Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Enigmatic persistence of dissolved organic matter in the ocean

Abstract

Marine dissolved organic matter (DOM) contains more carbon than the combined stocks of Earth’s biota. Organisms in the ocean continuously release a myriad of molecules that become food for microheterotrophs, but, for unknown reasons, a residual fraction persists as DOM for millennia. In this Perspective, we discuss and compare two concepts that could explain this persistence. The long-standing ‘intrinsic recalcitrance’ paradigm attributes DOM stability to inherent molecular properties. In the ‘emergent recalcitrance’ concept, DOM is continuously transformed by marine microheterotrophs, with recalcitrance emerging on an ecosystems level. Both concepts are consistent with observations in the modern ocean, but they imply very different responses of the DOM pool to climate-related changes. To better understand DOM persistence, we propose a new overarching research strategy — the ecology of molecules — that integrates the concepts of intrinsic and emergent recalcitrance with the ecological and environmental context.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Small-scale processes drive global patterns of dissolved organic matter.
Fig. 2: Formation and degradation of dissolved organic matter across spatial and temporal scales.
Fig. 3: Two central concepts of dissolved organic matter persistence in the ocean.
Fig. 4: Mathematical modelling approaches based on the intrinsic and emergent recalcitrance concepts.
Fig. 5: The challenge of upscaling kinetic constants at low substrate concentrations.
Fig. 6: Molecular diversification through enzymatic reactions in the ocean.

References

  1. 1.

    Hansell, D. A., Carlson, C. A., Repeta, D. J. & Schlitzer, R. Dissolved organic matter in the ocean: a controversy stimulates new insights. Oceanography 22, 202–211 (2009).

    Article  Google Scholar 

  2. 2.

    Dittmar, T. & Stubbins, A. in Treatise on Geochemistry 2nd edn Vol. 12 (eds Birrer, B., Falkowski, P. & Freeman, K.) 125–156 (Elsevier, 2014).

  3. 3.

    Ridgwell, A. & Arndt, S. in Biogeochemistry of Marine Dissolved Organic Matter 2nd edn (eds Hansell, D. A. & Carlson, C. A.) 1–20 (Academic Press, 2015).

  4. 4.

    Lehmann, J. et al. Persistence of soil organic carbon caused by functional complexity. Nat. Geosci. 13, 529–534 (2020).

    Article  Google Scholar 

  5. 5.

    Hansell, D. A. Recalcitrant dissolved organic carbon fractions. Annu. Rev. Mar. Sci. 5, 421–445 (2013).

    Article  Google Scholar 

  6. 6.

    Duarte, C. M. Global change and the future ocean: a grand challenge for marine sciences. Front. Marine Sci. 1, 63 (2014).

    Article  Google Scholar 

  7. 7.

    Dittmar, T. in Biogeochemistry of Marine Dissolved Organic Matter 2nd edn (eds Hansell, D. A. & Carlson, C. A.) 369–388 (Academic Press, 2015).

  8. 8.

    Azam, F. Microbial control of oceanic carbon flux: the plot thickens. Science 280, 694–696 (1998).

    Article  Google Scholar 

  9. 9.

    Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).

    Article  Google Scholar 

  10. 10.

    Azam, F. & Malfatti, F. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol. 5, 782–791 (2007).

    Article  Google Scholar 

  11. 11.

    Carlson, C. A., Del Giorgio, P. A. & Herndl, G. J. Microbes and the dissipation of energy and respiration: from cells to ecosystems. Oceanography 20, 89–100 (2007).

    Article  Google Scholar 

  12. 12.

    LaRowe, D. E. et al. The fate of organic carbon in marine sediments - New insights from recent data and analysis. Earth Sci. Rev. 204, 103146 (2020).

    Article  Google Scholar 

  13. 13.

    Swannell, R. P. J., Lee, K. & McDonagh, M. Field evaluations of marine oil spill bioremediation. Microbiol. Rev. 60, 342–365 (1996).

    Article  Google Scholar 

  14. 14.

    Dorrepaal, E. et al. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460, 616–620 (2009).

    Article  Google Scholar 

  15. 15.

    Bianchi, D., Weber, T. S., Kiko, R. & Deutsch, C. Global niche of marine anaerobic metabolisms expanded by particle microenvironments. Nat. Geosci. 11, 263–268 (2018).

    Article  Google Scholar 

  16. 16.

    Wurl, O., Ekau, W., Landing, W. & Zappa, C. Sea surface microlayer in a changing ocean – A perspective. Elementa 5, 31 (2017).

    Google Scholar 

  17. 17.

    Toulza, E., Tagliabue, A., Blain, S. & Piganeau, G. Analysis of the global ocean sampling (GOS) project for trends in iron uptake by surface ocean microbes. PLoS ONE 7, e30931 (2012).

    Article  Google Scholar 

  18. 18.

    Browning, T. J. et al. Iron limitation of microbial phosphorus acquisition in the tropical North Atlantic. Nat. Commun. 8, 15465 (2017).

    Article  Google Scholar 

  19. 19.

    Roshan, S. & DeVries, T. Efficient dissolved organic carbon production and export in the oligotrophic ocean. Nat. Commun. 8, 2036 (2017).

    Article  Google Scholar 

  20. 20.

    Santinelli, C., Hansell, D. & Ribera d’Alcala, M. Influence of stratification on marine dissolved organic carbon (DOC) dynamics: the Mediterranean Sea case. Prog. Oceanogr. 119, 68–77 (2013).

    Article  Google Scholar 

  21. 21.

    Arnosti, C., Steen, A. D., Ziervogel, K., Ghobrial, S. & Jeffrey, W. H. Latitudinal gradients in degradation of marine dissolved organic carbon. PLoS ONE 6, e28900 (2011).

    Article  Google Scholar 

  22. 22.

    Carlson, C. A. et al. Interactions among dissolved organic carbon, microbial processes, and community structure in the mesopelagic zone of the northwestern Sargasso Sea. Limnol. Oceanogr. 49, 1073–1083 (2004).

    Article  Google Scholar 

  23. 23.

    Shen, Y. & Benner, R. Mixing it up in the ocean carbon cycle and the removal of refractory dissolved organic carbon. Sci. Rep. 8, 2542 (2018).

    Article  Google Scholar 

  24. 24.

    Aristegui, J., Agusti, S., Middelburg, J. J. & Duarte, C. M. in Respiration in Aquatic Ecosystems (eds del Giorgio, P. A. & Williams, P.) 181–205 (Oxford Univ. Press, 2005).

  25. 25.

    Aristegui, J., Gasol, J. M., Duarte, C. M. & Herndl, G. J. Microbial oceanography of the dark ocean’s pelagic realm. Limnol. Oceanogr. 54, 1501–1529 (2009).

    Article  Google Scholar 

  26. 26.

    LaRowe, D. E. & Van Cappellen, P. Degradation of natural organic matter: a thermodynamic analysis. Geochim. Cosmochim. Acta 75, 2030–2042 (2011).

    Article  Google Scholar 

  27. 27.

    Amon, R. M. W. & Benner, R. Bacterial utilization of different size classes of dissolved organic matter. Limnol. Oceanogr. 41, 41–51 (1996).

    Article  Google Scholar 

  28. 28.

    Amon, R. M. W., Fitznar, H. P. & Benner, R. Linkages among the bioreactivity, chemical composition, and diagenetic state of marine dissolved organic matter. Limnol. Oceanogr. 46, 287–297 (2001).

    Article  Google Scholar 

  29. 29.

    Kaiser, K. & Benner, R. Biochemical composition and size distribution of organic matter at the Pacific and Atlantic time-series stations. Mar. Chem. 113, 63–77 (2009).

    Article  Google Scholar 

  30. 30.

    McCarthy, M. D., Hedges, J. I. & Benner, R. Major bacterial contribution to marine dissolved organic nitrogen. Science 281, 231–234 (1998).

    Article  Google Scholar 

  31. 31.

    Ogawa, H., Amagai, Y., Koike, I., Kaiser, K. & Benner, R. Production of refractory dissolved organic matter by bacteria. Science 292, 917–920 (2001).

    Article  Google Scholar 

  32. 32.

    Jiao, N. et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat. Rev. Microbiol. 8, 593–599 (2011).

    Article  Google Scholar 

  33. 33.

    Benner, R. & Biddanda, B. Photochemical transformations of surface and deep marine dissolved organic matter: effects on bacterial growth. Limnol. Oceanogr. 43, 1373–1378 (1998).

    Article  Google Scholar 

  34. 34.

    Tranvik, L. J. & Bertilsson, S. Contrasting effects of solar UV radiation on dissolved organic sources for bacterial growth. Ecol. Lett. 4, 458–463 (2001).

    Article  Google Scholar 

  35. 35.

    Mentges, A. et al. Microbial physiology governs the oceanic distribution of dissolved organic carbon in a scenario of equal degradability. Front. Mar. Sci. 7, 549784 (2020).

    Article  Google Scholar 

  36. 36.

    Mentges, A., Feenders, C., Deutsch, C., Blasius, B. & Dittmar, T. Long-term stability of marine dissolved organic carbon emerges from a neutral network of compounds and microbes. Sci. Rep. 9, 17780 (2019).

    Article  Google Scholar 

  37. 37.

    Thurner, S., Klimek, P. & Hanel, R. Introduction to the Theory of Complex Systems (Oxford Scholarship Online, 2018).

  38. 38.

    Druffel, E. R. M., Williams, P. M., Bauer, J. E. & Ertel, J. R. Cycling of dissolved and particulate organic matter in the open ocean. J. Geophys. Res. Oceans 97, 15639–15659 (1992).

    Article  Google Scholar 

  39. 39.

    Hansell, D. A., Carlson, C. A. & Schlitzer, R. Net removal of major marine dissolved organic carbon fractions in the subsurface ocean. Glob. Biogeochem. Cycles 26, GB1016 (2012).

    Article  Google Scholar 

  40. 40.

    Osterholz, H., Niggemann, J., Giebel, H. A., Simon, M. & Dittmar, T. Inefficient microbial production of refractory dissolved organic matter in the ocean. Nat. Commun. 6, 7422 (2015).

    Article  Google Scholar 

  41. 41.

    Hansell, D. A. & Carlson, C. A. Net community production of dissolved organic carbon. Glob. Biogeochem. Cycles 12, 443–453 (1998).

    Article  Google Scholar 

  42. 42.

    Romera-Castillo, C., Letscher, R. T. & Hansell, D. A. New nutrients exert fundamental control on dissolved organic carbon accumulation in the surface Atlantic Ocean. Proc. Natl Acad. Sci. USA 113, 10497–10502 (2016).

    Article  Google Scholar 

  43. 43.

    Carlson, C. A. & Hansell, D. A. in Biogeochemistry of Marine Dissolved Organic Matter 2nd edn (eds Hansell, D. A. & Carlson, C. A.) 65–126 (Academic Press, 2015).

  44. 44.

    Hansell, D. Marine dissolved organic matter and the carbon cycle. Oceanography 14, 41–49 (2001).

    Article  Google Scholar 

  45. 45.

    Hansell, D. A. & Carlson, C. A. Deep-ocean gradients in the concentration of dissolved organic carbon. Nature 395, 263–266 (1998).

    Article  Google Scholar 

  46. 46.

    Hawkes, J. A. et al. Efficient removal of recalcitrant deep-ocean dissolved organic matter during hydrothermal circulation. Nat. Geosci. 8, 856–860 (2015).

    Article  Google Scholar 

  47. 47.

    Lang, S. Q., Butterfield, D. A., Lilley, M. D., Johnson, H. P. & Hedges, J. I. Dissolved organic carbon in ridge-axis and ridge-flank hydrothermal systems. Geochim. Cosmochim. Acta 70, 3830–3842 (2006).

    Article  Google Scholar 

  48. 48.

    Hedges, J. I., Keil, R. G. & Benner, R. What happens to terrestrial organic matter in the ocean? Org. Geochem. 27, 195–212 (1997).

    Article  Google Scholar 

  49. 49.

    Opsahl, S. & Benner, R. Distribution and cycling of terrigenous dissolved organic matter in the ocean. Nature 386, 480–482 (1997).

    Article  Google Scholar 

  50. 50.

    Jaffé, R. et al. Global charcoal mobilization from soils via dissolution and riverine transport to the oceans. Science 340, 345–347 (2013).

    Article  Google Scholar 

  51. 51.

    Wagner, S. et al. Isotopic composition of oceanic dissolved black carbon reveals non-riverine source. Nat. Commun. 10, 5064 (2019).

    Article  Google Scholar 

  52. 52.

    Hansell, D. A. & Carlson, C. A. Localized refractory dissolved organic carbon sinks in the deep ocean. Global Biogeochem. Cycles 27, 705–710 (2013).

    Article  Google Scholar 

  53. 53.

    Bauer, J. E., Druffel, E. R. M., Wolgast, D. M. & Griffin, S. Temporal and regional variability in sources and cycling of DOC and POC in the northwest Atlantic continental shelf and slope. Deep Sea Res. II Top. Stud. Oceanogr. 49, 4387–4419 (2002).

    Article  Google Scholar 

  54. 54.

    Williams, P. M. & Druffel, E. R. M. Radiocarbon in dissolved organic mater in the central north Pacific Ocean. Nature 330, 246–248 (1987).

    Article  Google Scholar 

  55. 55.

    Williams, P. M., Oeschger, H. & Kinney, P. Natural radiocarbon activity of dissolved organic carbon in north-east Pacific Ocean. Nature 224, 256–258 (1969).

    Article  Google Scholar 

  56. 56.

    Follett, C. L., Repeta, D. J., Rothman, D. H., Xub, L. & Santinelli, C. Hidden cycle of dissolved organic carbon in the deep ocean. Proc. Natl Acad. Sci. USA 111, 16706–16711 (2014).

    Article  Google Scholar 

  57. 57.

    Walker, B. D., Beaupre, S. R., Guilderson, T. P., McCarthy, M. D. & Druffel, E. R. M. Pacific carbon cycling constrained by organic matter size, age and composition relationships. Nat. Geosci. 9, 888–891 (2016).

    Article  Google Scholar 

  58. 58.

    Beaupre, S. R. & Aluwihare, L. Constraining the 2-component model of marine dissolved organic radiocarbon. Deep-Sea Res. II Top. Stud. Oceanogr. 57, 1494–1503 (2010).

    Article  Google Scholar 

  59. 59.

    Druffel, E. & Griffin, S. Radiocarbon in dissolved organic carbon of the South Pacific Ocean. Geophys. Res. Lett. 42, 4096–4101 (2015).

    Article  Google Scholar 

  60. 60.

    Loh, A. N., Bauer, J. E. & Druffel, E. R. M. Variable ageing and storage of dissolved organic components in the open ocean. Nature 430, 877–881 (2004).

    Article  Google Scholar 

  61. 61.

    Santinelli, C., Follett, C., Retelletti Brogi, S., Xu, L. & Repeta, D. Carbon isotope measurements reveal unexpected cycling of dissolved organic matter in the deep Mediterranean Sea. Mar. Chem. 177, 267–277 (2015).

    Article  Google Scholar 

  62. 62.

    Arnosti, C. et al. The biogeochemistry of marine polysaccharides: sources, inventories, and bacterial drivers of the carbohydrate cycle. Ann. Rev. Mar. Sci. 13, 81–108 (2021).

    Article  Google Scholar 

  63. 63.

    Becker, S. et al. Laminarin is a major molecule in the marine carbon cycle. Proc. Natl Acad. Sci. USA 117, 6599–6607 (2020).

    Article  Google Scholar 

  64. 64.

    Sichert, A. et al. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat. Microbiol. 5, 1026–1039 (2020).

    Article  Google Scholar 

  65. 65.

    Zark, M. & Dittmar, T. Universal molecular structures in natural dissolved organic matter. Nat. Commun. 9, 3178 (2018).

    Article  Google Scholar 

  66. 66.

    Dittmar, T. & Kattner, G. Recalcitrant dissolved organic matter in the ocean: major contribution of small amphiphilics. Mar. Chem. 82, 115–123 (2003).

    Article  Google Scholar 

  67. 67.

    Zark, M., Christoffers, J. & Dittmar, T. Molecular properties of deep-sea dissolved organic matter are predictable by the central limit theorem: evidence from tandem FT-ICR-MS. Mar. Chem. 191, 9–15 (2017).

    Article  Google Scholar 

  68. 68.

    Riedel, T. & Dittmar, T. A method detection limit for the analysis of natural organic matter via Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 86, 8376–8382 (2014).

    Article  Google Scholar 

  69. 69.

    Hertkorn, N. et al. High-precision frequency measurements: indispensable tools at the core of the molecular-level analysis of complex systems. Anal. Bioanal. Chem. 389, 1311–1327 (2007).

    Article  Google Scholar 

  70. 70.

    Kirkpatrick, P. & Ellis, C. Chemical space. Nature 432, 823–823 (2004).

    Article  Google Scholar 

  71. 71.

    Jiao, N. et al. Unveiling the enigma of refractory carbon in the ocean. Natl. Sci. Rev. 5, 459–463 (2018).

    Article  Google Scholar 

  72. 72.

    Wang, N. et al. Contribution of structural recalcitrance to the formation of the deep oceanic dissolved organic carbon reservoir. Environ. Microbiol. Rep. 10, 711–717 (2018).

    Article  Google Scholar 

  73. 73.

    Dittmar, T. & Paeng, J. A heat-induced molecular signature in marine dissolved organic matter. Nat. Geosci. 2, 175–179 (2009).

    Article  Google Scholar 

  74. 74.

    Harvey, G. R., Boran, D. A., Chesal, L. A. & Tokar, J. M. The structure of marine fulvic and humic acids. Mar. Chem. 12, 119–132 (1983).

    Article  Google Scholar 

  75. 75.

    Beaupre, S. R. & Druffel, E. R. M. Photochemical reactivity of ancient marine dissolved organic carbon. Geophys. Res. Lett. 39, L18602 (2012).

    Article  Google Scholar 

  76. 76.

    Mopper, K. et al. Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle. Nature 353, 60–62 (1991).

    Article  Google Scholar 

  77. 77.

    Obernosterer, I. & Benner, R. Competition between biological and photochemical processes in the mineralization of dissolved organic carbon. Limnol. Oceanogr. 49, 117–124 (2004).

    Article  Google Scholar 

  78. 78.

    Lu, W., Luo, Y., Yan, X. & Jiang, Y. Modeling the contribution of the microbial carbon pump to carbon sequestration in the South China Sea. Sci. China Earth Sci. 61, 1594–1604 (2018).

    Article  Google Scholar 

  79. 79.

    Polimene, L., Allen, J. I. & Zavatarelli, M. Model of interactions between dissolved organic carbon and bacteria in marine systems. Aquat. Microb. Ecol. 43, 127–138 (2006).

    Article  Google Scholar 

  80. 80.

    Polimene, L. et al. Modelling marine DOC degradation time scales. Natl. Sci. Rev. 5, 468–474 (2018).

    Article  Google Scholar 

  81. 81.

    Hasumi, H. & Nagata, T. Modeling the global cycle of marine dissolved organic matter and its influence on marine productivity. Ecol. Model. 288, 9–24 (2014).

    Article  Google Scholar 

  82. 82.

    Keller, D. P. & Hood, R. R. Modeling the seasonal autochthonous sources of dissolved organic carbon and nitrogen in the upper Chesapeake Bay. Ecol. Model. 222, 1139–1162 (2011).

    Article  Google Scholar 

  83. 83.

    Luo, Y. W., Friedrichs, M. A. M., Doney, S. C., Church, M. J. & Ducklow, H. W. Oceanic heterotrophic bacterial nutrition by semilabile DOM as revealed by data assimilative modeling. Aquat. Microb. Ecol. 60, 273–287 (2010).

    Article  Google Scholar 

  84. 84.

    Flerus, R. et al. A molecular perspective on the ageing of marine dissolved organic matter. Biogeosciences 9, 1935–1955 (2012).

    Article  Google Scholar 

  85. 85.

    Hertkorn, N. et al. Characterization of a major refractory component of marine dissolved organic matter. Geochim. Cosmochim. Acta 70, 2990–3010 (2006).

    Article  Google Scholar 

  86. 86.

    Dittmar, T., Fitznar, H. P. & Kattner, G. Origin and biogeochemical cycling of organic nitrogen in the eastern Arctic Ocean as evident from D- and L-amino acids. Geochim. Cosmochim. Acta 65, 4103–4114 (2001).

    Article  Google Scholar 

  87. 87.

    Benner, R. & Kaiser, K. Abundance of amino sugars and peptidoglycan in marine particulate and dissolved organic matter. Limnol. Oceanogr. 48, 118–128 (2003).

    Article  Google Scholar 

  88. 88.

    Wakeham, S. G., Pease, T. K. & Benner, R. Hydroxy fatty acids in marine dissolved organic matter as indicators of bacterial membrane material. Org. Geochem. 34, 857–868 (2003).

    Article  Google Scholar 

  89. 89.

    Aluwihare, L. I., Repeta, D. J. & Chen, R. F. A major biopolymeric component to dissolved organic carbon in surface sea water. Nature 387, 166–169 (1997).

    Article  Google Scholar 

  90. 90.

    Panagiotopoulos, C., Repeta, D. J. & Johnson, C. G. Characterization of methyl sugars, 3-deoxysugars and methyl deoxysugars in marine high molecular weight dissolved organic matter. Org. Geochem. 38, 884–896 (2007).

    Article  Google Scholar 

  91. 91.

    Repeta, D. J. & Aluwihare, L. I. Radiocarbon analysis of neutral sugars in high-molecular-weight dissolved organic carbon: implications for organic carbon cycling. Limnol. Oceanogr. 51, 1045–1053 (2006).

    Article  Google Scholar 

  92. 92.

    Walker, B. D., Beaupre, S. R., Guilderson, T. P., Druffel, E. R. M. & McCarthy, M. D. Large-volume ultrafiltration for the study of radiocarbon signatures and size vs. age relationships in marine dissolved organic matter. Geochim. Cosmochim. Acta 75, 5187–5202 (2011).

    Article  Google Scholar 

  93. 93.

    Amon, R. M. W. & Benner, R. Rapid cycling of high-molecular-weight dissolved organic matter in the ocean. Nature 369, 549–552 (1994).

    Article  Google Scholar 

  94. 94.

    Zigah, P. K. et al. Allochthonous sources and dynamic cycling of ocean dissolved organic carbon revealed by carbon isotopes. Geophys. Res. Lett. 44, 2407–2415 (2017).

    Article  Google Scholar 

  95. 95.

    McCarthy, M. D. et al. Chemosynthetic origin of 14C-depleted dissolved organic matter in a ridge-flank hydrothermal system. Nat. Geosci. 4, 32–36 (2011).

    Article  Google Scholar 

  96. 96.

    Teeling, H. et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336, 608–611 (2012).

    Article  Google Scholar 

  97. 97.

    Zakem, E. J., Cael, B. B. & Levine, N. M. A unified theory for organic matter accumulation. Proc. Natl Acad. Sci. USA 118, e2016896118 (2021).

    Article  Google Scholar 

  98. 98.

    Cherrier, J., Bauer, J. E., Druffel, E. R. M., Coffin, R. B. & Chanton, J. P. Radiocarbon in marine bacteria: evidence for the ages of assimilated carbon. Limnol. Oceanogr. 44, 730–736 (1999).

    Article  Google Scholar 

  99. 99.

    Moran, M. A. & Zepp, R. G. Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter. Limnol. Oceanogr. 42, 1307–1316 (1997).

    Article  Google Scholar 

  100. 100.

    Legendre, L., Rivkin, R. B., Weinbauer, M. G., Guidi, L. & Uitz, J. The microbial carbon pump concept: potential biogeochemical significance in the globally changing ocean. Prog. Oceanogr. 134, 432–450 (2015).

    Article  Google Scholar 

  101. 101.

    Bornscheuer, U. T. Feeding on plastic. Science 351, 1154–1155 (2016).

    Article  Google Scholar 

  102. 102.

    Laine, R. A. Invited Commentary: A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 × 1012 structures for a reducing hexasaccharide: the Isomer Barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology 4, 759–767 (1994).

    Article  Google Scholar 

  103. 103.

    Wolfenden, R., Lu, X. & Young, G. Spontaneous hydrolysis of glycosides. J. Am. Chem. Soc. 120, 6814–6815 (1998).

    Article  Google Scholar 

  104. 104.

    Wolfenden, R. & Yuan, Y. Rates of spontaneous cleavage of glucose, fructose, sucrose, and trehalose in water, and the catalytic proficiencies of invertase and trehalas. J. Am. Chem. Soc. 130, 7548–7549 (2008).

    Article  Google Scholar 

  105. 105.

    Arnosti, C., Reintjes, G. & Amann, R. A mechanistic microbial underpinning for the size-reactivity continuum of dissolved organic carbon degradation. Mar. Chem. 206, 93–99 (2018).

    Article  Google Scholar 

  106. 106.

    Lechtenfeld, O. J., Hertkorn, N., Shen, Y., Witt, M. & Benner, R. Marine sequestration of carbon in bacterial metabolites. Nat. Commun. 6, 6711 (2015).

    Article  Google Scholar 

  107. 107.

    Dang, H. Grand challenges in microbe-driven marine carbon cycling research. Front. Microbiol. 11, 1039 (2020).

    Article  Google Scholar 

  108. 108.

    Jiao, N., Tang, K., Cai, H. & Mao, Y. Increasing the microbial carbon sink in the sea by reducing chemical fertilization on the land. Nat. Rev. Microbiol. 9, 75 (2011).

    Article  Google Scholar 

  109. 109.

    Aumont, O., Maier-Reimer, E., Blain, S. & Monfray, P. An ecosystem model of the global ocean including Fe, Si, P colimitations. Global Biogeochem. Cycles 17, 1060 (2003).

    Article  Google Scholar 

  110. 110.

    Lønborg, C., Álvarez–Salgado, X. A., Letscher, R. T. & Hansell, D. A. Large stimulation of recalcitrant dissolved organic carbon degradation by increasing ocean temperatures. Front. Mar. Sci. 4, 436 (2018).

    Article  Google Scholar 

  111. 111.

    Yamanaka, Y. & Tajika, E. Role of dissolved organic matter in the marine biogeochemical cycle: studies using an ocean biogeochemical general circulation model. Globel Biogeochem. Cycles 11, 599–612 (1997).

    Article  Google Scholar 

  112. 112.

    Conan, P. et al. Partitioning of organic production in marine plankton communities: the effects of inorganic nutrient ratios and community composition on new dissolved organic matter. Limnol. Oceanogr. 52, 753–765 (2007).

    Article  Google Scholar 

  113. 113.

    Kragh, T. & Sondergaard, M. Production and decomposition of new DOC by marine plankton communities: carbohydrates, refractory components and nutrient limitation. Biogeochemistry 96, 177–187 (2009).

    Article  Google Scholar 

  114. 114.

    Chavez, F. P., Messié, M. & Pennington, J. T. Marine primary production in relation to climate variability and change. Annu. Rev. Mar. Sci. 3, 227–260 (2011).

    Article  Google Scholar 

  115. 115.

    Doney, S. C. et al. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4, 11–37 (2012).

    Article  Google Scholar 

  116. 116.

    Dittmar, T. & Arnosti, C. in Microbial Ecology of the Oceans 3rd edn (eds Gasol, J. M. & Kirchman, D. L.) 189–229 (Wiley, 2018).

  117. 117.

    Ferrer-González, F. X. et al. Resource partitioning of phytoplankton metabolites that support bacterial heterotrophy. ISME J. 15, 762–773 (2021).

    Article  Google Scholar 

  118. 118.

    Shah Walter, S. R. et al. Microbial decomposition of marine dissolved organic matter in cool oceanic crust. Nat. Geosci. 11, 334–339 (2018).

    Article  Google Scholar 

  119. 119.

    Arrieta, J. M. et al. Dilution limits dissolved organic carbon utilization in the deep ocean. Science 348, 331–333 (2015).

    Article  Google Scholar 

  120. 120.

    Stocker, R. Marine microbes see a sea of gradients. Science 338, 628–633 (2012).

    Article  Google Scholar 

  121. 121.

    Barber, R. T. Dissolved organic carbon from deep waters resists microbial oxidation. Nature 220, 274–275 (1968).

    Article  Google Scholar 

  122. 122.

    Jannasch, H. W. Growth of marine bacteria at limiting concentrations of organic carbon in seawater. Limnol. Oceanogr. 12, 264–271 (1967).

    Article  Google Scholar 

  123. 123.

    Monod, J. Recherches sur la Croissance Des Cultures Bactériennes 210 (Hermann, 1942).

  124. 124.

    LaRowe, D. E., Dale, A. W., Amend, J. P. & Van Cappellen, P. Thermodynamic limitations on microbially catalyzed reaction rates. Geochim. Cosmochim. Acta 90, 96–109 (2012).

    Article  Google Scholar 

  125. 125.

    Vagts, J., Scheve, S., Kant, M., Wohlbrand, L. & Rabus, R. Towards the response threshold for p-hydroxyacetophenone in the denitrifying bacterium “Aromatoleum aromaticum” EbN1. Appl. Environ. Microbiol. 84, e01018–e01018 (2018).

    Article  Google Scholar 

  126. 126.

    Noell, S. E. & Giovannoni, S. J. SAR11 bacteria have a high affinity and multifunctional glycine betaine transporter. Environ. Microbiol. 21, 2559–2575 (2019).

    Article  Google Scholar 

  127. 127.

    van der Kooij, D., Oranje, J. P. & Hijnen, W. Growth of Pseudomonas aeruginosa in tap water in relation to utilization of substrates at concentration of a few micrograms per liter. Appl. Environ. Microbiol. 44, 1086–1095 (1982).

    Article  Google Scholar 

  128. 128.

    Mentges, A., Feenders, C., Seibt, M., Blasius, B. & Dittmar, T. Functional molecular diversity of marine dissolved organic matter is reduced during degradation. Front. Mar. Sci. 4, 194 (2017).

    Article  Google Scholar 

  129. 129.

    Bradley, J. A. et al. Widespread energy limitation to life in global subseafloor sediments. Sci. Adv. 6, eaba0697 (2020).

    Article  Google Scholar 

  130. 130.

    Tijhuis, L., Van Loosdrecht, M. C. M. & Heijnen, J. J. A thermodynamically based correlation for maintenance Gibbs energy requirements in aerobic and anaerobic chemotrophic growth. Biotechnol. Bioeng. 42, 509–519 (1993).

    Article  Google Scholar 

  131. 131.

    Hoehler, T. M. & Jørgensen, B. B. Microbial life under extreme energy limitation. Nat. Rev. Microbiol. 11, 83–94 (2013).

    Article  Google Scholar 

  132. 132.

    Jørgensen, B. B. & Boetius, A. Feast and famine — microbial life in the deep-sea bed. Nat. Rev. Microbiol. 5, 770–781 (2007).

    Article  Google Scholar 

  133. 133.

    Morono, Y. et al. Aerobic microbial life persists in oxic marine sediment as old as 101.5 million years. Nat. Commun. 11, 3626 (2020).

    Article  Google Scholar 

  134. 134.

    Egli, T. How to live at very low substrate concentration. Water Res. 44, 4826–4837 (2010).

    Article  Google Scholar 

  135. 135.

    Kovárová-Kovar, K. & Egli, T. Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics. Microbiol. Mol. Biol. Rev. 62, 646–666 (1998).

    Article  Google Scholar 

  136. 136.

    Poretsky, R. S., Sun, S., Mou, X. & Moran, M. A. Transporter genes expressed by coastal bacterioplankton in response to dissolved organic carbon. Environ. Microbiol. 12, 616–627 (2010).

    Article  Google Scholar 

  137. 137.

    Steen, A. D. et al. Kinetics and identities of extracellular peptidases in subsurface sediments of the White Oak River Estuary, North Carolina. Appl. Environ. Microbiol. 85, e00102–e00119 (2019).

    Article  Google Scholar 

  138. 138.

    Orsi, W. D., Schink, B., Buckel, W. & Martin, W. F. Physiological limits to life in anoxic subseafloor sediment. FEMS Microbiol. Rev. 44, 219–231 (2020).

    Article  Google Scholar 

  139. 139.

    Ugalde-Salas, P., Desmond-Le Quéméner, E., Harmand, J., Rapaport, A. & Bouchez, T. Insights from microbial transition state theory on Monod’s affinity constant. Sci. Rep. 10, 5323 (2020).

    Article  Google Scholar 

  140. 140.

    Desmond-Le Quéméner, E. & Bouchez, T. A thermodynamic theory of microbial growth. ISME J. 8, 1747–1751 (2014).

    Article  Google Scholar 

  141. 141.

    Sogin, M. L. et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl Acad. Sci. USA 103, 12115–12120 (2006).

    Article  Google Scholar 

  142. 142.

    Eisenmenger, M. J. & Reyes-De-Corcuera, J. I. High pressure enhancement of enzymes: a review. Enzyme Microb. Technol. 45, 331–347 (2009).

    Article  Google Scholar 

  143. 143.

    Engel, A., Thoms, S., Riebesell, U., Rochelle-Newall, E. & Zondervan, I. Polysaccharide aggregation as a potential sink of marine dissolved organic carbon. Nature 428, 929–932 (2004).

    Article  Google Scholar 

  144. 144.

    Decho, A. W. & Gutierrez, T. Microbial extracellular polymeric substances (EPSs) in ocean systems. Front. Microbiol. 8, 922 (2017).

    Article  Google Scholar 

  145. 145.

    Wang, Z., Hessler, C., Xue, Z. & Seo, Y. The role of extracellular polymeric substances on the sorption of natural organic matter. Water Res. 46, 1052–1060 (2011).

    Article  Google Scholar 

  146. 146.

    DeLong, E. F. et al. Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311, 496–503 (2006).

    Article  Google Scholar 

  147. 147.

    Herndl, G. J. & Reinthaler, T. Microbial control of the dark end of the biological pump. Nat. Geosci. 6, 718–724 (2013).

    Article  Google Scholar 

  148. 148.

    Baltar, F., Arístegui, J., Gasol, J. M., Sintes, E. & Herndl, G. J. Evidence of prokaryotic metabolism on suspended particulate organic matter in the dark waters of the subtropical North Atlantic. Limnol. Oceanogr. 54, 182–193 (2009).

    Article  Google Scholar 

  149. 149.

    Meon, B. & Kirchman, D. L. Dynamics and molecular composition of dissolved organic material during experimental phytoplankton blooms. Mar. Chem. 75, 185–199 (2001).

    Article  Google Scholar 

  150. 150.

    Norrman, B., Zwelfel, U. L., Hopkinson, C. S. Jr. & Brian, F. Production and utilization of dissolved organic carbon during an experimental diatom bloom. Limnol. Oceanogr. 40, 898–907 (1995).

    Article  Google Scholar 

  151. 151.

    Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272–1277 (2016).

    Article  Google Scholar 

  152. 152.

    Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).

    Article  Google Scholar 

  153. 153.

    Ferenci, T. Trade-off mechanisms shaping the diversity of bacteria. Trends Microbiol. 24, 209–223 (2016).

    Article  Google Scholar 

  154. 154.

    Goyal, A., Dubinkina, V. & Maslov, S. Multiple stable states in microbial communities explained by the stable marriage problem. ISME J. 12, 2823–2834 (2018).

    Article  Google Scholar 

  155. 155.

    Koch, B., Kattner, G., Witt, M. & Passow, U. Molecular insights into the microbial formation of marine dissolved organic matter: recalcitrant or labile? Biogeosciences 11, 4173–4190 (2014).

    Article  Google Scholar 

  156. 156.

    Noriega-Ortega, B. E. et al. Does the chemodiversity of bacterial exometabolomes sustain the chemodiversity of marine dissolved organic matter? Front. Microbiol. 10, 215 (2019).

    Article  Google Scholar 

  157. 157.

    Wienhausen, G., Noriega-Ortega, B. E., Niggemann, J., Dittmar, T. & Simon, M. The exometabolome of two model strains of the Roseobacter group: a marketplace of microbial metabolites. Front. Microbiol. 8, 1985 (2017).

    Article  Google Scholar 

  158. 158.

    O’Brien, P. J. & Herschlag, D. Catalytic promiscuity and the evolution of new enzymatic activities. Chem. Biol. 6, R91–R105 (1999).

    Article  Google Scholar 

  159. 159.

    Khersonsky, O. & Tawfik, D. S. Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu. Rev. Biochem. 79, 471–505 (2010).

    Article  Google Scholar 

  160. 160.

    Copley, S. D. An evolutionary biochemist’s perspective on promiscuity. Trends Biochem. Sci. 40, 72–78 (2015).

    Article  Google Scholar 

  161. 161.

    Chen, R. et al. Molecular insights into the enzyme promiscuity of an aromatic prenyltransferase. Nat. Chem. Biol. 13, 226–234 (2017).

    Article  Google Scholar 

  162. 162.

    Bathellier, C., Tcherkez, G., Lorimer, G. H. & Farquhar, G. D. Rubisco is not really so bad. Plant Cell Environ. 41, 705–716 (2018).

    Article  Google Scholar 

  163. 163.

    Schada von Borzyskowski, L. et al. Marine proteobacteria metabolize glycolate via the β-hydroxyaspartate cycle. Nature 575, 500–504 (2019).

    Article  Google Scholar 

  164. 164.

    Copley, S. D. Shining a light on enzyme promiscuity. Curr. Opin. Struct. Biol. 47, 167–175 (2017).

    Article  Google Scholar 

  165. 165.

    Steen, A. D., Vazin, J. P., Hagen, S. M., Mulligan, K. H. & Wilhelm, S. W. Substrate specificity of aquatic extracellular peptidases assessed by competitive inhibition assays using synthetic substrates. Aquat. Microb. Ecol. 75, 271–281 (2015).

    Article  Google Scholar 

  166. 166.

    Orsi, W. D., Richards, T. A. & Francis, W. R. Predicted microbial secretomes and their target substrates in marine sediment. Nat. Microbiol. 3, 32–37 (2018).

    Article  Google Scholar 

  167. 167.

    Vanni, C. et al. Light into the darkness: unifying the known and unknown coding sequence space in microbiome analyses. Preprint at bioRxiv https://doi.org/10.1101/2020.06.30.180448 (2020).

    Article  Google Scholar 

  168. 168.

    Petit, E. et al. Involvement of a bacterial microcompartment in the metabolism of fucose and rhamnose by clostridium phytofermentans. PLoS ONE 8, e54337 (2013).

    Article  Google Scholar 

  169. 169.

    Suttle, C. A. Marine viruses - major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).

    Article  Google Scholar 

  170. 170.

    Danovaro, R. et al. Marine viruses and global climate change. FEMS Microbiol. Rev. 35, 993–1034 (2011).

    Article  Google Scholar 

  171. 171.

    Chow, C. E. T., Kim, D. Y., Sachdeva, R., Caron, D. A. & Fuhrman, J. A. Top-down controls on bacterial community structure: microbial network analysis of bacteria, T4-like viruses and protists. ISME J. 8, 816–829 (2014).

    Article  Google Scholar 

  172. 172.

    Strom, S. L., Benner, R., Ziegler, S. & Dagg, M. J. Planktonic grazers are a potentially important source of marine dissolved organic carbon. Limnol. Oceanogr. 42, 1364–1374 (1997).

    Article  Google Scholar 

  173. 173.

    Avery, G. B. Jr, Cooper, W. J., Kieber, R. J. & Willey, J. D. Hydrogen peroxide at the Bermuda Atlantic Time Series Station: temporal variability of seawater hydrogen peroxide. Mar. Chem. 97, 236–244 (2005).

    Article  Google Scholar 

  174. 174.

    Murphy, S. A. et al. Geochemical production of reactive oxygen species from biogeochemically reduced Fe. Environ. Sci. Technol. 48, 3815–3821 (2014).

    Article  Google Scholar 

  175. 175.

    Palenik, B. & Morel, F. M. M. Dark production of H2O2 in the Sargasso Sea. Limnol. Oceanogr. 33, 1606–1611 (1988).

    Google Scholar 

  176. 176.

    Diaz, J. M. et al. Widespread production of extracellular superoxide by heterotrophic bacteria. Science 340, 1223–1226 (2013).

    Article  Google Scholar 

  177. 177.

    Paerl, R. W., Claudio, I. M., Shields, M. R., Bianchi, T. S. & Osburn, C. L. Dityrosine formation via reactive oxygen consumption yields increasingly recalcitrant humic-like fluorescent organic matter in the ocean. Limnol. Oceanogr. Lett. 5, 337–345 (2020).

    Article  Google Scholar 

  178. 178.

    Arakawa, N. et al. Carotenoids are the likely precursor of a significant fraction of marine dissolved organic matter. Sci. Adv. 3, e1602976 (2017).

    Article  Google Scholar 

  179. 179.

    Kujawinski, E. B., Del Vecchio, R., Blough, N. V., Klein, G. C. & Marshall, A. G. Probing molecular-level transformations of dissolved organic matter: insights on photochemical degradation and protozoan modification of DOM from electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Mar. Chem. 92, 23–37 (2004).

    Article  Google Scholar 

  180. 180.

    Stubbins, A. & Dittmar, T. Illuminating the deep: molecular signatures of photochemical alteration of dissolved organic matter from North Atlantic Deep Water. Front. Mar. Chem. 177, 318–324 (2015).

    Article  Google Scholar 

  181. 181.

    Miller, W. L. & Moran, M. A. Interaction of photochemical and microbial processes in the degradation of refractory dissolved organic matter from a coastal marine environment. Limnol. Oceanogr. 42, 1317–1324 (1997).

    Article  Google Scholar 

  182. 182.

    Pohlabeln, A. M., Gomez-Saez, G. V., Noriega-Ortega, B. E. & Dittmar, T. Experimental evidence for abiotic sulfurization of marine dissolved organic matter. Front. Mar. Sci. 4, 364 (2017).

    Article  Google Scholar 

  183. 183.

    Hawkes, J. A., Hansen, C. T., Goldhammer, T., Bach, W. & Dittmar, T. Molecular alteration of marine dissolved organic matter under experimental hydrothermal conditions. Geochim. Cosmochim. Acta 175, 68–85 (2016).

    Article  Google Scholar 

  184. 184.

    Bada, J. L. in Nonequilibrium Systems in Natural Water Chemistry Vol. 106. Ch. 13 (ed. Hem, J. D.) 309–331 (American Chemical Society, 1971).

  185. 185.

    Glavin, D. P., Burton, A. S., Elsila, J. E., Aponte, J. C. & Dworkin, J. P. The search for chiral asymmetry as a potential biosignature in our solar system. Chem. Rev. 120, 4660–4689 (2020).

    Article  Google Scholar 

  186. 186.

    Hertkorn, N., Harir, M., Koch, B. P., Michalke, B. & Schmitt-Kopplin, P. High-field NMR spectroscopy and FTICR mass spectrometry: powerful discovery tools for the molecular level characterization of marine dissolved organic matter. Biogeosciences 10, 1583–1624 (2013).

    Article  Google Scholar 

  187. 187.

    Ball, G. I. & Aluwihare, L. I. CuO-oxidized dissolved organic matter (DOM) investigated with comprehensive two dimensional gas chromatography-time of flight-mass spectrometry (GC × GC-TOF-MS). Org. Geochem. 75, 87–98 (2014).

    Article  Google Scholar 

  188. 188.

    Nothias, L.-F. et al. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods 17, 905–908 (2020).

    Article  Google Scholar 

  189. 189.

    Merder, J. et al. ICBM-OCEAN: processing ultrahigh-resolution mass spectrometry data of complex molecular mixtures. Anal. Chem. 92, 6832–6838 (2020).

    Article  Google Scholar 

  190. 190.

    Povolotskaya, I. S. & Kondrashov, F. A. Sequence space and the ongoing expansion of the protein universe. Nature 465, 922–926 (2010).

    Article  Google Scholar 

  191. 191.

    Kashtan, N. et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science 344, 416–420 (2014).

    Article  Google Scholar 

  192. 192.

    Jannasch, H. W., Wirsen, C. O. & Winget, C. L. A bacteriological pressure-retaining deep-sea sampler and culture vessel. Deep Sea Res. Oceanogr. Abstr. 20, 661–664 (1973).

    Article  Google Scholar 

  193. 193.

    Garel, M. et al. Pressure-retaining sampler and high-pressure systems to study deep-sea microbes under in situ conditions. Front. Microbiol. 10, 453 (2019).

    Article  Google Scholar 

  194. 194.

    Proud, R., Cox, M. J. & Brierley, A. S. Biogeography of the global ocean’s mesopelagic zone. Curr. Biol. 27, 113–119 (2017).

    Article  Google Scholar 

  195. 195.

    de Goeij, J. M. et al. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342, 108–110 (2013).

    Article  Google Scholar 

  196. 196.

    Follows, M. J., Dutkiewicz, S., Grant, S. & Chisholm, S. W. Emergent biogeography of microbial communities in a model ocean. Science 315, 1843–1846 (2007).

    Article  Google Scholar 

  197. 197.

    Coles, V. J. & Hood, R. R. in Aquatic Microbial Ecology and Biogeochemistry: A Dual Perspective (eds Gilbert, P. & Kana, T. M.) 45–63 (Springer, 2016).

  198. 198.

    Coles, V. J. et al. Ocean biogeochemistry modeled with emergent trait-based genomics. Science 358, 1149–1154 (2017).

    Article  Google Scholar 

  199. 199.

    Letscher, R. T. & Moore, J. K. Preferential remineralization of dissolved organic phosphorus and non-Redfield DOM dynamics in the global ocean: impacts on marine productivity, nitrogen fixation, and carbon export. Glob. Biogeochem. Cycles 29, 325–340 (2015).

    Article  Google Scholar 

  200. 200.

    Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 (2016).

    Article  Google Scholar 

  201. 201.

    Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014).

    Article  Google Scholar 

  202. 202.

    Martínez-Martínez, M. et al. Determinants and prediction of esterase substrate promiscuity patterns. ACS Chem. Biol. 13, 225–234 (2018).

    Article  Google Scholar 

  203. 203.

    Anderson, T. R., Christian, J. R. & Flynn, K. J. in Biogeochemistry of Marine Dissolved Organic Matter 2nd edn (eds Hansell, D. A. & Carlson, C. A.) 635–667 (Academic Press, 2015).

Download references

Acknowledgements

Financial support was provided through the PhD research training group ‘The Ecology of Molecules’ (EcoMol) supported by the Lower Saxony Ministry for Science and Culture (MWK). The expression ‘ecology of molecules’ was first conceived at an international workshop funded by the Germany Research Foundation (DFG, DI 842/5-1) at the Hanse Institute for Advanced Study, Delmenhorst, Germany (24–28 Nov. 2014). T.D. and B.B. were supported by DFG (CRC 51), S.T.L. by the State of Lower Saxony (MWK) and D.A.H. by US NSF (OCE-1436748 and OCE-2023500) and US NASA (80NSSC18K0437). J.-H.H., H.B.-W. and C.V. received funding from the Max Planck Society, J.-H.H. from DFG (HE 7217/1-1), and T.D. and J.-H.H. from the Cluster of Excellence initiative (EXC-2077–390741603). H.B.-W. and C.V. acknowledge helpful comments from A. Fernandez-Guerra (Lundbeck Foundation GeoGenetics Centre) and the computer resources and technical support provided by the German Network for Bioinformatics Infrastructure.

Author information

Affiliations

Authors

Contributions

T.D. chaired the writing of the article. S.T.L. performed the numerical model and C.V. the bioinformatics computations. T.D. measured the ultrahigh-resolution mass spectra shown in Fig. 1. Otherwise, the authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Thorsten Dittmar or Bernd Blasius or Jan-Hendrik Hehemann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks Andrew Steen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dittmar, T., Lennartz, S.T., Buck-Wiese, H. et al. Enigmatic persistence of dissolved organic matter in the ocean. Nat Rev Earth Environ 2, 570–583 (2021). https://doi.org/10.1038/s43017-021-00183-7

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing