Abstract
Marine dissolved organic matter (DOM) contains more carbon than the combined stocks of Earth’s biota. Organisms in the ocean continuously release a myriad of molecules that become food for microheterotrophs, but, for unknown reasons, a residual fraction persists as DOM for millennia. In this Perspective, we discuss and compare two concepts that could explain this persistence. The long-standing ‘intrinsic recalcitrance’ paradigm attributes DOM stability to inherent molecular properties. In the ‘emergent recalcitrance’ concept, DOM is continuously transformed by marine microheterotrophs, with recalcitrance emerging on an ecosystems level. Both concepts are consistent with observations in the modern ocean, but they imply very different responses of the DOM pool to climate-related changes. To better understand DOM persistence, we propose a new overarching research strategy — the ecology of molecules — that integrates the concepts of intrinsic and emergent recalcitrance with the ecological and environmental context.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Mineral evolution facilitated Earth’s oxidation
Communications Earth & Environment Open Access 15 June 2023
-
A generic hierarchical model of organic matter degradation and preservation in aquatic systems
Communications Earth & Environment Open Access 23 January 2023
-
NMR spectroscopy of dissolved organic matter: a review
Environmental Chemistry Letters Open Access 07 December 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Hansell, D. A., Carlson, C. A., Repeta, D. J. & Schlitzer, R. Dissolved organic matter in the ocean: a controversy stimulates new insights. Oceanography 22, 202–211 (2009).
Dittmar, T. & Stubbins, A. in Treatise on Geochemistry 2nd edn Vol. 12 (eds Birrer, B., Falkowski, P. & Freeman, K.) 125–156 (Elsevier, 2014).
Ridgwell, A. & Arndt, S. in Biogeochemistry of Marine Dissolved Organic Matter 2nd edn (eds Hansell, D. A. & Carlson, C. A.) 1–20 (Academic Press, 2015).
Lehmann, J. et al. Persistence of soil organic carbon caused by functional complexity. Nat. Geosci. 13, 529–534 (2020).
Hansell, D. A. Recalcitrant dissolved organic carbon fractions. Annu. Rev. Mar. Sci. 5, 421–445 (2013).
Duarte, C. M. Global change and the future ocean: a grand challenge for marine sciences. Front. Marine Sci. 1, 63 (2014).
Dittmar, T. in Biogeochemistry of Marine Dissolved Organic Matter 2nd edn (eds Hansell, D. A. & Carlson, C. A.) 369–388 (Academic Press, 2015).
Azam, F. Microbial control of oceanic carbon flux: the plot thickens. Science 280, 694–696 (1998).
Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).
Azam, F. & Malfatti, F. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol. 5, 782–791 (2007).
Carlson, C. A., Del Giorgio, P. A. & Herndl, G. J. Microbes and the dissipation of energy and respiration: from cells to ecosystems. Oceanography 20, 89–100 (2007).
LaRowe, D. E. et al. The fate of organic carbon in marine sediments - New insights from recent data and analysis. Earth Sci. Rev. 204, 103146 (2020).
Swannell, R. P. J., Lee, K. & McDonagh, M. Field evaluations of marine oil spill bioremediation. Microbiol. Rev. 60, 342–365 (1996).
Dorrepaal, E. et al. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460, 616–620 (2009).
Bianchi, D., Weber, T. S., Kiko, R. & Deutsch, C. Global niche of marine anaerobic metabolisms expanded by particle microenvironments. Nat. Geosci. 11, 263–268 (2018).
Wurl, O., Ekau, W., Landing, W. & Zappa, C. Sea surface microlayer in a changing ocean – A perspective. Elementa 5, 31 (2017).
Toulza, E., Tagliabue, A., Blain, S. & Piganeau, G. Analysis of the global ocean sampling (GOS) project for trends in iron uptake by surface ocean microbes. PLoS ONE 7, e30931 (2012).
Browning, T. J. et al. Iron limitation of microbial phosphorus acquisition in the tropical North Atlantic. Nat. Commun. 8, 15465 (2017).
Roshan, S. & DeVries, T. Efficient dissolved organic carbon production and export in the oligotrophic ocean. Nat. Commun. 8, 2036 (2017).
Santinelli, C., Hansell, D. & Ribera d’Alcala, M. Influence of stratification on marine dissolved organic carbon (DOC) dynamics: the Mediterranean Sea case. Prog. Oceanogr. 119, 68–77 (2013).
Arnosti, C., Steen, A. D., Ziervogel, K., Ghobrial, S. & Jeffrey, W. H. Latitudinal gradients in degradation of marine dissolved organic carbon. PLoS ONE 6, e28900 (2011).
Carlson, C. A. et al. Interactions among dissolved organic carbon, microbial processes, and community structure in the mesopelagic zone of the northwestern Sargasso Sea. Limnol. Oceanogr. 49, 1073–1083 (2004).
Shen, Y. & Benner, R. Mixing it up in the ocean carbon cycle and the removal of refractory dissolved organic carbon. Sci. Rep. 8, 2542 (2018).
Aristegui, J., Agusti, S., Middelburg, J. J. & Duarte, C. M. in Respiration in Aquatic Ecosystems (eds del Giorgio, P. A. & Williams, P.) 181–205 (Oxford Univ. Press, 2005).
Aristegui, J., Gasol, J. M., Duarte, C. M. & Herndl, G. J. Microbial oceanography of the dark ocean’s pelagic realm. Limnol. Oceanogr. 54, 1501–1529 (2009).
LaRowe, D. E. & Van Cappellen, P. Degradation of natural organic matter: a thermodynamic analysis. Geochim. Cosmochim. Acta 75, 2030–2042 (2011).
Amon, R. M. W. & Benner, R. Bacterial utilization of different size classes of dissolved organic matter. Limnol. Oceanogr. 41, 41–51 (1996).
Amon, R. M. W., Fitznar, H. P. & Benner, R. Linkages among the bioreactivity, chemical composition, and diagenetic state of marine dissolved organic matter. Limnol. Oceanogr. 46, 287–297 (2001).
Kaiser, K. & Benner, R. Biochemical composition and size distribution of organic matter at the Pacific and Atlantic time-series stations. Mar. Chem. 113, 63–77 (2009).
McCarthy, M. D., Hedges, J. I. & Benner, R. Major bacterial contribution to marine dissolved organic nitrogen. Science 281, 231–234 (1998).
Ogawa, H., Amagai, Y., Koike, I., Kaiser, K. & Benner, R. Production of refractory dissolved organic matter by bacteria. Science 292, 917–920 (2001).
Jiao, N. et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat. Rev. Microbiol. 8, 593–599 (2011).
Benner, R. & Biddanda, B. Photochemical transformations of surface and deep marine dissolved organic matter: effects on bacterial growth. Limnol. Oceanogr. 43, 1373–1378 (1998).
Tranvik, L. J. & Bertilsson, S. Contrasting effects of solar UV radiation on dissolved organic sources for bacterial growth. Ecol. Lett. 4, 458–463 (2001).
Mentges, A. et al. Microbial physiology governs the oceanic distribution of dissolved organic carbon in a scenario of equal degradability. Front. Mar. Sci. 7, 549784 (2020).
Mentges, A., Feenders, C., Deutsch, C., Blasius, B. & Dittmar, T. Long-term stability of marine dissolved organic carbon emerges from a neutral network of compounds and microbes. Sci. Rep. 9, 17780 (2019).
Thurner, S., Klimek, P. & Hanel, R. Introduction to the Theory of Complex Systems (Oxford Scholarship Online, 2018).
Druffel, E. R. M., Williams, P. M., Bauer, J. E. & Ertel, J. R. Cycling of dissolved and particulate organic matter in the open ocean. J. Geophys. Res. Oceans 97, 15639–15659 (1992).
Hansell, D. A., Carlson, C. A. & Schlitzer, R. Net removal of major marine dissolved organic carbon fractions in the subsurface ocean. Glob. Biogeochem. Cycles 26, GB1016 (2012).
Osterholz, H., Niggemann, J., Giebel, H. A., Simon, M. & Dittmar, T. Inefficient microbial production of refractory dissolved organic matter in the ocean. Nat. Commun. 6, 7422 (2015).
Hansell, D. A. & Carlson, C. A. Net community production of dissolved organic carbon. Glob. Biogeochem. Cycles 12, 443–453 (1998).
Romera-Castillo, C., Letscher, R. T. & Hansell, D. A. New nutrients exert fundamental control on dissolved organic carbon accumulation in the surface Atlantic Ocean. Proc. Natl Acad. Sci. USA 113, 10497–10502 (2016).
Carlson, C. A. & Hansell, D. A. in Biogeochemistry of Marine Dissolved Organic Matter 2nd edn (eds Hansell, D. A. & Carlson, C. A.) 65–126 (Academic Press, 2015).
Hansell, D. Marine dissolved organic matter and the carbon cycle. Oceanography 14, 41–49 (2001).
Hansell, D. A. & Carlson, C. A. Deep-ocean gradients in the concentration of dissolved organic carbon. Nature 395, 263–266 (1998).
Hawkes, J. A. et al. Efficient removal of recalcitrant deep-ocean dissolved organic matter during hydrothermal circulation. Nat. Geosci. 8, 856–860 (2015).
Lang, S. Q., Butterfield, D. A., Lilley, M. D., Johnson, H. P. & Hedges, J. I. Dissolved organic carbon in ridge-axis and ridge-flank hydrothermal systems. Geochim. Cosmochim. Acta 70, 3830–3842 (2006).
Hedges, J. I., Keil, R. G. & Benner, R. What happens to terrestrial organic matter in the ocean? Org. Geochem. 27, 195–212 (1997).
Opsahl, S. & Benner, R. Distribution and cycling of terrigenous dissolved organic matter in the ocean. Nature 386, 480–482 (1997).
Jaffé, R. et al. Global charcoal mobilization from soils via dissolution and riverine transport to the oceans. Science 340, 345–347 (2013).
Wagner, S. et al. Isotopic composition of oceanic dissolved black carbon reveals non-riverine source. Nat. Commun. 10, 5064 (2019).
Hansell, D. A. & Carlson, C. A. Localized refractory dissolved organic carbon sinks in the deep ocean. Global Biogeochem. Cycles 27, 705–710 (2013).
Bauer, J. E., Druffel, E. R. M., Wolgast, D. M. & Griffin, S. Temporal and regional variability in sources and cycling of DOC and POC in the northwest Atlantic continental shelf and slope. Deep Sea Res. II Top. Stud. Oceanogr. 49, 4387–4419 (2002).
Williams, P. M. & Druffel, E. R. M. Radiocarbon in dissolved organic mater in the central north Pacific Ocean. Nature 330, 246–248 (1987).
Williams, P. M., Oeschger, H. & Kinney, P. Natural radiocarbon activity of dissolved organic carbon in north-east Pacific Ocean. Nature 224, 256–258 (1969).
Follett, C. L., Repeta, D. J., Rothman, D. H., Xub, L. & Santinelli, C. Hidden cycle of dissolved organic carbon in the deep ocean. Proc. Natl Acad. Sci. USA 111, 16706–16711 (2014).
Walker, B. D., Beaupre, S. R., Guilderson, T. P., McCarthy, M. D. & Druffel, E. R. M. Pacific carbon cycling constrained by organic matter size, age and composition relationships. Nat. Geosci. 9, 888–891 (2016).
Beaupre, S. R. & Aluwihare, L. Constraining the 2-component model of marine dissolved organic radiocarbon. Deep-Sea Res. II Top. Stud. Oceanogr. 57, 1494–1503 (2010).
Druffel, E. & Griffin, S. Radiocarbon in dissolved organic carbon of the South Pacific Ocean. Geophys. Res. Lett. 42, 4096–4101 (2015).
Loh, A. N., Bauer, J. E. & Druffel, E. R. M. Variable ageing and storage of dissolved organic components in the open ocean. Nature 430, 877–881 (2004).
Santinelli, C., Follett, C., Retelletti Brogi, S., Xu, L. & Repeta, D. Carbon isotope measurements reveal unexpected cycling of dissolved organic matter in the deep Mediterranean Sea. Mar. Chem. 177, 267–277 (2015).
Arnosti, C. et al. The biogeochemistry of marine polysaccharides: sources, inventories, and bacterial drivers of the carbohydrate cycle. Ann. Rev. Mar. Sci. 13, 81–108 (2021).
Becker, S. et al. Laminarin is a major molecule in the marine carbon cycle. Proc. Natl Acad. Sci. USA 117, 6599–6607 (2020).
Sichert, A. et al. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat. Microbiol. 5, 1026–1039 (2020).
Zark, M. & Dittmar, T. Universal molecular structures in natural dissolved organic matter. Nat. Commun. 9, 3178 (2018).
Dittmar, T. & Kattner, G. Recalcitrant dissolved organic matter in the ocean: major contribution of small amphiphilics. Mar. Chem. 82, 115–123 (2003).
Zark, M., Christoffers, J. & Dittmar, T. Molecular properties of deep-sea dissolved organic matter are predictable by the central limit theorem: evidence from tandem FT-ICR-MS. Mar. Chem. 191, 9–15 (2017).
Riedel, T. & Dittmar, T. A method detection limit for the analysis of natural organic matter via Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 86, 8376–8382 (2014).
Hertkorn, N. et al. High-precision frequency measurements: indispensable tools at the core of the molecular-level analysis of complex systems. Anal. Bioanal. Chem. 389, 1311–1327 (2007).
Kirkpatrick, P. & Ellis, C. Chemical space. Nature 432, 823–823 (2004).
Jiao, N. et al. Unveiling the enigma of refractory carbon in the ocean. Natl. Sci. Rev. 5, 459–463 (2018).
Wang, N. et al. Contribution of structural recalcitrance to the formation of the deep oceanic dissolved organic carbon reservoir. Environ. Microbiol. Rep. 10, 711–717 (2018).
Dittmar, T. & Paeng, J. A heat-induced molecular signature in marine dissolved organic matter. Nat. Geosci. 2, 175–179 (2009).
Harvey, G. R., Boran, D. A., Chesal, L. A. & Tokar, J. M. The structure of marine fulvic and humic acids. Mar. Chem. 12, 119–132 (1983).
Beaupre, S. R. & Druffel, E. R. M. Photochemical reactivity of ancient marine dissolved organic carbon. Geophys. Res. Lett. 39, L18602 (2012).
Mopper, K. et al. Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle. Nature 353, 60–62 (1991).
Obernosterer, I. & Benner, R. Competition between biological and photochemical processes in the mineralization of dissolved organic carbon. Limnol. Oceanogr. 49, 117–124 (2004).
Lu, W., Luo, Y., Yan, X. & Jiang, Y. Modeling the contribution of the microbial carbon pump to carbon sequestration in the South China Sea. Sci. China Earth Sci. 61, 1594–1604 (2018).
Polimene, L., Allen, J. I. & Zavatarelli, M. Model of interactions between dissolved organic carbon and bacteria in marine systems. Aquat. Microb. Ecol. 43, 127–138 (2006).
Polimene, L. et al. Modelling marine DOC degradation time scales. Natl. Sci. Rev. 5, 468–474 (2018).
Hasumi, H. & Nagata, T. Modeling the global cycle of marine dissolved organic matter and its influence on marine productivity. Ecol. Model. 288, 9–24 (2014).
Keller, D. P. & Hood, R. R. Modeling the seasonal autochthonous sources of dissolved organic carbon and nitrogen in the upper Chesapeake Bay. Ecol. Model. 222, 1139–1162 (2011).
Luo, Y. W., Friedrichs, M. A. M., Doney, S. C., Church, M. J. & Ducklow, H. W. Oceanic heterotrophic bacterial nutrition by semilabile DOM as revealed by data assimilative modeling. Aquat. Microb. Ecol. 60, 273–287 (2010).
Flerus, R. et al. A molecular perspective on the ageing of marine dissolved organic matter. Biogeosciences 9, 1935–1955 (2012).
Hertkorn, N. et al. Characterization of a major refractory component of marine dissolved organic matter. Geochim. Cosmochim. Acta 70, 2990–3010 (2006).
Dittmar, T., Fitznar, H. P. & Kattner, G. Origin and biogeochemical cycling of organic nitrogen in the eastern Arctic Ocean as evident from D- and L-amino acids. Geochim. Cosmochim. Acta 65, 4103–4114 (2001).
Benner, R. & Kaiser, K. Abundance of amino sugars and peptidoglycan in marine particulate and dissolved organic matter. Limnol. Oceanogr. 48, 118–128 (2003).
Wakeham, S. G., Pease, T. K. & Benner, R. Hydroxy fatty acids in marine dissolved organic matter as indicators of bacterial membrane material. Org. Geochem. 34, 857–868 (2003).
Aluwihare, L. I., Repeta, D. J. & Chen, R. F. A major biopolymeric component to dissolved organic carbon in surface sea water. Nature 387, 166–169 (1997).
Panagiotopoulos, C., Repeta, D. J. & Johnson, C. G. Characterization of methyl sugars, 3-deoxysugars and methyl deoxysugars in marine high molecular weight dissolved organic matter. Org. Geochem. 38, 884–896 (2007).
Repeta, D. J. & Aluwihare, L. I. Radiocarbon analysis of neutral sugars in high-molecular-weight dissolved organic carbon: implications for organic carbon cycling. Limnol. Oceanogr. 51, 1045–1053 (2006).
Walker, B. D., Beaupre, S. R., Guilderson, T. P., Druffel, E. R. M. & McCarthy, M. D. Large-volume ultrafiltration for the study of radiocarbon signatures and size vs. age relationships in marine dissolved organic matter. Geochim. Cosmochim. Acta 75, 5187–5202 (2011).
Amon, R. M. W. & Benner, R. Rapid cycling of high-molecular-weight dissolved organic matter in the ocean. Nature 369, 549–552 (1994).
Zigah, P. K. et al. Allochthonous sources and dynamic cycling of ocean dissolved organic carbon revealed by carbon isotopes. Geophys. Res. Lett. 44, 2407–2415 (2017).
McCarthy, M. D. et al. Chemosynthetic origin of 14C-depleted dissolved organic matter in a ridge-flank hydrothermal system. Nat. Geosci. 4, 32–36 (2011).
Teeling, H. et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336, 608–611 (2012).
Zakem, E. J., Cael, B. B. & Levine, N. M. A unified theory for organic matter accumulation. Proc. Natl Acad. Sci. USA 118, e2016896118 (2021).
Cherrier, J., Bauer, J. E., Druffel, E. R. M., Coffin, R. B. & Chanton, J. P. Radiocarbon in marine bacteria: evidence for the ages of assimilated carbon. Limnol. Oceanogr. 44, 730–736 (1999).
Moran, M. A. & Zepp, R. G. Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter. Limnol. Oceanogr. 42, 1307–1316 (1997).
Legendre, L., Rivkin, R. B., Weinbauer, M. G., Guidi, L. & Uitz, J. The microbial carbon pump concept: potential biogeochemical significance in the globally changing ocean. Prog. Oceanogr. 134, 432–450 (2015).
Bornscheuer, U. T. Feeding on plastic. Science 351, 1154–1155 (2016).
Laine, R. A. Invited Commentary: A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 × 1012 structures for a reducing hexasaccharide: the Isomer Barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology 4, 759–767 (1994).
Wolfenden, R., Lu, X. & Young, G. Spontaneous hydrolysis of glycosides. J. Am. Chem. Soc. 120, 6814–6815 (1998).
Wolfenden, R. & Yuan, Y. Rates of spontaneous cleavage of glucose, fructose, sucrose, and trehalose in water, and the catalytic proficiencies of invertase and trehalas. J. Am. Chem. Soc. 130, 7548–7549 (2008).
Arnosti, C., Reintjes, G. & Amann, R. A mechanistic microbial underpinning for the size-reactivity continuum of dissolved organic carbon degradation. Mar. Chem. 206, 93–99 (2018).
Lechtenfeld, O. J., Hertkorn, N., Shen, Y., Witt, M. & Benner, R. Marine sequestration of carbon in bacterial metabolites. Nat. Commun. 6, 6711 (2015).
Dang, H. Grand challenges in microbe-driven marine carbon cycling research. Front. Microbiol. 11, 1039 (2020).
Jiao, N., Tang, K., Cai, H. & Mao, Y. Increasing the microbial carbon sink in the sea by reducing chemical fertilization on the land. Nat. Rev. Microbiol. 9, 75 (2011).
Aumont, O., Maier-Reimer, E., Blain, S. & Monfray, P. An ecosystem model of the global ocean including Fe, Si, P colimitations. Global Biogeochem. Cycles 17, 1060 (2003).
Lønborg, C., Álvarez–Salgado, X. A., Letscher, R. T. & Hansell, D. A. Large stimulation of recalcitrant dissolved organic carbon degradation by increasing ocean temperatures. Front. Mar. Sci. 4, 436 (2018).
Yamanaka, Y. & Tajika, E. Role of dissolved organic matter in the marine biogeochemical cycle: studies using an ocean biogeochemical general circulation model. Globel Biogeochem. Cycles 11, 599–612 (1997).
Conan, P. et al. Partitioning of organic production in marine plankton communities: the effects of inorganic nutrient ratios and community composition on new dissolved organic matter. Limnol. Oceanogr. 52, 753–765 (2007).
Kragh, T. & Sondergaard, M. Production and decomposition of new DOC by marine plankton communities: carbohydrates, refractory components and nutrient limitation. Biogeochemistry 96, 177–187 (2009).
Chavez, F. P., Messié, M. & Pennington, J. T. Marine primary production in relation to climate variability and change. Annu. Rev. Mar. Sci. 3, 227–260 (2011).
Doney, S. C. et al. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4, 11–37 (2012).
Dittmar, T. & Arnosti, C. in Microbial Ecology of the Oceans 3rd edn (eds Gasol, J. M. & Kirchman, D. L.) 189–229 (Wiley, 2018).
Ferrer-González, F. X. et al. Resource partitioning of phytoplankton metabolites that support bacterial heterotrophy. ISME J. 15, 762–773 (2021).
Shah Walter, S. R. et al. Microbial decomposition of marine dissolved organic matter in cool oceanic crust. Nat. Geosci. 11, 334–339 (2018).
Arrieta, J. M. et al. Dilution limits dissolved organic carbon utilization in the deep ocean. Science 348, 331–333 (2015).
Stocker, R. Marine microbes see a sea of gradients. Science 338, 628–633 (2012).
Barber, R. T. Dissolved organic carbon from deep waters resists microbial oxidation. Nature 220, 274–275 (1968).
Jannasch, H. W. Growth of marine bacteria at limiting concentrations of organic carbon in seawater. Limnol. Oceanogr. 12, 264–271 (1967).
Monod, J. Recherches sur la Croissance Des Cultures Bactériennes 210 (Hermann, 1942).
LaRowe, D. E., Dale, A. W., Amend, J. P. & Van Cappellen, P. Thermodynamic limitations on microbially catalyzed reaction rates. Geochim. Cosmochim. Acta 90, 96–109 (2012).
Vagts, J., Scheve, S., Kant, M., Wohlbrand, L. & Rabus, R. Towards the response threshold for p-hydroxyacetophenone in the denitrifying bacterium “Aromatoleum aromaticum” EbN1. Appl. Environ. Microbiol. 84, e01018–e01018 (2018).
Noell, S. E. & Giovannoni, S. J. SAR11 bacteria have a high affinity and multifunctional glycine betaine transporter. Environ. Microbiol. 21, 2559–2575 (2019).
van der Kooij, D., Oranje, J. P. & Hijnen, W. Growth of Pseudomonas aeruginosa in tap water in relation to utilization of substrates at concentration of a few micrograms per liter. Appl. Environ. Microbiol. 44, 1086–1095 (1982).
Mentges, A., Feenders, C., Seibt, M., Blasius, B. & Dittmar, T. Functional molecular diversity of marine dissolved organic matter is reduced during degradation. Front. Mar. Sci. 4, 194 (2017).
Bradley, J. A. et al. Widespread energy limitation to life in global subseafloor sediments. Sci. Adv. 6, eaba0697 (2020).
Tijhuis, L., Van Loosdrecht, M. C. M. & Heijnen, J. J. A thermodynamically based correlation for maintenance Gibbs energy requirements in aerobic and anaerobic chemotrophic growth. Biotechnol. Bioeng. 42, 509–519 (1993).
Hoehler, T. M. & Jørgensen, B. B. Microbial life under extreme energy limitation. Nat. Rev. Microbiol. 11, 83–94 (2013).
Jørgensen, B. B. & Boetius, A. Feast and famine — microbial life in the deep-sea bed. Nat. Rev. Microbiol. 5, 770–781 (2007).
Morono, Y. et al. Aerobic microbial life persists in oxic marine sediment as old as 101.5 million years. Nat. Commun. 11, 3626 (2020).
Egli, T. How to live at very low substrate concentration. Water Res. 44, 4826–4837 (2010).
Kovárová-Kovar, K. & Egli, T. Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics. Microbiol. Mol. Biol. Rev. 62, 646–666 (1998).
Poretsky, R. S., Sun, S., Mou, X. & Moran, M. A. Transporter genes expressed by coastal bacterioplankton in response to dissolved organic carbon. Environ. Microbiol. 12, 616–627 (2010).
Steen, A. D. et al. Kinetics and identities of extracellular peptidases in subsurface sediments of the White Oak River Estuary, North Carolina. Appl. Environ. Microbiol. 85, e00102–e00119 (2019).
Orsi, W. D., Schink, B., Buckel, W. & Martin, W. F. Physiological limits to life in anoxic subseafloor sediment. FEMS Microbiol. Rev. 44, 219–231 (2020).
Ugalde-Salas, P., Desmond-Le Quéméner, E., Harmand, J., Rapaport, A. & Bouchez, T. Insights from microbial transition state theory on Monod’s affinity constant. Sci. Rep. 10, 5323 (2020).
Desmond-Le Quéméner, E. & Bouchez, T. A thermodynamic theory of microbial growth. ISME J. 8, 1747–1751 (2014).
Sogin, M. L. et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl Acad. Sci. USA 103, 12115–12120 (2006).
Eisenmenger, M. J. & Reyes-De-Corcuera, J. I. High pressure enhancement of enzymes: a review. Enzyme Microb. Technol. 45, 331–347 (2009).
Engel, A., Thoms, S., Riebesell, U., Rochelle-Newall, E. & Zondervan, I. Polysaccharide aggregation as a potential sink of marine dissolved organic carbon. Nature 428, 929–932 (2004).
Decho, A. W. & Gutierrez, T. Microbial extracellular polymeric substances (EPSs) in ocean systems. Front. Microbiol. 8, 922 (2017).
Wang, Z., Hessler, C., Xue, Z. & Seo, Y. The role of extracellular polymeric substances on the sorption of natural organic matter. Water Res. 46, 1052–1060 (2011).
DeLong, E. F. et al. Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311, 496–503 (2006).
Herndl, G. J. & Reinthaler, T. Microbial control of the dark end of the biological pump. Nat. Geosci. 6, 718–724 (2013).
Baltar, F., Arístegui, J., Gasol, J. M., Sintes, E. & Herndl, G. J. Evidence of prokaryotic metabolism on suspended particulate organic matter in the dark waters of the subtropical North Atlantic. Limnol. Oceanogr. 54, 182–193 (2009).
Meon, B. & Kirchman, D. L. Dynamics and molecular composition of dissolved organic material during experimental phytoplankton blooms. Mar. Chem. 75, 185–199 (2001).
Norrman, B., Zwelfel, U. L., Hopkinson, C. S. Jr. & Brian, F. Production and utilization of dissolved organic carbon during an experimental diatom bloom. Limnol. Oceanogr. 40, 898–907 (1995).
Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272–1277 (2016).
Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).
Ferenci, T. Trade-off mechanisms shaping the diversity of bacteria. Trends Microbiol. 24, 209–223 (2016).
Goyal, A., Dubinkina, V. & Maslov, S. Multiple stable states in microbial communities explained by the stable marriage problem. ISME J. 12, 2823–2834 (2018).
Koch, B., Kattner, G., Witt, M. & Passow, U. Molecular insights into the microbial formation of marine dissolved organic matter: recalcitrant or labile? Biogeosciences 11, 4173–4190 (2014).
Noriega-Ortega, B. E. et al. Does the chemodiversity of bacterial exometabolomes sustain the chemodiversity of marine dissolved organic matter? Front. Microbiol. 10, 215 (2019).
Wienhausen, G., Noriega-Ortega, B. E., Niggemann, J., Dittmar, T. & Simon, M. The exometabolome of two model strains of the Roseobacter group: a marketplace of microbial metabolites. Front. Microbiol. 8, 1985 (2017).
O’Brien, P. J. & Herschlag, D. Catalytic promiscuity and the evolution of new enzymatic activities. Chem. Biol. 6, R91–R105 (1999).
Khersonsky, O. & Tawfik, D. S. Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu. Rev. Biochem. 79, 471–505 (2010).
Copley, S. D. An evolutionary biochemist’s perspective on promiscuity. Trends Biochem. Sci. 40, 72–78 (2015).
Chen, R. et al. Molecular insights into the enzyme promiscuity of an aromatic prenyltransferase. Nat. Chem. Biol. 13, 226–234 (2017).
Bathellier, C., Tcherkez, G., Lorimer, G. H. & Farquhar, G. D. Rubisco is not really so bad. Plant Cell Environ. 41, 705–716 (2018).
Schada von Borzyskowski, L. et al. Marine proteobacteria metabolize glycolate via the β-hydroxyaspartate cycle. Nature 575, 500–504 (2019).
Copley, S. D. Shining a light on enzyme promiscuity. Curr. Opin. Struct. Biol. 47, 167–175 (2017).
Steen, A. D., Vazin, J. P., Hagen, S. M., Mulligan, K. H. & Wilhelm, S. W. Substrate specificity of aquatic extracellular peptidases assessed by competitive inhibition assays using synthetic substrates. Aquat. Microb. Ecol. 75, 271–281 (2015).
Orsi, W. D., Richards, T. A. & Francis, W. R. Predicted microbial secretomes and their target substrates in marine sediment. Nat. Microbiol. 3, 32–37 (2018).
Vanni, C. et al. Light into the darkness: unifying the known and unknown coding sequence space in microbiome analyses. Preprint at bioRxiv https://doi.org/10.1101/2020.06.30.180448 (2020).
Petit, E. et al. Involvement of a bacterial microcompartment in the metabolism of fucose and rhamnose by clostridium phytofermentans. PLoS ONE 8, e54337 (2013).
Suttle, C. A. Marine viruses - major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).
Danovaro, R. et al. Marine viruses and global climate change. FEMS Microbiol. Rev. 35, 993–1034 (2011).
Chow, C. E. T., Kim, D. Y., Sachdeva, R., Caron, D. A. & Fuhrman, J. A. Top-down controls on bacterial community structure: microbial network analysis of bacteria, T4-like viruses and protists. ISME J. 8, 816–829 (2014).
Strom, S. L., Benner, R., Ziegler, S. & Dagg, M. J. Planktonic grazers are a potentially important source of marine dissolved organic carbon. Limnol. Oceanogr. 42, 1364–1374 (1997).
Avery, G. B. Jr, Cooper, W. J., Kieber, R. J. & Willey, J. D. Hydrogen peroxide at the Bermuda Atlantic Time Series Station: temporal variability of seawater hydrogen peroxide. Mar. Chem. 97, 236–244 (2005).
Murphy, S. A. et al. Geochemical production of reactive oxygen species from biogeochemically reduced Fe. Environ. Sci. Technol. 48, 3815–3821 (2014).
Palenik, B. & Morel, F. M. M. Dark production of H2O2 in the Sargasso Sea. Limnol. Oceanogr. 33, 1606–1611 (1988).
Diaz, J. M. et al. Widespread production of extracellular superoxide by heterotrophic bacteria. Science 340, 1223–1226 (2013).
Paerl, R. W., Claudio, I. M., Shields, M. R., Bianchi, T. S. & Osburn, C. L. Dityrosine formation via reactive oxygen consumption yields increasingly recalcitrant humic-like fluorescent organic matter in the ocean. Limnol. Oceanogr. Lett. 5, 337–345 (2020).
Arakawa, N. et al. Carotenoids are the likely precursor of a significant fraction of marine dissolved organic matter. Sci. Adv. 3, e1602976 (2017).
Kujawinski, E. B., Del Vecchio, R., Blough, N. V., Klein, G. C. & Marshall, A. G. Probing molecular-level transformations of dissolved organic matter: insights on photochemical degradation and protozoan modification of DOM from electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Mar. Chem. 92, 23–37 (2004).
Stubbins, A. & Dittmar, T. Illuminating the deep: molecular signatures of photochemical alteration of dissolved organic matter from North Atlantic Deep Water. Front. Mar. Chem. 177, 318–324 (2015).
Miller, W. L. & Moran, M. A. Interaction of photochemical and microbial processes in the degradation of refractory dissolved organic matter from a coastal marine environment. Limnol. Oceanogr. 42, 1317–1324 (1997).
Pohlabeln, A. M., Gomez-Saez, G. V., Noriega-Ortega, B. E. & Dittmar, T. Experimental evidence for abiotic sulfurization of marine dissolved organic matter. Front. Mar. Sci. 4, 364 (2017).
Hawkes, J. A., Hansen, C. T., Goldhammer, T., Bach, W. & Dittmar, T. Molecular alteration of marine dissolved organic matter under experimental hydrothermal conditions. Geochim. Cosmochim. Acta 175, 68–85 (2016).
Bada, J. L. in Nonequilibrium Systems in Natural Water Chemistry Vol. 106. Ch. 13 (ed. Hem, J. D.) 309–331 (American Chemical Society, 1971).
Glavin, D. P., Burton, A. S., Elsila, J. E., Aponte, J. C. & Dworkin, J. P. The search for chiral asymmetry as a potential biosignature in our solar system. Chem. Rev. 120, 4660–4689 (2020).
Hertkorn, N., Harir, M., Koch, B. P., Michalke, B. & Schmitt-Kopplin, P. High-field NMR spectroscopy and FTICR mass spectrometry: powerful discovery tools for the molecular level characterization of marine dissolved organic matter. Biogeosciences 10, 1583–1624 (2013).
Ball, G. I. & Aluwihare, L. I. CuO-oxidized dissolved organic matter (DOM) investigated with comprehensive two dimensional gas chromatography-time of flight-mass spectrometry (GC × GC-TOF-MS). Org. Geochem. 75, 87–98 (2014).
Nothias, L.-F. et al. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods 17, 905–908 (2020).
Merder, J. et al. ICBM-OCEAN: processing ultrahigh-resolution mass spectrometry data of complex molecular mixtures. Anal. Chem. 92, 6832–6838 (2020).
Povolotskaya, I. S. & Kondrashov, F. A. Sequence space and the ongoing expansion of the protein universe. Nature 465, 922–926 (2010).
Kashtan, N. et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science 344, 416–420 (2014).
Jannasch, H. W., Wirsen, C. O. & Winget, C. L. A bacteriological pressure-retaining deep-sea sampler and culture vessel. Deep Sea Res. Oceanogr. Abstr. 20, 661–664 (1973).
Garel, M. et al. Pressure-retaining sampler and high-pressure systems to study deep-sea microbes under in situ conditions. Front. Microbiol. 10, 453 (2019).
Proud, R., Cox, M. J. & Brierley, A. S. Biogeography of the global ocean’s mesopelagic zone. Curr. Biol. 27, 113–119 (2017).
de Goeij, J. M. et al. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342, 108–110 (2013).
Follows, M. J., Dutkiewicz, S., Grant, S. & Chisholm, S. W. Emergent biogeography of microbial communities in a model ocean. Science 315, 1843–1846 (2007).
Coles, V. J. & Hood, R. R. in Aquatic Microbial Ecology and Biogeochemistry: A Dual Perspective (eds Gilbert, P. & Kana, T. M.) 45–63 (Springer, 2016).
Coles, V. J. et al. Ocean biogeochemistry modeled with emergent trait-based genomics. Science 358, 1149–1154 (2017).
Letscher, R. T. & Moore, J. K. Preferential remineralization of dissolved organic phosphorus and non-Redfield DOM dynamics in the global ocean: impacts on marine productivity, nitrogen fixation, and carbon export. Glob. Biogeochem. Cycles 29, 325–340 (2015).
Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 (2016).
Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014).
Martínez-Martínez, M. et al. Determinants and prediction of esterase substrate promiscuity patterns. ACS Chem. Biol. 13, 225–234 (2018).
Anderson, T. R., Christian, J. R. & Flynn, K. J. in Biogeochemistry of Marine Dissolved Organic Matter 2nd edn (eds Hansell, D. A. & Carlson, C. A.) 635–667 (Academic Press, 2015).
Acknowledgements
Financial support was provided through the PhD research training group ‘The Ecology of Molecules’ (EcoMol) supported by the Lower Saxony Ministry for Science and Culture (MWK). The expression ‘ecology of molecules’ was first conceived at an international workshop funded by the Germany Research Foundation (DFG, DI 842/5-1) at the Hanse Institute for Advanced Study, Delmenhorst, Germany (24–28 Nov. 2014). T.D. and B.B. were supported by DFG (CRC 51), S.T.L. by the State of Lower Saxony (MWK) and D.A.H. by US NSF (OCE-1436748 and OCE-2023500) and US NASA (80NSSC18K0437). J.-H.H., H.B.-W. and C.V. received funding from the Max Planck Society, J.-H.H. from DFG (HE 7217/1-1), and T.D. and J.-H.H. from the Cluster of Excellence initiative (EXC-2077–390741603). H.B.-W. and C.V. acknowledge helpful comments from A. Fernandez-Guerra (Lundbeck Foundation GeoGenetics Centre) and the computer resources and technical support provided by the German Network for Bioinformatics Infrastructure.
Author information
Authors and Affiliations
Contributions
T.D. chaired the writing of the article. S.T.L. performed the numerical model and C.V. the bioinformatics computations. T.D. measured the ultrahigh-resolution mass spectra shown in Fig. 1. Otherwise, the authors contributed equally to all aspects of the article.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Earth & Environment thanks Andrew Steen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
About this article
Cite this article
Dittmar, T., Lennartz, S.T., Buck-Wiese, H. et al. Enigmatic persistence of dissolved organic matter in the ocean. Nat Rev Earth Environ 2, 570–583 (2021). https://doi.org/10.1038/s43017-021-00183-7
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s43017-021-00183-7
This article is cited by
-
Viral lysing can alleviate microbial nutrient limitations and accumulate recalcitrant dissolved organic matter components in soil
The ISME Journal (2023)
-
Mineral evolution facilitated Earth’s oxidation
Communications Earth & Environment (2023)
-
A generic hierarchical model of organic matter degradation and preservation in aquatic systems
Communications Earth & Environment (2023)
-
NMR spectroscopy of dissolved organic matter: a review
Environmental Chemistry Letters (2023)
-
Microbial degradation of various types of dissolved organic matter in aquatic ecosystems and its influencing factors
Science China Earth Sciences (2023)