Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The build-up and triggers of volcanic eruptions

Abstract

More than 800 million people live in proximity to active volcanoes and could be directly impacted by potential eruptions. Mitigation of future volcanic hazards requires adequate warning of a pending eruption, which, in turn, requires detailed understanding of the fundamental processes driving volcanic activity. In this Review, we discuss the processes leading up to volcanic eruptions, by following the journey of magma from crustal storage zones to the surface. Magma reservoirs can feed volcanic eruptions if they contain sufficiently hot and mobile magma and are able to supply sufficient energy for the magma to reach the surface. Young volcanic plumbing systems favour volcanic activity, whereas storage becomes more likely in mature volcanic systems with large reservoirs (hundreds of cubic kilometres). Anticipating volcanic activity requires a multidisciplinary approach, as real-time monitoring and geophysical surveys must be combined with petrology and the eruptive history to understand the temporal evolution of volcanic systems over geological timescales. Numerical modelling serves to link different observational timescales, and the inversion of data sets with physics-based statistical approaches is a promising way forward to advance our understanding of the processes controlling recurrence rate and magnitude of volcanic eruptions.

Key points

  • The thermal evolution of magmatic systems influences the physical properties of magma and the rocks surrounding the volcanic plumbing system, which, over the long term, favours magma storage over eruption.

  • Magma recharge is the primary driver of magma reservoir pressurization and destabilization. Second boiling can trigger reservoir failure, although it is less likely to cause repeated eruptions.

  • Only when volcanoes are in a critical state (close to eruption), small variations of stress or rock strength caused by external phenomena can help to initiate a volcanic eruption.

  • Magma can become arrested on its way to the Earth’s surface because a lack of pressure or insufficient volume do not allow the magma to overcome stress barriers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Volcanic plumbing system.
Fig. 2: Relationships between temperature and magma properties and their temporal evolution.
Fig. 3: Conditions required for volcanic eruptions.
Fig. 4: A summary of stress and pressure scales for different Earth processes.
Fig. 5: Pathways of dikes through the shallow crust.

References

  1. 1.

    Cañón-Tapia, E. Volcanic eruption triggers: a hierarchical classification. Earth Sci. Rev. 129, 100–119 (2014).

    Article  Google Scholar 

  2. 2.

    Parfitt, E. A. & Wilson, L. Fundamentals of Physical Volcanology (Blackwell, 2008).

  3. 3.

    Manga, M. et al. Volcanic Eruptions and Their Repose, Unrest, Precursors, and Timing (The National Academies Press, 2017).

  4. 4.

    Cashman, K. V., Sparks, R. S. J. & Blundy, J. D. Verically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355, eaag3055 (2017).

    Article  Google Scholar 

  5. 5.

    Rivalta, E. et al. Stress inversions to forecast magma pathways and eruptive vent location. Sci. Adv. 5, eaau9784 (2019).

    Article  Google Scholar 

  6. 6.

    White, S. M., Crisp, J. A. & Spera, F. J. Long-term volumetric eruption rates and magma budgets. Geochem. Geophys. Geosystems 7, Q03010 (2006).

    Google Scholar 

  7. 7.

    Taisne, B., Tait, S. & Jaupart, C. Conditions for the arrest of a vertical propagating dyke. Bull. Volcanol. 73, 191–204 (2011).

    Article  Google Scholar 

  8. 8.

    Caricchi, L. et al. Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics. Earth Planet. Sci. Lett. 264, 402–419 (2007).

    Article  Google Scholar 

  9. 9.

    Lejeune, A. M. & Richet, P. Rheology of crystal-bearing silicate melts: an experimental-study at high viscosities. J. Geophys. Res. Earth 100, 4215–4229 (1995).

    Article  Google Scholar 

  10. 10.

    Marsh, B. D. On the crystallinity, probability of occurrence, and rheology of lava and magma. Contrib. Mineral. Petrol. 78, 85–98 (1981).

    Article  Google Scholar 

  11. 11.

    Rivalta, E., Taisne, B., Bunger, A. P. & Katz, R. F. A review of mechanical models of dike propagation: schools of thought, results and future directions. Tectonophysics 638, 1–42 (2015).

    Article  Google Scholar 

  12. 12.

    Rubin, A. M. Propagation of magma-filled cracks. Annu. Rev. Earth Planet. Sci. 23, 287–336 (1995).

    Article  Google Scholar 

  13. 13.

    Takeuchi, S. Preeruptive magma viscosity: an important measure of magma eruptibility. J. Geophys. Res. Solid Earth 116, B10201 (2011).

    Article  Google Scholar 

  14. 14.

    Annen, C., Blundy, J. D. & Sparks, R. S. J. The genesis of intermediate and silicic magmas in deep crustal hot zones. J. Petrol. 47, 505–539 (2006).

    Article  Google Scholar 

  15. 15.

    Annen, C. From plutons to magma chambers: thermal constraints on the accumulation of eruptible silicic magma in the upper crust. Earth Planet. Sci. Lett. 284, 409–416 (2009).

    Article  Google Scholar 

  16. 16.

    Karakas, O., Degruyter, W., Bachmann, O. & Dufek, J. Lifetime and size of shallow magma bodies controlled by crustal-scale magmatism. Nat. Geosci. 10, 446–450 (2017).

    Article  Google Scholar 

  17. 17.

    Grosfils, E. B. Magma reservoir failure on the terrestrial planets: assessing the importance of gravitational loading in simple elastic models. J. Volcanol. Geotherm. Res. 166, 47–75 (2007).

    Article  Google Scholar 

  18. 18.

    Gudmundsson, A. Magma chambers: formation, local stresses, excess pressures, and compartments. J. Volcanol. Geotherm. Res. 237–238, 19–41 (2012).

    Article  Google Scholar 

  19. 19.

    Seropian, G., Kennedy, B. M., Walter, T. R., Ichihara, M. & Jolly, A. D. A review framework of how earthquakes trigger volcanic eruptions. Nat. Commun. 12, 1004 (2021).

    Article  Google Scholar 

  20. 20.

    Lipman, P. W. & Mullineaux, D. R. The 1980 eruptions of Mount St. Helens, Washington. Professional Paper 1250. US Geological Survey https://doi.org/10.3133/pp1250 (1981).

  21. 21.

    Walter, T. R. et al. Complex hazard cascade culminating in the Anak Krakatau sector collapse. Nat. Commun. 10, 4339 (2019).

    Article  Google Scholar 

  22. 22.

    Elsworth, D., Voight, B., Thompson, G. & Young, S. R. Thermal-hydrologic mechanism for rainfall-triggered collapse of lava domes. Geology 32, 969–972 (2004).

    Article  Google Scholar 

  23. 23.

    Sparks, R. S. J. Triggering of volcanic eruptions by Earth tides. Nature 290, 448–448 (1981).

    Article  Google Scholar 

  24. 24.

    Blundy, J. & Cashman, K. Ascent-driven crystallisation of dacite magmas at Mount St Helens, 1980–1986. Contrib. Mineral. Petrol. 140, 631–650 (2001).

    Article  Google Scholar 

  25. 25.

    La Spina, G., Burton, M., de rsquo Michieli Vitturi, M. & Arzilli, F. Role of syn-eruptive plagioclase disequilibrium crystallization in basaltic magma ascent dynamics. Nat. Commun. 7, 13402 (2016).

    Article  Google Scholar 

  26. 26.

    Rubin, A. M. Getting granite dikes out of the source region. J. Geophys. Res. Earth 100, 5911–5929 (1995).

    Article  Google Scholar 

  27. 27.

    Maccaferri, F., Rivalta, E., Passarelli, L. & Aoki, Y. On the mechanisms governing dike arrest: insight from the 2000 Miyakejima dike injection. Earth Planet. Sci. Lett. 434, 64–74 (2016).

    Article  Google Scholar 

  28. 28.

    Pinel, V. & Jaupart, C. The effect of edifice load on magma ascent beneath a volcano. Phil. Trans. R. Soc. Lond. A 358, 1515–1532 (2000).

    Article  Google Scholar 

  29. 29.

    Roman, A. & Jaupart, C. The impact of a volcanic edifice on intrusive and eruptive activity. Earth Planet. Sci. Lett. 408, 1–8 (2014).

    Article  Google Scholar 

  30. 30.

    Taisne, B. & Tait, S. Effect of solidification on a propagating dike. J. Geophys. Res. Solid Earth 116, B01206 (2011).

    Article  Google Scholar 

  31. 31.

    Townsend, M. & Huber, C. A critical magma chamber size for volcanic eruptions. Geology 48, 431–435 (2020).

    Article  Google Scholar 

  32. 32.

    Davis, T. Critical fluid injection volumes for uncontrolled fracture ascent. Geophys. Res. Lett. 47, e2020GL087774 (2020).

    Google Scholar 

  33. 33.

    Moran, S. C., Newhall, C. & Roman, D. C. Failed magmatic eruptions: late-stage cessation of magma ascent. Bull. Volcanol. 73, 115–122 (2011).

    Article  Google Scholar 

  34. 34.

    Venzke, E. (ed.) Global Volcanism Program. Volcanoes of the World (VOTW) Database Information (Smithsonian Institution, 2013).

  35. 35.

    Annen, C., Blundy, J. D., Leuthold, J. & Sparks, R. S. J. Construction and evolution of igneous bodies: towards an integrated perspective of crustal magmatism. Lithos 230, 206–221 (2015).

    Article  Google Scholar 

  36. 36.

    Crisp, J. A. Rates of magma emplacement and volcanic output. J. Volcanol. Geotherm. Res. 20, 177–211 (1984).

    Article  Google Scholar 

  37. 37.

    Jicha, B. R. & Jagoutz, O. Magma production rates for intraoceanic arcs. Elements 11, 105–111 (2015).

    Article  Google Scholar 

  38. 38.

    Weber, G., Caricchi, L., Arce, J. L. & Schmitt, A. K. Determining the current size and state of subvolcanic magma reservoirs. Nat. Commun. 11, 5477 (2020).

    Article  Google Scholar 

  39. 39.

    Weber, G., Simpson, G. & Caricchi, L. Magma diversity reflects recharge regime and thermal structure of the crust. Sci. Rep. 10, 11867 (2020).

    Article  Google Scholar 

  40. 40.

    Aiuppa, A., Fischer, T. P., Plank, T. & Bani, P. CO2 flux emissions from the Earth’s most actively degassing volcanoes, 2005–2015. Sci. Rep. 9, 5442 (2019).

    Article  Google Scholar 

  41. 41.

    Biggs, J. & Pritchard, M. E. Global volcano monitoring: what does it mean when volcanoes deform? Elements 13, 17–22 (2017).

    Article  Google Scholar 

  42. 42.

    Burton, M., Allard, P., Muré, F. & La Spina, A. Magmatic gas composition reveals the source depth of slug-driven Strombolian explosive activity. Science 317, 227–230 (2007).

    Article  Google Scholar 

  43. 43.

    Carn, S. A., Fioletov, V. E., McLinden, C. A., Li, C. & Krotkov, N. A. A decade of global volcanic SO2 emissions measured from space. Sci. Rep. 7, 44095 (2017).

    Article  Google Scholar 

  44. 44.

    Furtney, M. A. et al. Synthesizing multi-sensor, multi-satellite, multi-decadal datasets for global volcano monitoring. J. Volcanol. Geotherm. Res. 365, 38–56 (2018).

    Article  Google Scholar 

  45. 45.

    Ganci, G., Vicari, A., Fortuna, L. & del Negro, C. The HOTSAT volcano monitoring system based on combined use of SEVIRI and MODIS multispectral data. Ann. Geophys. 54, 544–550 (2011).

    Google Scholar 

  46. 46.

    Kilbride, B. M., Edmonds, M. & Biggs, J. Observing eruptions of gas-rich compressible magmas from space. Nat. Commun. 7, 13744 (2016).

    Article  Google Scholar 

  47. 47.

    Reath, K. et al. Thermal, deformation, and degassing remote sensing time series (CE 2000–2017) at the 47 most active volcanoes in Latin America: implications for volcanic systems. J. Geophys. Res. Solid Earth 124, 195–218 (2019).

    Article  Google Scholar 

  48. 48.

    Ripepe, M., Harris, A. J. L. & Carnielc, R. Thermal, seismic and infrasonic evidences of variable degassing rates at Stromboli volcano. J. Volcanol. Geotherm. Res. 118, 285–297 (2002).

    Article  Google Scholar 

  49. 49.

    Costa, F. et al. WOVOdat – the global volcano unrest database aimed at improving eruption forecasts. Disaster Prev. Manag. 28, 738–751 (2019).

    Article  Google Scholar 

  50. 50.

    Dempsey, D. E., Cronin, S. J., Mei, S. & Kempa-Liehr, A. W. Automatic precursor recognition and real-time forecasting of sudden explosive volcanic eruptions at Whakaari, New Zealand. Nat. Commun. 11, 3562 (2020).

    Article  Google Scholar 

  51. 51.

    Ebmeier, S. K., Biggs, J., Mather, T. A. & Amelung, F. On the lack of InSAR observations of magmatic deformation at Central American volcanoes. J. Geophys. Res. Solid Earth 118, 2571–2585 (2013).

    Article  Google Scholar 

  52. 52.

    Phillipson, G., Sobradelo, R. & Gottsmann, J. Global volcanic unrest in the 21st century: an analysis of the first decade. J. Volcanol. Geotherm. Res. 264, 183–196 (2013).

    Article  Google Scholar 

  53. 53.

    Sheldrake, T. E., Sparks, R. S. J., Cashman, K. V., Wadge, G. & Aspinall, W. P. Similarities and differences in the historical records of lava dome-building volcanoes: implications for understanding magmatic processes and eruption forecasting. Earth Sci. Rev. 160, 240–263 (2016).

    Article  Google Scholar 

  54. 54.

    Cashman, K. V. & Marsh, B. D. Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization II: Makaopuhi lava lake. Contrib. Mineral. Petrol. 99, 292–305 (1988).

    Article  Google Scholar 

  55. 55.

    Li, W. & Costa, F. A thermodynamic model for F-Cl-OH partitioning between silicate melts and apatite including non-ideal mixing with application to constraining melt volatile budgets. Geochim. Cosmochim. Acta 269, 203–222 (2020).

    Article  Google Scholar 

  56. 56.

    Hammer, J. E. Experimental studies of the kinetics and energetics of magma crystallization. Rev. Mineral. Geochem. 69, 9–59 (2008).

    Article  Google Scholar 

  57. 57.

    Martel, C. et al. in Volcanic Unrest. Advances in Volcanology Vol. 69 (eds Gottsmann, J., Neuberg J. & Scheu, B.) 101–110 (Springer, 2017).

  58. 58.

    Mollo, S., Blundy, J. D., Iezzi, G., Scarlato, P. & Langone, A. The partitioning of trace elements between clinopyroxene and trachybasaltic melt during rapid cooling and crystal growth. Contrib. Mineral. Petrol. 166, 1633–1654 (2013).

    Article  Google Scholar 

  59. 59.

    Nandedkar, R. H., Ulmer, P. & Müntener, O. Fractional crystallization of primitive, hydrous arc magmas: an experimental study at 0.7 GPa. Contrib. Mineral. Petrol. 167, 1015 (2014).

    Article  Google Scholar 

  60. 60.

    Putirka, K. D. Introduction to minerals, inclusions and volcanic processes. Rev. Mineral. Geochem. 69, 1–8 (2008).

    Article  Google Scholar 

  61. 61.

    Riker, J. M., Blundy, J. D., Rust, A. C., Botcharnikov, R. E. & Humphreys, M. C. S. Experimental phase equilibria of a Mount St. Helens rhyodacite: a framework for interpreting crystallization paths in degassing silicic magmas. Contrib. Mineral. Petrol. 170, 6 (2015).

    Article  Google Scholar 

  62. 62.

    Scaillet, B. & Evans, B. W. The 15 June 1991 eruption of Mount Pinatubo. I. Phase equilibria and pre-eruption PTfO2fH2O conditions of the dacite magma. J. Petrol. 40, 381–411 (1999).

    Article  Google Scholar 

  63. 63.

    Paulatto, M. et al. Magma chamber properties from integrated seismic tomography and thermal modeling at Montserrat. Geochem. Geophys. Geosystems 13, Q01014 (2012).

    Article  Google Scholar 

  64. 64.

    Till, C. B. et al. The causes of spatiotemporal variations in erupted fluxes and compositions along a volcanic arc. Nat. Commun. 10, 1350 (2019).

    Article  Google Scholar 

  65. 65.

    Cheng, L. & Costa, F. Statistical analysis of crystal populations and links to volcano deformation for more robust estimates of magma replenishment volumes. Geology 47, 1171–1175 (2019).

    Article  Google Scholar 

  66. 66.

    Chiodini, G. et al. Magmas near the critical degassing pressure drive volcanic unrest towards a critical state. Nat. Commun. 7, 13712 (2016).

    Article  Google Scholar 

  67. 67.

    Christopher, T., Edmonds, M., Humphreys, M. C. S. & Herd, R. A. Volcanic gas emissions from Soufrière Hills Volcano, Montserrat 1995-2009, with implications for mafic magma supply and degassing. Geophys. Res. Lett. 37, L00E04 (2010).

    Article  Google Scholar 

  68. 68.

    Edmonds, M. et al. Excess volatiles supplied by mingling of mafic magma at an andesite arc volcano. Geochem. Geophys. Geosystems 11, Q04005 (2010).

    Article  Google Scholar 

  69. 69.

    Humphreys, M. C. S. et al. A new method to quantify the real supply of mafic components to a hybrid andesite. Contrib. Mineral. Petrol. 165, 191–215 (2012).

    Article  Google Scholar 

  70. 70.

    Kent, A. J. R., Darr, C., Koleszar, A. M., Salisbury, M. J. & Cooper, K. M. Preferential eruption of andesitic magmas through recharge filtering. Nat. Geosci. 3, 631–636 (2010).

    Article  Google Scholar 

  71. 71.

    Kahl, M. et al. Compositionally zoned crystals and real-time degassing data reveal changes in magma transfer dynamics during the 2006 summit eruptive episodes of Mt. Etna. Bull. Volcanol. 75, 1114–1115 (2013).

    Article  Google Scholar 

  72. 72.

    Melnik, O. E., Blundy, J. D., Rust, A. C. & Muir, D. Subvolcanic plumbing systems imaged through crystal size distributions. Geology 39, 403–406 (2011).

    Article  Google Scholar 

  73. 73.

    Moretti, R., Arienzo, I., Civetta, L., Orsi, G. & Papale, P. Multiple magma degassing sources at an explosive volcano. Earth Planet. Sci. Lett. 367, 95–104 (2013).

    Article  Google Scholar 

  74. 74.

    Mutch, E. J. F., Maclennan, J., Shorttle, O., Edmonds, M. & Rudge, J. F. Rapid transcrustal magma movement under Iceland. Nat. Geosci. 12, 569–574 (2019).

    Article  Google Scholar 

  75. 75.

    Myers, M. L., Wallace, P. J., Wilson, C. J. N., Morter, B. K. & Swallow, E. J. Prolonged ascent and episodic venting of discrete magma batches at the onset of the Huckleberry Ridge supereruption, Yellowstone. Earth Planet. Sci. Lett. 451, 285–297 (2016).

    Article  Google Scholar 

  76. 76.

    Neal, C. A. et al. The 2018 rift eruption and summit collapse of Kīlauea Volcano. Science 363, 367–374 (2019).

    Article  Google Scholar 

  77. 77.

    Neave, D. A. & Maclennan, J. Clinopyroxene dissolution records rapid magma ascent. Front. Earth Sci. 8, 188 (2020).

    Article  Google Scholar 

  78. 78.

    Pallister, J. S., Hoblitt, R. P. & Reyes, A. G. A basalt trigger for the 1991 eruptions of Pinatubo volcano? Nature 356, 426–428 (1992).

    Article  Google Scholar 

  79. 79.

    Pistolesi, M., Donne, D. D., Pioli, L., Rosi, M. & Ripepe, M. The 15 March 2007 explosive crisis at Stromboli volcano, Italy: assessing physical parameters through a multidisciplinary approach. J. Geophys. Res. Solid Earth 116, B12206 (2011).

    Article  Google Scholar 

  80. 80.

    Sheldrake, T. Long-term forecasting of eruption hazards: a hierarchical approach to merge analogous eruptive histories. J. Volcanol. Geotherm. Res. 286, 15–23 (2014).

    Article  Google Scholar 

  81. 81.

    Stock, M. J., Humphreys, M. C. S., Smith, V. C., Isaia, R. & Pyle, D. M. Late-stage volatile saturation as a potential trigger for explosive volcanic eruptions. Nat. Geosci. 9, 249–254 (2016).

    Article  Google Scholar 

  82. 82.

    Thomas, M. E. & Neuberg, J. What makes a volcano tick — A first explanation of deep multiple seismic sources in ascending magma. Geology 40, 351–354 (2012).

    Article  Google Scholar 

  83. 83.

    Wieser, P. E., Edmonds, M., Maclennan, J. & Wheeler, J. Microstructural constraints on magmatic mushes under Kīlauea Volcano, Hawaiʻi. Nat. Commun. 11, 14.

  84. 84.

    Aiuppa, A. et al. A model of degassing for Stromboli volcano. Earth Planet. Sci. Lett. 295, 195–204 (2010).

    Article  Google Scholar 

  85. 85.

    Anderson, K. R. & Poland, M. P. Bayesian estimation of magma supply, storage, and eruption rates using a multiphysical volcano model: Kīlauea Volcano, 2000–2012. Earth Planet. Sci. Lett. 447, 161–171 (2016).

    Article  Google Scholar 

  86. 86.

    Saunders, K., Blundy, J., Dohmen, R. & Cashman, K. V. Linking petrology and seismology at an active volcano. Science 336, 1023–1027 (2012).

    Article  Google Scholar 

  87. 87.

    Curry, A., Caricchi, L. & Lipman, P. W. Magmatic evolution of zoned and unzoned ignimbrites: evidence for a complex crustal architecture feeding four rapid-sequence, caldera-forming eruptions in the San Juan Mountains, Colorado. J. Petrol. 62, egab006 (2021).

    Article  Google Scholar 

  88. 88.

    Caricchi, L., Biggs, J., Annen, C. & Ebmeier, S. The influence of cooling, crystallisation and re-melting on the interpretation of geodetic signals in volcanic systems. Earth Planet. Sci. Lett. 388, 166–174 (2014).

    Article  Google Scholar 

  89. 89.

    Trasatti, E. et al. Magma degassing as a source of long-term seismicity at volcanoes: the Ischia Island (Italy) case. Geophys. Res. Lett. 46, 14421–14429 (2019).

    Article  Google Scholar 

  90. 90.

    Borisova, A. Y. et al. H2O–CO2–S fluid triggering the 1991 Mount Pinatubo climactic eruption (Philippines). Bull. Volcanol. 76, 800 (2014).

    Article  Google Scholar 

  91. 91.

    Papale, P., Moretti, R. & Barbato, D. The compositional dependence of the saturation surface of H2O+ CO2 fluids in silicate melts. Chem. Geol. 229, 78–95 (2006).

    Article  Google Scholar 

  92. 92.

    Caricchi, L., Sheldrake, T. E. & Blundy, J. Modulation of magmatic processes by CO2 flushing. Earth Planet. Sci. Lett. 491, 160–171 (2018).

    Article  Google Scholar 

  93. 93.

    Yoshimura, S. & Nakamura, M. Carbon dioxide transport in crustal magmatic systems. Earth Planet. Sci. Lett. 307, 470–478 (2011).

    Article  Google Scholar 

  94. 94.

    Spilliaert, N., Allard, P., Métrich, N. & Sobolev, A. V. Melt inclusion record of the conditions of ascent, degassing, and extrusion of volatile-rich alkali basalt during the powerful 2002 flank eruption of Mount Etna (Italy). J. Geophys. Res. 111, B04203 (2006).

    Google Scholar 

  95. 95.

    Bachmann, O. & Bergantz, G. W. Gas percolation in upper-crustal silicic crystal mushes as a mechanism for upward heat advection and rejuvenation of near-solidus magma bodies. J. Volcanol. Geotherm. Res. 149, 85–102 (2006).

    Article  Google Scholar 

  96. 96.

    Blundy, J., Cashman, K. V., Rust, A. & Witham, F. A case for CO2-rich arc magmas. Earth Planet. Sci. Lett. 290, 289–301 (2010).

    Article  Google Scholar 

  97. 97.

    Deegan, F. M. et al. Magma–carbonate interaction processes and associated CO2 release at Merapi volcano, Indonesia: insights from experimental petrology. J. Petrol. 51, 1027–1051 (2010).

    Article  Google Scholar 

  98. 98.

    Coleman, D. S., Bartley, J. M., Glazner, A. F. & Pardue, M. J. Is chemical zonation in plutonic rocks driven by changes in source magma composition or shallow-crustal differentiation? Geosphere 8, 1568 (2012).

    Article  Google Scholar 

  99. 99.

    de Saint-Blanquat, M. et al. Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs. Tectonophysics 500, 20–33 (2011).

    Article  Google Scholar 

  100. 100.

    Glazner, A. F., Bartley, J. M., Coleman, D. S., Gray, W. & Taylor, R. Z. Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today 14, 4–11 (2004).

    Article  Google Scholar 

  101. 101.

    Edmonds, M. & Woods, A. W. Exsolved volatiles in magma reservoirs. J. Volcanol. Geotherm. Res. 368, 13–30 (2018).

    Article  Google Scholar 

  102. 102.

    Townsend, M., Huber, C., Degruyter, W. & Bachmann, O. Magma chamber growth during intercaldera periods: insights from thermo-mechanical modeling with applications to Laguna del Maule, Campi Flegrei, Santorini, and Aso. Geochem. Geophys. Geosystems 20, 1574–1591 (2019).

    Article  Google Scholar 

  103. 103.

    Caricchi, L. & Blundy, J. Experimental petrology of monotonous intermediate magmas. Geol. Soc. Lond. Spec. Publ. 422, 105–130 (2015).

    Article  Google Scholar 

  104. 104.

    Jellinek, A. M. & DePaolo, D. J. A model for the origin of large silicic magma chambers: precursors of caldera-forming eruptions. Bull. Volcanol. 65, 363–381 (2003).

    Article  Google Scholar 

  105. 105.

    Caricchi, L., Annen, C., Blundy, J., Simpson, G. & Pinel, V. Frequency and magnitude of volcanic eruptions controlled by magma injection and buoyancy. Nat. Geosci. 7, 126–130 (2014).

    Article  Google Scholar 

  106. 106.

    Malfait, W. J. et al. Supervolcano eruptions driven by melt buoyancy in large silicic magma chambers. Nat. Geosci. 7, 122–125 (2014).

    Article  Google Scholar 

  107. 107.

    Parmigiani, A., Degruyter, W., Leclaire, S., Huber, C. & Bachmann, O. The mechanics of shallow magma reservoir outgassing. Geochem. Geophys. Geosystems 18, 2887–2905 (2017).

    Article  Google Scholar 

  108. 108.

    Mittal, T. & Richards, M. A. Volatile degassing from magma chambers as a control on volcanic eruptions. J. Geophys. Res. Solid Earth 124, 7869–7901 (2019).

    Article  Google Scholar 

  109. 109.

    Degruyter, W., Parmigiani, A., Huber, C. & Bachmann, O. How do volatiles escape their shallow magmatic hearth? Phil. Trans. R. Soc. A 377, 20180017 (2019).

    Article  Google Scholar 

  110. 110.

    Sparks, S. R. J., Sigurdsson, H. & Wilson, L. Magma mixing: a mechanism for triggering acid explosive eruptions. Nature 267, 315–318 (1977).

    Article  Google Scholar 

  111. 111.

    Druitt, T. H., Costa, F., Deloule, E., Dungan, M. & Scaillet, B. Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano. Nature 482, 77–80 (2012).

    Article  Google Scholar 

  112. 112.

    Poland, M. P., Peltier, A., Bonforte, A. & Puglisi, G. The spectrum of persistent volcanic flank instability: a review and proposed framework based on Kīlauea, Piton de la Fournaise, and Etna. J. Volcanol. Geotherm. Res. 339, 63–80 (2017).

    Article  Google Scholar 

  113. 113.

    Chaussard, E. & Amelung, F. Precursory inflation of shallow magma reservoirs at west Sunda volcanoes detected by InSAR. Geophys. Res. Lett. 39, L21311 (2012).

    Article  Google Scholar 

  114. 114.

    Biggs, J. et al. Global link between deformation and volcanic eruption quantified by satellite imagery. Nat. Commun. 5, 3471 (2014).

    Article  Google Scholar 

  115. 115.

    Lundgren, P. et al. The dynamics of large silicic systems from satellite remote sensing observations: the intriguing case of Domuyo volcano, Argentina. Sci. Rep. 10, 11642 (2020).

    Article  Google Scholar 

  116. 116.

    Aiuppa, A. et al. The 2007 eruption of Stromboli volcano: insights from real-time measurement of the volcanic gas plume CO2/SO2 ratio. J. Volcanol. Geotherm. Res. 182, 221–230 (2009).

    Article  Google Scholar 

  117. 117.

    John, B. E. & Blundy, J. D. Emplacement-related deformation of granitoid magmas, Southern Adamello Massif, Italy. Geol. Soc. Am. Bull. 105, 1517–1541 (1993).

    Article  Google Scholar 

  118. 118.

    Wiebe, R. A. & Collins, W. J. Depositional features and stratigraphic sections in granitic plutons: implications for the emplacement and crystallization of granitic magma. J. Struct. Geol. 20, 1273–1289 (1998).

    Article  Google Scholar 

  119. 119.

    Miller, C. F. et al. Growth of plutons by incremental emplacement of sheets in crystal-rich host: evidence from Miocene intrusions of the Colorado River region, Nevada, USA. Tectonophysics 500, 65–77 (2011).

    Article  Google Scholar 

  120. 120.

    Bain, A. A., Jellinek, A. M. & Wiebe, R. A. Quantitative field constraints on the dynamics of silicic magma chamber rejuvenation and overturn. Contrib. Mineral. Petrol. 165, 1275–1294 (2013).

    Article  Google Scholar 

  121. 121.

    Saunders, K. E., Morgan, D. J., Baker, J. A. & Wysoczanski, R. J. The magmatic evolution of the Whakamaru supereruption, New Zealand, constrained by a microanalytical study of plagioclase and quartz. J. Petrol. 51, 2465–2488 (2010).

    Article  Google Scholar 

  122. 122.

    Ginibre, C. & Davidson, J. P. Sr isotope zoning in plagioclase from Parinacota Volcano (Northern Chile): quantifying magma mixing and crustal contamination. J. Petrol. 55, 1203–1238 (2014).

    Article  Google Scholar 

  123. 123.

    Davidson, J. P., Morgan, D. J., Charlier, B. L. A., Harlou, R. & Hora, J. M. Microsampling and isotopic analysis of igneous rocks: implications for the study of magmatic systems. Annu. Rev. Earth Planet. Sci. 35, 273–311 (2007).

    Article  Google Scholar 

  124. 124.

    Cheng, L., Costa, F. & Bergantz, G. Linking fluid dynamics and olivine crystal scale zoning during simulated magma intrusion. Contrib. Mineral. Petrol. 175, 53 (2020).

    Article  Google Scholar 

  125. 125.

    Costa, F., Shea, T. & Ubide, T. Diffusion chronometry and the timescales of magmatic processes. Nat. Rev. Earth Environ. 1, 201–214 (2020).

    Article  Google Scholar 

  126. 126.

    Karlstrom, L., Dufek, J. & Manga, M. Magma chamber stability in arc and continental crust. J. Volcanol. Geotherm. Res. 190, 249–270 (2010).

    Article  Google Scholar 

  127. 127.

    Degruyter, W. & Huber, C. A model for eruption frequency of upper crustal silicic magma chambers. Earth Planet. Sci. Lett. 403, 117–130 (2014).

    Article  Google Scholar 

  128. 128.

    Tait, S., Jaupart, C. & Vergniolle, S. Pressure, gas content and eruption periodicity of a shallow, crystallising magma chamber. Earth Planet. Sci. Lett. 92, 107–123 (2014).

    Article  Google Scholar 

  129. 129.

    Liao, Y., Soule, S. A. & Jones, M. On the mechanical effects of poroelastic crystal mush in classical magma chamber models. J. Geophys. Res. Solid Earth 123, 9376–9406 (2018).

    Article  Google Scholar 

  130. 130.

    Zhan, Y. & Gregg, P. M. How accurately can we model magma reservoir failure with uncertainties in host rock rheology? J. Geophys. Res. Solid Earth 124, 8030–8042 (2019).

    Article  Google Scholar 

  131. 131.

    Segall, P. Earthquake and Volcano Deformation (Princeton Univ. Press, 2010).

  132. 132.

    Degruyter, W., Huber, C., Bachmann, O., Cooper, K. M. & Kent, A. J. R. Influence of exsolved volatiles on reheating silicic magmas by recharge and consequences for eruptive style at Volcán Quizapu (Chile). Geochem. Geophys. Geosystems 18, 4123–4135 (2017).

    Article  Google Scholar 

  133. 133.

    Dragoni, M. & Magnanensi, C. Displacement and stress produced by a pressurized, spherical magma chamber, surrounded by a viscoelastic shell. Phys. Earth Planet. Inter. 56, 316–328 (1989).

    Article  Google Scholar 

  134. 134.

    Miller, C., Williams-Jones, G., Fournier, D. & Witterd, J. 3D gravity inversion and thermodynamic modelling reveal properties of shallow silicic magma reservoir beneath Laguna del Maule, Chile. Earth Planet. Sci. Lett. 459, 14–27 (2017).

    Article  Google Scholar 

  135. 135.

    Matsushima, N., Oshima, H., Ogawa, Y. & Takakura, S. Magma prospecting in Usu volcano, Hokkaido, Japan, using magnetotelluric soundings. J. Volcanol. Geotherm. Res. 109, 263–277 (2001).

    Article  Google Scholar 

  136. 136.

    Huppert, H. E. & Woods, A. W. The role of volatiles in magma chamber dynamics. Nature 420, 493–495 (2002).

    Article  Google Scholar 

  137. 137.

    Singer, B. et al. Geomorphic expression of rapid Holocene silicic magma reservoir growth beneath Laguna del Maule, Chile. Sci. Adv. 4, eaat1513 (2018).

    Article  Google Scholar 

  138. 138.

    Arzilli, F. et al. The unexpected explosive sub-Plinian eruption of Calbuco volcano (22–23 April 2015; southern Chile): triggering mechanism implications. J. Volcanol. Geotherm. Res. 378, 35–50 (2019).

    Article  Google Scholar 

  139. 139.

    Cassidy, M. et al. Explosive eruptions with little warning: experimental petrology and volcano monitoring observations from the 2014 eruption of Kelud, Indonesia. Geochem. Geophys. Geosystems 20, 4218–4247 (2019).

    Article  Google Scholar 

  140. 140.

    Metrich, N. & Wallace, P. J. Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions. Rev. Mineral. Geochem. 69, 363–402 (2008).

    Article  Google Scholar 

  141. 141.

    Collins, S. J., Pyle, D. M. & Maclennan, J. Melt inclusions track pre-eruption storage and dehydration of magmas at Etna. Geology 37, 571–574 (2009).

    Article  Google Scholar 

  142. 142.

    Gaetani, G. A., O’Leary, J. A., Shimizu, N., Bucholz, C. E. & Newville, M. Rapid reequilibration of H2O and oxygen fugacity in olivine-hosted melt inclusions. Geology 40, 915–918 (2012).

    Article  Google Scholar 

  143. 143.

    Danyushevsky, L. V., McNeill, A. W. & Sobolev, A. V. Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications. Chem. Geol. 183, 5–24 (2002).

    Article  Google Scholar 

  144. 144.

    Stock, M. J. et al. Tracking volatile behaviour in sub-volcanic plumbing systems using apatite and glass: insights into pre-eruptive processes at Campi Flegrei, Italy. J. Petrol. 59, 2463–2492 (2018).

    Article  Google Scholar 

  145. 145.

    Riker, J., Humphreys, M. C. S., Brooker, R. A. & De Hoog, J. C. M. First measurements of OH-C exchange and temperature-dependent partitioning of OH and halogens in the system apatite–silicate melt. Am. Mineral. 103, 260–270 (2017).

    Article  Google Scholar 

  146. 146.

    Blake, S. Volatile oversaturation during the evolution of silicic magma chambers as an eruption trigger. J. Geophys. Res. Solid Earth 89, 8237–8244 (1984).

    Article  Google Scholar 

  147. 147.

    Avouris, D. M., Carn, S. A. & Waite, G. P. Triggering of volcanic degassing by large earthquakes. Geology 45, 715–718 (2017).

    Google Scholar 

  148. 148.

    Watters, R. J., Zimbelman, D. R., Bowman, S. D. & Crowley, J. K. Rock mass strength assessment and significance to edifice stability, Mount Rainier and Mount Hood, Cascade Range volcanoes. Pure Appl. Geophys. 157, 957–976 (2000).

    Article  Google Scholar 

  149. 149.

    Heap, M. J. et al. Thermal weakening of the carbonate basement under Mt. Etna volcano (Italy): implications for volcano instability. J. Volcanol. Geotherm. Res. 250, 42–60 (2013).

    Article  Google Scholar 

  150. 150.

    Ikari, M. J., Saffer, D. M. & Marone, C. Frictional and hydrologic properties of clay-rich fault gouge. J. Geophys. Res. Solid Earth 114, B05409 (2009).

    Article  Google Scholar 

  151. 151.

    Reid, M. E., Sisson, T. W. & Brien, D. L. Volcano collapse promoted by hydrothermal alteration and edifice shape, Mount Rainier, Washington. Geology 29, 779–782 (2002).

    Article  Google Scholar 

  152. 152.

    Farquharson, J., Heap, M. J., Baud, P., Reuschlé, T. & Varley, N. R. Pore pressure embrittlement in a volcanic edifice. Bull. Volcanol. 7, 6 (2016).

    Article  Google Scholar 

  153. 153.

    Paterne, M., Labeyrie, J., Guichard, F., Mazaud, A. & Maitre, F. Fluctuations of the Campanian explosive volcanic activity (South Italy) during the past 190,000 years, as determined by marine tephrochronology. Earth Planet. Sci. Lett. 98, 166–174 (1990).

    Article  Google Scholar 

  154. 154.

    Sigvaldason, G. E., Annertz, K. & Nilsson, M. Effect of glacier loading/deloading on volcanism: postglacial volcanic production rate of the Dyngjufjöll area, central Iceland. Bull. Volcanol. 54, 385–392 (1992).

    Article  Google Scholar 

  155. 155.

    Jull, M. & McKenzie, D. The effect of deglaciation on mantle melting beneath Iceland. J. Geophys. Res. Solid Earth 101, 21815–21828 (1996).

    Article  Google Scholar 

  156. 156.

    Jellinek, A. M., Manga, M. & Saar, M. O. Did melting glaciers cause volcanic eruptions in eastern California? Probing the mechanics of dike formation. J. Geophys. Res. Solid Earth 109, B09206 (2004).

    Article  Google Scholar 

  157. 157.

    Rampino, M. R. & Self, S. Climate-volcanism feedback and the toba eruption of 74,000 years ago. Quat. Res. 40, 269–280 (1993).

    Article  Google Scholar 

  158. 158.

    McGuire, W. J., Howarth, R. J., Firth, C. R. & Solow, A. R. Correlation between rate of sea-level change and frequency of explosive volcanism in the Mediterranean. Nature 389, 473–476 (1997).

    Article  Google Scholar 

  159. 159.

    Sternai, P., Caricchi, L., Castelltort, S. & Champagnac, J. D. Deglaciation and glacial erosion: a joint control on magma productivity by continental unloading. Geophys. Res. Lett. 43, 1632–1641 (2016).

    Article  Google Scholar 

  160. 160.

    Kutterolf, S. et al. A detection of Milankovitch frequencies in global volcanic activity. Geology 41, 227–230 (2013).

    Article  Google Scholar 

  161. 161.

    Slater, L., Jull, M., McKenzie, D. & Gronvöld, K. Deglaciation effects on mantle melting under Iceland: results from the northern volcanic zone. Earth Planet. Sci. Lett. 164, 151–164 (1998).

    Article  Google Scholar 

  162. 162.

    Pagli, C. & Sigmundsso, F. Will present day glacier retreat increase volcanic activity? Stress induced by recent glacier retreat and its effect on magmatism at the Vatnajökull ice cap, Iceland. Geophys. Res. Lett. 35, L09304 (2008).

    Article  Google Scholar 

  163. 163.

    Nakada, M. & Yokose, H. Ice age as a trigger of active Quaternary volcanism and tectonism. Tectonophysics 212, 321–329 (1992).

    Article  Google Scholar 

  164. 164.

    Wilson, A. M. & Russell, J. K. Glacial pumping of a magma-charged lithosphere: a model for glaciovolcanic causality in magmatic arcs. Earth Planet. Sci. Lett. 548, 116500 (2020).

    Article  Google Scholar 

  165. 165.

    Hooper, A. et al. Increased capture of magma in the crust promoted by ice-cap retreat in Iceland. Nat. Geosci. 4, 783–786 (2011).

    Article  Google Scholar 

  166. 166.

    Crowley, J. W., Katz, R. F., Huybers, P., Langmuir, C. H. & Park, S. H. Glacial cycles drive variations in the production of oceanic crust. Science 347, 1237–1240 (2015).

    Article  Google Scholar 

  167. 167.

    Boulahanis, B. et al. Do sea level variations influence mid-ocean ridge magma supply? A test using crustal thickness and bathymetry data from the East Pacific Rise. Earth Planet. Sci. Lett. 535, 116121 (2020).

    Article  Google Scholar 

  168. 168.

    Sternai, P. et al. Magmatic pulse driven by sea-level changes associated with the Messinian salinity crisis. Nat. Geosci. 10, 783–787 (2017).

    Article  Google Scholar 

  169. 169.

    Jaggar, T. A., Finch, R. H. & Emerson, O. H. The lava tide, seasonal tilt, and the volcanic cycle. Mon. Weather Rev. 52, 142–145 (1924).

    Article  Google Scholar 

  170. 170.

    Mauk, F. J. & Kienle, J. Microearthquakes at St. Augustine Volcano, Alaska, triggered by earth tides. Science 182, 386–389 (1973).

    Article  Google Scholar 

  171. 171.

    Shimozuru, D. Lava lake oscillations and the magma reservoir beneath a volcano. Bull. Volcanol. 39, 570–580 (1975).

    Article  Google Scholar 

  172. 172.

    Dzurisin, D. Influence of fortnightly Earth tides at Kilauea volcano, Hawaii. Geophys. Res. Lett. 7, 925–928 (1980).

    Article  Google Scholar 

  173. 173.

    McNutt, S. R. & Beavan, R. J. Volcanic earthquakes at Pavlof Volcano correlated with the solid earth tide. Nature 294, 615–618 (1981).

    Article  Google Scholar 

  174. 174.

    Wilcock, W. S. D. et al. Seismic constraints on caldera dynamics from the 2015 Axial Seamount eruption. Science 354, 1395–1399 (2016).

    Article  Google Scholar 

  175. 175.

    Girona, T., Huber, C. & Caudron, C. Sensitivity to lunar cycles prior to the 2007 eruption of Ruapehu volcano. Sci. Rep. 8, 1476 (2018).

    Article  Google Scholar 

  176. 176.

    Dinger, F. et al. On the link between Earth tides and volcanic degassing. Solid Earth 10, 725–740 (2019).

    Article  Google Scholar 

  177. 177.

    Jentzsch, G., Haase, O., Kroner, C. & Winter, U. Mayon volcano, Philippines: some insights into stress balance. J. Volcanol. Geotherm. Res. 109, 205–217 (2001).

    Article  Google Scholar 

  178. 178.

    Bredemeyer, S. & Hansteen, T. H. Synchronous degassing patterns of the neighbouring volcanoes Llaima and Villarrica in south-central Chile: the influence of tidal forces. Int. J. Earth Sci. 103, 1999–2012 (2014).

    Article  Google Scholar 

  179. 179.

    Dinger, F. et al. Periodicity in the BrO/SO2 molar ratios in the volcanic gas plume of Cotopaxi and its correlation with the Earth tides during the eruption in 2015. Solid Earth 9, 247–266 (2018).

    Article  Google Scholar 

  180. 180.

    Dumont, S. et al. The dynamics of a long-lasting effusive eruption modulated by Earth tides. Earth Planet. Sci. Lett. 536, 116145 (2020).

    Article  Google Scholar 

  181. 181.

    Rydelek, P. A., Sacks, I. S. & Scarpa, R. On tidal triggering of earthquakes at Campi Flegrei, Italy. Geophys. J. Int. 109, 125–135 (1992).

    Article  Google Scholar 

  182. 182.

    Patrick, M., Swanson, D. & Orr, T. A review of controls on lava lake level: insights from Halema‘uma‘u Crater, Kīlauea Volcano. Bull. Volcanol. 81, 13 (2019).

    Article  Google Scholar 

  183. 183.

    Neuberg, J. External modulation of volcanic activity. Geophys. J. Int. 142, 232–240 (2000).

    Article  Google Scholar 

  184. 184.

    McNutt, S. R. & Beavan, R. J. Eruptions of Pavlof volcano and their possible modulation by ocean load and tectonic stresses. J. Geophys. Res. Solid Earth 92, 11509–11523 (1987).

    Article  Google Scholar 

  185. 185.

    Mason, B. G., Pyle, D. M., Dade, W. B. & Jupp, T. Seasonality of volcanic eruptions. J. Geophys. Res. Solid Earth 109, B04206 (2004).

    Article  Google Scholar 

  186. 186.

    Kieffer, S. W. Blast dynamics at Mount St Helens on 18 May 1980. Nature 291, 568–570 (1981).

    Article  Google Scholar 

  187. 187.

    Voight, B., Janda, R. J., Glicken, H. & Douglass, P. M. Nature and mechanics of the Mount St Helens rockslide-avalanche of 18 May 1980. Geotechnique 33, 243–273 (1983).

    Article  Google Scholar 

  188. 188.

    Vallance, J. W., Gardner, C. A., Scott, W. E., Iverson, R. M. & Pierson, T. C. Mount St. Helens: a 30-year legacy of volcanism. Eos Trans. Am. Geophys. Union 91, 169–170 (2010).

    Article  Google Scholar 

  189. 189.

    Reid, M. E. et al. Volcano collapse promoted by progressive strength reduction: new data from Mount St. Helens. Bull. Volcanol. 72, 761–7696 (2010).

    Article  Google Scholar 

  190. 190.

    Girona, T., Costa, F. & Schubert, G. Degassing during quiescence as a trigger of magma ascent and volcanic eruptions. Sci. Rep. 5, 18212 (2015).

    Article  Google Scholar 

  191. 191.

    Roman, D. C. & Cashman, K. V. Top–down precursory volcanic seismicity: implications for ‘stealth’ magma ascent and long-term eruption forecasting. Front. Earth Sci. 6, 124 (2018).

    Article  Google Scholar 

  192. 192.

    Yokoyama, I. Volcanic eruptions triggered by tectonic earthquakes. Geophys. Bull. Hokkaido Univ. 25, 129–139 (1971).

    Google Scholar 

  193. 193.

    Nishimura, T. Triggering of volcanic eruptions by large earthquakes. Geophys. Res. Lett. 44, 7750–7756 (2017).

    Article  Google Scholar 

  194. 194.

    Sawi, T. M. & Manga, M. Revisiting short-term earthquake triggered volcanism. Bull. Volcanol. 80, 57 (2018).

    Article  Google Scholar 

  195. 195.

    Hill, D. P. et al. Seismicity remotely triggered by the magnitude 7.3 Landers, California, earthquake. Science 260, 1617–1623 (1993).

    Article  Google Scholar 

  196. 196.

    Linde, A. T. & Sacks, I. S. Triggering of volcanic eruptions. Nature 395, 888–890 (1998).

    Article  Google Scholar 

  197. 197.

    Cannata, A. et al. Response of Mount Etna to dynamic stresses from distant earthquakes. J. Geophys. Res. Solid Earth 115, B12304 (2010).

    Article  Google Scholar 

  198. 198.

    Yukutake, Y. et al. Remotely triggered seismic activity in Hakone volcano during and after the passage of surface waves from the 2011 M9.0 Tohoku-Oki earthquake. Earth Planet. Sci. Lett. 373, 205–216 (2013).

    Article  Google Scholar 

  199. 199.

    Hamling, I. J. & Kilgour, G. Goldilocks conditions required for earthquakes to trigger basaltic eruptions: evidence from the 2015 Ambrym eruption. Sci. Adv. 6, eaaz5261 (2020).

    Article  Google Scholar 

  200. 200.

    Farías, C. & Basualto, D. Reactivating and calming volcanoes: the 2015 MW 8.3 Illapel megathrust strike. Geophys. Res. Lett. 47, e2020GL087738 (2020).

    Article  Google Scholar 

  201. 201.

    Pritchard, M. E., Jay, J. A., Aron, F., Henderson, S. T. & Lara, L. E. Subsidence at southern Andes volcanoes induced by the 2010 Maule, Chile earthquake. Nat. Geosci. 6, 632–636 (2013).

    Article  Google Scholar 

  202. 202.

    Takada, Y. & Fukushima, Y. Volcanic subsidence triggered by the 2011 Tohoku earthquake in Japan. Nat. Geosci. 6, 637–641 (2013).

    Article  Google Scholar 

  203. 203.

    Watt, S. F. L., Pyle, D. M. & Mather, T. A. The influence of great earthquakes on volcanic eruption rate along the Chilean subduction zone. Earth Planet. Sci. Lett. 277, 399–407 (2009).

    Article  Google Scholar 

  204. 204.

    Prejean, S. G. & Hill, D. P. The influence of tectonic environment on dynamic earthquake triggering: a review and case study on Alaskan volcanoes. Tectonophysics 745, 293–304 (2018).

    Article  Google Scholar 

  205. 205.

    Eggert, S. & Walter, T. R. Volcanic activity before and after large tectonic earthquakes: observations and statistical significance. Tectonophysics 471, 14–26 (2009).

    Article  Google Scholar 

  206. 206.

    Bebbington, M. S. & Marzocchi, W. Stochastic models for earthquake triggering of volcanic eruptions. J. Geophys. Res. Solid Earth 116, B05204 (2011).

    Article  Google Scholar 

  207. 207.

    Nostro, C., Stein, R. S., Cocco, M., Belardinelli, M. E. & Marzocchi, W. Two-way coupling between Vesuvius eruptions and southern Apennine earthquakes, Italy, by elastic stress transfer. J. Geophys. Res. Solid Earth 103, 24487–24504 (1998).

    Article  Google Scholar 

  208. 208.

    Miyazawa, M., Nakanishi, I., Sudo, Y. & Ohkura, T. Dynamic response of frequent tremors at Aso volcano to teleseismic waves from the 1999 Chi-Chi, Taiwan earthquake. J. Volcanol. Geotherm. Res. 147, 173–186 (2005).

    Article  Google Scholar 

  209. 209.

    Hill, D. P. & Prejean, S. G. in Treatise on Geophysics Vol. 4 (ed. Schubert, G.) 257–291 (Elsevier, 2007).

  210. 210.

    Manga, M. & Brodsky, E. Seismic triggering of eruptions in the far field: volcanoes and geysers. Annu. Rev. Earth Planet. Sci. 34, 263–291 (2006).

    Article  Google Scholar 

  211. 211.

    Walter, T. R. & Amelung, F. Volcanic eruptions following M ≥ 9 megathrust earthquakes: implications for the Sumatra-Andaman volcanoes. Geology 35, 539–542 (2007).

    Article  Google Scholar 

  212. 212.

    Namiki, A. et al. Volcanic activities triggered or inhibited by resonance of volcanic edifices to large earthquakes. Geology 47, 67–70 (2019).

    Article  Google Scholar 

  213. 213.

    Steinberg, G. S., Steinberg, A. S. & Merzhanov, A. G. Fluid mechanism of pressure growth in volcanic (magmatic) systems. Mod. Geol. 13, 257–265 (1989).

    Google Scholar 

  214. 214.

    Sahagian, D. L. & Proussevitch, A. A. Bubbles in volcanic systems. Nature 359, 485 (1992).

    Article  Google Scholar 

  215. 215.

    Namiki, A., Rivalta, E., Woith, H. & Walter, T. R. Sloshing of a bubbly magma reservoir as a mechanism of triggered eruptions. J. Volcanol. Geotherm. Res. 320, 156–177 (2016).

    Article  Google Scholar 

  216. 216.

    Ujiie, K. et al. Low coseismic shear stress on the Tohoku-Oki megathrust determined from laboratory experiments. Science 342, 1211–1214 (2013).

    Article  Google Scholar 

  217. 217.

    Harris, A. J. L. & Ripepe, M. Regional earthquake as a trigger for enhanced volcanic activity: evidence from MODIS thermal data. Geophys. Res. Lett. 34, L02304 (2007).

    Google Scholar 

  218. 218.

    Walter, T. R. et al. Volcanic activity influenced by tectonic earthquakes: static and dynamic stress triggering at Mt. Merapi. Geophys. Res. Lett. 34, L05304 (2007).

    Article  Google Scholar 

  219. 219.

    Troll, V. R. et al. Crustal CO2 liberation during the 2006 eruption and earthquake events at Merapi volcano, Indonesia. Geophys. Res. Lett. 39, L11302 (2012).

    Article  Google Scholar 

  220. 220.

    Carr, B. B., Clarke, A. B. & de’ Michieli Vitturi, M. Earthquake induced variations in extrusion rate: a numerical modeling approach to the 2006 eruption of Merapi Volcano (Indonesia). Earth Planet. Sci. Lett. 482, 377–387 (2018).

    Article  Google Scholar 

  221. 221.

    White, R. & Mccausland, W. Volcano-tectonic earthquakes: a new tool for estimating intrusive volumes and forecasting eruptions. J. Volcanol. Geotherm. Res. 309, 139–155 (2016).

    Article  Google Scholar 

  222. 222.

    Toda, S., Stein, R. S. & Sagiya, T. Evidence from the AD 2000 Izu islands earthquake swarm that stressing rate governs seismicity. Nature 419, 58–61 (2002).

    Article  Google Scholar 

  223. 223.

    Xu, W., Jonsson, S., Corbi, F. & Rivalta, E. Graben formation and dike arrest during the 2009 Harrat Lunayyir dike intrusion in Saudi Arabia: insights from InSAR, stress calculations and analog experiments. J. Geophys. Res. Solid Earth 121, 2837–2851 (2016).

    Article  Google Scholar 

  224. 224.

    Bonaccorso, A., Aoki, Y. & Rivalta, E. Dike propagation energy balance from deformation modeling and seismic release. Geophys. Res. Lett. 44, 5486–5494 (2017).

    Article  Google Scholar 

  225. 225.

    Talwani, P. & Acree, S. Pore pressure diffusion and the mechanism of reservoir-induced seismicity. Pure Appl. Geophys. 122, 947–965 (1984).

    Article  Google Scholar 

  226. 226.

    Saar, M. O. & Manga, M. Seismicity induced by seasonal groundwater recharge at Mt. Hood, Oregon. Earth Planet. Sci. Lett. 214, 605–618 (2003).

    Article  Google Scholar 

  227. 227.

    Keranen, K. M., Weingarten, M., Abers, G. A., Bekins, B. A. & Ge, S. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection. Science 345, 448–451 (2014).

    Article  Google Scholar 

  228. 228.

    Violette, S. et al. Can rainfall trigger volcanic eruptions? A mechanical stress model of an active volcano: ‘Piton de la Fournaise’, Reunion Island. Terra Nova 13, 18–24 (2001).

    Article  Google Scholar 

  229. 229.

    Farquharson, J. I. & Amelung, F. Extreme rainfall triggered the 2018 rift eruption at Kīlauea Volcano. Nature 580, 491–495 (2020).

    Article  Google Scholar 

  230. 230.

    Hort, M., Seyfried, R. & Vöge, M. Radar Doppler velocimetry of volcanic eruptions: theoretical considerations and quantitative documentation of changes in eruptive behaviour at Stromboli volcano, Italy. Geophys. J. Int. 154, 515–532 (2003).

    Article  Google Scholar 

  231. 231.

    Manga, M. When it rains, lava pours. Nature 580, 457–458 (2020).

    Article  Google Scholar 

  232. 232.

    Richter, G., Wassermann, J., Zimmer, M. & Ohrnberger, M. Correlation of seismic activity and fumarole temperature at the Mt. Merapi volcano (Indonesia) in 2000. J. Volcanol. Geotherm. Res. 135, 331–342 (2004).

    Article  Google Scholar 

  233. 233.

    Matthews, A. J., Barclay, J. & Johnstone, J. E. The fast response of volcano-seismic activity to intense precipitation: Triggering of primary volcanic activity by rainfall at Soufrière Hills Volcano, Montserrat. J. Volcanol. Geotherm. Res. 184, 405–415 (2009).

    Article  Google Scholar 

  234. 234.

    Matthews, A. J. Rainfall-induced volcanic activity on Montserrat. Geophys. Res. Lett. 29, 1644 (2002).

    Article  Google Scholar 

  235. 235.

    Carn, S., Watts, R., Thompson, G. & Norton, G. Anatomy of a lava dome collapse: the 20 March 2000 event at Soufrière Hills Volcano, Montserrat. J. Volcanol. Geotherm. Res. 131, 241–264 (2004).

    Article  Google Scholar 

  236. 236.

    Yamasato, H., Kitagawa, S. & Komiya, M. Effect of rainfall on dacitic lava dome collapse at Unzen volcano, Japan. Pap. Meteorol. Geophys. 48, 73–78 (1998).

    Article  Google Scholar 

  237. 237.

    Voight, B., Constantine, E. K., Siswowidjoyo, S. & Torley, R. Historical eruptions of Merapi Volcano, Central Java, Indonesia, 1768–1998. J. Volcanol. Geotherm. Res. 100, 69–138 (2000).

    Article  Google Scholar 

  238. 238.

    Mastin, L. G. Explosive tephra emissions at Mount St. Helens, 1989-1991: the violent escape of magmatic gas following storms? Geol. Soc. Am. Bull. 106, 175–185 (1994).

    Article  Google Scholar 

  239. 239.

    Gaete, A. et al. Processes culminating in the 2015 phreatic explosion at Lascar volcano, Chile, evidenced by multiparametric data. Nat. Hazards Earth Syst. Sci. 20, 377–397 (2020).

    Article  Google Scholar 

  240. 240.

    López, D. L. & Williams, S. N. Catastrophic volcanic collapse: relation to hydrothermal processes. Science 260, 1794–1946 (1993).

    Article  Google Scholar 

  241. 241.

    Voight, B. & Elsworth, D. Instability and collapse of hazardous gas-pressurized lava domes. Geophys. Res. Lett. 27, 1–4 (2000).

    Article  Google Scholar 

  242. 242.

    Walker, G. P. L. Koolau Dike Complex, Oahu: intensity and origin of a sheeted-dike complex high in a Hawaiian volcanic edifice. Geology 14, 310–313 (1986).

    Article  Google Scholar 

  243. 243.

    Gudmundsson, A. Emplacement of dikes, sills and crustal magma chambers at divergent plate boundaries. Tectonophysics 176, 257–275 (1990).

    Article  Google Scholar 

  244. 244.

    Ernst, R. E., Grosfils, E. B. & Mege, D. Giant dike swarms: Earth, Venus, and Mars. Annu. Rev. Earth Planet. Sci. 29, 489–534 (2001).

    Article  Google Scholar 

  245. 245.

    Anderson, E. M. Cone-sheets and ring-dykes: the dynamical explanation. Bull. Volcanol. 1, 35–40 (1937).

    Article  Google Scholar 

  246. 246.

    Galland, O., Burchardt, S., Hallot, E., Mourgues, R. & Bulois, C. Dynamics of dikes versus cone sheets in volcanic systems. J. Geophys. Res. Solid Earth 119, 6178–6192 (2014).

    Article  Google Scholar 

  247. 247.

    Gudmundsson, A. Volcanotectonics: Understanding the Structure, Deformation and Dynamics of Volcanoes (Cambridge Univ. Press, 2020).

  248. 248.

    Galland, O. et al. Structure, emplacement mechanism and magma-flow significance of igneous fingers–Implications for sill emplacement in sedimentary basins. J. Struct. Geol. 124, 120–135 (2019).

    Article  Google Scholar 

  249. 249.

    Gudmundsson, A. Emplacement and arrest of sheets and dykes in central volcanoes. J. Volcanol. Geotherm. Res. 116, 279–298 (2002).

    Article  Google Scholar 

  250. 250.

    Galindo, I. & Gudmundsson, A. Basaltic feeder dykes in rift zones: geometry, emplacement, and effusion rates. Nat. Hazards Earth Syst. Sci. 12, 3683 (2012).

    Article  Google Scholar 

  251. 251.

    Pollard, D. D. in Mafic Dyke Swarms Vol. 34 (eds Halls, H. C. & Fahrig, W. H) 5–24 (Geological Association of Canada, 1987).

  252. 252.

    Albino, F., Amelung, F. & Gregg, P. The role of pore fluid pressure on the failure of magma reservoirs: insights from Indonesian and Aleutian arc volcanoes. J. Geophys. Res. Solid Earth 123, 1328–1349 (2018).

    Article  Google Scholar 

  253. 253.

    Hurwitz, D. M., Long, S. M. & Grosfils, E. B. The characteristics of magma reservoir failure beneath a volcanic edifice. J. Volcanol. Geotherm. Res. 188, 379–394 (2009).

    Article  Google Scholar 

  254. 254.

    Delaney, P. T., Pollard, D. D., Ziony, J. I. & McKee, E. H. Field relations between dikes and joints: emplacement processes and paleostress analysis. J. Geophys. Res. Solid Earth 91, 4920–4938 (1986).

    Article  Google Scholar 

  255. 255.

    Ziv, A. & Rubin, A. M. Static stress transfer and earthquake triggering. J. Geophys. Res. 105, 13631–13642 (2000).

    Article  Google Scholar 

  256. 256.

    Rubin, A. M. Dikes vs. diapirs in viscoelastic rock. Earth Planet. Sci. Lett. 117, 653–670 (1993).

    Article  Google Scholar 

  257. 257.

    Gerbault, M., Hassani, R., Novoa Lizama, C. & Souche, A. Three-dimensional failure patterns around an inflating magmatic chamber. Geochem. Geophys. Geosystems 19, 749–771 (2018).

    Article  Google Scholar 

  258. 258.

    Gregg, P. M., de Silva, S. L., Grosfils, E. B. & Parmigiani, J. P. Catastrophic caldera-forming eruptions: thermomechanics and implications for eruption triggering and maximum caldera dimensions on Earth. J. Volcanol. Geotherm. Res. 241–242, 1–12 (2012).

    Article  Google Scholar 

  259. 259.

    Mcleod, P. & Tait, S. The growth of dykes from magma chambers. J. Volcanol. Geotherm. Res 92, 231–245 (1999).

    Article  Google Scholar 

  260. 260.

    Cañón-Tapia, E. Influence of angularities on magma tapping processes. J. Volcanol. Geotherm. Res. 381, 140–156 (2019).

    Article  Google Scholar 

  261. 261.

    Bonafede, M. & Ferrari, C. Analytical models of deformation and residual gravity changes due to a Mogi source in a viscoelastic medium. Tectonophysics 471, 4–13 (2009).

    Article  Google Scholar 

  262. 262.

    Griffith, A. A. The phenomena of rupture and flow in solids. Phil. Trans. R. Soc. Lond. A 221, 163–198 (1921).

    Article  Google Scholar 

  263. 263.

    Dahm, T. Numerical simulations of the propagation path and the arrest of fluid-filled fractures in the Earth. Geophys. J. Int. 141, 623–638 (2000).

    Article  Google Scholar 

  264. 264.

    Nakashima, Y. Static stability and propagation of a fluid-filled edge crack in rock: implication for fluid transport in magmatism and metamorphism. J. Phys. Earth 41, 189–202 (1993).

    Article  Google Scholar 

  265. 265.

    Buck, W. R., Einarsson, P. & Brandsdóttir, B. Tectonic stress and magma chamber size as controls on dike propagation: constraints from the 1975–1984 Krafla rifting episode. J. Geophys. Res. 111, B12404 (2006).

    Google Scholar 

  266. 266.

    Grandin, R., Socquet, A., Doubre, C., Jacquesd, E. & Kingd, G. C. P. Elastic thickness control of lateral dyke intrusion at mid-ocean ridges. Earth Planet. Sci. Lett. 319-320, 83–95 (2012).

    Article  Google Scholar 

  267. 267.

    Weertman, J. Theory of water-filled crevasses in glaciers applied to vertical magma transport beneath oceanic ridges. J. Geophys. Res. 76, 1171–1183 (1971).

    Article  Google Scholar 

  268. 268.

    Secor, D. T. & Pollard, D. D. On the stability of open hydraulic fractures in the Earth’s crust. Geophys. Res. Lett. 2, 510–513 (1975).

    Article  Google Scholar 

  269. 269.

    Rubin, A. M., Gillard, D. & Got, J.-L. A reinterpretation of seismicity associated with the January 1983 dike intrusion at Kilauea Volcano, Hawaii. J. Geophys. Res. 103, 10003–10015 (1998).

    Article  Google Scholar 

  270. 270.

    Geshi, N., Kusumoto, S. & Gudmundssonc, A. Effects of mechanical layering of host rocks on dike growth and arrest. J. Volcanol. Geotherm. Res. 223-224, 74–82 (2012).

    Article  Google Scholar 

  271. 271.

    Kervyn, M., Ernst, G. G. J., van Wyk de Vries, B., Mathieu, L. & Jacobs, P. Volcano load control on dyke propagation and vent distribution: insights from analogue modeling. J. Geophys. Res. 114, B03401 (2009).

    Google Scholar 

  272. 272.

    Rivalta, E. & Dahm, T. Acceleration of buoyancy-driven fractures and magmatic dikes beneath the free surface. Geophys. J. Int. 166, 1424–1439 (2006).

    Article  Google Scholar 

  273. 273.

    Anderson, E. M. The Dynamics of Faulting and Dyke Formation with Applications to Britain (Oliver and Boyd, 1951).

  274. 274.

    Maccaferri, F., Acocella, V. & Rivalta, E. How the differential load induced by normal fault scarps controls the distribution of monogenic volcanism. Geophys. Res. Lett. 42, 7507–7512 (2015).

    Article  Google Scholar 

  275. 275.

    Maccaferri, F., Bonafede, M. & Rivalta, E. A quantitative study of the mechanisms governing dike propagation, dike arrest and sill formation. J. Volcanol. Geotherm. Res. 208, 39–50 (2011).

    Article  Google Scholar 

  276. 276.

    Heimisson, E. R., Hooper, A. & Sigmundsson, F. Forecasting the path of a laterally propagating dike. J. Geophys. Res. Solid Earth 120, 8774–8792 (2015).

    Article  Google Scholar 

  277. 277.

    Zoback, M. Lou et al. Global patterns of tectonic stress. Nature 341, 291–298 (1989).

    Article  Google Scholar 

  278. 278.

    Grosfils, E. B. et al. Elastic models of magma reservoir mechanics: a key tool for investigating planetary volcanism. Geol. Soc. Lond. Spec. Publ. 401, 239–267 (2013).

    Article  Google Scholar 

  279. 279.

    Townsend, M. R., Pollard, D. D. & Smith, R. P. Mechanical models for dikes: a third school of thought. Tectonophysics 703–704, 98–118 (2017).

    Article  Google Scholar 

  280. 280.

    Hjartardóttir, Á. R. & Einarsson, P. The Kverkfjöll fissure swarm and the eastern boundary of the Northern Volcanic Rift Zone, Iceland. Bull. Volcanol. 74, 143–162 (2012).

    Article  Google Scholar 

  281. 281.

    Ventura, G., Vilardo, G. & Bruno, P. P. The role of flank failure in modifying the shallow plumbing system of volcanoes: an example from Somma-Vesuvius, Italy, lava flows. Geophys. Res. Lett. 26, 3681–3684 (1999).

    Article  Google Scholar 

  282. 282.

    Corbi, F. et al. How caldera collapse shapes the shallow emplacement and transfer of magma in active volcanoes. Earth Planet. Sci. Lett. 431, 287–293 (2015).

    Article  Google Scholar 

  283. 283.

    Tibaldi, A. Structure of volcano plumbing systems: a review of multi-parametric effects. J. Volcanol. Geotherm. Res. 298, 85–135 (2015).

    Article  Google Scholar 

  284. 284.

    Muller, J. R., Ito, G. & Martel, S. J. Effects of volcano loading on dike propagation in an elastic half-space load. J. Geophys. Res. 106, 11101–11113 (2001).

    Article  Google Scholar 

  285. 285.

    Watanabe, T., Masuyama, T., Nagaoka, K. & Tahara, T. Analog experiments on magma-filled cracks: competition between external stresses and internal pressure. Earth Planets Space 54, 1247–1261 (2002).

    Article  Google Scholar 

  286. 286.

    Maccaferri, F., Smittarello, D., Pinel, V. & Cayol, V. On the propagation path of magma-filled dikes and hydrofractures: the competition between external stress, internal pressure, and crack length. Geochem. Geophys. Geosystems 20, 2064–2081 (2019).

    Article  Google Scholar 

  287. 287.

    Dieterich, J. H. Growth and persistence of Hawaiian volcanic rift zones. J. Geophys. Res. 93, 4258–4270 (1988).

    Article  Google Scholar 

  288. 288.

    Chadwick, W. W. & Dieterich, J. H. Mechanical modeling of circumferential and radial dike intrusion on Galapagos volcanoes. J. Volcanol. Geotherm. Res. 66, 37–52 (1995).

    Article  Google Scholar 

  289. 289.

    Acocella, V. & Neri, M. Dike propagation in volcanic edifices: overview and possible developments. Tectonophysics 471, 67–77 (2009).

    Article  Google Scholar 

  290. 290.

    Thiele, S. T., Cruden, A. R., Micklethwaite, S., Bunger, A. P. & Köpping, J. Dyke apertures record stress accumulation during sustained volcanism. Sci. Rep. 10, 17335 (2020).

    Article  Google Scholar 

  291. 291.

    McGuire, W. J. & Pullen, A. D. Location and orientation of eruptive fissures and feederdykes at Mount Etna; influence of gravitational and regional tectonic stress regimes. J. Volcanol. Geotherm. Res. 38, 325–344 (1989).

    Article  Google Scholar 

  292. 292.

    Delcamp, A., van Wyk de Vries, B. & James, M. R. The influence of edifice slope and substrata on volcano spreading. J. Volcanol. Geotherm. Res. 177, 925–943 (2008).

    Article  Google Scholar 

  293. 293.

    Urbani, S., Acocella, V., Rivalta, E. & Corbi, F. Propagation and arrest of dikes under topography: models applied to the 2014 Bardarbunga (Iceland) rifting event. Geophys. Res. Lett. 44, 6692–6701 (2017).

    Article  Google Scholar 

  294. 294.

    Peltier, A., Ferrazzini, V., Staudacher, T. & Bachèlery, P. Imaging the dynamics of dyke propagation prior to the 2000–2003 flank eruptions at Piton de la Fournaise, Reunion Island. Geophys. Res. Lett. 32, L22302 (2005).

    Article  Google Scholar 

  295. 295.

    Hjartardóttir, Á. R. & Einarsson, P. The interaction of fissure swarms and monogenetic lava shields in the rift zones of Iceland. J. Volcanol. Geotherm. Res. 299, 91–102 (2015).

    Article  Google Scholar 

  296. 296.

    Galetto, F., Acocella, V., Caricchi, L. & Caricchi, L. Caldera resurgence driven by magma viscosity contrasts. Nat. Commun. 8, 1750 (2005).

    Article  Google Scholar 

  297. 297.

    Heidbach, O., Rajabi, M., Reiter, K., Ziegler, M. & WSM Team. World Stress Map Database Release 2016 (GFZ Data Services, 2016).

  298. 298.

    Mantiloni, L., Davis, T., Rojas, A. B. G. & Rivalta, E. Stress inversion in a gelatin box: testing eruptive vent location forecasts with analog models. Geophys. Res. Lett. 48, e2020GL090407 (2021).

    Article  Google Scholar 

  299. 299.

    Gonnermann, H. M. & Manga, M. The fluid mechanics inside a volcano. Annu. Rev. Fluid Mech. 39, 321–356 (2007).

    Article  Google Scholar 

  300. 300.

    Costa, a, Melnik, O. & Sparks, R. S. J. Controls of conduit geometry and wallrock elasticity on lava dome eruptions. Earth Planet. Sci. Lett. 260, 137–151 (2007).

    Article  Google Scholar 

  301. 301.

    Anderson, K. & Segall, P. Bayesian inversion of data from effusive volcanic eruptions using physics-based models: application to Mount St. Helens 2004–2008. J. Geophys. Res. Solid Earth 118, 2017–2037 (2013).

    Article  Google Scholar 

  302. 302.

    Massaro, S., Costa, A. & Sulpizio, R. Evolution of the magma feeding system during a Plinian eruption: the case of Pomici di Avellino eruption of Somma–Vesuvius, Italy. Earth Planet. Sci. Lett. 482, 545–555 (2018).

    Article  Google Scholar 

  303. 303.

    Landi, P., Marchetti, E., La Felice, S., Ripepe, M. & Rosi, M. Integrated petrochemical and geophysical data reveals thermal distribution of the feeding conduits at Stromboli volcano, Italy. Geophys. Res. Lett. 38, L08305 (2011).

    Article  Google Scholar 

  304. 304.

    Acocella, V. et al. Why does a mature volcano need new vents? The case of the New Southeast Crater at Etna. Front. Earth Sci. 4, 67 (2016).

    Article  Google Scholar 

  305. 305.

    Pering, T. et al. Combined ground and aerial measurements resolve vent-specific gas fluxes from a multi-vent volcano. Nat. Commun. 11, 3039 (2020).

    Article  Google Scholar 

  306. 306.

    Segall, P. Magma chambers: what we can, and cannot, learn from volcano geodesy. Phil. Trans. R. Soc. A 377, 20180158 (2019).

    Article  Google Scholar 

  307. 307.

    Anderson, K. et al. Magma reservoir failure and the onset of caldera collapse at Kīlauea Volcano in 2018. Science 366, eaaz1822 (2019).

    Article  Google Scholar 

  308. 308.

    Petrelli, M., Caricchi, L. & Perugini, D. Machine learning thermo-barometry: application to clinopyroxene-bearing magmas. J. Geophys. Res. Solid Earth 125, e2020JB020130 (2020).

    Article  Google Scholar 

  309. 309.

    Paulatto, M. et al. Vertically extensive magma reservoir revealed from joint inversion and quantitative interpretation of seismic and gravity data. J. Geophys. Res. Solid Earth 124, 11170–11191 (2019).

    Article  Google Scholar 

  310. 310.

    Pollard, D. D. & Townsend, M. R. Fluid-filled fractures in Earth’s lithosphere: gravitational loading, interpenetration, and stable height of dikes and veins. J. Struct. Geol. 109, 38–54 (2018).

    Article  Google Scholar 

  311. 311.

    Maimon, O., Lyakhovsky, V., Melnik, O. & Navon, O. The propagation of a dyke driven by gas-saturated magma. Geophys. J. Int. 189, 956–966 (2018).

    Article  Google Scholar 

  312. 312.

    Heap, M. J. et al. Mechanical behaviour and failure modes in the Whakaari (White Island volcano) hydrothermal system, New Zealand. J. Volcanol. Geotherm. Res. 295, 26–42 (2015).

    Article  Google Scholar 

  313. 313.

    Crosweller, H. S. et al. Global database on large magnitude explosive volcanic eruptions (LaMEVE). J. Appl. Volcanol. 1, 4 (2012).

    Article  Google Scholar 

  314. 314.

    Marxer, F. & Ulmer, P. Crystallisation and zircon saturation of calc‑alkaline tonalite from the Adamello Batholith at upper crustal conditions: an experimental study. Contrib. Mineral. Petrol. 174, 84 (2019).

    Article  Google Scholar 

  315. 315.

    Rutter, E. H. & Brodie, K. H. Experimental intracrystalline plastic flow in hot-pressed synthetic quartzite prepared from Brazilian quartz crystals. J. Struct. Geol. 26, 259–270 (2004).

    Article  Google Scholar 

  316. 316.

    Rybacki, E. & Dresen, G. Dislocation and diffusion creep of synthetic anorthite aggregates. J. Geophys. Res. Solid Earth 105, 26017–26036 (2000).

    Article  Google Scholar 

  317. 317.

    Scholz, C. H. The Mechanics of Earthquakes and Faulting (Cambridge Univ. Press, 2002).

  318. 318.

    Zielinski, R. A. & Lipman, P. W. Trace-element variations at Summer Coon volcano, San Juan Mountains, Colorado, and the origin of continental-interior andesite. Geol. Soc. Am. Bull. 87, 1477–1485 (1976).

    Article  Google Scholar 

  319. 319.

    Hughes, S. S., Wetmore, P. H. & Casper, J. L. in Tectonic and Magmatic Evolution of the Snake River Plain Volcanic Province (eds Bonnichsen, B., White, C. M. & McCurry, M.) 363–385 (Idaho Geological Survey, 2002).

  320. 320.

    Di Vito, M. A. et al. Magma transfer at Campi Flegrei caldera (Italy) before the 1538 AD eruption. Sci. Rep. 6, 32245 (2016).

    Article  Google Scholar 

  321. 321.

    Lesher, C. E. & Spera, F. J. in The Encyclopedia of Volcanoes 2nd edn (ed. Sigurdsson, H.) 113–141 (Academic, 2015).

  322. 322.

    Bürgmann, R. & Dresen, G. Rheology of the lower crust and upper mantle: evidence from rock mechanics, geodesy, and field observations. Annu. Rev. Earth Planet. Sci. 36, 531–567 (2008).

    Article  Google Scholar 

  323. 323.

    Schultz, R. A. Limits on strength and deformation properties of jointed basaltic rock masses. Rock Mech. Rock Engng. 28, 1–15 (1995).

    Article  Google Scholar 

  324. 324.

    Browne, B. & Szramek, L. in The Encyclopedia of Volcanoes 2nd edn (ed. Sigurdsson, H.) 203–214 (Academic Press, 2015).

  325. 325.

    Matzel, J. E. P., Bowring, S. A. & Miller, R. B. Time scales of pluton construction at differing crustal levels: examples from the Mount Stuart and Tenpeak intrusions, North Cascades, Washington. Geol. Soc. Am. Bull. 118, 1412–1430 (2006).

    Article  Google Scholar 

  326. 326.

    Menand, T., Annen, C. & de Saint-Blanquat, M. Rates of magma transfer in the crust: insights into magma reservoir recharge and pluton growth. Geology 43, 199–202 (2015).

    Article  Google Scholar 

  327. 327.

    Sammis, C. G. & Julian, B. R. Fracture instabilities accompanying dike intrusion. J. Geophys. Res. Solid Earth 92, 2597–2605 (1987).

    Article  Google Scholar 

  328. 328.

    Muller, O. H. & Pollard, D. D. The stress state near Spanish Peaks, Colorado determined from a dike pattern. Pure Appl. Geophys. 115, 69–86 (1977).

    Article  Google Scholar 

  329. 329.

    Lister, R. & Kerr, R. C. Fluid-mechanical models of crack propagation and their application to magma transport in dykes. J. Geophys. Res. Solid Earth 96, 10049–10077 (1991).

    Article  Google Scholar 

  330. 330.

    Huber, C., Townsend, M., Degruyter, W. & Bachmann, O. Optimal depth of subvolcanic magma chamber growth controlled by volatiles and crust rheology. Nat. Geosci. 12, 762–768 (2019).

    Article  Google Scholar 

  331. 331.

    Degruyter, W., Huber, C., Bachmann, O., Cooper, K. M. & Kent, A. J. R. Magma reservoir response to transient recharge events: the case of Santorini volcano (Greece). Geology 44, 23–26 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

L.C. received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant no. 677493 - FEVER) and additional support from the Swiss National Science Foundation (grant no. 200021_184632). E.R. received funding from the Deutsche Forschungsgemeinschaft (DFG – German Research Foundation; grant no. 634756). A.N. was supported by the Japan Society for the Promotion of Science (JSPS) grant KAKENHI 17KK0092. We are grateful to Andrew Harp for sharing his version of the Summer Coon dike map with us.

Author information

Affiliations

Authors

Contributions

L.C. focused on the thermal evolution of magmatic systems and interaction between magmatic fluids and magma; M.T. took the lead on the discussion of the processes of magma reservoir pressurization; A.N. led the sections on internal and external triggers; and E.R. led the sections on magma transfer through the crust. All authors contributed equally to the remaining sections of the manuscript and edited the final version.

Corresponding author

Correspondence to Luca Caricchi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks F. Costa, M. Cassidy and A. Clarke for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Phreatic eruptions

The explosive vaporization of rapidly heated fluids.

Overpressure

Pressure in excess of the lithostatic pressure.

Fluid flushing

The percolation and chemical interaction between externally sourced magmatic fluids and magma, sometimes also referred to as fluid fluxing.

Exsolved (or excess) volatiles

Volatile phases such as H2O and CO2 stored in bubbles suspended in the magma.

Magma compressibility

A measure of the relative decrease of magma volume in response to an increase of pressure.

Solidus temperature

Minimum temperature at which a melt phase can coexist with crystals in thermodynamic equilibrium.

Second boiling

Volatile exsolution that occurs as a result of the increased concentration of water in silicate melt during crystallization.

Inclined sheets

Steeply dipping tabular or gently curved intrusions.

Cone sheets

Arcuate intrusions with a geometry like the segment of a downward-pointing cone.

Ring dikes

Arcuate or circular intrusions associated with caldera ring faults.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Caricchi, L., Townsend, M., Rivalta, E. et al. The build-up and triggers of volcanic eruptions. Nat Rev Earth Environ 2, 458–476 (2021). https://doi.org/10.1038/s43017-021-00174-8

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing