Lazzara, M. A., Keller, L. M., Tripoli, G. J. & Hitchman, M. H. Composite analysis of the effects of ENSO events on Antarctica. J. Clim. 29, 1797–1808 (2016).

    Article  Google Scholar 

  52. Yuan, X. & Li, C. Climate modes in southern high latitudes and their impacts on Antarctic sea ice. J. Geophys. Res. Oceans 113, C06S91 (2008).

    Article  Google Scholar 

  53. Yuan, X. & Martinson, D. G. The Antarctic dipole and its predictability. Geophys. Res. Lett. 28, 3609–3612 (2001).

    Article  Google Scholar 

  54. Cai, W. et al. Pantropical climate interactions. Science 363, eaav4236 (2019).

    Article  Google Scholar 

  55. Li, X., Gerber, E. P., Holland, D. M. & Yoo, C. A Rossby wave bridge from the tropical Atlantic to West Antarctica. J. Clim. 28, 2256–2273 (2015).

    Article  Google Scholar 

  56. Li, X., Xie, S.-P., Gille, S. T. & Yoo, C. Atlantic-induced pan-tropical climate change over the past three decades. Nat. Clim. Change 6, 275–279 (2016).

    Article  Google Scholar 

  57. Nuncio, M. & Yuan, X. The influence of the Indian Ocean dipole on Antarctic sea ice. J. Clim. 28, 2682–2690 (2015).

    Article  Google Scholar 

  58. Simpkins, G. R., Peings, Y. & Magnusdottir, G. Pacific influences on tropical Atlantic teleconnections to the Southern Hemisphere high latitudes. J. Clim. 29, 6425–6444 (2016).

    Article  Google Scholar 

  59. Li, X., Holland, D. M., Gerber, E. P. & Yoo, C. Rossby waves mediate impacts of tropical oceans on West Antarctic atmospheric circulation in austral winter. J. Clim. 28, 8151–8164 (2015).

    Article  Google Scholar 

  60. Alexander, M. A. et al. The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Clim. 15, 2205–2231 (2002).

    Article  Google Scholar 

  61. Kidson, J. W. Principal modes of Southern Hemisphere low-frequency variability obtained from NCEP–NCAR reanalyses. J. Clim. 12, 2808–2830 (1999).

    Article  Google Scholar 

  62. Mo, K. C. & Higgins, R. W. The Pacific–South American modes and tropical convection during the Southern Hemisphere winter. Mon. Weather Rev. 126, 1581–1596 (1998).

    Article  Google Scholar 

  63. Garreaud, R. & Battisti, D. S. Interannual (ENSO) and interdecadal (ENSO-like) variability in the Southern Hemisphere tropospheric circulation. J. Clim. 12, 2113–2123 (1999).

    Article  Google Scholar 

  64. Ding, Q. & Steig, E. J. Temperature change on the Antarctic Peninsula linked to the tropical Pacific. J. Clim. 26, 7570–7585 (2013).

    Article  Google Scholar 

  65. Simpkins, G. R., McGregor, S., Taschetto, A. S., Ciasto, L. M. & England, M. H. Tropical connections to climatic change in the extratropical Southern Hemisphere: The role of Atlantic SST trends. J. Clim. 27, 4923–4936 (2014).

    Article  Google Scholar 

  66. Ciasto, L. M., Simpkins, G. R. & England, M. H. Teleconnections between tropical Pacific SST anomalies and extratropical Southern Hemisphere climate. J. Clim. 28, 56–65 (2015).

    Article  Google Scholar 

  67. Wilson, A. B., Bromwich, D. H. & Hines, K. M. Simulating the mutual forcing of anomalous high southern latitude atmospheric circulation by El Niño flavors and the Southern Annular Mode. J. Clim. 29, 2291–2309 (2016).

    Article  Google Scholar 

  68. Hitchman, M. H. & Rogal, M. J. ENSO influences on Southern Hemisphere column ozone during the winter to spring transition. J. Geophys. Res. Atmos. 115, D20104 (2010).

    Article  Google Scholar 

  69. Jin, D. & Kirtman, B. P. The impact of ENSO periodicity on North Pacific SST variability. Clim. Dyn. 34, 1015–1039 (2010).

    Article  Google Scholar 

  70. Schneider, D. P., Okumura, Y. & Deser, C. Observed Antarctic interannual climate variability and tropical linkages. J. Clim. 25, 4048–4066 (2012).

    Article  Google Scholar 

  71. Scott Yiu, Y. Y. & Maycock, A. C. On the seasonality of the El Niño teleconnection to the Amundsen Sea region. J. Clim. 32, 4829–4845 (2019).

    Article  Google Scholar 

  72. Karoly, D. J. Southern hemisphere circulation features associated with El Niño-Southern Oscillation events. J. Clim. 2, 1239–1252 (1989).

    Article  Google Scholar 

  73. Yuan, X. ENSO-related impacts on Antarctic sea ice: a synthesis of phenomenon and mechanisms. Antarctic Sci. 16, 415–425 (2004).

    Article  Google Scholar 

  74. Yuan, X., Kaplan, M. R. & Cane, M. A. The interconnected global climate system — A review of tropical–polar teleconnections. J. Clim. 31, 5765–5792 (2018).

    Article  Google Scholar 

  75. Liu, J., Yuan, X., Rind, D. & Martinson, D. G. Mechanism study of the ENSO and southern high latitude climate teleconnections. Geophys. Res. Lett. 29, 24-1–24-4 (2002).

    Article  Google Scholar 

  76. Rind, D. et al. Effects of glacial meltwater in the GISS coupled atmosphereocean model: 1. North Atlantic Deep Water response. J. Geophys. Res. Atmos. 106, 27335–27353 (2001).

    Article  Google Scholar 

  77. Bals-Elsholz, T. M. et al. The wintertime Southern Hemisphere split jet: Structure, variability, and evolution. J. Clim. 14, 4191–4215 (2001).

    Article  Google Scholar 

  78. Chen, B., Smith, S. R. & Bromwich, D. H. Evolution of the tropospheric split jet over the South Pacific Ocean during the 1986–89 ENSO cycle. Mon. Weather Rev. 124, 1711–1731 (1996).

    Article  Google Scholar 

  79. Carleton, A. M. & Carpenter, D. A. Satellite climatology of ‘polar lows’ and broadscale climatic associations for the Southern Hemisphere. Int. J. Climatol. 10, 219–246 (1990).

    Article  Google Scholar 

  80. Sinclair, M. R. Objective identification of cyclones and their circulation intensity, and climatology. Weather Forecast. 12, 595–612 (1997).

    Article  Google Scholar 

  81. Okumura, Y. M., Schneider, D., Deser, C. & Wilson, R. Decadal–interdecadal climate variability over Antarctica and linkages to the tropics: Analysis of ice core, instrumental, and tropical proxy data. J. Clim. 25, 7421–7441 (2012).

    Article  Google Scholar 

  82. Cai, W., Van Rensch, P., Cowan, T. & Hendon, H. H. Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J. Clim. 24, 3910–3923 (2011).

    Article  Google Scholar 

  83. Saji, N., Ambrizzi, T. & Ferraz, S. E. T. Indian Ocean Dipole mode events and austral surface air temperature anomalies. Dyn. Atmos. Ocean. 39, 87–101 (2005).

    Article  Google Scholar 

  84. Cai, W. et al. Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature 510, 254–258 (2014).

    Article  Google Scholar 

  85. Pohl, B., Fauchereau, N., Reason, C. & Rouault, M. Relationships between the Antarctic Oscillation, the Madden–Julian oscillation, and ENSO, and consequences for rainfall analysis. J. Clim. 23, 238–254 (2010).

    Article  Google Scholar 

  86. Rondanelli, R., Hatchett, B., Rutllant, J., Bozkurt, D. & Garreaud, R. Strongest MJO on record triggers extreme Atacama rainfall and warmth in Antarctica. Geophys. Res. Lett. 46, 3482–3491 (2019).

    Article  Google Scholar 

  87. Yoo, C., Lee, S. & Feldstein, S. The impact of the Madden-Julian oscillation trend on the Antarctic warming during the 1979–2008 austral winter. Atmos. Sci. Lett. 13, 194–199 (2012).

    Article  Google Scholar 

  88. Flatau, M. & Kim, Y.-J. Interaction between the MJO and polar circulations. J. Clim. 26, 3562–3574 (2013).

    Article  Google Scholar 

  89. Rutllant, J. & Fuenzalida, H. Synoptic aspects of the central Chile rainfall variability associated with the Southern Oscillation. Int. J. Climatol. 11, 63–76 (1991).

    Article  Google Scholar 

  90. Pope, J. O., Holland, P. R., Orr, A., Marshall, G. J. & Phillips, T. The impacts of El Niño on the observed sea ice budget of West Antarctica. Geophys. Res. Lett. 44, 6200–6208 (2017).

    Article  Google Scholar 

  91. Paolo, F. et al. Response of Pacific-sector Antarctic ice shelves to the El Niño/Southern oscillation. Nat. Geosci. 11, 121–126 (2018).

    Article  Google Scholar 

  92. Steig, E. J., Ding, Q., Battisti, D. & Jenkins, A. Tropical forcing of Circumpolar Deep Water inflow and outlet glacier thinning in the Amundsen Sea Embayment, West Antarctica. Ann. Glaciol. 53, 19–28 (2012).

    Article  Google Scholar 

  93. Hobbs, W. R. et al. A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Glob. Planet. Change 143, 228–250 (2016).

    Article  Google Scholar 

  94. Raphael, M. N. & Hobbs, W. The influence of the large-scale atmospheric circulation on Antarctic sea ice during ice advance and retreat seasons. Geophys. Res. Lett. 41, 5037–5045 (2014).

    Article  Google Scholar 

  95. Fogt, R. L. & Zbacnik, E. A. Sensitivity of the Amundsen Sea low to stratospheric ozone depletion. J. Clim. 27, 9383–9400 (2014).

    Article  Google Scholar 

  96. Jones, J. M. et al. Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nat. Clim. Change 6, 917–926 (2016).

    Article  Google Scholar 

  97. Turner, J. et al. Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys. Res. Lett. 36, L08502 (2009).

    Article  Google Scholar 

  98. Henley, B. J. et al. A tripole index for the interdecadal Pacific oscillation. Clim. Dyn. 45, 3077–3090 (2015).

    Article  Google Scholar 

  99. Purich, A., Cai, W., England, M. H. & Cowan, T. Evidence for link between modelled trends in Antarctic sea ice and underestimated westerly wind changes. Nat. Commun. 7, 10409 (2016).

    Article  Google Scholar 

  100. Meehl, G. A., Hu, A. & Teng, H. Initialized decadal prediction for transition to positive phase of the Interdecadal Pacific Oscillation. Nat. Commun. 7, 11718 (2016).

    Article  Google Scholar 

  101. Clem, K. R. & Fogt, R. L. South Pacific circulation changes and their connection to the tropics and regional Antarctic warming in austral spring, 1979–2012. J. Geophys. Res. Atmos. 120, 2773–2792 (2015).

    Article  Google Scholar 

  102. Brown, J. R. et al. South Pacific Convergence Zone dynamics, variability and impacts in a changing climate. Nat. Rev. Earth Environ. 1, 530–543 (2020).

    Article  Google Scholar 

  103. Clem, K. R., Lintner, B. R., Broccoli, A. J. & Miller, J. R. Role of the South Pacific convergence zone in West Antarctic decadal climate variability. Geophys. Res. Lett. 46, 6900–6909 (2019).

    Article  Google Scholar 

  104. Clem, K. R., Renwick, J. A., McGregor, J. & Fogt, R. L. The relative influence of ENSO and SAM on Antarctic Peninsula climate. J. Geophys. Res. Atmos. 121, 9324–9341 (2016).

    Article  Google Scholar 

  105. Schlesinger, M. E. & Ramankutty, N. An oscillation in the global climate system of period 65–70 years. Nature 367, 723–726 (1994).

    Article  Google Scholar 

  106. McGregor, S. et al. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Clim. Change 4, 888–892 (2014).

    Article  Google Scholar 

  107. Meehl, G. A. et al. Atlantic and Pacific tropics connected by mutually interactive decadal-timescale processes. Nat. Geosci. 14, 36–42 (2021).

    Article  Google Scholar 

  108. Marshall, G. J., Di Battista, S., Naik, S. S. & Thamban, M. Analysis of a regional change in the sign of the SAM–temperature relationship in Antarctica. Clim. Dyn. 36, 277–287 (2011).

    Article  Google Scholar 

  109. Nicolas, J. P. & Bromwich, D. H. New reconstruction of Antarctic near-surface temperatures: Multidecadal trends and reliability of global reanalyses. J. Clim. 27, 8070–8093 (2014).

    Article  Google Scholar 

  110. Bromwich, D. H. et al. Tropospheric clouds in Antarctica. Rev. Geophys. 50, RG1004 (2012).

    Article  Google Scholar 

  111. Wang, Y., Huang, G. & Hu, K. Internal variability in multidecadal trends of surface air temperature over Antarctica in austral winter in model simulations. Clim. Dyn. 55, 2835–2847 (2020).

    Article  Google Scholar 

  112. Turner, J. et al. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 535, 411–415 (2016).

    Article  Google Scholar 

  113. Clem, K. R. et al. Record warming at the South Pole during the past three decades. Nat. Clim. Change 10, 762–770 (2020).

    Article  Google Scholar 

  114. Kwok, R., Comiso, J. C., Lee, T. & Holland, P. R. Linked trends in the South Pacific sea ice edge and Southern Oscillation Index. Geophys. Res. Lett. 43, 10,295–10,302 (2016).

    Article  Google Scholar 

  115. Schneider, D. P. & Deser, C. Tropically driven and externally forced patterns of Antarctic sea ice change: Reconciling observed and modeled trends. Clim. Dyn. 50, 4599–4618 (2018).

    Article  Google Scholar 

  116. Turner, J. et al. Antarctic Temperature Variability and Change from Station Data. Int. J. Climatol. 40, 2986–3007 (2020).

    Article  Google Scholar 

  117. Orr, A. et al. Characteristics of summer airflow over the Antarctic Peninsula in response to recent strengthening of westerly circumpolar winds. J. Atmos. Sci. 65, 1396–1413 (2008).

    Article  Google Scholar 

  118. Van Lipzig, N. P., Marshall, G. J., Orr, A. & King, J. C. The relationship between the Southern Hemisphere Annular Mode and Antarctic Peninsula summer temperatures: Analysis of a high-resolution model climatology. J. Clim. 21, 1649–1668 (2008).

    Article  Google Scholar 

  119. Holland, P. R. The seasonality of Antarctic sea ice trends. Geophys. Res. Lett. 41, 4230–4237 (2014).

    Article  Google Scholar 

  120. Lu, J., Vecchi, G. A. & Reichler, T. Expansion of the Hadley cell under global warming. Geophys. Res. Lett. 34, L06805 (2007).

    Google Scholar 

  121. Meehl, G. A., Chung, C. T. Y., Arblaster, J. M., Holland, M. M. & Bitz, C. M. Tropical decadal variability and the rate of Arctic sea ice decrease. Geophys. Res. Lett. 45, 11,326–11,333 (2018).

    Article  Google Scholar 

  122. Stammerjohn, S., Massom, R., Rind, D. & Martinson, D. Regions of rapid sea ice change: An inter-hemispheric seasonal comparison. Geophys. Res. Lett. 39, L06501 (2012).

    Article  Google Scholar 

  123. Jacobs, S. S. & Comiso, J. C. Climate variability in the Amundsen and Bellingshausen Seas. J. Clim. 10, 697–709 (1997).

    Article  Google Scholar 

  124. Liu, Z. & Wu, L. Atmospheric response to North Pacific SST: the role of ocean–atmosphere coupling. J. Clim. 17, 1859–1882 (2004).

    Article  Google Scholar 

  125. Smith, R. C. & Stammerjohn, S. E. Variations of surface air temperature and sea-ice extent in the western Antarctic Peninsula region. Ann. Glaciol. 33, 493–500 (2001).

    Article  Google Scholar 

  126. Yuan, X. & Martinson, D. G. Antarctic sea ice extent variability and its global connectivity. J. Clim. 13, 1697–1717 (2000).

    Article  Google Scholar 

  127. Parkinson, C. L. Southern Ocean sea ice and its wider linkages: insights revealed from models and observations. Antarctic Sci. 16, 387–400 (2004).

    Article  Google Scholar 

  128. Stammerjohn, S. & Smith, R. Opposing Southern Ocean climate patterns as revealed by trends in regional sea ice coverage. Clim. Change 37, 617–639 (1997).

    Article  Google Scholar 

  129. Holland, M. M., Landrum, L., Raphael, M. N. & Kwok, R. The regional, seasonal, and lagged influence of the Amundsen sea low on Antarctic sea ice. Geophys. Res. Lett. 45, 11227–11234 (2018).

    Article  Google Scholar 

  130. Holland, P. R. & Kwok, R. Wind-driven trends in Antarctic sea-ice drift. Nat. Geosci. 5, 872–875 (2012).

    Article  Google Scholar 

  131. Hosking, J. S., Orr, A., Marshall, G. J., Turner, J. & Phillips, T. The influence of the Amundsen–Bellingshausen Seas low on the climate of West Antarctica and its representation in coupled climate model simulations. J. Clim. 26, 6633–6648 (2013).

    Article  Google Scholar 

  132. Haumann, F. A., Notz, D. & Schmidt, H. Anthropogenic influence on recent circulation-driven Antarctic sea ice changes. Geophys. Res. Lett. 41, 8429–8437 (2014).

    Article  Google Scholar 

  133. Kwok, R., Pang, S. S., Kacimi, S. & Carmack, E. C. Sea ice drift in the Southern Ocean: Regional patterns, variability, and trends. Elementa Sci. Anthrop. 5, 32 (2017).

    Article  Google Scholar 

  134. Raphael, M. N. & Holland, M. M. Twentieth century simulation of the Southern Hemisphere climate in coupled models. Part 1: Large scale circulation variability. Clim. Dyn. 26, 217–228 (2006).

    Article  Google Scholar 

  135. Turner, J. et al. Atmosphere-ocean-ice interactions in the Amundsen Sea embayment, West Antarctica. Rev. Geophys. 55, 235–276 (2017).

    Article  Google Scholar 

  136. Goosse, H. & Zunz, V. Decadal trends in the Antarctic sea ice extent ultimately controlled by ice–ocean feedback. Cryosphere 8, 453–470 (2014).

    Article  Google Scholar 

  137. Bintanja, R., Van Oldenborgh, G., Drijfhout, S., Wouters, B. & Katsman, C. Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat. Geosci. 6, 376–379 (2013).

    Article  Google Scholar 

  138. Haumann, F. A., Gruber, N. & Münnich, M. Sea-ice induced Southern Ocean subsurface warming and surface cooling in a warming climate. AGU Adv. 1, e2019AV000132 (2020).

    Article  Google Scholar 

  139. Schlosser, E., Haumann, F. A. & Raphael, M. N. Atmospheric influences on the anomalous 2016 Antarctic sea ice decay. Cryosphere 12, 1103–1119 (2018).

    Article  Google Scholar 

  140. Wang, Z., Turner, J., Wu, Y. & Liu, C. Rapid decline of total antarctic sea ice extent during 2014–16 controlled by wind-driven sea ice drift. J. Clim. 32, 5381–5395 (2019).

    Article  Google Scholar 

  141. Purich, A. & England, M. H. Tropical teleconnections to Antarctic sea ice during austral spring 2016 in coupled pacemaker experiments. Geophys. Res. Lett. 46, 6848–6858 (2019).

    Article  Google Scholar 

  142. Hu, S. & Fedorov, A. V. The extreme El Niño of 2015–2016 and the end of global warming hiatus. Geophys. Res. Lett. 44, 3816–3824 (2017).

    Article  Google Scholar 

  143. Thoma, M., Greatbatch, R. J., Kadow, C. & Gerdes, R. Decadal hindcasts initialized using observed surface wind stress: Evaluation and prediction out to 2024. Geophys. Res. Lett. 42, 6454–6461 (2015).

    Article  Google Scholar 

  144. Armour, K. C., Marshall, J., Scott, J. R., Donohoe, A. & Newsom, E. R. Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci. 9, 549–554 (2016).

    Article  Google Scholar 

  145. Böning, C. W., Dispert, A., Visbeck, M., Rintoul, S. & Schwarzkopf, F. U. The response of the Antarctic Circumpolar Current to recent climate change. Nat. Geosci. 1, 864–869 (2008).

    Article  Google Scholar 

  146. Giglio, D. & Johnson, G. C. Middepth decadal warming and freshening in the South Atlantic. J. Geophys. Res. Oceans 122, 973–979 (2017).

    Article  Google Scholar 

  147. Gille, S. T. Warming of the Southern Ocean since the 1950s. Science 295, 1275–1277 (2002).

    Article  Google Scholar 

  148. Purkey, S. G. & Johnson, G. C. Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. J. Clim. 23, 6336–6351 (2010).

    Article  Google Scholar 

  149. Talley, L. et al. Changes in ocean heat, carbon content, and ventilation: a review of the first decade of GO-SHIP global repeat hydrography. Annu. Rev. Mar. Sci. 8, 185–215 (2016).

    Article  Google Scholar 

  150. Cazenave, A. & Llovel, W. Contemporary sea level rise. Annu. Rev. Mar. Sci. 2, 145–173 (2010).

    Article  Google Scholar 

  151. Stammer, D., Cazenave, A., Ponte, R. M. & Tamisiea, M. E. Causes for contemporary regional sea level changes. Annu. Rev. Mar. Sci. 5, 21–46 (2013).

    Article  Google Scholar 

  152. Swart, N. C., Gille, S. T., Fyfe, J. C. & Gillett, N. P. Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nat. Geosci. 11, 836–841 (2018).

    Article  Google Scholar 

  153. Cai, W., Cowan, T., Godfrey, S. & Wijffels, S. Simulations of processes associated with the fast warming rate of the southern midlatitude ocean. J. Clim. 23, 197–206 (2010).

    Article  Google Scholar 

  154. Fan, T., Deser, C. & Schneider, D. P. Recent Antarctic sea ice trends in the context of Southern Ocean surface climate variations since 1950. Geophys. Res. Lett. 41, 2419–2426 (2014).

    Article  Google Scholar 

  155. Meredith, M. P. & King, J. C. Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys. Res. Lett. 32, L19604 (2005).

    Google Scholar 

  156. Cook, A. J. et al. Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science 353, 283–286 (2016).

    Article  Google Scholar 

  157. Martinson, D. G., Stammerjohn, S. E., Iannuzzi, R. A., Smith, R. C. & Vernet, M. Western Antarctic Peninsula physical oceanography and spatio–temporal variability. Deep. Sea Res. Part II Top. Stud. Oceanogr. 55, 1964–1987 (2008).

    Article  Google Scholar 

  158. Spence, P. et al. Localized rapid warming of West Antarctic subsurface waters by remote winds. Nat. Clim. Change 7, 595–603 (2017).

    Article  Google Scholar 

  159. Holland, P. R., Bracegirdle, T. J., Dutrieux, P., Jenkins, A. & Steig, E. J. West Antarctic ice loss influenced by internal climate variability and anthropogenic forcing. Nat. Geosci. 12, 718–724 (2019).

    Article  Google Scholar 

  160. Jenkins, A. et al. West Antarctic Ice Sheet retreat in the Amundsen Sea driven by decadal oceanic variability. Nat. Geosci. 11, 733–738 (2018).

    Article  Google Scholar 

  161. Thoma, M., Jenkins, A., Holland, D. & Jacobs, S. Modelling circumpolar deep water intrusions on the Amundsen Sea continental shelf, Antarctica. Geophys. Res. Lett. 35, L18602 (2008).

    Article  Google Scholar 

  162. Auger, M., Morrow, R., Kestenare, E., Sallée, J.-B. & Cowley, R. Southern Ocean in-situ temperature trends over 25 years emerge from interannual variability. Nat. Commun. 12, 514 (2021).

    Article  Google Scholar 

  163. Hellmer, H. H., Kauker, F., Timmermann, R., Determann, J. & Rae, J. Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current. Nature 485, 225–228 (2012).

    Article  Google Scholar 

  164. Jacobs, S. et al. The Amundsen Sea and the Antarctic ice sheet. Oceanography 25, 154–163 (2012).

    Article  Google Scholar 

  165. Durack, P. J., Wijffels, S. E. & Matear, R. J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336, 455–458 (2012).

    Article  Google Scholar 

  166. Helm, K. P., Bindoff, N. L. & Church, J. A. Changes in the global hydrological-cycle inferred from ocean salinity. Geophys. Res. Lett. 37, L18701 (2010).

    Article  Google Scholar 

  167. Purkey, S. G. & Johnson, G. C. Antarctic Bottom Water warming and freshening: Contributions to sea level rise, ocean freshwater budgets, and global heat gain. J. Clim. 26, 6105–6122 (2013).

    Article  Google Scholar 

  168. van Wijk, E. M. & Rintoul, S. R. Freshening drives contraction of Antarctic bottom water in the Australian Antarctic Basin. Geophys. Res. Lett. 41, 1657–1664 (2014).

    Article  Google Scholar 

  169. Swart, N. & Fyfe, J. The influence of recent Antarctic ice sheet retreat on simulated sea ice area trends. Geophys. Res. Lett. 40, 4328–4332 (2013).

    Article  Google Scholar 

  170. Dotto, T. S. et al. Variability of the Ross Gyre, Southern Ocean: drivers and responses revealed by satellite altimetry. Geophys. Res. Lett. 45, 6195–6204 (2018).

    Google Scholar 

  171. Meijers, A., Cerovečki, I., King, B. A. & Tamsitt, V. A see-saw in Pacific subantarctic mode water formation driven by atmospheric modes. Geophys. Res. Lett. 46, 13152–13160 (2019).

    Article  Google Scholar 

  172. Pritchard, H. et al. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484, 502–505 (2012).

    Article  Google Scholar 

  173. Rignot, E. et al. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proc. Natl Acad. Sci. USA 116, 1095–1103 (2019).

    Article  Google Scholar 

  174. Shepherd, A. et al. Trends in Antarctic Ice Sheet elevation and mass. Geophys. Res. Lett. 46, 8174–8183 (2019).

    Article  Google Scholar 

  175. Scott, R. C., Nicolas, J. P., Bromwich, D. H., Norris, J. R. & Lubin, D. Meteorological drivers and large-scale climate forcing of West Antarctic surface melt. J. Clim. 32, 665–684 (2019).

    Article  Google Scholar 

  176. Wouters, B. et al. Dynamic thinning of glaciers on the Southern Antarctic Peninsula. Science 348, 899–903 (2015).

    Article  Google Scholar 

  177. Mohajerani, Y., Velicogna, I. & Rignot, E. Mass loss of Totten and Moscow University glaciers, East Antarctica, using regionally optimized GRACE mascons. Geophys. Res. Lett. 45, 7010–7018 (2018).

    Article  Google Scholar 

  178. Jenkins, A. et al. Decadal ocean forcing and Antarctic ice sheet response: Lessons from the Amundsen Sea. Oceanography 29, 106–117 (2016).

    Article  Google Scholar 

  179. Gudmundsson, G. H., Paolo, F. S., Adusumilli, S. & Fricker, H. A. Instantaneous Antarctic ice sheet mass loss driven by thinning ice shelves. Geophys. Res. Lett. 46, 13903–13909 (2019).

    Article  Google Scholar 

  180. Joughin, I., Smith, B. E. & Medley, B. Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science 344, 735–738 (2014).

    Article  Google Scholar 

  181. Mouginot, J., Rignot, E. & Scheuchl, B. Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013. Geophys. Res. Lett. 41, 1576–1584 (2014).

    Article  Google Scholar 

  182. Seroussi, H. et al. Continued retreat of Thwaites Glacier, West Antarctica, controlled by bed topography and ocean circulation. Geophys. Res. Lett. 44, 6191–6199 (2017).

    Article  Google Scholar 

  183. Davis, P. E. et al. Variability in basal melting beneath Pine Island Ice Shelf on weekly to monthly timescales. J. Geophys. Res. Oceans 123, 8655–8669 (2018).

    Article  Google Scholar 

  184. Kimura, S. et al. Oceanographic controls on the variability of ice-shelf basal melting and circulation of glacial meltwater in the Amundsen Sea Embayment, Antarctica. J. Geophys. Res. Oceans 122, 10131–10155 (2017).

    Article  Google Scholar 

  185. Berthier, E., Scambos, T. A. & Shuman, C. A. Mass loss of Larsen B tributary glaciers (Antarctic Peninsula) unabated since 2002. Geophys. Res. Lett. 39, L13501 (2012).

    Article  Google Scholar 

  186. Minchew, B. M., Gudmundsson, G. H., Gardner, A. S., Paolo, F. S. & Fricker, H. A. Modeling the dynamic response of outlet glaciers to observed ice-shelf thinning in the Bellingshausen Sea Sector, West Antarctica. J. Glaciol. 64, 333–342 (2018).

    Article  Google Scholar 

  187. Royston, S. & Gudmundsson, G. H. Changes in ice-shelf buttressing following the collapse of Larsen A Ice Shelf, Antarctica, and the resulting impact on tributaries. J. Glaciol. 62, 905–911 (2016).

    Article  Google Scholar 

  188. Scambos, T. A., Hulbe, C., Fahnestock, M. & Bohlander, J. The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. J. Glaciol. 46, 516–530 (2000).

    Article  Google Scholar 

  189. Barrand, N. et al. Trends in Antarctic Peninsula surface melting conditions from observations and regional climate modeling. J. Geophys. Res. Earth Surf. 118, 315–330 (2013).

    Article  Google Scholar 

  190. Massom, R. A. et al. Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell. Nature 558, 383–389 (2018).

    Article  Google Scholar 

  191. Bronselaer, B. et al. Change in future climate due to Antarctic meltwater. Nature 564, 53–58 (2018).

    Article  Google Scholar 

  192. Hunke, E. C. & Comeau, D. Sea ice and iceberg dynamic interaction. J. Geophys. Res. Oceans 116, C05008 (2011).

    Article  Google Scholar 

  193. Jeong, H. et al. Impacts of ice-shelf melting on water-mass transformation in the Southern Ocean from E3SM simulations. J. Clim. 33, 5787–5807 (2020).

    Article  Google Scholar 

  194. Stern, A., Adcroft, A. & Sergienko, O. The effects of Antarctic iceberg calving-size distribution in a global climate model. J. Geophys. Res. Oceans 121, 5773–5788 (2016).

    Article  Google Scholar 

  195. Frölicher, T. L. et al. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J. Clim. 28, 862–886 (2015).

    Article  Google Scholar 

  196. Silvano, A. et al. Recent recovery of Antarctic Bottom Water formation in the Ross Sea driven by climate anomalies. Nat. Geosci. 13, 780–786 (2020).

    Article  Google Scholar 

  197. Marshall, J. & Speer, K. Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci. 5, 171–180 (2012).

    Article  Google Scholar 

  198. Landschützer, P. et al. The reinvigoration of the Southern Ocean carbon sink. Science 349, 1221–1224 (2015).

    Article  Google Scholar 

  199. Sigman, D. M., Hain, M. P. & Haug, G. H. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 466, 47–55 (2010).

    Article  Google Scholar 

  200. Rye, C. D. et al. Rapid sea-level rise along the Antarctic margins in response to increased glacial discharge. Nat. Geosci. 7, 732–735 (2014).

    Article  Google Scholar 

  201. Chen, X. & Tung, K.-K. Global surface warming enhanced by weak Atlantic overturning circulation. Nature 559, 387–391 (2018).

    Article  Google Scholar 

  202. Roemmich, D. et al. Unabated planetary warming and its ocean structure since 2006. Nat. Clim. Change 5, 240–245 (2015).

    Article  Google Scholar 

  203. Chen, X. et al. The increasing rate of global mean sea-level rise during 1993–2014. Nat. Clim. Change 7, 492–495 (2017).

    Article  Google Scholar 

  204. Armitage, T. W., Kwok, R., Thompson, A. F. & Cunningham, G. Dynamic topography and sea level anomalies of the Southern Ocean: Variability and teleconnections. J. Geophys. Res. Oceans 123, 613–630 (2018).

    Article  Google Scholar 

  205. Cai, W. Antarctic ozone depletion causes an intensification of the Southern Ocean super-gyre circulation. Geophys. Res. Lett. 33, L03712 (2006).

    Google Scholar 

  206. Xie, S.-P. et al. Global warming pattern formation: Sea surface temperature and rainfall. J. Clim. 23, 966–986 (2010).

    Article  Google Scholar 

  207. Cai, W. et al. ENSO and greenhouse warming. Nat. Clim. Change 5, 849–859 (2015).

    Article  Google Scholar 

  208. Cai, W. et al. More extreme swings of the South Pacific convergence zone due to greenhouse warming. Nature 488, 365–369 (2012).

    Article  Google Scholar 

  209. Cai, W. et al. Butterfly effect and a self-modulating El Niño response to global warming. Nature 585, 68–73 (2020).

    Article  Google Scholar 

  210. Maher, N., Matei, D., Milinski, S. & Marotzke, J. ENSO change in climate projections: Forced response or internal variability? Geophys. Res. Lett. 45, 390–311,398 (2018).

    Google Scholar 

  211. Zheng, X.-T., Hui, C. & Yeh, S.-W. Response of ENSO amplitude to global warming in CESM large ensemble: uncertainty due to internal variability. Clim. Dyn. 50, 4019–4035 (2018).

    Article  Google Scholar 

  212. Cai, W. et al. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 564, 201–206 (2018).

    Article  Google Scholar 

  213. Jin, F.-F. An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci. 54, 811–829 (1997).

    Article  Google Scholar 

  214. Hui, C. & Zheng, X.-T. Uncertainty in Indian Ocean dipole response to global warming: The role of internal variability. Clim. Dyn. 51, 3597–3611 (2018).

    Article  Google Scholar 

  215. Zheng, X.-T. et al. Indian Ocean dipole response to global warming in the CMIP5 multimodel ensemble. J. Clim. 26, 6067–6080 (2013).

    Article  Google Scholar 

  216. Cai, W. et al. Opposite response of strong and moderate positive Indian Ocean Dipole to global warming. Nat. Clim. Change 11, 27–32 (2021).

    Article  Google Scholar 

  217. Cai, W. et al. Climate impacts of the El Niño–Southern Oscillation on South America. Nat. Rev. Earth Environ. 1, 215–231 (2020).

    Article  Google Scholar 

  218. Bonfils, C. J. et al. Relative contributions of mean-state shifts and ENSO-driven variability to precipitation changes in a warming climate. J. Clim. 28, 9997–10013 (2015).

    Article  Google Scholar 

  219. Chen, Z., Gan, B., Wu, L. & Jia, F. Pacific-North American teleconnection and North Pacific Oscillation: historical simulation and future projection in CMIP5 models. Clim. Dyn. 50, 4379–4403 (2018).

    Article  Google Scholar 

  220. Huang, P. Time-varying response of ENSO-induced tropical Pacific rainfall to global warming in CMIP5 models. Part I: Multimodel ensemble results. J. Clim. 29, 5763–5778 (2016).

    Article  Google Scholar 

  221. Yan, Z. et al. Eastward shift and extension of ENSO-induced tropical precipitation anomalies under global warming. Sci. Adv. 6, eaax4177 (2020).

    Article  Google Scholar 

  222. Yeh, S. W. et al. ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev. Geophys. 56, 185–206 (2018).

    Article  Google Scholar 

  223. Zhou, Z.-Q., Xie, S.-P., Zheng, X.-T., Liu, Q. & Wang, H. Global warming–induced changes in El Niño teleconnections over the North Pacific and North America. J. Clim. 27, 9050–9064 (2014).

    Article  Google Scholar 

  224. Cai, W. et al. Changing El Niño–Southern Oscillation in a warming climate. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00199-z (2021).

    Article  Google Scholar 

  225. Cheng, J. et al. Reduced interdecadal variability of Atlantic Meridional Overturning Circulation under global warming. Proc. Natl Acad. Sci. USA 113, 3175–3178 (2016).

    Article  Google Scholar 

  226. Geng, T., Yang, Y. & Wu, L. On the mechanisms of Pacific decadal oscillation modulation in a warming climate. J. Clim. 32, 1443–1459 (2019).

    Article  Google Scholar 

  227. Li, S. et al. The Pacific Decadal Oscillation less predictable under greenhouse warming. Nat. Clim. Change 10, 30–34 (2020).

    Article  Google Scholar 

  228. Lu, J., Vecchi, G. A. & Reichler, T. Correction to “Expansion of the Hadley cell under global warming”. Geophys. Res. Lett. 34, L14808 (2007).

    Article  Google Scholar 

  229. Fyfe, J., Boer, G. & Flato, G. The Arctic and Antarctic Oscillations and their projected changes under global warming. Geophys. Res. Lett. 26, 1601–1604 (1999).

    Article  Google Scholar 

  230. Fyfe, J. C., Saenko, O. A., Zickfeld, K., Eby, M. & Weaver, A. J. The role of poleward-intensifying winds on Southern Ocean warming. J. Clim. 20, 5391–5400 (2007).

    Article  Google Scholar 

  231. Cai, W., Shi, G., Cowan, T., Bi, D. & Ribbe, J. The response of the Southern Annular Mode, the East Australian Current, and the southern mid-latitude ocean circulation to global warming. Geophys. Res. Lett. 32, L23706 (2005).

    Article  Google Scholar 

  232. Russell, J. L., Dixon, K. W., Gnanadesikan, A., Stouffer, R. J. & Toggweiler, J. The Southern Hemisphere westerlies in a warming world: Propping open the door to the deep ocean. J. Clim. 19, 6382–6390 (2006).

    Article  Google Scholar 

  233. Bracegirdle, T. J. et al. Twenty first century changes in Antarctic and Southern Ocean surface climate in CMIP6. Atmos. Sci. Lett. 21, e984 (2020).

    Article  Google Scholar 

  234. Holland, D. M., Nicholls, K. W. & Basinski, A. The Southern Ocean and its interaction with the Antarctic Ice Sheet. Science 367, 1326–1330 (2020).

    Article  Google Scholar 

  235. Marzeion, B., Cogley, J. G., Richter, K. & Parkes, D. Attribution of global glacier mass loss to anthropogenic and natural causes. Science 345, 919–921 (2014).

    Article  Google Scholar 

  236. McMillan, M. et al. Increased ice losses from Antarctica detected by CryoSat-2. Geophys. Res. Lett. 41, 3899–3905 (2014).

    Article  Google Scholar 

  237. Riser, S. C., Swift, D. & Drucker, R. Profiling floats in SOCCOM: Technical capabilities for studying the Southern Ocean. J. Geophys. Res. Oceans 123, 4055–4073 (2018).

    Article  Google Scholar 

  238. Zilberman, N. Deep Argo: sampling the total ocean volume in state of the climate in 2016. Bull. Am. Meteorol. Soc. 98, S73–S74 (2017).

    Google Scholar 

  239. Lange, B. A., Katlein, C., Nicolaus, M., Peeken, I. & Flores, H. Sea ice algae chlorophyll a concentrations derived from under-ice spectral radiation profiling platforms. J. Geophys. Res. Oceans 121, 8511–8534 (2016).

    Article  Google Scholar 

  240. Lazzara, M. A., Weidner, G. A., Keller, L. M., Thom, J. E. & Cassano, J. J. Antarctic automatic weather station program: 30 years of polar observation. Bull. Am. Meteorol. Soc. 93, 1519–1537 (2012).

    Article  Google Scholar 

  241. Lai, C.-Y. et al. Vulnerability of Antarctica’s ice shelves to meltwater-driven fracture. Nature 584, 574–578 (2020).

    Article  Google Scholar 

  242. Hyder, P. et al. Critical Southern Ocean climate model biases traced to atmospheric model cloud errors. Nat. Commun. 9, 3625 (2018).

    Article  Google Scholar 

  243. Li, G. & Xie, S.-P. Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Clim. 27, 1765–1780 (2014).

    Article  Google Scholar 

  244. Kosaka, Y. & Xie, S.-P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–407 (2013).

    Article  Google Scholar 

  245. Kay, J. E. et al. The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015).

    Article  Google Scholar 

  246. Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).

    Article  Google Scholar 

  247. Steffen, W. et al. Planetary boundaries: Guiding human development on a changing planet. Science 347, 1259855 (2015).

    Article  Google Scholar 

  248. DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).

    Article  Google Scholar 

  249. Fretwell, P. et al. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7, 375–393 (2013).

    Article  Google Scholar 

  250. Morlighem, M. et al. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nat. Geosci. 13, 132–137 (2020).

    Article  Google Scholar 

  251. Clem, K. R., Renwick, J. A. & McGregor, J. Autumn cooling of Western East Antarctica linked to the tropical Pacific. J. Geophys. Res. Atmos. 123, 89–107 (2018).

    Article  Google Scholar 

  252. Marshall, G. J. & Thompson, D. W. The signatures of large-scale patterns of atmospheric variability in Antarctic surface temperatures. J. Geophys. Res. Atmos. 121, 3276–3289 (2016).

    Article  Google Scholar 

  253. England, M. R., Polvani, L. M., Sun, L. & Deser, C. Tropical climate responses to projected Arctic and Antarctic sea-ice loss. Nat. Geosci. 13, 275–381 (2020).

    Article  Google Scholar 

  254. Hwang, Y. T., Xie, S. P., Deser, C. & Kang, S. M. Connecting tropical climate change with Southern Ocean heat uptake. Geophys. Res. Lett. 44, 9449–9457 (2017).

    Article  Google Scholar 

  255. Zhang, X., Deser, C. & Sun, L. Is there a tropical response to recent observed Southern Ocean cooling? Geophys. Res. Lett. 48, e2020GL091235 (2020).

    Google Scholar 

  256. Cohen, J. L., Furtado, J. C., Barlow, M. A., Alexeev, V. A. & Cherry, J. E. Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ. Res. Lett. 7, 014007 (2012).

    Article  Google Scholar 

  257. Mori, M., Watanabe, M., Shiogama, H., Inoue, J. & Kimoto, M. Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci. 7, 869–873 (2014).

    Article  Google Scholar 

  258. Zhang, J., Tian, W., Chipperfield, M. P., Xie, F. & Huang, J. Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades. Nat. Clim. Change 6, 1094–1099 (2016).

    Article  Google Scholar 

  259. Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, 4407 (2003).

    Article  Google Scholar 

  260. Turner, J. et al. The SCAR READER project: Toward a high-quality database of mean Antarctic meteorological observations. J. Clim. 17, 2890–2898 (2004).

    Article  Google Scholar 

  261. Peng, G., Meier, W. N., Scott, D. & Savoie, M. A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring. Earth Syst. Sci. Data 5, 311–318 (2013).

    Article  Google Scholar 

  262. Good, S. A., Martin, M. J. & Rayner, N. A. EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans 118, 6704–6716 (2013).

    Article  Google Scholar 

  263. Cheng, L. & Zhu, J. Benefits of CMIP5 multimodel ensemble in reconstructing historical ocean subsurface temperature variations. J. Clim. 29, 5393–5416 (2016).

    Article  Google Scholar 

  264. Ishii, M. et al. Accuracy of global upper ocean heat content estimation expected from present observational data sets. Sola 13, 163–167 (2017).

    Article  Google Scholar 

  265. Feng, X. et al. A multidecadal-scale tropically driven global teleconnection over the past millennium and its recent strengthening. J. Clim. 34, 2549–2565 (2021).

    Article  Google Scholar 

  266. Huang, Y., Ding, Q., Dong, X., Xi, B. & Baxter, I. Summertime low clouds mediate the impact of the large-scale circulation on Arctic sea ice. Commun. Earth Environ. 2, 38 (2021).

    Article  Google Scholar 

  267. Trenberth, K. E., Fasullo, J. T., Branstator, G. & Phillips, A. S. Seasonal aspects of the recent pause in surface warming. Nat. Clim. Change 4, 911–916 (2014).

    Article  Google Scholar 

  268. Grunseich, G. & Wang, B. Arctic sea ice patterns driven by the Asian summer monsoon. J. Clim. 29, 9097–9112 (2016).

    Article  Google Scholar 

  269. Wu, B. & Francis, J. A. Summer Arctic cold anomaly dynamically linked to East Asian heat waves. J. Clim. 32, 1137–1150 (2019).

    Article  Google Scholar 

  270. Wu, B., Zhang, R., Wang, B. & D’Arrigo, R. On the association between spring Arctic sea ice concentration and Chinese summer rainfall. Geophys. Res. Lett. 36, L09501 (2009).

    Google Scholar 

  271. Labe, Z., Peings, Y. & Magnusdottir, G. The effect of QBO phase on the atmospheric response to projected Arctic sea ice loss in early winter. Geophys. Res. Lett. 46, 7663–7671 (2019).

    Article  Google Scholar 

  272. Lee, S., Gong, T., Johnson, N. C., Feldstein, S. B. & Pollard, D. On the possible link between tropical convection and the Northern Hemisphere Arctic surface air temperature change between 1958 and 2001. J. Clim. 24, 4350–4367 (2011).

    Article  Google Scholar 

  273. Martin, Z. et al. The influence of the quasi-biennial oscillation on the Madden–Julian oscillation. Nat. Rev. Earth Environ. 2, 477–489 (2021).

    Article  Google Scholar 

  274. Steig, E. J. et al. Recent climate and ice-sheet changes in West Antarctica compared with the past 2,000 years. Nat. Geosci. 6, 372–375 (2013).

    Article  Google Scholar 

  275. Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49–54 (2012).

    Article  Google Scholar 

  276. Tudhope, A. W. et al. Variability in the El Niño-Southern Oscillation through a glacial-interglacial cycle. Science 291, 1511–1517 (2001).

    Article  Google Scholar 

  277. Turney, C. S. et al. Millennial and orbital variations of El Nino/Southern Oscillation and high-latitude climate in the last glacial period. Nature 428, 306–310 (2004).

    Article  Google Scholar 

  278. Ford, H. L., Ravelo, A. C. & Polissar, P. J. Reduced El Niño–Southern Oscillation during the last glacial maximum. Science 347, 255–258 (2015).

    Article  Google Scholar 

  279. Merkel, U., Prange, M. & Schulz, M. ENSO variability and teleconnections during glacial climates. Quat. Sci. Rev. 29, 86–100 (2010).

    Article  Google Scholar 

  280. Sadekov, A. Y. et al. Palaeoclimate reconstructions reveal a strong link between El Niño-Southern Oscillation and Tropical Pacific mean state. Nat. Commun. 4, 2692 (2013).

    Article  Google Scholar 

  281. Jones, T. R. et al. Southern Hemisphere climate variability forced by Northern Hemisphere ice-sheet topography. Nature 554, 351–355 (2018).

    Article  Google Scholar 

  282. Blunier, T. et al. Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature 394, 739–743 (1998).

    Article  Google Scholar 

  283. Dansgaard, W. et al. A new Greenland deep ice core. Science 218, 1273–1277 (1982).

    Article  Google Scholar 

  284. Menviel, L. C., Skinner, L. C., Tarasov, L. & Tzedakis, P. C. An ice–climate oscillatory framework for Dansgaard–Oeschger cycles. Nat. Rev. Earth Environ. 1, 677–693 (2020).

    Article  Google Scholar 

  285. Kang, S. M., Frierson, D. M. & Held, I. M. The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci. 66, 2812–2827 (2009).

    Article  Google Scholar 

  286. Deplazes, G. et al. Links between tropical rainfall and North Atlantic climate during the last glacial period. Nat. Geosci. 6, 213–217 (2013).

    Article  Google Scholar 

  287. Peterson, L. C., Haug, G. H., Hughen, K. A. & Röhl, U. Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial. Science 290, 1947–1951 (2000).

    Article  Google Scholar 

  288. Wang, X. et al. Interhemispheric anti-phasing of rainfall during the last glacial period. Quat. Sci. Rev. 25, 3391–3403 (2006).

    Article  Google Scholar 

  289. Ceppi, P., Hwang, Y. T., Liu, X., Frierson, D. M. & Hartmann, D. L. The relationship between the ITCZ and the Southern Hemispheric eddy-driven jet. J. Geophys. Res. Atmos. 118, 5136–5146 (2013).

    Article  Google Scholar 

  290. Chiang, J. C., Lee, S.-Y., Putnam, A. E. & Wang, X. South Pacific Split Jet, ITCZ shifts, and atmospheric North–South linkages during abrupt climate changes of the last glacial period. Earth Planet. Sci. Lett. 406, 233–246 (2014).

    Article  Google Scholar 

  291. Markle, B. R. et al. Global atmospheric teleconnections during Dansgaard–Oeschger events. Nat. Geosci. 10, 36–40 (2017).

    Article  Google Scholar 

  292. Buizert, C. et al. Abrupt ice-age shifts in southern westerly winds and Antarctic climate forced from the north. Nature 563, 681–685 (2018).

    Article  Google Scholar 

  293. Pedro, J. B. et al. The spatial extent and dynamics of the Antarctic Cold Reversal. Nat. Geosci. 9, 51–55 (2016).

    Article  Google Scholar 

  294. Rae, J. W. et al. CO2 storage and release in the deep Southern Ocean on millennial to centennial timescales. Nature 562, 569–573 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (2018YFA0605700). X.Li is supported by the National Key Research and Development Program of China (2019YFC1509100), the National Natural Science Foundation of China (no. 41676190 and no. 41825012), and the Chinese Arctic and Antarctic Administration (CXPT2020015). G.A.M. was supported by the Regional and Global Model Analysis (RGMA) component of Earth and Environmental System Modeling in the Earth and Environmental Systems Sciences Division of the U.S. Department of Energy’s Office of Biological and Environmental Research (BER) via National Science Foundation IA 1947282 and by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation (NSF) under Cooperative Agreement no. 1852977. X.Y. is supported by the LDEO endowment for this work. M.R. is supported by the National Science Foundation, Office of Polar Programs (grant no. NSF-OPP-1745089). D.M.H. is supported by the Center for Global Sea Level Change (CSLC) of NYU Abu Dhabi Research Institute (G1204) in the UAE and NSF PLR-1739003. Q.D. is supported by Climate Variability & Predictability (NA18OAR4310424) as part of NOAA’s Climate Program Office. R.L.F. was supported by the National Science Foundation under grant no. U.S. NSF PLR-1744998. B.R.M. was supported, in part, by a Stanback Postdoctoral Fellowship. D.H.B. was supported by the U.S. NSF award OPP-1823135. S.P.X. was supported by the National Science Foundation (AGS-2105654, AGS-1934392 and AGS-1637450). S.T.G. was supported by the U.S. NSF awards PLR-1425989 and OPP-1936222, and by the U.S. Department of Energy (DOE) (award DE-SC0020073). M.A.L. is supported by the Office of Polar Programs, National Science Foundation grant (no. 1924730). X.Chen is supported by the National Key Research and Development Program of China (2019YFC1509100) and the National Science Foundation of China (no. 41825012). S.E.S. was supported by the National Science Foundation under grant no. U.S. NSF PLR-1440435. M.M.H. was supported by the National Science Foundation under grant no. U.S. NSF OPP-1724748. S.F.P. is supported by the U.S. Department of Energy Office of Science, Biological and Environmental Research programme. Z.W. is supported by China National Natural Science Foundation (NSFC) project nos. 41941007 and 41876220. E.P.G. is supported by the NSF grant AGS-1852727. H.G. is a research director within the Fonds de la Recherche Scientifique-FNRS. C.Y. is supported by the National Research Foundation of Korea (NRF) (grant NRF-2019R1C1C1003161).

Author information

Authors and Affiliations

Authors

Contributions

X.Li, W.C., G.A.M., D.C., X.Y., M.R., D.M.H., Q.D., R.L.F., B.R.M., G.W., S.F.P., C.X., B.W., X.Chen and P.R.H. wrote specific sections or subsections, and provided figures for the Review. All authors contributed to the manuscript preparation, interpretation, discussion and writing.

Corresponding author

Correspondence to Xichen Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Southern Annular Mode

(SAM). The leading mode of extratropical Southern Hemisphere atmospheric circulation, characterized by pressure variability between the mid and high southern latitudes, influencing the strength and position of the mid-latitude jet.

Anthropogenic forcings

Climatic forcings linked to anthropogenic factors, typically, increased greenhouse gas concentrations associated with fossil fuel burning, sulfate aerosols produced as an industrial by-product, stratospheric ozone depletion and human-induced changes in land surface properties.

Amundsen Sea Low

(ASL). A climatological low-pressure centre located over the southern end of the Pacific Ocean, off the coast of West Antarctica, that exhibits substantial variability in strength, influencing the climate of West Antarctica and the adjacent oceanic environment.

El Niño–Southern Oscillation

(ENSO). An irregular periodic variation in winds and sea surface temperatures over the tropical Pacific Ocean on interannual timescales; the warming phase, El Niño, is characterized by anomalous warm sea surface temperature over the equatorial central-eastern Pacific, together with high and low surface pressure in the tropical western and eastern Pacific, respectively, and the cooling phase, La Niña, with generally opposite conditions.

Rossby wave trains

A series of cyclonic and anticyclonic vortices with a typical spatial scale of a thousand kilometres, superimposed on the uniform west-to-east flow, making up a succession of wave packages occurring at periodic intervals.

Antarctic Circumpolar Wave

Large-scale oceanic and atmospheric patterns, propagating eastward around the Southern Ocean with the Antarctic Circumpolar Current, on interannual and sub-decadal timescales. Features can be detected in sea level pressure, sea surface height, sea surface temperature and atmospheric/oceanic circulation.

Interdecadal Pacific Oscillation

(IPO). A climate mode describing changes in Pacific sea surface temperature on 20–30-year timescales; positive phases are characterized by an anomalous warming over the tropical eastern Pacific and cooling patterns over the extratropical–mid-latitude western Pacific.

Atlantic Multidecadal Oscillation

(AMO). A climate mode that affects the sea surface temperature over the North Atlantic Ocean on multidecadal timescales, with an estimated period of ~60–70 years, and an amplitude of the spatial mean temperature up to 0.5°C.

Hadley circulation

Vertical–meridional overturning atmospheric circulation over the low-latitude troposphere, characterized by rising motion near the equator, with air flowing poleward at the upper troposphere and descending over the subtropics.

Subtropical jet

A belt of strong upper-troposphere westerly winds in the subtropics, affecting precipitation and temperatures over the tropics and mid-latitudes.

Waveguide

A certain layer of atmosphere, usually acted upon by the mean jet, in which the wave is trapped due to refraction, just as an electromagnetic wave propagates in a metal waveguide.

Thermal wind balance

The balance between vertical wind shear and horizontal gradients of virtual temperature in the atmosphere.

Walker circulation

Vertical–zonal overturning atmospheric circulation over the tropical belt; the dominant Pacific Walker cell is characterized by easterly winds at the lower troposphere, westerly winds at the upper troposphere, rising motion over the western Pacific and descending motion over the eastern Pacific.

South Pacific Convergence Zone

(SPCZ). A band of low-level convergence, cloudiness and precipitation extending from the Western Pacific Warm Pool at the Maritime Continent south-eastwards of the French Polynesia and as far as the Cook Islands (160°W, 20°S).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Cai, W., Meehl, G.A. et al. Tropical teleconnection impacts on Antarctic climate changes. Nat Rev Earth Environ 2, 680–698 (2021). https://doi.org/10.1038/s43017-021-00204-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-021-00204-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing