Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

No single model for supersized eruptions and their magma bodies


Supereruptions are the largest explosive volcanic eruptions on Earth. They generate catastrophic, widespread ash-fall blankets and voluminous ignimbrites, with accompanying caldera collapse. However, the mechanisms of generation, storage and evacuation of the parental silicic magma bodies remain controversial. In this Review, we synthesize field, laboratory and petrological evidence from 13 Quaternary supereruptions to illustrate the range of diversity in these phenomena. Supereruptions can start mildly over weeks to months before escalating into climactic activity, or go into vigorous activity immediately. Individual supereruptions can occupy periods of days to weeks, or be prolonged over decades. The magmatic sources vary from single bodies of magma to multiple magma bodies that are simultaneously or sequentially tapped. In all 13 cases, the crystal-rich (>50–60% crystals), deep roots (>10 km) of the magmatic systems had lifetimes of tens of thousands to hundreds of thousands of years or more. In contrast, the erupted magmas were assembled at shallower depths (4–10 km) on shorter timescales, sometimes within centuries. Geological knowledge of past events, combined with modern geophysical techniques, demonstrate how large silicic caldera volcanoes (that have had past supereruptions) operate today. Future research is particularly needed to better constrain the processes behind modern volcanic unrest and the signals that might herald an impending volcanic eruption, regardless of size.

Key points

  • Field studies demonstrate that supereruptions show great diversity in their style, rapidity of onset, duration of eruption, triggering mechanisms for eruption onset and caldera collapse.

  • The magma reservoirs from which supereruptions are sourced are comparably diverse, with examples of both single and multiple bodies, each of which can be compositionally zoned or convectively mixed.

  • Past supereruptions serve to define a supervolcano, but this arbitrary term does not constrain the modern or future behaviour of that particular volcano.

  • Geophysical imaging of magma storage regions at modern, large silicic volcanoes (including supervolcanoes) is broadly consistent with petrological inferences, but imaging resolution is insufficient to identify small, melt-dominant bodies capable of supplying eruptions.

  • Large silicic volcanoes often undergo periods of unrest, consisting of elevated seismicity, ground deformation and gas emissions. Monitoring of these systems must contend with the challenge of differentiating ‘normal’ unrest from pre-eruptive signals.

  • Further work is needed to better understand the processes that cause these long-lived magmatic systems to accumulate eruptible magma bodies and the subsequent tipping points that cause these to erupt.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Location maps of Quaternary supereruption locations and associated caldera outlines.
Fig. 2: Field and textural relationships in supereruption deposits as guides to eruption characteristics.
Fig. 3: Endmember pre-eruptive magmatic storage configurations for Quaternary supereruptions.
Fig. 4: The mineral toolbox for probing the origins and evolution of silicic magmatic systems.
Fig. 5: Geophysical imaging of supereruptive systems.


  1. 1.

    Mason, B. G., Pyle, D. M. & Oppenheimer, C. The size and frequency of the largest explosive eruptions on Earth. Bull. Volcanol. 66, 735–748 (2004).

    Article  Google Scholar 

  2. 2.

    Sparks, R. et al. Super-Eruptions: Global Effects and Future Threats. Report of a Geological Society of London Working Group 1–24 (The Geological Society, 2005).

  3. 3.

    Self, S. The effects and consequences of very large explosive volcanic eruptions. Philos. Trans. R. Soc. Lond. A 364, 2073–2097 (2006).

    Google Scholar 

  4. 4.

    Wark, D. A. & Miller, C. F. (eds) Supervolcanoes. Elements 4, 11–49 (2008). For the non-specialist, still the single most useful collation of information about supersized eruptions and their source volcanoes.

  5. 5.

    Lundstrom, C. C. & Glazner, A. F. (eds) Enigmatic relationship between silicic volcanic and plutonic rocks. Elements 12, 91–127.

  6. 6.

    Smith, R. L. Ash-flow magmatism. Geol. Soc. Am. Spec. Pap. 180, 5–27 (1979).

    Google Scholar 

  7. 7.

    Hildreth, W. Gradients in silicic magma chambers: implications for lithospheric magmatism. J. Geophys. Res. 86, 10153–10192 (1981). A classic comprehensive overview and synthesis of the nature of many types of magmatic systems (including supersized examples) that acted as a springboard for many subsequent studies.

    Article  Google Scholar 

  8. 8.

    Annen, C., Blundy, J. D. & Sparks, R. S. J. The genesis of intermediate and silicic magmas in deep crustal hot zones. J. Petrol. 47, 505–539 (2006).

    Article  Google Scholar 

  9. 9.

    Annen, C. From plutons to magma chambers: thermal constraints on the accumulation of eruptible silicic magma in the upper crust. Earth Planet. Sci. Lett. 284, 409–416 (2009).

    Article  Google Scholar 

  10. 10.

    Bachmann, O. & Huber, C. Silicic magma reservoirs in the Earth’s crust. Am. Mineral. 101, 2377–2404 (2016).

    Article  Google Scholar 

  11. 11.

    Cashman, K. V., Sparks, R. S. J. & Blundy, J. D. Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355, eaag3055 (2017).

    Article  Google Scholar 

  12. 12.

    Sparks, R. S. J. et al. Formation and dynamics of magma reservoirs. Philos. Trans. R. Soc. Lond. A 377, 2018.0019 (2019).

    Google Scholar 

  13. 13.

    Gregg, P. M., de Silva, S. L., Grosfils, E. B. & Parmigiani, J. P. Catastrophic caldera-forming eruptions: thermomechanics and implications for eruption triggering and maximum caldera dimensions on Earth. J. Volcanol. Geotherm. Res. 241–242, 1–12 (2012).

    Article  Google Scholar 

  14. 14.

    Degruyter, W. & Huber, C. A model for eruption frequency of upper crustal silicic magma chambers. Earth Planet. Sci. Lett. 403, 117–130 (2014).

    Article  Google Scholar 

  15. 15.

    Karakas, O., Degruyter, W., Bachmann, O. & Dufek, J. Lifetime and size of shallow magma bodies controlled by crustal-scale magmatism. Nat. Geosci. 10, 446–450 (2017).

    Article  Google Scholar 

  16. 16.

    Cabaniss, H. E., Gregg, P. M. & Grosfils, E. B. The role of tectonic stress in triggering large silicic caldera eruptions. Geophys. Res. Lett. 45, 3889–3895 (2018).

    Article  Google Scholar 

  17. 17.

    Townsend, M. & Huber, C. A critical magma chamber size for volcanic eruptions. Geology 48, 431–435 (2020).

    Article  Google Scholar 

  18. 18.

    Christiansen, R. L. The Quaternary and Pliocene Yellowstone Plateau volcanic field of Wyoming, Idaho, and Montana. U.S. Geol. Surv. Prof. Pap. 729-G, 1–143 (2001).

    Google Scholar 

  19. 19.

    Barker, S. J., Wilson, C. J. N., Allan, A. S. R. & Schipper, C. I. Fine-scale temporal recovery, reconstruction and evolution of a post-supereruption magmatic system: Taupo (New Zealand). Contrib. Mineral. Petrol. 170, 5 (2015).

    Article  Google Scholar 

  20. 20.

    Hildreth, W., Fierstein, J. & Calvert, A. Early post-caldera rhyolite and structural resurgence at Long Valley caldera, California. J. Volcanol. Geotherm. Res. 335, 1–34 (2017).

    Article  Google Scholar 

  21. 21.

    Troch, J. et al. Rhyolite generation prior to a Yellowstone supereruption: insights from the Island Park–Mount Jackson Rhyolite series. J. Petrol. 58, 29–52 (2017).

    Google Scholar 

  22. 22.

    Hildreth, W. Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: several contiguous but discrete systems. J. Volcanol. Geotherm. Res. 136, 169–198 (2004).

    Article  Google Scholar 

  23. 23.

    Chesner, C. A. The Toba caldera complex. Quat. Int. 258, 5–18 (2012).

    Article  Google Scholar 

  24. 24.

    Hildreth, W. & Wilson, C. J. N. Compositional zoning of the Bishop Tuff. J. Petrol. 48, 951–999 (2007).

    Article  Google Scholar 

  25. 25.

    Allan, A. S. R. et al. A cascade of magmatic events during the assembly and eruption of a super-sized magma body. Contrib. Mineral. Petrol. 172, 49 (2017). A comprehensive linking of physical volcanology with magmatic processes inferred from petrological data and magmatic timescales from multiple mineral phases to document the evolution of a supereruptive system.

    Article  Google Scholar 

  26. 26.

    Swallow, E. J., Wilson, C. J. N., Charlier, B. L. A. & Gamble, J. A. The Huckleberry Ridge Tuff, Yellowstone: evacuation of multiple magma systems in a complex episodic eruption. J. Petrol. 60, 1371–1426 (2019).

    Article  Google Scholar 

  27. 27.

    Boro, J. R., Wolff, J. A. & Neill, O. K. Anatomy of a recharge magma: hornblende dacite pumice from the rhyolitic Tshirege Member of the Bandelier Tuff, Valles caldera, New Mexico, USA. Contrib. Mineral. Petrol. 175, 96 (2020).

    Article  Google Scholar 

  28. 28.

    Kaneko, K., Kamata, H., Koyaguchi, T., Yoshikawa, M. & Furukawa, K. Repeated large-scale eruptions from a single compositionally stratified magma chamber: an example from Aso volcano, Southwest Japan. J. Volcanol. Geotherm. Res. 167, 160–180 (2007).

    Article  Google Scholar 

  29. 29.

    de Silva, S. L. & Gosnold, W. A. Episodic construction of batholiths: insights from the spatiotemporal development of an ignimbrite flare-up. J. Volcanol. Geotherm. Res. 167, 320–335 (2007).

    Article  Google Scholar 

  30. 30.

    Barker, S. J. et al. What lies beneath? Reconstructing the primitive magmas fueling voluminous silicic volcanism using olivine-hosted melt inclusions. Geology 48, 504–508 (2020).

    Article  Google Scholar 

  31. 31.

    Gelman, S. E., Deering, C. D., Bachmann, O., Huber, C. & Gutiérrez, F. J. Identifying the crystal graveyards remaining after large silicic eruptions. Earth Planet. Sci. Lett. 403, 299–306 (2014).

    Article  Google Scholar 

  32. 32.

    Bachmann, O. & Bergantz, G. W. On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. J. Petrol. 45, 1565–1582 (2004). This paper marked a paradigm shift in how we view magmatic systems, providing an integrated model of mush zones and the evolution of the plutonic and volcanic components of the system.

    Article  Google Scholar 

  33. 33.

    Bachmann, O. & Bergantz, G. W. Rhyolites and their source mushes across tectonic settings. J. Petrol. 49, 2277–2285 (2008).

    Article  Google Scholar 

  34. 34.

    Wilson, C. J. N. Supereruptions and supervolcanoes: processes and products. Elements 4, 29–34 (2008).

    Article  Google Scholar 

  35. 35.

    Walker, G. P. L. Crystal concentration in ignimbrites. Contrib. Mineral. Petrol. 36, 135–146 (1972).

    Article  Google Scholar 

  36. 36.

    Hildreth, W. & Mahood, G. A. Ring-fracture eruption of the Bishop Tuff. Geol. Soc. Am. Bull. 97, 396–403 (1986). Details a unique circumstance by which lithic clasts within a deposit are used to reconstruct the development of an iconic caldera-forming eruption.

    Article  Google Scholar 

  37. 37.

    Izett, G. A. & Wilcox, R. E. Map showing localities and inferred distributions of the Huckleberry Ridge, Mesa Falls, and Lava Creek ash beds (Pearlette family ash beds) of Pliocene and Pleistocene age in the western United States and southern Canada. U.S. Geol. Surv. Misc. Investig. Ser. Map I-1325 (1982).

    Article  Google Scholar 

  38. 38.

    Rose, W. I. & Chesner, C. A. Dispersal of ash in the great Toba eruption, 75 ka. Geology 15, 913–917 (1987).

    Article  Google Scholar 

  39. 39.

    Cisneros de León, A. et al. A history of violence: magma incubation, timing and tephra distribution of the Los Chocoyos supereruption (Atitlán Caldera, Guatemala). J. Quat. Sci. 36, 169–179 (2021).

    Article  Google Scholar 

  40. 40.

    Nash, B. P., Perkins, M. E., Christensen, J. N., Lee, D. C. & Halliday, A. N. The Yellowstone hotspot in space and time: Nd and Hf isotopes in silicic magmas. Earth Planet. Sci. Lett. 247, 143–156 (2006).

    Article  Google Scholar 

  41. 41.

    Nash, B. P. & Perkins, M. E. Neogene fallout tuffs from the Yellowstone hotspot in the Columbia Plateau region, Oregon, Washington and Idaho, USA. PLoS One 7, e44205 (2012).

    Article  Google Scholar 

  42. 42.

    Matthews, N. E. et al. Ultra-distal tephra deposits from super-eruptions: examples from Toba, Indonesia and Taupo Volcanic Zone, New Zealand. Quat. Int. 258, 54–79 (2012).

    Article  Google Scholar 

  43. 43.

    Pearce, N. J. G., Westgate, J. A., Gualda, G. A. R., Gatti, E. & Muhammad, R. F. Tephra glass chemistry provides storage and discharge details of five magma reservoirs which fed the 75 ka Youngest Toba Tuff eruption, northern Sumatra. J. Quat. Sci. 35, 256–271 (2020).

    Article  Google Scholar 

  44. 44.

    Cooper, G. F., Wilson, C. J. N., Millet, M.-A., Baker, J. & Smith, E. G. C. Systematic tapping of independent magma chambers during the 1 Ma Kidnappers supereruption. Earth Planet. Sci. Lett. 213–214, 23–33 (2012).

    Article  Google Scholar 

  45. 45.

    Carey, S. & Sigurdsson, H. The intensity of plinian eruptions. Bull. Volcanol. 51, 28–40 (1989).

    Article  Google Scholar 

  46. 46.

    Ninkovich, D., Sparks, R. S. J. & Ledbetter, M. T. The exceptional magnitude and intensity of the Toba eruption, Sumatra: an example of the use of deep-sea tephra layers as a geological tool. Bull. Volcanol. 41, 286–298 (1978).

    Article  Google Scholar 

  47. 47.

    Ledbetter, M. T. & Sparks, R. S. J. Duration of large-magnitude explosive eruptions deduced from graded bedding in deep-sea ash layers. Geology 7, 240–244 (1979).

    Article  Google Scholar 

  48. 48.

    Sparks, R. S. J. et al. Volcanic Plumes (Wiley, 1997).

  49. 49.

    Baines, P. G. & Sparks, R. S. J. Dynamics of giant volcanic ash clouds from supervolcanic eruptions. Geophys. Res. Lett. 32, L24808 (2005).

    Article  Google Scholar 

  50. 50.

    Costa, A., Suzuki, Y. J. & Koyaguchi, T. Understanding the plume dynamics of explosive super-eruptions. Nat. Comm. 9, 654 (2018).

    Article  Google Scholar 

  51. 51.

    Wilson, C. J. N. & Hildreth, W. The Bishop Tuff: new insights from eruptive stratigraphy. J. Geol. 105, 407–439 (1997).

    Article  Google Scholar 

  52. 52.

    Sheridan, M. F. & Wang, Y. Cooling and welding history of the Bishop Tuff in Adobe Valley and Chidago Canyon, California. J. Volcanol. Geotherm. Res. 142, 119–144 (2005).

    Article  Google Scholar 

  53. 53.

    Wilson, C. J. N. & Hildreth, W. Assembling an ignimbrite: mechanical and thermal building blocks in the Bishop Tuff, California. J. Geol. 111, 653–670 (2003).

    Article  Google Scholar 

  54. 54.

    Brown, S. J. A., Wilson, C. J. N., Cole, J. W. & Wooden, J. The Whakamaru group ignimbrites, Taupo Volcanic Zone, New Zealand: evidence for reverse tapping of a zoned silicic magmatic system. J. Volcanol. Geotherm. Res. 84, 1–37 (1998).

    Article  Google Scholar 

  55. 55.

    Cooper, G. F. & Wilson, C. J. N. Development, mobilisation and eruption of a large crystal-rich rhyolite: the Ongatiti ignimbrite, New Zealand. Lithos 198–199, 38–57 (2014).

    Article  Google Scholar 

  56. 56.

    Cas, R. A. F. et al. The flow dynamics of an extremely large volume pyroclastic flow, the 2.08-Ma Cerro Galán Ignimbrite, NW Argentina, and comparison with other flow types. Bull. Volcanol. 73, 1583–1609 (2011).

    Article  Google Scholar 

  57. 57.

    Wilson, C. J. N. The 26.5 ka Oruanui eruption, New Zealand: an introduction and overview. J. Volcanol. Geotherm. Res. 112, 133–174 (2001).

    Article  Google Scholar 

  58. 58.

    Self, S., Goff, F., Gardner, J. N., Wright, J. V. & Kite, W. M. Explosive rhyolitic volcanism in the Jemez Mountains: vent locations, caldera development and relation to regional structure. J. Geophys. Res. 91, 1779–1798 (1986).

    Article  Google Scholar 

  59. 59.

    Swallow, E. J. et al. Evacuation of multiple magma bodies and the onset of caldera collapse in a supereruption, captured in glass and mineral compositions. Contrib. Mineral. Petrol. 173, 33 (2018).

    Article  Google Scholar 

  60. 60.

    Myers, M. L., Wallace, P. J., Wilson, C. J. N., Morter, B. K. & Swallow, E. J. Prolonged ascent and episodic venting of discrete magma batches at the onset of the Huckleberry Ridge supereruption, Yellowstone. Earth Planet. Sci. Lett. 451, 285–297 (2016).

    Article  Google Scholar 

  61. 61.

    Wilson, C. J. N. & Charlier, B. L. A. Rapid rates of magma generation at contemporaneous magma systems, Taupo volcano, New Zealand: insights from U–Th model-age spectra in zircons. J. Petrol. 50, 875–907 (2009).

    Article  Google Scholar 

  62. 62.

    Wilson, C. J. N., Stelten, M. E. & Lowenstern, J. B. Contrasting perspectives on the Lava Creek Tuff eruption, Yellowstone, from new U–Pb and 40Ar/39Ar age determinations. Bull. Volcanol. 80, 53 (2018).

    Article  Google Scholar 

  63. 63.

    Mucek, A. E. et al. Post-supereruption recovery at Toba caldera. Nat. Comm. 8, 15248 (2017).

    Article  Google Scholar 

  64. 64.

    Cooper, G. F., Morgan, D. J. & Wilson, C. J. N. Rapid assembly and rejuvenation of a large silicic magmatic system: insights from mineral diffusive profiles in the Kidnappers and Rocky Hill deposits, New Zealand. Earth Planet. Sci. Lett. 473, 1–13 (2017).

    Article  Google Scholar 

  65. 65.

    Girard, G. & Stix, J. Magma recharge and crystal mush rejuvenation associated with early post-collapse Upper Basin Member rhyolites, Yellowstone caldera, Wyoming. J. Petrol. 50, 2095–2125 (2009).

    Article  Google Scholar 

  66. 66.

    Till, C. B., Vazquez, J. A., Stelten, M. E., Shamloo, H. I. & Shaffer, J. S. Coexisting discrete bodies of rhyolite and punctuated volcanism characterize Yellowstone’s post-Lava Creek Tuff caldera evolution. Geochem. Geophys. Geosyst. 20, 3861–3881 (2019).

    Article  Google Scholar 

  67. 67.

    Troch, J., Ellis, B. S., Harris, C., Ulmer, P. & Bachmann, O. The effect of prior hydrothermal alteration on the melting behaviour during rhyolite formation in Yellowstone, and its importance in the generation of low-δ18O magmas. Earth Planet. Sci. Lett. 481, 338–349 (2018).

    Article  Google Scholar 

  68. 68.

    Cook, G. W., Wolff, J. A. & Self, S. Estimating the eruptive volume of a large pyroclastic body: the Otowi Member of the Bandelier Tuff, Valles caldera, New Mexico. Bull. Volcanol. 78, 10 (2016).

    Article  Google Scholar 

  69. 69.

    Wilson, C. J. N., Gravley, D. M., Leonard, G. S. & Rowland, J. V. Volcanism in the central Taupo Volcanic Zone, New Zealand: tempo, styles and controls. Spec. Publ. IAVCEI 2, 225–247 (2009).

    Google Scholar 

  70. 70.

    Downs, D. T. et al. Age and eruptive center of the Paeroa subgroup ignimbrites (Whakamaru Group) within the Taupo Volcanic Zone of New Zealand. Geol. Soc. Am. Bull. 126, 1131–1144 (2014).

    Article  Google Scholar 

  71. 71.

    Forni, F., Degruyter, W., Bachmann, O., De Astis, G. & Mollo, S. Long-term magmatic evolution reveals the beginning of a new caldera cycle at Campi Flegrei. Sci. Adv. 4, eaat9401 (2018).

    Article  Google Scholar 

  72. 72.

    Townsend, M., Degruyter, W., Huber, C. & Bachmann, O. Magma chamber growth during intercaldera periods: insights from thermo-mechanical modeling with applications to Laguna del Maule, Campi Flegrei, Santorini, and Aso. Geochem. Geophys. Geosyst. 20, 1574–1591 (2019).

    Article  Google Scholar 

  73. 73.

    Riley, P., Tikoff, B. & Hildreth, W. Transtensional deformation and structural control of contiguous but independent magmatic systems: Mono-Inyo Craters, Mammoth Mountain, and Long Valley caldera, California. Geosphere 8, 740–751 (2012).

    Article  Google Scholar 

  74. 74.

    Allan, A. S. R., Wilson, C. J. N., Millet, M.-A. & Wysoczanski, R. J. The invisible hand: tectonic triggering and modulation of a rhyolitic supereruption. Geology 40, 563–566 (2012).

    Article  Google Scholar 

  75. 75.

    Hildreth, W. & Michael, P. J. Comment and reply on ‘Chemical differentiation of the Bishop Tuff and other high-silica magmas through crystallization processes’. Geology 11, 622–624 (1983).

    Article  Google Scholar 

  76. 76.

    Bachmann, O. & Bergantz, G. W. Gas percolation in upper-crustal silicic mushes as a mechanism for upward heat advection and rejuvenation of near-solidus magma bodies. J. Volcanol. Geotherm. Res. 149, 85–102 (2006).

    Article  Google Scholar 

  77. 77.

    Huber, C., Bachmann, O. & Dufek, J. Thermo-mechanical reactivation of locked crystal mushes: melting-induced internal fracturing and assimilation processes in magmas. Earth Planet. Sci. Lett. 304, 443–454 (2011).

    Article  Google Scholar 

  78. 78.

    Parmigiani, A., Huber, C. & Bachmann, O. Mush microphysics and the reactivation of crystal-rich magma reservoirs. J. Geophys. Res. Solid Earth 119, 6308–6322 (2014).

    Article  Google Scholar 

  79. 79.

    Wolff, J. A. et al. Remelting of cumulates as a process for producing chemical zoning in silicic tuffs: a comparison of cool, wet and hot, dry rhyolitic magma systems. Lithos 236–237, 275–286 (2015).

    Article  Google Scholar 

  80. 80.

    Streck, M. L. Evaluation of crystal mush extraction models to explain crystal-poor rhyolites. J. Volcanol. Geotherm. Res. 284, 79–94 (2014).

    Article  Google Scholar 

  81. 81.

    Wolff, J. A., Forni, F., Ellis, B. S. & Szymanowski, D. Europium and barium enrichments in compositionally zoned felsic tuffs: a smoking gun for the origin of chemical and physical gradients by cumulate melting. Earth Planet. Sci. Lett. 540, 116251 (2020).

    Article  Google Scholar 

  82. 82.

    Cashman, K. V. & Giordano, G. Calderas and magma reservoirs. J. Volcanol. Geotherm. Res. 288, 28–45 (2014). Summarizes and synthesizes many of the key concepts in our views of magmatic systems below caldera volcanoes.

    Article  Google Scholar 

  83. 83.

    Lipman, P. W. Subsidence of ash-flow calderas: relation to caldera size and magma-chamber geometry. Bull. Volcanol. 59, 198–218 (1997).

    Article  Google Scholar 

  84. 84.

    Lipman, P. W. & McIntosh, W. C. Eruptive and noneruptive calderas, northeastern San Juan Mountains, Colorado: where did the ignimbrites come from? Geol. Soc. Am. Bull. 120, 771–795 (2008).

    Article  Google Scholar 

  85. 85.

    Gravley, D. M., Wilson, C. J. N., Leonard, G. S. & Cole, J. W. Double trouble: paired ignimbrite eruptions and collateral subsidence in the Taupo Volcanic Zone, New Zealand. Geol. Soc. Am. Bull. 119, 18–30 (2007).

    Article  Google Scholar 

  86. 86.

    Putirka, K. D. & Tepley, F. J. III (eds) Minerals, inclusions and volcanic rocks. Rev. Mineral. Geochem. 69, 1–674 (2008).

  87. 87.

    Gualda, G. A. R., Ghiorso, M. S., Lemons, R. V. & Carley, T. L. Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. J. Petrol. 53, 875–890 (2012).

    Article  Google Scholar 

  88. 88.

    Wilke, S., Holtz, F., Neave, D. A. & Almeev, R. The effect of anorthite content and water on quartz–feldspar cotectic compositions in the rhyolitic system and implications for geobarometry. J. Petrol. 58, 789–819 (2017).

    Article  Google Scholar 

  89. 89.

    Huang, H.-H. et al. The Yellowstone magmatic system from the mantle plume to the upper crust. Science 348, 773–776 (2015). Using tomographic techniques, this paper presented the new discovery at Yellowstone (but now recognized at other centres globally) of the lower-crustal basaltic magma reservoir in addition to the previously known upper-crustal magma reservoir.

    Article  Google Scholar 

  90. 90.

    Jaxybulatov, K. et al. A large magmatic sill complex beneath the Toba caldera. Science 346, 617–619 (2014).

    Article  Google Scholar 

  91. 91.

    Quick, J. E. et al. Magmatic plumbing of a large Permian caldera exposed to a depth of 25 km. Geology 37, 603–606 (2009).

    Article  Google Scholar 

  92. 92.

    Otamendi, J. E., Ducea, M. N. & Bergantz, G. W. Geological, petrological and geochemical evidence for progressive construction of an arc crustal section, Sierra de Valle Fertil, Famatinian Arc, Argentina. J. Petrol. 53, 761–800 (2012).

    Article  Google Scholar 

  93. 93.

    Klein, B. Z. & Jagoutz, O. Construction of a trans-crustal magma system: building the Bear Valley Intrusive Suite, southern Sierra Nevada, California. Earth Planet. Sci. Lett. 553, 116624 (2021).

    Article  Google Scholar 

  94. 94.

    Hildreth, W. & Moorbath, S. Crustal contributions to arc magmatism in the Andes of central Chile. Contrib. Mineral. Petrol. 98, 455–489 (1988).

    Article  Google Scholar 

  95. 95.

    Rowe, M. C. et al. Development of a continental volcanic field: petrogenesis of pre-caldera intermediate and silicic rocks and origin of the Bandelier magmas, Jemez Mountains (New Mexico, USA). J. Petrol. 48, 2063–2091 (2007).

    Article  Google Scholar 

  96. 96.

    Wright, H. M. N., Folkes, C. B., Cas, R. A. F. & Cashman, K. V. Heterogeneous pumice populations in the 2.08-Ma Cerro Galán ignimbrite: implications for magma recharge and ascent preceding a large-volume silicic eruption. Bull. Volcanol. 73, 1513–1533 (2011).

    Article  Google Scholar 

  97. 97.

    Cooper, G. F., Wilson, C. J. N., Millet, M.-A. & Baker, J. A. Generation and rejuvenation of a supervolcanic magmatic system: a case study from Mangakino volcanic centre, New Zealand. J. Petrol. 57, 1135–1170 (2016).

    Article  Google Scholar 

  98. 98.

    Barker, S. J., Wilson, C. J. N., Morgan, D. J. & Rowland, J. V. Rapid priming, accumulation and recharge of magma driving recent eruptions at a hyperactive caldera volcano. Geology 44, 323–326 (2016).

    Article  Google Scholar 

  99. 99.

    Goff, F., Warren, R. G., Goff, C. J. & Dunbar, N. Eruption of reverse-zoned upper Tshirege Member, Bandelier Tuff from centralized vents within Valles caldera, New Mexico. J. Volcanol. Geotherm. Res. 276, 82–104 (2014).

    Article  Google Scholar 

  100. 100.

    Matthews, N. E., Huber, C., Pyle, D. M. & Smith, V. C. Timescales of magma recharge and reactivation of large silicic systems from Ti diffusion in quartz. J. Petrol. 53, 1385–1416 (2012).

    Article  Google Scholar 

  101. 101.

    Shamloo, H. I. & Till, C. B. Decadal transition from quiescence to supereruption: petrologic investigation of the Lava Creek Tuff, Yellowstone Caldera, WY. Contrib. Mineral. Petrol. 174, 32 (2019).

    Article  Google Scholar 

  102. 102.

    Wotzlaw, J.-F., Bindeman, I. N., Stern, R. A., D’Abzac, F.-X. & Schaltegger, U. Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions. Sci. Rep. 5, 14026 (2015).

    Article  Google Scholar 

  103. 103.

    Charlier, B. L. A., Wilson, C. J. N. & Davidson, J. P. Rapid open-system assembly of a large silicic magma body: time-resolved evidence from cored plagioclase crystals in the Oruanui eruption deposits, New Zealand. Contrib. Mineral. Petrol. 156, 799–813 (2008).

    Article  Google Scholar 

  104. 104.

    Wolff, J. A. & Ramos, F. C. Processes in caldera-forming high-silica rhyolite magma: Rb–Sr and Pb isotope systematics of the Otowi Member of the Bandelier Tuff, Valles Caldera, New Mexico, USA. J. Petrol. 55, 345–375 (2014).

    Article  Google Scholar 

  105. 105.

    Chamberlain, K. J., Wilson, C. J. N., Wallace, P. J. & Millet, M.-A. Micro-analytical perspectives on the Bishop Tuff and its magma chamber. J. Petrol. 56, 605–640 (2015).

    Article  Google Scholar 

  106. 106.

    Chamberlain, K. J., Wilson, C. J. N., Wooden, J. L., Charlier, B. L. A. & Ireland, T. R. New perspectives on the Bishop Tuff from zircon textures, ages and trace elements. J. Petrol. 55, 395–426 (2014).

    Article  Google Scholar 

  107. 107.

    Cooper, K. M. Time scales and temperatures of crystal storage in magma reservoirs: implications for magma reservoir dynamics. Philos. Trans. R. Soc. Lond. A 377, 20180009 (2019).

    Google Scholar 

  108. 108.

    Cooper, K. M. & Kent, A. J. R. Rapid remobilization of magmatic crystals kept in cold storage. Nature 506, 480–483 (2014).

    Article  Google Scholar 

  109. 109.

    Barboni, M. et al. Warm storage for arc magmas. Proc. Natl Acad. Sci. USA 113, 13959–13964 (2016).

    Article  Google Scholar 

  110. 110.

    Marsh, B. D. On the crystallinity, probability of occurrence, and rheology of lava and magma. Contrib. Mineral. Petrol. 78, 85–98 (1981).

    Article  Google Scholar 

  111. 111.

    Bai, T. et al. Teleseismic tomography of the Laguna del Maule volcanic field in Chile. J. Geophys. Res. Solid Earth 125, e2020JB019449 (2020).

    Article  Google Scholar 

  112. 112.

    Tierney, C. R., Reid, M. R., Vazquez, J. A. & Chesner, C. A. Diverse late-stage crystallization and storage conditions in melt domains from the Youngest Toba Tuff revealed by age and compositional heterogeneity in the last increment of accessory phase growth. Contrib. Mineral. Petrol. 174, 31 (2019).

    Article  Google Scholar 

  113. 113.

    Wallace, P. J., Anderson, A. T. & Davis, A. M. Gradients in H2O, CO2, and exsolved gas in a large-volume silicic magma system: interpreting the record preserved in melt inclusions from the Bishop Tuff. J. Geophys. Res. 104, 20097–20122 (1999).

    Article  Google Scholar 

  114. 114.

    Myers, M. L., Wallace, P. J. & Wilson, C. J. N. Inferring magma ascent times and reconstructing conduit processes in rhyolitic explosive eruptions using diffusive losses of hydrogen from melt inclusions. J. Volcanol. Geotherm. Res. 369, 95–112 (2019).

    Article  Google Scholar 

  115. 115.

    Gualda, G. A. R. et al. Timescales of quartz crystallization and the longevity of the Bishop giant magma body. PLoS One 7, e37492 (2012).

    Article  Google Scholar 

  116. 116.

    Roberge, J., Wallace, P. J. & Kent, A. J. R. Magmatic processes in the Bishop Tuff rhyolitic magma based on trace elements in melt inclusions and pumice matrix glass. Contrib. Mineral. Petrol. 165, 237–257 (2013).

    Article  Google Scholar 

  117. 117.

    Flaherty, T. et al. Multiple timescale constraints for high-flux magma chamber assembly prior to the Late Bronze Age eruption of Santorini (Greece). Contrib. Mineral. Petrol. 173, 75 (2018).

    Article  Google Scholar 

  118. 118.

    Tramontano, S., Gualda, G. A. R. & Ghiorso, M. S. Internal triggering of volcanic eruptions: tracking overpressure regimes for giant magma bodies. Earth Planet. Sci. Lett. 472, 142–151 (2017).

    Article  Google Scholar 

  119. 119.

    Kennedy, B. M. et al. Magma plumbing beneath collapse caldera volcanic systems. Earth-Sci. Rev. 177, 404–424 (2018).

    Article  Google Scholar 

  120. 120.

    Black, B. A. & Andrews, B. J. Petrologic imaging of the architecture of magma reservoirs feeding caldera-forming eruptions. Earth Planet. Sci. Lett. 552, 116572 (2020).

    Article  Google Scholar 

  121. 121.

    Vazquez, J. A. & Reid, M. R. Probing the accumulation history of the voluminous Toba magma. Science 305, 991–994 (2004).

    Article  Google Scholar 

  122. 122.

    Matthews, N. E. et al. Quartz zoning and the pre-eruptive evolution of the ~340-ka Whakamaru magma systems, New Zealand. Contrib. Mineral. Petrol. 163, 87–107 (2012).

    Article  Google Scholar 

  123. 123.

    Engi, M. Petrochronology based on REE-minerals: monazite, allanite, xenotime, apatite. Rev. Mineral. Geochem. 83, 365–418 (2017).

    Article  Google Scholar 

  124. 124.

    Kohn, M. J. Titanite petrochronology. Rev. Mineral. Geochem. 83, 419–441 (2017).

    Article  Google Scholar 

  125. 125.

    Schaltegger, U., Schmitt, A. K. & Horstwood, M. S. A. U–Th–Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: recipes, interpretations, and opportunities. Chem. Geol. 402, 89–110 (2015).

    Article  Google Scholar 

  126. 126.

    Miller, J. S., Matzel, J. E. P., Miller, C. F., Burgess, S. D. & Miller, R. B. Zircon growth and recycling during the assembly of large, composite arc plutons. J. Volcanol. Geotherm. Res. 167, 282–299 (2007).

    Article  Google Scholar 

  127. 127.

    Frazer, R. E., Coleman, D. S. & Mills, R. D. Zircon U-Pb geochronology of the Mount Givens Granodiorite: Implications for the genesis of large volumes of eruptible magma. J. Geophys. Res. Solid Earth 119, 2907–2924 (2014).

    Article  Google Scholar 

  128. 128.

    Cooper, G. F., Wilson, C. J. N., Charlier, B. L. A., Wooden, J. L. & Ireland, T. R. Temporal evolution and compositional signatures of two supervolcanic systems recorded in zircons from Mangakino volcanic centre, New Zealand. Contrib. Mineral. Petrol. 167, 1018 (2014).

    Article  Google Scholar 

  129. 129.

    Rivera, T. A., Schmitz, M. D., Crowley, J. L. & Storey, M. Rapid magma evolution constrained by zircon petrochronology and 40Ar/39Ar sanidine ages for the Huckleberry Ridge Tuff, Yellowstone, USA. Geology 42, 643–646 (2014).

    Article  Google Scholar 

  130. 130.

    Charlier, B. L. A. et al. Magma generation at a large, hyperactive silicic volcano (Taupo, New Zealand) revealed by U–Th and U–Pb systematics in zircons. J. Petrol. 46, 3–32 (2005).

    Article  Google Scholar 

  131. 131.

    Folkes, C. B., de Silva, S. L., Schmitt, A. K. & Cas, R. A. F. A reconnaissance of U-Pb zircon ages in the Cerro Galán system, NW Argentina: prolonged magma residence, crystal recycling, and crustal assimilation. J. Volcanol. Geotherm. Res. 206, 136–147 (2011).

    Article  Google Scholar 

  132. 132.

    Reid, M. R. & Vazquez, J. A. Fitful and protracted magma assembly leading to a giant eruption, Youngest Toba Tuff, Indonesia. Geochem. Geophys. Geosyst. 18, 156–177 (2017).

    Article  Google Scholar 

  133. 133.

    Reid, M. R. How long does it take to supersize an eruption? Elements 4, 23–28 (2008).

    Article  Google Scholar 

  134. 134.

    Chamberlain, K. J., Morgan, D. J. & Wilson, C. J. N. Timescales of mixing and mobilisation in the Bishop Tuff magma body: perspectives from diffusion chronometry. Contrib. Mineral. Petrol. 168, 1034 (2014).

    Article  Google Scholar 

  135. 135.

    Costa, F., Shea, T. & Ubide, T. Diffusion chronometry and the timescales of magmatic processes. Nat. Rev. Earth Environ. 1, 201–214 (2020).

    Article  Google Scholar 

  136. 136.

    Druitt, T. H., Costa, F., Deloule, E., Dungan, M. A. & Scaillet, B. Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano. Nature 482, 77–80 (2012).

    Article  Google Scholar 

  137. 137.

    Hughes, G. R. & Mahood, G. A. Silicic calderas in arc settings: characteristics, distribution, and tectonic controls. Geol. Soc. Am. Bull. 123, 1577–1595 (2011).

    Article  Google Scholar 

  138. 138.

    Caricchi, L., Annen, C., Blundy, J., Simpson, G. & Pinel, V. Frequency and magnitude of volcanic eruptions controlled by magma injection and buoyancy. Nat. Geosci. 7, 126–130 (2014).

    Article  Google Scholar 

  139. 139.

    Koulakov, I. et al. The feeder system of the Toba supervolcano from the slab to the shallow reservoir. Nat. Comm. 7, 12228 (2016).

    Article  Google Scholar 

  140. 140.

    Rowland, J. V., Wilson, C. J. N. & Gravley, D. M. Spatial and temporal variations in magma-assisted rifting, Taupo Volcanic Zone, New Zealand. J. Volcanol. Geotherm. Res. 190, 89–108 (2010).

    Article  Google Scholar 

  141. 141.

    Heath, B. A. et al. Tectonism and its relation to magmatism around Santorini volcano from upper crustal P wave velocity. J. Geophys. Res. Solid Earth 124, 10610–10629 (2019).

    Article  Google Scholar 

  142. 142.

    Peterson, D. E. et al. Active normal faulting, diking, and doming above the rapidly inflating Laguna del Maule volcanic field, Chile, imaged with CHIRP, magnetic, and focal mechanism data. J. Geophys. Res. Solid Earth 125, e2019JB019329 (2020).

    Article  Google Scholar 

  143. 143.

    Cole, J. W., Milner, D. M. & Spinks, K. D. Calderas and caldera structures: a review. Earth-Sci. Rev. 69, 1–26 (2005).

    Article  Google Scholar 

  144. 144.

    Rowland, J. V. & Sibson, R. H. Extensional fault kinematics within the Taupo Volcanic Zone, New Zealand: soft-linked segmentation of a continental rift system. New Zealand J. Geol. Geophys. 44, 271–283 (2001).

    Article  Google Scholar 

  145. 145.

    Heise, W., Caldwell, T. G., Bibby, H. M. & Bennie, S. L. Three-dimensional electrical resistivity image of magma beneath an active continental rift, Taupo Volcanic Zone, New Zealand. Geophys. Res. Lett. 37, L10301 (2010).

    Article  Google Scholar 

  146. 146.

    Flinders, A. F. et al. Seismic evidence for significant melt beneath the Long Valley Caldera, California, USA. Geology 46, 799–802 (2018).

    Article  Google Scholar 

  147. 147.

    Hammond, J. O. S. & Kendall, J.-M. Constraints on melt distribution from seismology: a case study in Ethiopia. Geol. Soc. Lond. Spec. Publ. 420, 127–147 (2016).

    Article  Google Scholar 

  148. 148.

    Rasht-Behesht, M., Huber, C. & Mancinelli, N. J. Detectability of melt-rich lenses in magmatic reservoirs from teleseismic waveform modeling. J. Geophys. Res. Solid Earth 125, e2020JB020264 (2020).

    Article  Google Scholar 

  149. 149.

    Lowenstern, J., Sisson, T. & Hurwitz, S. Probing magma reservoirs to improve volcano forecasts. Eos (2017).

    Article  Google Scholar 

  150. 150.

    Lowenstern, J. B., Smith, R. B. & Hill, D. P. Monitoring super-volcanoes: geophysical and geochemical signals at Yellowstone and other large caldera systems. Philos. Trans. R. Soc. Lond. A 364, 2055–2072 (2006).

    Google Scholar 

  151. 151.

    Lehman, J. A., Smith, R. B. & Schilly, M. M. Upper crustal structure of the Yellowstone caldera from seismic delay time analyses and gravity correlations. J. Geophys. Res. 87, 2713–2730 (1982).

    Article  Google Scholar 

  152. 152.

    Miller, D. S. & Smith, R. B. P and S velocity structure of the Yellowstone volcanic field from local earthquake and controlled source tomography. J. Geophys. Res. 104, 15105–15121 (1999).

    Article  Google Scholar 

  153. 153.

    Husen, S., Smith, R. B. & Waite, G. P. Evidence for gas and magmatic sources beneath the Yellowstone volcanic field from seismic tomographic imaging. J. Volcanol. Geotherm. Res. 131, 397–410 (2004).

    Article  Google Scholar 

  154. 154.

    Farrell, J., Smith, R. B., Husen, S. & Diehl, T. Tomography from 26 years of seismicity revealing that the spatial extent of the Yellowstone crustal magma reservoir extends well beyond the Yellowstone caldera. Geophys. Res. Lett. 41, 3068–3073 (2014).

    Article  Google Scholar 

  155. 155.

    Seats, K. J. & Lawrence, J. F. The seismic structure beneath the Yellowstone Volcano Field from ambient seismic noise. Geophys. Res. Lett. 41, 8277–8282 (2014).

    Article  Google Scholar 

  156. 156.

    Jiang, C., Schmandt, B., Farrell, J., Lin, F.-C. & Ward, K. M. Seismically anisotropic magma reservoirs underlying silicic calderas. Geology 46, 727–730 (2018).

    Article  Google Scholar 

  157. 157.

    Singer, B. S. et al. Geomorphic expression of rapid Holocene silicic magma reservoir growth beneath Laguna del Maule, Chile. Sci. Adv. 4, eaat1513 (2018).

    Article  Google Scholar 

  158. 158.

    Hata, M. et al. Three-dimensional electrical resistivity modeling to elucidate the crustal magma supply system beneath Aso caldera, Japan. J. Geophys. Res. Solid Earth 123, 6334–6346 (2018).

    Google Scholar 

  159. 159.

    Hill, D. P., Montgomery-Brown, E. K., Shelly, D. R., Flinders, A. F. & Prejean, S. Post-1978 tumescence at Long Valley caldera, California: a geophysical perspective. J. Volcanol. Geotherm. Res. 400, 106900 (2020).

    Article  Google Scholar 

  160. 160.

    Hildreth, W. Fluid-driven uplift at Long Valley, California: geologic perspectives. J. Volcanol. Geotherm. Res. 341, 269–286 (2017).

    Article  Google Scholar 

  161. 161.

    Prudencio, J. & Manga, M. 3-D seismic attenuation structure of Long Valley caldera: looking for melt bodies in the shallow crust. Geophys. J. Int. 220, 1677–1686 (2020).

    Article  Google Scholar 

  162. 162.

    Wilson, C. J. N. Stratigraphy, chronology, styles and dynamics of late Quaternary eruptions from Taupo volcano, New Zealand. Philos. Trans. R. Soc. Lond. A 343, 205–306 (1993).

    Article  Google Scholar 

  163. 163.

    Acocella, V., Di Lorenzo, R., Newhall, C. & Scandone, R. An overview of recent (1988 to 2014) caldera unrest: Knowledge and perspectives. Rev. Geophys. 53, 896–955 (2015). This paper provides an extensive review of global caldera unrest, both eruptive and non-eruptive, highlighting the diversity and complexity in the causes and signals of unrest.

    Article  Google Scholar 

  164. 164.

    Yellowstone Volcano Observatory. Volcano and earthquake monitoring plan for the Yellowstone Volcano Observatory, 2006–2015. U.S. Geol. Surv. Sci. Investig. Rep. 2006–5276, 1–13 (2006).

    Google Scholar 

  165. 165.

    Waite, G. P. & Smith, R. B. Seismic evidence for fluid migration accompanying subsidence of the Yellowstone caldera. J. Geophys. Res. 107, 2177 (2002).

    Article  Google Scholar 

  166. 166.

    Farrell, J., Smith, R. B., Taira, T., Chang, W. L. & Puskas, C. M. Dynamics and rapid migration of the energetic 2008–2009 Yellowstone Lake earthquake swarm. Geophys. Res. Lett. 37, L19305 (2010).

    Google Scholar 

  167. 167.

    Massin, F., Farrell, J. & Smith, R. B. Repeating earthquakes in the Yellowstone volcanic field: Implications for rupture dynamics, ground deformation, and migration in earthquake swarms. J. Volcanol. Geotherm. Res. 257, 159–173 (2013).

    Article  Google Scholar 

  168. 168.

    Pang, G. et al. The 2017–2018 Maple Creek earthquake sequence in Yellowstone National Park, USA. Geophys. Res. Lett. 46, 4653–4663 (2019).

    Article  Google Scholar 

  169. 169.

    Wicks, C., Thatcher, W., Dzurisin, D. & Svarc, J. Uplift, thermal unrest and magma intrusion at Yellowstone caldera. Nature 440, 72–75 (2006).

    Article  Google Scholar 

  170. 170.

    Wicks, C., Dzurisin, D., Lowenstern, J. B. & Svarc, J. Magma intrusion and volatile ascent beneath Norris Geyser Basin, Yellowstone National Park. J. Geophys. Res. Solid Earth 125, e2019JB018208 (2020).

    Article  Google Scholar 

  171. 171.

    Chang, W.-L., Smith, R. B., Farrell, J. & Puskas, C. M. An extraordinary episode of Yellowstone caldera uplift, 2004–2010, from GPS and InSAR observations. Geophys. Res. Lett. 37, L23302 (2010).

    Article  Google Scholar 

  172. 172.

    Langbein, J. O. Deformation of the Long Valley caldera, California: inferences from measurements from 1988 to 2001. J. Volcanol. Geotherm. Res. 127, 247–267 (2003).

    Article  Google Scholar 

  173. 173.

    Feng, L. & Newman, A. V. Constraints on continued episodic inflation at Long Valley caldera, based on seismic and geodetic observations. J. Geophys. Res. 114, B06403 (2009).

    Google Scholar 

  174. 174.

    Tizzani, P. et al. Uplift and magma intrusion at Long Valley caldera from InSAR and gravity measurements. Geology 37, 63–66 (2009).

    Article  Google Scholar 

  175. 175.

    Johnston, D. et al. Social and economic consequences of historic caldera unrest at the Taupo volcano, New Zealand and the management of future episodes of unrest. Bull. New Zealand Soc. Earthq. Eng. 35, 215–230 (2002).

    Article  Google Scholar 

  176. 176.

    Otway, P. M., Blick, G. H. & Scott, B. J. Vertical deformation at Lake Taupo, New Zealand, from lake levelling surveys, 1979–99. New Zealand J. Geol. Geophys. 45, 121–132 (2002).

    Article  Google Scholar 

  177. 177.

    Illsley-Kemp, F. et al. Volcanic unrest at Taupo¯ volcano in 2019: causes, mechanisms and implications. Geochem. Geophys. Geosyst. 22, e2021GC009803 (2021).

    Article  Google Scholar 

  178. 178.

    Bellucci, F., Woo, J., Kilburn, C. R. J. & Rolandi, G. Ground deformation at Campi Flegrei, Italy: implications for hazard assessment. Geol. Soc. Lond. Spec. Publ. 269, 141–157 (2006).

    Article  Google Scholar 

  179. 179.

    De Natale, G. et al. The Campi Flegrei caldera: unrest mechanisms and hazards. Geol. Soc. Lond. Spec. Publ. 269, 25–45 (2006).

    Article  Google Scholar 

  180. 180.

    Wilson, C. J. N. Volcanoes: characteristics, tipping points and those pesky unknown unknowns. Elements 13, 41–46 (2017).

    Article  Google Scholar 

  181. 181.

    Atwood, E. Cultural Super Volcano: a Cultural History of Yellowstone’s Hot Spot via Eco-Paranoia. Thesis, Montana State Univ., (2020).

  182. 182.

    Kong, Q. et al. Machine learning in seismology: turning data into insights. Seismol. Res. Lett. 90, 3–14 (2019).

    Article  Google Scholar 

  183. 183.

    Myers, M. L., Wallace, P. J., Wilson, C. J. N., Watkins, J. L. & Liu, Y. Ascent rates of rhyolitic magma at the onset of three caldera-forming eruptions. Am. Mineral. 103, 952–965 (2018).

    Article  Google Scholar 

  184. 184.

    Freitas, D., Manthilake, G. & Chantel, J. Simultaneous measurements of electrical conductivity and seismic wave velocity of partially molten geological materials: effect of evolving melt texture. Phys. Chem. Mineral. 46, 535–551 (2019).

    Article  Google Scholar 

  185. 185.

    Carcione, J. M., Farina, B., Poletto, F., Qadrouh, A. N. & Cheng, W. Seismic attenuation in partially molten rocks. Phys. Earth Planet. Int. 309, 106568 (2020).

    Article  Google Scholar 

  186. 186.

    Barberi, F., Corrado, G., Innocenti, F. & Luongo, G. Phlegraean Fields 1982–1984: brief chronicle of a volcano emergency in a densely populated area. Bull. Volcanol. 47, 175–185 (1984).

    Article  Google Scholar 

  187. 187.

    Maj, M. et al. Prevalence of psychiatric disorders among subjects exposed to a natural disaster. Acta Psychol. Scand. 79, 544–549 (1989).

    Article  Google Scholar 

  188. 188.

    Longo, M. L. How memory can reduce the vulnerability to disasters: the bradyseism of Pozzuoli in southern Italy. AIMS Geosci. 5, 631–644 (2019).

    Article  Google Scholar 

  189. 189.

    Chesner, C. A. Petrogenesis of the Toba Tuffs, Sumatra, Indonesia. J. Petrol. 39, 397–438 (1998).

    Article  Google Scholar 

  190. 190.

    Rose, W. I., Grant, N. K. & Easter, J. Geochemistry of the Los Chocoyos ash, Quezaltenango Valley, Guatemala. Geol. Soc. Am. Spec. Pap. 180, 87–99 (1979).

    Google Scholar 

  191. 191.

    Takarada, S. & Hoshizumi, H. Distribution and eruptive volume of Aso-4 pyroclastic density current and tephra fall deposits, Japan: A M8 super-eruption. Front. Earth Sci. 8, 170 (2020).

    Article  Google Scholar 

  192. 192.

    Keller, F., Bachmann, O., Geshi, N. & Miyakawa, A. The role of crystal accumulation and cumulate remobilization in the formation of large zoned ignimbrites: insights from the Aso-4 caldera-forming eruption, Kyushu, Japan. Front. Earth Sci. 8, 614267 (2021).

    Article  Google Scholar 

  193. 193.

    Matthews, N. E., Vazquez, J. A. & Calvert, A. T. Age of the Lava Creek supereruption and magma chamber assembly at Yellowstone based on 40Ar/39Ar and U-Pb dating of sanidine and zircon crystals. Geochem. Geophys. Geosyst. 16, 2508–2528 (2015).

    Article  Google Scholar 

  194. 194.

    Crowley, J. L., Schoene, B. & Bowring, S. A. U-Pb dating of zircon in the Bishop Tuff at the millennial scale. Geology 35, 1123–1126 (2007).

    Article  Google Scholar 

  195. 195.

    Jolles, J. S. R. & Lange, R. A. High-resolution Fe–Ti oxide thermometry applied to single-clast pumices from the Bishop Tuff: a re-examination of compositional variations in phenocryst phases with temperature. Contrib. Mineral. Petrol. 174, 70 (2019).

    Article  Google Scholar 

  196. 196.

    Wu, J. et al. Crustal evolution leading to successive rhyolitic supereruptions in the Jemez Mountains volcanic field, New Mexico, USA. Lithos 396–397, 106201 (2021).

    Article  Google Scholar 

  197. 197.

    Cherniak, D. J. & Watson, E. B. Pb diffusion in zircon. Chem. Geol. 172, 5–24 (2000).

    Article  Google Scholar 

  198. 198.

    Ireland, T. R. & Williams, I. S. Considerations in zircon geochronology by SIMS. Rev. Mineral. Geochem. 53, 215–241 (2003).

    Article  Google Scholar 

  199. 199.

    Schmitt, A. K. & Vazquez, J. A. Secondary ionization mass spectrometry analysis in petrochronology. Rev. Mineral. Geochem. 83, 199–230 (2017).

    Article  Google Scholar 

  200. 200.

    Liu, Y. et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin. Sci. Bull. 55, 1535–1546 (2010).

    Article  Google Scholar 

  201. 201.

    Chang, Z., Vervoort, J. D., McClelland, W. C. & Knaack, C. U-Pb dating of zircon by LA-ICP-MS. Geochem. Geophys. Geosyst. 7, Q05009 (2006).

    Article  Google Scholar 

Download references


C.J.N.W. has been supported by the Marsden Fund grant VUW0813 (Royal Society of New Zealand), a James Cook Fellowship (Royal Society of New Zealand) and the ECLIPSE Programme, funded by the New Zealand Ministry of Business, Innovation and Employment. G.F.C. is supported by a NERC Standard Grant (NE/T000317/1), M.L.M. is supported by an NSF CAREER grant (EAR 2042662) and S.J.B. acknowledges Marsden Fund grant VUW1627.

Author information




G.F.C. and K.J.C. conceived the idea of the manuscript. All authors drafted the manuscript, led by C.J.N.W. All authors commented on and discussed the manuscript at all stages.

Corresponding author

Correspondence to Colin J. N. Wilson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks J. Lindsay and O. Bachmann (who co-reviewed with F. Keller) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



Events that discharge more than 1 × 1015 kg of magma (450 km3 or >~1,000 km3 of pumice and ash) in a single eruption.


A topographic depression formed through the collapse of the Earth’s surface, owing to the withdrawal of large volumes of magma from the upper crust.


A volcanic centre that has produced one (or more) supereruptions in the past, also referred to as a supereruptive centre.


A framework of crystals (>50–60 volume %) with interstitial melt, which forms a strong skeleton that can no longer easily flow or erupt, owing to its high viscosity.


Material separated out from the crystal mush, consisting of <40–50% crystals, that can flow and is eruptible, but which has a short lifetime within the upper crust.

Magmatic systems

Entire regions within the crust and upper mantle that feed the volcanic system, including the melt-dominant body or bodies and mushy, non-eruptible material.

Fall deposits

Deposited from high (tens of kilometres) buoyant atmospheric plumes of ash, dispersed by winds over thousands to millions of square kilometres; individual deposits are millimetres to metres in thickness.


Deposits from concentrated, ground-hugging pyroclastic flows, typically metres to hundreds of metres thick, covering up to thousands to tens of thousands of square kilometres.

Juvenile material

Material that is newly discharged at the Earth’s surface in an eruption.

Lithic material

Pre-existing (country) rocks caught up as fragments in the deposits of explosive eruptions.


Crystals grown in the mush that have been separated out from the melt in which they grew and, hence, can generate contrasting compositions of melt if reheated.

Absolute age

An age determined by measurements of radioactive decay in minerals and associated with the time period since closure of the system.

Relative age

An age that is determined, typically through measurements of diffusion profiles in minerals, relative to the point of quenching by eruption.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wilson, C.J.N., Cooper, G.F., Chamberlain, K.J. et al. No single model for supersized eruptions and their magma bodies. Nat Rev Earth Environ 2, 610–627 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing