Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Constraints and enablers for increasing carbon storage in the terrestrial biosphere

Abstract

Harnessing nature-based climate solutions (NbCS) to help simultaneously achieve climate and conservation goals is an attractive win-win. The contribution of NbCS to climate action relies on both biogeochemical potential and the ability to overcome environmental, economic and governance constraints for implementation. As such, estimates of additional NbCS-related terrestrial biosphere storage potential range from less than 100 GtCO2 to more than 800 GtCO2. In this Review, we assess the negative emissions contributions of NbCS — including reforestation, improved forest management and soil carbon sequestration — alongside their environmental, social and governance constraints. Given near-term implementation challenges and long-term biogeochemical constraints, a reasonable value for the expected impact of NbCS is up to 100–200 GtCO2 in negative emissions for the remainder of the twenty-first century. To sustainably reach this level, focus should be on projects with clear co-benefits, and must not come at the expense of a reduction in emissions from deforestation and forest degradation, rapid decarbonization and innovation from alternative negative emissions technologies.

Key points

  • Land management interventions can contribute to climate change mitigation through avoided emissions from deforestation and forest degradation, and through negative emissions from increasing carbon dioxide removal via reforestation, soil carbon sequestration and more.

  • The largest existing estimates of negative emissions potential from nature-based climate solutions implicitly rely on a potentially risky strategy of increasing carbon storage beyond historical bounds.

  • More conservative estimates that focus on refilling past carbon losses from the terrestrial biosphere are likely to be more feasible and have more co-benefits.

  • Successful implementation of nature-based climate solutions requires rapid increases in financing, increased on-the-ground capacity, and robust policy and governance mechanisms.

  • In the absence of broader climate action, climate change impacts on the biosphere will limit the potential for nature-based climate solutions to contribute negative emissions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Silo versus haystack.
Fig. 2: Estimates for unfilled sink potential and increases in carbon storage from nature-based climate solutions.
Fig. 3: Parsing natural climate solutions estimates by constraints considered.
Fig. 4: Summary of constraints and judgement of near-term and long-term likelihood to be limiting.

References

  1. 1.

    Intergovernmental Panel on Climate Change (IPCC). Global Warming of 1.5°C. An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (World Meteorological Organization, 2018).

  2. 2.

    Rogelj, J. et al. A new scenario logic for the Paris Agreement long-term temperature goal. Nature 573, 357–363 (2019).

    Google Scholar 

  3. 3.

    Minx, J. C. et al. Negative emissions — part 1: research landscape and synthesis. Environ. Res. Lett. 13, 063001 (2018).

    Google Scholar 

  4. 4.

    Fuss, S. et al. Betting on negative emissions. Nat. Clim. Change 4, 850–853 (2014).

    Google Scholar 

  5. 5.

    Gattuso, J.-P., Williamson, P., Duarte, C. M. & Magnan, A. K. The potential for ocean-based climate action: negative emissions technologies and beyond. Front. Clim. 2, 37 (2021).

    Google Scholar 

  6. 6.

    National Academies of Sciences, Engineering, and Medicine (NASEM). Negative Emissions Technologies and Reliable Sequestration (The National Academies Press, 2019).

    Google Scholar 

  7. 7.

    IGBP Terrestrial Carbon Working Group. The terrestrial carbon cycle: implications for the Kyoto Protocol. Science 280, 1393–1394 (1998).

    Google Scholar 

  8. 8.

    Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).

    Google Scholar 

  9. 9.

    Intergovernmental Panel on Climate Change (IPCC). Proceedings of the IPCC Conference on Tropical Forestry Response Options to Global Climate Change (US Environmental Protection Agency, 1990).

  10. 10.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    Google Scholar 

  11. 11.

    Hua, F. et al. Opportunities for biodiversity gains under the world’s largest reforestation programme. Nat. Commun. 7, 12717 (2016).

    Google Scholar 

  12. 12.

    Putz, F. E. et al. Improved tropical forest management for carbon retention. PLoS Biol. 6, e166 (2008).

    Google Scholar 

  13. 13.

    Moomaw, W. R., Masino, S. A. & Faison, E. K. Intact forests in the United States: proforestation mitigates climate change and serves the greatest good. Front. For. Glob. Change 2, 27 (2019).

    Google Scholar 

  14. 14.

    Nolan, R. H. et al. Safeguarding reforestation efforts against changes in climate and disturbance regimes. For. Ecol. Manag. 424, 458–467 (2018).

    Google Scholar 

  15. 15.

    Morecroft, M. D. et al. Measuring the success of climate change adaptation and mitigation in terrestrial ecosystems. Science 366, eaaw9256 (2019).

    Google Scholar 

  16. 16.

    Smith, P. et al. Towards an integrated global framework to assess the impacts of land use and management change on soil carbon: current capability and future vision. Glob. Change Biol. 18, 2089–2101 (2012).

    Google Scholar 

  17. 17.

    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    Google Scholar 

  18. 18.

    Roe, S. et al. Contribution of the land sector to a 1.5 °C world. Nat. Clim. Change 9, 817–828 (2019).

    Google Scholar 

  19. 19.

    Paustian, K. et al. Soil C sequestration as a biological negative emission strategy. Front. Clim. 1, 8 (2019).

    Google Scholar 

  20. 20.

    Seddon, N. et al. Getting the message right on nature-based solutions to climate change. Glob. Change Biol. 27, 1518–1546 (2021).

    Google Scholar 

  21. 21.

    World Resources Institute. Global Forest Watch https://www.wri.org/our-work/project/global-forest-watch (2014).

  22. 22.

    Forest Trends’ Ecosystem Marketplace. Financing Emissions Reductions for the Future: State of the Voluntary Carbon Markets 2019 (Forest Trends, 2019).

  23. 23.

    Forest Trends’ Ecosystem Marketplace. Fertile Ground: State of Forest Carbon Finance 2017 (Forest Trends, 2017).

  24. 24.

    United Nations Framework Convention on Climate Change (UNFCCC). The Clean Development Mechanism Project Search https://cdm.unfccc.int/Projects/projsearch.html.

  25. 25.

    Pozo, C., Galán-Martín, Á., Reiner, D. M., Mac Dowell, N. & Guillén-Gosálbez, G. Equity in allocating carbon dioxide removal quotas. Nat. Clim. Change 10, 640–646 (2020).

    Google Scholar 

  26. 26.

    Mulligan, J. A. et al. CarbonShot: Federal Policy Options for Carbon Removal in the United States (World Resources Institute, 2020).

  27. 27.

    Fargione, J. E. et al. Natural climate solutions for the United States. Sci. Adv. 4, eaat1869 (2018).

    Google Scholar 

  28. 28.

    Cameron, D. R., Marvin, D. C., Remucal, J. M. & Passero, M. C. Ecosystem management and land conservation can substantially contribute to California’s climate mitigation goals. Proc. Natl Acad. Sci. USA 114, 12833–12838 (2017).

    Google Scholar 

  29. 29.

    Baker, S. E. et al. Getting to Neutral: Options for Negative Carbon Emissions in California (Lawrence Livermore National Laboratory, 2020).

  30. 30.

    Field, C. B. & Mach, K. J. Rightsizing carbon dioxide removal. Science 356, 706–707 (2017).

    Google Scholar 

  31. 31.

    Prentice, I. C. et al. in Climate Change 2001: The Scientific Basis Ch. 3 (eds Houghton, J. T. et al.) 185–237 (World Meteorological Organization, 2001).

  32. 32.

    Mackey, B. et al. Untangling the confusion around land carbon science and climate change mitigation policy. Nat. Clim. Change 3, 552–557 (2013).

    Google Scholar 

  33. 33.

    Hurteau, M. D., Koch, G. W. & Hungate, B. A. Carbon protection and fire risk reduction: toward a full accounting of forest carbon offsets. Front. Ecol. Environ. 6, 493–498 (2008).

    Google Scholar 

  34. 34.

    McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).

    Google Scholar 

  35. 35.

    Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).

    Google Scholar 

  36. 36.

    Houghton, R. A. & Nassikas, A. A. Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob. Biogeochem. Cycles 31, 456–472 (2017).

    Google Scholar 

  37. 37.

    DeFries, R. S., Field, C. B., Fung, I., Collatz, G. J. & Bounoua, L. Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity. Glob. Biogeochem. Cycles 13, 803–815 (1999).

    Google Scholar 

  38. 38.

    Hansis, E., Davis, S. J. & Pongratz, J. Relevance of methodological choices for accounting of land use change carbon fluxes. Glob. Biogeochem. Cycles 29, 1230–1246 (2015).

    Google Scholar 

  39. 39.

    Erb, K.-H. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76 (2018).

    Google Scholar 

  40. 40.

    Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. USA 114, 9575–9580 (2017).

    Google Scholar 

  41. 41.

    Churkina, G. et al. Buildings as a global carbon sink. Nat. Sustain. 3, 269–276 (2020).

    Google Scholar 

  42. 42.

    Stallard, R. F. Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial. Glob. Biogeochem. Cycles 12, 231–257 (1998).

    Google Scholar 

  43. 43.

    Kondo, M. et al. Plant regrowth as a driver of recent enhancement of terrestrial CO2 uptake. Geophys. Res. Lett. 45, 4820–4830 (2018).

    Google Scholar 

  44. 44.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    Google Scholar 

  45. 45.

    Pugh, T. A. M. et al. Role of forest regrowth in global carbon sink dynamics. Proc. Natl Acad. Sci. USA 119, 4382–4387 (2019).

    Google Scholar 

  46. 46.

    Nabuurs, G.-J. et al. First signs of carbon sink saturation in European forest biomass. Nat. Clim. Change 3, 792–796 (2013).

    Google Scholar 

  47. 47.

    Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 1, 1438–1445 (2017).

    Google Scholar 

  48. 48.

    Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).

    Google Scholar 

  49. 49.

    Griscom, B. W. et al. National mitigation potential from natural climate solutions in the tropics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190126 (2020).

    Google Scholar 

  50. 50.

    Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).

    Google Scholar 

  51. 51.

    Krause, A. et al. Large uncertainty in carbon uptake potential of land-based climate-change mitigation efforts. Glob. Change Biol. 24, 3025–3038 (2018).

    Google Scholar 

  52. 52.

    Jones, C. D. et al. Simulating the Earth system response to negative emissions. Environ. Res. Lett. 11, 095012 (2016).

    Google Scholar 

  53. 53.

    Jones, C. D. et al. C4MIP — the coupled climate–carbon cycle model intercomparison project: experimental protocol for CMIP6. Geosci. Model Dev. 9, 2853–2880 (2016).

    Google Scholar 

  54. 54.

    Lawrence, D. M. et al. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design. Geosci. Model Dev. 9, 2973–2998 (2016).

    Google Scholar 

  55. 55.

    Fernández-Martínez, M. et al. Global trends in carbon sinks and their relationships with CO2 and temperature. Nat. Clim. Change 9, 73–79 (2019).

    Google Scholar 

  56. 56.

    Terrer, C. et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 9, 684–689 (2019).

    Google Scholar 

  57. 57.

    Hong, S. et al. Divergent responses of soil organic carbon to afforestation. Nat. Sustain. 3, 694–700 (2020).

    Google Scholar 

  58. 58.

    Li, D., Niu, S. & Luo, Y. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta-analysis. New Phytol. 195, 172–181 (2012).

    Google Scholar 

  59. 59.

    Baldocchi, D. & Penuelas, J. The physics and ecology of mining carbon dioxide from the atmosphere by ecosystems. Glob. Change Biol. 25, 1191–1197 (2018).

    Google Scholar 

  60. 60.

    Gómez-González, S., Ochoa-Hueso, R. & Pausas, J. G. Afforestation falls short as a biodiversity strategy. Science 368, 1439 (2020).

    Google Scholar 

  61. 61.

    Bellamy, R. & Osaka, S. Unnatural climate solutions. Nat. Clim. Change 10, 98–99 (2020).

    Google Scholar 

  62. 62.

    Indigo Ag. Indigo launches The Terraton Initiative. https://www.indigoag.com/en-au/pages/news/indigo-launches-the-terraton-initiative (2019).

  63. 63.

    Schlesinger, W. H. & Amundson, R. Managing for soil carbon sequestration: Let’s get realistic. Glob. Change Biol. 25, 386–389 (2019).

    Google Scholar 

  64. 64.

    Betts, R. A. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408, 187–190 (2000).

    Google Scholar 

  65. 65.

    Bala, G. et al. Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl Acad. Sci. USA 104, 6550–6555 (2007).

    Google Scholar 

  66. 66.

    Jackson, R. B. et al. Protecting climate with forests. Environ. Res. Lett. 3, 044006 (2008).

    Google Scholar 

  67. 67.

    Li, Y. et al. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 6, 6603 (2015).

    Google Scholar 

  68. 68.

    Prevedello, J. A., Winck, G. R., Weber, M. M., Nichols, E. & Sinervo, B. Impacts of forestation and deforestation on local temperature across the globe. PloS ONE 13, e0213368 (2019).

    Google Scholar 

  69. 69.

    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    Google Scholar 

  70. 70.

    Zhang, Q. et al. Reforestation and surface cooling in temperate zones: mechanisms and implications. Glob. Change Biol. 26, 3384–3401 (2020).

    Google Scholar 

  71. 71.

    California Air Resources Board. Compliance Offset Program. https://ww2.arb.ca.gov/our-work/programs/compliance-offset-program (2013).

  72. 72.

    Intergovernmental Panel on Climate Change (IPCC). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (2019).

  73. 73.

    Hemes, K. S., Chamberlain, S. D., Eichelmann, E., Knox, S. H. & Baldocchi, D. D. A biogeochemical compromise: the high methane cost of sequestering carbon in restored wetlands. Geophys. Res. Lett. 45, 6081–6091 (2018).

    Google Scholar 

  74. 74.

    CarbonPlan Team. The cost of temporary carbon removal (2020).

  75. 75.

    Holl, K. D. & Brancalion, P. H. S. Tree planting is not a simple solution. Science 368, 580–581 (2020).

    Google Scholar 

  76. 76.

    Chen, W., Meng, J., Han, X., Lan, Y. & Zhang, W. Past, present, and future of biochar. Biochar 1, 75–87 (2019).

    Google Scholar 

  77. 77.

    Nemet, G. F. et al. Negative emissions — part 3: innovation and upscaling. Environ. Res. Lett. 13, 063003 (2018).

    Google Scholar 

  78. 78.

    Chazdon, R. & Brancalion, P. Restoring forests as a means to many ends. Science 365, 24–25 (2019).

    Google Scholar 

  79. 79.

    Kalt, G. et al. Natural climate solutions versus bioenergy: Can carbon benefits of natural succession compete with bioenergy from short rotation coppice. GCB Bioenergy 11, 1283–1297 (2019).

    Google Scholar 

  80. 80.

    Seddon, N. et al. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190120 (2020).

    Google Scholar 

  81. 81.

    Seddon, N., Turner, B., Berry, P., Chausson, A. & Girardin, C. A. J. Grounding nature-based climate solutions in sound biodiversity science. Nat. Clim. Change 9, 84–87 (2019).

    Google Scholar 

  82. 82.

    Dass, P., Houlton, B. Z., Wang, Y. & Warlind, D. Grasslands may be more reliable carbon sinks than forests in California. Environ. Res. Lett. 13, 074027 (2018).

    Google Scholar 

  83. 83.

    Jackson, R. B. et al. Trading water for carbon with biological carbon sequestration. Science 310, 1944–1947 (2005).

    Google Scholar 

  84. 84.

    Buck, H. J. After Geoengineering: Climate Tragedy, Repair, and Restoration (Verso Books, 2019).

  85. 85.

    House, J. I., Prentice, I. C. & Le Quere, C. Maximum impacts of future reforestation or deforestation on atmospheric CO2. Glob. Change Biol. 8, 1047–1052 (2002).

    Google Scholar 

  86. 86.

    Boysen, L. R., Lucht, W. & Gerten, D. Trade-offs for food production, nature conservation and climate limit the terrestrial carbon dioxide removal potential. Glob. Change Biol. 23, 4303–4317 (2017).

    Google Scholar 

  87. 87.

    Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).

    Google Scholar 

  88. 88.

    Smith, P. et al. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals. Glob. Change Biol. 19, 2285–2302 (2013).

    Google Scholar 

  89. 89.

    Popp, A. et al. The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system. Environ. Res. Lett. 6, 034017 (2011).

    Google Scholar 

  90. 90.

    Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).

    Google Scholar 

  91. 91.

    Turner, P. A., Field, C. B., Lobell, D. B., Sanchez, D. L. & Mach, K. J. Unprecedented rates of land-use transformation in modelled climate change mitigation pathways. Nat. Sustain. 1, 240–245 (2018).

    Google Scholar 

  92. 92.

    Campbell, J. E., Lobell, D. B., Genova, R. C. & Field, C. B. The global potential of bioenergy on abandoned agriculture lands. Environ. Sci. Technol. 42, 5791–5794 (2008).

    Google Scholar 

  93. 93.

    Bell, S., Barriocanal, C., Terrer, C. & Rosell-Melé, A. Management opportunities for soil carbon sequestration following agricultural land abandonment. Environ. Sci. Policy 108, 104–111 (2020).

    Google Scholar 

  94. 94.

    FAO and UNEP. The State of the World’s Forests 2020. Forests, biodiversity, and people. http://www.fao.org/3/ca8642en/ca8642en.pdf (2020).

  95. 95.

    The Food and Land Use Coalition. Growing Better: Ten Critical Transitions to Transform Food and Land Use. https://www.foodandlandusecoalition.org/wp-content/uploads/2019/09/FOLU-GrowingBetter-GlobalReport.pdf (2019).

  96. 96.

    Smith, P. et al. Land-management options for greenhouse gas removal and their impacts on ecosystem services and the sustainable development goals. Annu. Rev. Environ. Resour. 44, 255–286 (2019).

    Google Scholar 

  97. 97.

    Dorner, P. & Thiesenhusen, W. Land Tenure and Deforestation: Interactions and Environmental Implications (United Nations Research Institute for Social Development, 1992).

  98. 98.

    Ferreira, S. Deforestation, property rights, and international trade. Land Econ. 80, 174–193 (2004).

    Google Scholar 

  99. 99.

    Robinson, B. E., Holland, M. B. & Naughton-Treves, L. Does secure land tenure save forests? A meta-analysis of the relationship between land tenure and tropical deforestation. Glob. Environ. Change 29, 281–293 (2014).

    Google Scholar 

  100. 100.

    Laurance, W. F. Reflections on the tropical deforestation crisis. Biol. Conserv. 91, 109–117 (1999).

    Google Scholar 

  101. 101.

    Murtazashvili, I., Murtazashvili, J. & Salahodjaev, R. Trust and deforestation: a cross-country comparison. For. Policy Econ. 101, 111–119 (2019).

    Google Scholar 

  102. 102.

    Koyuncu, C. & Yilmaz, R. The impact of corruption on deforestation: a cross-country evidence. J. Dev. Areas 42, 213–222 (2009).

    Google Scholar 

  103. 103.

    Pailler, S. Re-election incentives and deforestation cycles in the Brazilian Amazon. J. Environ. Econ. Manag. 88, 345–365 (2018).

    Google Scholar 

  104. 104.

    United Nations Framework Convention on Climate Change (UNFCCC). Decision 4/CP.15 Methodological guidance for activities relating to reducing emissions from deforestation and forest degradation and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks in developing countries (2009).

  105. 105.

    Anderson, C. M., Field, C. B. & Mach, K. J. Forest offsets partner climate-change mitigation with conservation. Front. Ecol. Environ. 15, 359–365 (2017).

    Google Scholar 

  106. 106.

    Merenlender, A. M., Huntsinger, L., Guthey, G. & Fairfax, S. K. Land trusts and conservation easements: who is conserving what for whom. Conserv. Biol. 18, 65–75 (2004).

    Google Scholar 

  107. 107.

    Alix-Garcia, J. & Wolff, H. Payment for ecosystem services from forests. Annu. Rev. Resour. Econ. 6, 361–380 (2014).

    Google Scholar 

  108. 108.

    Jayachandran, S. et al. Cash for carbon: a randomized trial of payments for ecosystem services to reduce deforestation. Science 357, 267–273 (2017).

    Google Scholar 

  109. 109.

    Biggs, E. M. et al. Sustainable development and the water–energy–food nexus: a perspective on livelihoods. Environ. Sci. Policy 54, 389–397 (2015).

    Google Scholar 

  110. 110.

    Buchner, B. et al. Global Landscape of Climate Finance 2019 (Climate Policy Initiative, 2019).

  111. 111.

    The Food and Land Use Coalition. Nature for Net-Zero: consultation document on the need to raise corporate ambition towards nature-based net-zero emissions (2020).

  112. 112.

    Asner, G. P. et al. A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia 168, 1147–1160 (2012).

    Google Scholar 

  113. 113.

    Schimel, D. & Schneider, F. D., JPL Carbon and Ecosystem Participants. Flux towers in the sky: global ecology from space. New Phytol. 224, 570–584 (2019).

    Google Scholar 

  114. 114.

    Kurz, W. A., Stinson, G., Rampley, G. J., Dymond, C. C. & Neilson, E. T. Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proc. Natl Acad. Sci. USA 105, 1551–1555 (2008).

    Google Scholar 

  115. 115.

    Marland, G., Fruit, K. & Sedjo, R. Accounting for sequestered carbon: the question of permanence. Environ. Sci. Policy 4, 259–268 (2001).

    Google Scholar 

  116. 116.

    Sedjo, R. A., Marland, G. & Fruit, K. Renting carbon offsets: the question of permanence. Resources for the Future Manuscript 12 pp (2001).

  117. 117.

    Marland, G. & Marland, E. Trading permanent and temporary carbon emissions credits. Clim. Change 95, 465 (2009).

    Google Scholar 

  118. 118.

    van Oosterzee, P., Blignaut, J. & Bradshaw, C. J. A. iREDD hedges against avoided deforestation’s unholy trinity of leakage, permanence and additionality. Conserv. Lett. 5, 266–273 (2012).

    Google Scholar 

  119. 119.

    May, P. J. Policy learning and failure. J. Public Policy 12, 331–354 (1992).

    Google Scholar 

  120. 120.

    Geist, H. J. & Lambin, E. F. Proximate causes and underlying driving forces of tropical deforestation. BioScience 52, 143–150 (2002).

    Google Scholar 

  121. 121.

    Zeng, Y. et al. Economic and social constraints on reforestation for climate mitigation in Southeast Asia. Nat. Clim. Change 10, 842–844 (2020).

    Google Scholar 

  122. 122.

    Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 1–55 (2015).

    Google Scholar 

  123. 123.

    Anderson, C. M. et al. Natural climate solutions are not enough. Science 363, 933–934 (2019).

    Google Scholar 

  124. 124.

    Lal, R. et al. The carbon sequestration potential of terrestrial ecosystems. J. Soil Water Conserv. 73, 145A–152A (2018).

    Google Scholar 

  125. 125.

    Arora, V. K. & Montenegro, A. Small temperature benefits provided by realistic afforestation efforts. Nat. Geosci. 4, 514–518 (2011).

    Google Scholar 

  126. 126.

    National Academies of Sciences, Engineering, and Medicine (NASEM). Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration (The National Academies Press, 2015).

  127. 127.

    Chabbi, A. et al. Aligning agriculture and climate policy. Nat. Clim. Change 7, 307–309 (2017).

    Google Scholar 

  128. 128.

    Vaughan, N. E. & Lenton, T. M. A review of climate geoengineering proposals. Clim. Change 109, 745–790 (2011).

    Google Scholar 

  129. 129.

    Houghton, R. A., Unruh, J. D. & Lefebvre, P. A. Current land cover in the tropics and its potential for sequestering carbon. Glob. Biogeochem. Cycles 7, 305–320 (1993).

    Google Scholar 

  130. 130.

    Houghton, R. A. & Nassikas, A. A. Negative emissions from stopping deforestation and forest degradation, globally. Glob. Change Biol. 24, 350–359 (2018).

    Google Scholar 

  131. 131.

    Busch, J. et al. Potential for low-cost carbon dioxide removal through tropical reforestation. Nat. Clim. Change 9, 463–466 (2019).

    Google Scholar 

  132. 132.

    Nilsson, S. & Schopfhauser, W. The carbon-sequestration potential of a global afforestation program. Clim. Change 30, 267–293 (1995).

    Google Scholar 

  133. 133.

    Winjum, J. K., Dixon, R. K. & Schroeder, P. E. Estimating the global potential of forest and agroforest management practices to sequester carbon. Water Air Soil Pollut. 64, 213–227 (1992).

    Google Scholar 

  134. 134.

    Sohngen, B. & Sedjo, R. Carbon sequestration in global forests under different carbon price regimes. Energy J. 27, 109–126 (2006).

    Google Scholar 

  135. 135.

    Mayer, A., Hausfather, Z., Jones, A. D. & Silver, W. L. The potential of agricultural land management to contribute to lower global surface temperatures. Sci. Adv. 4, eaaq0932 (2018).

    Google Scholar 

  136. 136.

    van Minnen, J. G., Strengers, B. J., Eickhout, B., Swart, R. J. & Leemans, R. Quantifying the effectiveness of climate change mitigation through forest plantations and carbon sequestration with an integrated land-use model. Carbon Balance Manag. 3, 3 (2008).

    Google Scholar 

  137. 137.

    Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 123, 1–22 (2004).

    Google Scholar 

  138. 138.

    Sathaye, J., Makundi, W., Dale, L., Chan, P. & Andrasko, K. GHG mitigation potential, costs and benefits in global forests: a dynamic partial equilibrium approach. Energy J. 27, 127–162 (2006).

    Google Scholar 

  139. 139.

    Canadell, J. G. & Schulze, E. D. Global potential of biospheric carbon management for climate mitigation. Nat. Commun. 5, 5282 (2014).

    Google Scholar 

  140. 140.

    Zomer, R. J., Bossio, D. A., Sommer, R. & Verchot, L. V. Global sequestration potential of increased organic carbon in cropland soils. Sci. Rep. 7, 15554 (2017).

    Google Scholar 

  141. 141.

    Caldecott, B., Lomax, G. & Workman, M. Stranded Carbon Assets and Negative Emissions Technologies (Smith School of Enterprise and the Environment, 2015).

  142. 142.

    Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639 (2016).

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Climate and Land Use Alliance.

Author information

Affiliations

Authors

Contributions

C.J.N., C.B.F. and K.J.M. conceived and designed the project. C.J.N. analysed and visualized data and drafted the manuscript, with comments and revisions from all authors.

Corresponding author

Correspondence to Connor J. Nolan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks Richard Houghton and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nolan, C.J., Field, C.B. & Mach, K.J. Constraints and enablers for increasing carbon storage in the terrestrial biosphere. Nat Rev Earth Environ 2, 436–446 (2021). https://doi.org/10.1038/s43017-021-00166-8

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing