Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The impact of glaciers on mountain erosion

Abstract

Glaciers and ice sheets erode mountains and produce vast quantities of sediments that are delivered to rivers and oceans, impacting global sediment and biogeochemical balances. Therefore, understanding how the production of sediments by glacial erosion has evolved in the past, and will evolve in a changing climate, is increasingly important. In this Review, we examine the processes that control the magnitude and timing of glacial erosion of mountains, and how models can be used to reconstruct processes during the development of mountains. Field observations reveal the important role of sliding on the erosion rate, which provide an empirical basis to explain the glacial buzzsaw and the impact of late Cenozoic cooling on erosion rates. Glacial erosion is also expected to evolve in the context of anthropogenic climate warming, as both glacier sliding and the input of meltwater related to thinning and retreat of ice will change, with large effects on downstream ecosystems and global biogeochemical cycles. Thus, the mechanics and impacts of glaciers on sediment production warrant more research, especially in regions experiencing rapid warming. Above all, there is a need for better monitoring of how erosion rates changed over the last decades and will evolve in the future.

Key points

  • Glacial erosion is primarily a result of glacial bedrock erosion through abrasion and plucking, and their interaction with subglacial hydrology.

  • Observations suggest a simple relationship between sliding and glacial erosion, which can be used to make predictions about glacial erosion in mountainous environments.

  • Models can be used to estimate the impact of climate on mountain development, and including the impact of Quaternary glaciations on the erosion rates and the glacial buzzsaw hypothesis.

  • The cryosphere and, in turn, glacial erosion are being altered. Therefore, the mechanics and impacts of glaciers on sediment production deserve more attention in regions experiencing rapid warming.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Glacial erosion processes.
Fig. 2: Existing constraints on the erosion rule.
Fig. 3: Longitudinal view of subglacial sediment transport process.
Fig. 4: Global distribution of peak elevation and equilibrium line altitude.
Fig. 5: Estimated glacial erosion rates in response to glacier retreat using ice flow model outputs.

References

  1. 1.

    Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18o records. Paleoceanography 20, PA1003 (2005).

    Google Scholar 

  2. 2.

    Ehlers, J., Gibbard, P. & Hughes, P. in Past Glacial Environments 2nd edn (eds Menzies, J. & van der Meer, J.) 77–101 (Elsevier, 2018).

  3. 3.

    Jaeger, J. M. & Koppes, M. N. The role of the cryosphere in source-to-sink systems. Earth Sci. Rev. 153, 43–76 (2016).

    Google Scholar 

  4. 4.

    Molnar, P. & England, P. Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? Nature 346, 29–34 (1990).

    Google Scholar 

  5. 5.

    Molnar, P. Late Cenozoic increase in accumulation rates of terrestrial sediment: How might climate change have affected erosion rates? Annu. Rev. Earth Planet. Sci. 32, 67–89 (2004).

    Google Scholar 

  6. 6.

    Herman, F. et al. Worldwide acceleration of mountain erosion under a cooling climate. Nature 504, 423–426 (2013).

    Google Scholar 

  7. 7.

    Fyke, J., Sergienko, O., Löfverström, M., Price, S. & Lenaerts, J. T. An overview of interactions and feedbacks between ice sheets and the Earth system. Rev. Geophys. 56, 361–408 (2018).

    Google Scholar 

  8. 8.

    Sternai, P. et al. Magmatic forcing of Cenozoic climate? J. Geophys. Res. Solid Earth 125, e2018JB016460 (2020).

    Google Scholar 

  9. 9.

    Collins, D. N. Seasonal development of subglacial drainage and suspended sediment delivery to melt waters beneath an Alpine glacier. Ann. Glaciol. 13, 45–50 (1989).

    Google Scholar 

  10. 10.

    Einsele, G. & Hinderer, M. Terrestrial sediment yield and the lifetimes of reservoirs, lakes, and larger basins. Geol. Rundsch. 86, 288–310 (1997).

    Google Scholar 

  11. 11.

    Hallet, B., Hunter, L. & Bogen, J. Rates of erosion and sediment evacuation by glaciers: A review of field data and their implications. Glob. Planet. Change 12, 213–235 (1996).

    Google Scholar 

  12. 12.

    Koppes, M. N. & Montgomery, D. R. The relative efficacy of fluvial and glacial erosion over modern to orogenic timescales. Nat. Geosci. 2, 644–647 (2009).

    Google Scholar 

  13. 13.

    Cuffey, K. et al. Entrainment at cold glacier beds. Geology 28, 351–354 (2000).

    Google Scholar 

  14. 14.

    Fabel, D. et al. Landscape preservation under Fennoscandian ice sheets determined from in situ produced 10Be and 26Al. Earth Planet. Sci. Lett. 201, 397–406 (2002).

    Google Scholar 

  15. 15.

    Harbor, J. et al. Cosmogenic nuclide evidence for minimal erosion across two subglacial sliding boundaries of the late glacial Fennoscandian ice sheet. Geomorphology 75, 90–99 (2006).

    Google Scholar 

  16. 16.

    Stroeven, A. et al. Slow, patchy landscape evolution in northern Sweden despite repeated ice-sheet glaciation. Spec. Pap. Geol. Soc. Am. 398, 387 (2006).

    Google Scholar 

  17. 17.

    Thomson, S. N., Reiners, P. W., Hemming, S. R. & Gehrels, G. E. The contribution of glacial erosion to shaping the hidden landscape of East Antarctica. Nat. Geosci. 6, 203–207 (2013).

    Google Scholar 

  18. 18.

    Cooper, M., Michaelides, K., Siegert, M. & Bamber, J. Paleofluvial landscape inheritance for Jakobshavn Isbræ catchment, Greenland. Geophys. Res. Lett. 43, 6350–6357 (2016).

    Google Scholar 

  19. 19.

    Andrews, J. T. & Syvitski, J. in Material Fluxes on the Surface of the Earth 99–115 (The National Academies Press, 1994).

  20. 20.

    Jamieson, S. S., Sugden, D. E. & Hulton, N. R. The evolution of the subglacial landscape of Antarctica. Earth Planet. Sci. Lett. 293, 1–27 (2010).

    Google Scholar 

  21. 21.

    Cowton, T., Nienow, P., Bartholomew, I., Sole, A. & Mair, D. Rapid erosion beneath the Greenland ice sheet. Geology 40, 343–346 (2012).

    Google Scholar 

  22. 22.

    Bendixen, M. et al. Delta progradation in Greenland driven by increasing glacial mass loss. Nature 550, 101–104 (2017).

    Google Scholar 

  23. 23.

    Young, N. E., Briner, J. P., Maurer, J. & Schaefer, J. M. 10bBe measurements in bedrock constrain erosion beneath the Greenland Ice Sheet margin. Geophys. Res. Lett. 43, 11–708 (2016).

    Google Scholar 

  24. 24.

    Overeem, I. et al. Substantial export of suspended sediment to the global oceans from glacial erosion in Greenland. Nat. Geosci. 10, 859–863 (2017).

    Google Scholar 

  25. 25.

    Hawkings, J. R. et al. Ice sheets as a missing source of silica to the polar oceans. Nat. Commun. 8, 14198 (2017).

    Google Scholar 

  26. 26.

    Wadham, J. L. et al. Ice sheets matter for the global carbon cycle. Nat. Commun. 10, 3567 (2019).

    Google Scholar 

  27. 27.

    Peizhen, Z., Molnar, P. & Downs, W. R. Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. Nature 410, 891–897 (2001).

    Google Scholar 

  28. 28.

    Herman, F. & Champagnac, J.-D. Plio-Pleistocene increase of erosion rates in mountain belts in response to climate change. Terra Nova 28, 2–10 (2016).

    Google Scholar 

  29. 29.

    Brozović, N., Burbank, D. W. & Meigs, A. J. Climatic limits on landscape development in the northwestern Himalaya. Science 276, 571–574 (1997).

    Google Scholar 

  30. 30.

    Spotila, J. A., Buscher, J. T., Meigs, A. J. & Reiners, P. W. Long-term glacial erosion of active mountain belts: Example of the Chugach–St. Elias Range, Alaska. Geology 32, 501–504 (2004).

    Google Scholar 

  31. 31.

    Mitchell, S. G. & Montgomery, D. R. Influence of a glacial buzzsaw on the height and morphology of the Cascade Range in central Washington State, USA. Quat. Res. 65, 96–107 (2006).

    Google Scholar 

  32. 32.

    Egholm, D., Nielsen, S., Pedersen, V. K. & Lesemann, J.-E. Glacial effects limiting mountain height. Nature 460, 884–887 (2009).

    Google Scholar 

  33. 33.

    Pedersen, V. K., Egholm, D. & Nielsen, S. Alpine glacial topography and the rate of rock column uplift: a global perspective. Geomorphology 122, 129–139 (2010).

    Google Scholar 

  34. 34.

    Prasicek, G., Herman, F., Robl, J. & Braun, J. Glacial steady state topography controlled by the coupled influence of tectonics and climate. J. Geophys. Res. Earth Surf. 123, 1344–1362 (2018).

    Google Scholar 

  35. 35.

    Prasicek, G., Hergarten, S., Deal, E., Herman, F. & Robl, J. A glacial buzzsaw effect generated by efficient erosion of temperate glaciers in a steady state model. Earth Planet. Sci. Lett. 543, 116350 (2020).

    Google Scholar 

  36. 36.

    Thomson, S. N. et al. Glaciation as a destructive and constructive control on mountain building. Nature 467, 313–317 (2010).

    Google Scholar 

  37. 37.

    Willenbring, J. K. & von Blanckenburg, F. Long-term stability of global erosion rates and weathering during late-Cenozoic cooling. Nature 465, 211–214 (2010).

    Google Scholar 

  38. 38.

    Champagnac, J.-D., Valla, P. G. & Herman, F. Late-Cenozoic relief evolution under evolving climate: A review. Tectonophysics 614, 44–65 (2014).

    Google Scholar 

  39. 39.

    Herman, F. & Brandon, M. Mid-latitude glacial erosion hotspot related to equatorial shifts in southern Westerlies. Geology 43, 987–990 (2015).

    Google Scholar 

  40. 40.

    Ganti, V. et al. Time scale bias in erosion rates of glaciated landscapes. Sci. Adv. 2, e1600204 (2016).

    Google Scholar 

  41. 41.

    Schildgen, T. F., van der Beek, P. A., Sinclair, H. D. & Thiede, R. C. Spatial correlation bias in late-Cenozoic erosion histories derived from thermochronology. Nature 559, 89–93 (2018).

    Google Scholar 

  42. 42.

    Willenbring, J. K. & Jerolmack, D. J. The null hypothesis: globally steady rates of erosion, weathering fluxes and shelf sediment accumulation during Late Cenozoic mountain uplift and glaciation. Terra Nova 28, 11–18 (2016).

    Google Scholar 

  43. 43.

    Willett, S. D. et al. Bias and error in modelling thermochronometric data: Resolving a potential increase in Plio-Pleistocene erosion rate. Earth Surf. Dyn. Discuss. https://doi.org/10.5194/esurf-2020-59 (2020).

    Article  Google Scholar 

  44. 44.

    Dielforder, A., Hetzel, R. & Oncken, O. Megathrust shear force controls mountain height at convergent plate margins. Nature 582, 225–229 (2020).

    Google Scholar 

  45. 45.

    Mariotti, A. et al. Nonlinear forcing of climate on mountain denudation during glaciations. Nat. Geosci. 14, 16–22 (2021).

    Google Scholar 

  46. 46.

    Beaud, F., Flowers, G. E. & Venditti, J. G. Modeling sediment transport in ice-walled subglacial channels and its implications for esker formation and proglacial sediment yields. J. Geophys. Res. Earth Surf. 123, 3206–3227 (2018).

    Google Scholar 

  47. 47.

    Alley, R., Cuffey, K. & Zoet, L. Glacial erosion: status and outlook. Ann. Glaciol. 60, 1–13 (2019).

    Google Scholar 

  48. 48.

    Williams, H. B. & Koppes, M. N. A comparison of glacial and paraglacial denudation responses to rapid glacial retreat. Ann. Glaciol. 60, 151–164 (2019).

    Google Scholar 

  49. 49.

    Hallet, B. A theoretical model of glacial abrasion. J. Glaciol. 23, 39–50 (1979).

    Google Scholar 

  50. 50.

    Boulton, G. S. Processes of glacier erosion on different substrata. J. Glaciol. 23, 15–38 (1979).

    Google Scholar 

  51. 51.

    Hallet, B. Glacial quarrying: A simple theoretical model. Ann. Glaciol. 22, 1–8 (1996).

    Google Scholar 

  52. 52.

    Iverson, N. R. A theory of glacial quarrying for landscape evolution models. Geology 40, 679–682 (2012).

    Google Scholar 

  53. 53.

    Ugelvig, S. V., Egholm, D. L. & Iverson, N. R. Glacial landscape evolution by subglacial quarrying: A multiscale computational approach. J. Geophys. Res. Earth Surf. 121, 2042–2068 (2016).

    Google Scholar 

  54. 54.

    Cohen, D., Hooyer, T. S., Iverson, N. R., Thomason, J. F. & Jackson, M. Role of transient water pressure in quarrying: A subglacial experiment using acoustic emissions. J. Geophys. Res. Earth Surf. 111, F03006 (2006).

    Google Scholar 

  55. 55.

    Alley, R. B. et al. How glaciers entrain and transport basal sediment: physical constraints. Quat. Sci. Rev. 16, 1017–1038 (1997).

    Google Scholar 

  56. 56.

    Delaney, I., Werder, M. A. & Farinotti, D. A numerical model for fluvial transport of subglacial sediment. J. Geophys. Res. Earth Surf. 124, 2197–2223 (2019).

    Google Scholar 

  57. 57.

    Beaud, F., Flowers, G. E. & Pimentel, S. Seasonal-scale abrasion and quarrying patterns from a two-dimensional ice-flow model coupled to distributed and channelized subglacial drainage. Geomorphology 219, 176–191 (2014).

    Google Scholar 

  58. 58.

    Beaud, F., Flowers, G. E. & Venditti, J. G. Efficacy of bedrock erosion by subglacial water flow. Earth Surf. Dyn. 4, 125–145 (2016).

    Google Scholar 

  59. 59.

    Beaud, F., Venditti, J. G., Flowers, G. E. & Koppes, M. Excavation of subglacial bedrock channels by seasonal meltwater flow. Earth Surf. Process. Landf. 43, 1960–1972 (2018).

    Google Scholar 

  60. 60.

    Herman, F., Beaud, F., Champagnac, J.-D., Lemieux, J.-M. & Sternai, P. Glacial hydrology and erosion patterns: a mechanism for carving glacial valleys. Earth Planet. Sci. Lett. 310, 498–508 (2011).

    Google Scholar 

  61. 61.

    Ugelvig, S., Egholm, D., Anderson, R. & Iverson, N. R. Glacial erosion driven by variations in meltwater drainage. J. Geophys. Res. Earth Surf. 123, 2863–2877 (2018).

    Google Scholar 

  62. 62.

    Iverson, N. R. Laboratory simulations of glacial abrasion: comparison with theory. J. Glaciol. 36, 304–314 (1990).

    Google Scholar 

  63. 63.

    Iverson, N. R. Potential effects of subglacial water-pressure fluctuations on quarrying. J. Glaciol. 37, 27–36 (1991).

    Google Scholar 

  64. 64.

    Hildes, D. H., Clarke, G. K., Flowers, G. E. & Marshall, S. J. Subglacial erosion and englacial sediment transport modelled for North American ice sheets. Quat. Sci. Rev. 23, 409–430 (2004).

    Google Scholar 

  65. 65.

    Zoet, L., Alley, R. B., Anandakrishnan, S. & Christianson, K. Accelerated subglacial erosion in response to stick-slip motion. Geology 41, 159–162 (2013).

    Google Scholar 

  66. 66.

    Hallet, B. Glacial abrasion and sliding: their dependence on the debris concentration in basal ice. Ann. Glaciol. 2, 23–28 (1981).

    Google Scholar 

  67. 67.

    Jahns, R. H. Sheet structure in granites: its origin and use as a measure of glacial erosion in New England. J. Geol. 51, 71–98 (1943).

    Google Scholar 

  68. 68.

    Drewry, D. J. Glacial Geologic Processes (Edward Arnold, 1986).

  69. 69.

    Briner, J. P. & Swanson, T. W. Using inherited cosmogenic 36Cl to constrain glacial erosion rates of the Cordilleran ice sheet. Geology 26, 3–6 (1998).

    Google Scholar 

  70. 70.

    Iverson, N. R. in Modern and Past Glacial Environments (ed. Menzies, J.) 131–145 (Elsevier, 2002).

  71. 71.

    Loso, M. G., Anderson, R. S. & Anderson, S. P. Post–Little Ice Age record of coarse and fine clastic sedimentation in an Alaskan proglacial lake. Geology 32, 1065–1068 (2004).

    Google Scholar 

  72. 72.

    Woodard, J., Zoet, L., Iverson, N. R. & Helanow, C. Linking bedrock discontinuities to glacial quarrying. Ann. Glaciol. 60, 66–72 (2019).

    Google Scholar 

  73. 73.

    Harbor, J. M., Hallet, B. & Raymond, C. F. A numerical model of landform development by glacial erosion. Nature 333, 347–349 (1988).

    Google Scholar 

  74. 74.

    Harbor, J. M. Numerical modeling of the development of U-shaped valleys by glacial erosion. Geol. Soc. Am. Bull. 104, 1364–1375 (1992).

    Google Scholar 

  75. 75.

    Braun, J., Zwartz, D. & Tomkin, J. H. A new surface-processes model combining glacial and fluvial erosion. Ann. Glaciol. 28, 282–290 (1999).

    Google Scholar 

  76. 76.

    MacGregor, K., Anderson, R., Anderson, S. & Waddington, E. Numerical simulations of glacial-valley longitudinal profile evolution. Geology 28, 1031–1034 (2000).

    Google Scholar 

  77. 77.

    Tomkin, J. H. & Braun, J. The influence of alpine glaciation on the relief of tectonically active mountain belts. Am. J. Sci. 302, 169–190 (2002).

    Google Scholar 

  78. 78.

    Anderson, R. S., Molnar, P. & Kessler, M. A. Features of glacial valley profiles simply explained. J. Geophys. Res. Earth Surf. 111, F01004 (2006).

    Google Scholar 

  79. 79.

    Herman, F. & Braun, J. Evolution of the glacial landscape of the Southern Alps of New Zealand: Insights from a glacial erosion model. J. Geophys. Res. Earth Surf. 113, F02009 (2008).

    Google Scholar 

  80. 80.

    Kessler, M. A., Anderson, R. S. & Briner, J. P. Fjord insertion into continental margins driven by topographic steering of ice. Nat. Geosci. 1, 365–369 (2008).

    Google Scholar 

  81. 81.

    Egholm, D., Pedersen, V. K., Knudsen, M. F. & Larsen, N. K. Coupling the flow of ice, water, and sediment in a glacial landscape evolution model. Geomorphology 141, 47–66 (2012).

    Google Scholar 

  82. 82.

    Tomkin, J. H. Numerically simulating alpine landscapes: the geomorphologic consequences of incorporating glacial erosion in surface process models. Geomorphology 103, 180–188 (2009).

    Google Scholar 

  83. 83.

    Jamieson, S. S., Hulton, N. R. & Hagdorn, M. Modelling landscape evolution under ice sheets. Geomorphology 97, 91–108 (2008).

    Google Scholar 

  84. 84.

    Sternai, P., Herman, F., Valla, P. G. & Champagnac, J.-D. Spatial and temporal variations of glacial erosion in the Rhône valley (Swiss Alps): Insights from numerical modeling. Earth Planet. Sci. Lett. 368, 119–131 (2013).

    Google Scholar 

  85. 85.

    Pedersen, V. K., Huismans, R. S., Herman, F. & Egholm, D. L. Controls of initial topography on temporal and spatial patterns of glacial erosion. Geomorphology 223, 96–116 (2014).

    Google Scholar 

  86. 86.

    Humphrey, N. F. & Raymond, C. Hydrology, erosion and sediment production in a surging glacier: Variegated Glacier, Alaska, 1982–83. J. Glaciol. 40, 539–552 (1994).

    Google Scholar 

  87. 87.

    Riihimaki, C. A., MacGregor, K. R., Anderson, R. S., Anderson, S. P. & Loso, M. G. Sediment evacuation and glacial erosion rates at a small alpine glacier. J. Geophys. Res. Earth Surf. 110, F03003 (2005).

    Google Scholar 

  88. 88.

    Herman, F. et al. Erosion by an Alpine glacier. Science 350, 193–195 (2015).

    Google Scholar 

  89. 89.

    Koppes, M. et al. Observed latitudinal variations in erosion as a function of glacier dynamics. Nature 526, 100–103 (2015).

    Google Scholar 

  90. 90.

    Cook, S. J., Swift, D. A., Kirkbride, M. P., Knight, P. G. & Waller, R. I. The empirical basis for modelling glacial erosion rates. Nat. Commun. 11, 759 (2020).

    Google Scholar 

  91. 91.

    Cuffey, K. M. & Paterson, W. S. B. The Physics of Glaciers 4th edn (Academic Press, 2010).

  92. 92.

    Limpert, E., Stahel, W. A. & Abbt, M. Log-normal distributions across the sciences: keys and clues: on the charms of statistics, and how mechanical models resembling gambling machines offer a link to a handy way to characterize log-normal distributions, which can provide deeper insight into variability and probability — normal or log-normal: that is the question. BioScience 51, 341–352 (2001).

    Google Scholar 

  93. 93.

    Alley, R. B., Lawson, D., Larson, G., Evenson, E. & Baker, G. Stabilizing feedbacks in glacier-bed erosion. Nature 424, 758–760 (2003).

    Google Scholar 

  94. 94.

    Cook, S. J. & Swift, D. A. Subglacial basins: Their origin and importance in glacial systems and landscapes. Earth Sci. Rev. 115, 332–372 (2012).

    Google Scholar 

  95. 95.

    Werder, M. A., Hewitt, I. J., Schoof, C. G. & Flowers, G. E. Modeling channelized and distributed subglacial drainage in two dimensions. J. Geophys. Res. Earth Surf. 118, 2140–2158 (2013).

    Google Scholar 

  96. 96.

    Delaney, I. & Adhikari, S. Increased subglacial sediment discharge in a warming climate: Consideration of ice dynamics, glacial erosion, and fluvial sediment transport. Geophys. Res. Lett. 47, e2019GL085672 (2020).

    Google Scholar 

  97. 97.

    Griffiths, T. in Proceedings, Eighth General Assembly and Seventeenth International Congress 331–336 (International Geographical Union, 1952).

  98. 98.

    Yanites, B. J. & Ehlers, T. A. Global climate and tectonic controls on the denudation of glaciated mountains. Earth Planet. Sci. Lett. 325, 63–75 (2012).

    Google Scholar 

  99. 99.

    Lai, J. & Anders, A. M. Tectonic controls on rates and spatial patterns of glacial erosion through geothermal heat flux. Earth Planet. Sci. Lett. 543, 116348 (2020).

    Google Scholar 

  100. 100.

    Walder, J. S. & Fowler, A. Channelized subglacial drainage over a deformable bed. J. Glaciol. 40, 3–15 (1994).

    Google Scholar 

  101. 101.

    Ng, F. S. Canals under sediment-based ice sheets. Ann. Glaciol. 30, 146–152 (2000).

    Google Scholar 

  102. 102.

    Creyts, T. T., Clarke, G. K. & Church, M. Evolution of subglacial overdeepenings in response to sediment redistribution and glaciohydraulic supercooling. J. Geophys. Res. Earth Surf. 118, 423–446 (2013).

    Google Scholar 

  103. 103.

    Kasmalkar, I., Mantelli, E. & Suckale, J. Spatial heterogeneity in subglacial drainage driven by till erosion. Proc. R. Soc. A 475, 20190259 (2019).

    Google Scholar 

  104. 104.

    Brinkerhoff, D., Truffer, M. & Aschwanden, A. Sediment transport drives tidewater glacier periodicity. Nat. Commun. 8, 90 (2017).

    Google Scholar 

  105. 105.

    Iken, A. & Bindschadler, R. A. Combined measurements of subglacial water pressure and surface velocity of Findelengletscher, Switzerland: conclusions about drainage system and sliding mechanism. J. Glaciol. 32, 101–119 (1986).

    Google Scholar 

  106. 106.

    Irarrazaval, I. et al. Bayesian inference of subglacial channel structures from water pressure and tracer-transit time data: A numerical study based on a 2-D geostatistical modeling approach. J. Geophys. Res. Earth Surf. 124, 1625–1644 (2019).

    Google Scholar 

  107. 107.

    Harper, J. T., Humphrey, N. F. & Greenwood, M. C. Basal conditions and glacier motion during the winter/spring transition, Worthington Glacier, Alaska, U.S.A. J. Glaciol. 48, 42–50 (2002).

    Google Scholar 

  108. 108.

    Willis, I. C., Richards, K. S. & Sharp, M. J. Links between proglacial stream suspended sediment dynamics, glacier hydrology and glacier motion at Midtdalsbreen, Norway. Hydrol. Process. 10, 629–648 (1996).

    Google Scholar 

  109. 109.

    Delaney, I., Bauder, A., Werder, M. A. & Farinotti, D. Regional and annual variability in subglacial sediment transport by water for two glaciers in the Swiss Alps. Front. Earth Sci. 6, 175 (2018).

    Google Scholar 

  110. 110.

    Swift, D. A., Nienow, P. W. & Hoey, T. B. Basal sediment evacuation by subglacial meltwater: suspended sediment transport from Haut Glacier d’Arolla, Switzerland. Earth Surf. Process. Landf. 30, 867–883 (2005).

    Google Scholar 

  111. 111.

    Gimbert, F., Tsai, V. C., Amundson, J. M., Bartholomaus, T. C. & Walter, J. I. Subseasonal changes observed in subglacial channel pressure, size, and sediment transport. Geophys. Res. Lett. 43, 3786–3794 (2016).

    Google Scholar 

  112. 112.

    Fenn, C. in Glacio-Fluvial sediment transfer: an alpine perspective (eds Gurnell, A. M. & Clarke, M. J.) (Wiley, 1987).

  113. 113.

    Boulton, G. On the origin and transport of englacial debris in Svalbard glaciers. J. Glaciol. 9, 213–229 (1970).

    Google Scholar 

  114. 114.

    Dowdeswell, J. A. The distribution and character of sediments in a tidewater glacier, southern Baffin Island, NWT, Canada. Arct. Alp. Res. 18, 45–56 (1986).

    Google Scholar 

  115. 115.

    Hewitt, I. J. & Creyts, T. T. A model for the formation of eskers. Geophys. Res. Lett. 46, 6673–6680 (2019).

    Google Scholar 

  116. 116.

    Broecker, W. S. & Denton, G. H. The role of ocean-atmosphere reorganizations in glacial cycles. Quat. Sci. Rev. 9, 305–341 (1990).

    Google Scholar 

  117. 117.

    Anders, A. M., Mitchell, S. G. & Tomkin, J. H. Cirques, peaks, and precipitation patterns in the Swiss Alps: Connections among climate, glacial erosion, and topography. Geology 38, 239–242 (2010).

    Google Scholar 

  118. 118.

    Sternai, P., Herman, F., Fox, M. R. & Castelltort, S. Hypsometric analysis to identify spatially variable glacial erosion. J. Geophys. Res. Earth Surf. 116, F03001 (2011).

    Google Scholar 

  119. 119.

    Agassiz, L. Études Sur Les Glaciers (Cambridge Univ. Press, 2012).

  120. 120.

    Penck, A. Glacial features in the surface of the Alps. J. Geol. 13, 1–19 (1905).

    Google Scholar 

  121. 121.

    Davis, W. M. The geographical cycle. Geograph. J. 14, 481–504 (1899).

    Google Scholar 

  122. 122.

    Penck, W. Die Morphologische Analyse (Morphological Analysis of Landforms) (Springer, 1924).

  123. 123.

    Whipple, K. X., Kirby, E. & Brocklehurst, S. H. Geomorphic limits to climate-induced increases in topographic relief. Nature 401, 39–43 (1999).

    Google Scholar 

  124. 124.

    Willett, S. D. Orogeny and orography: The effects of erosion on the structure of mountain belts. J. Geophys. Res. Solid Earth 104, 28957–28981 (1999).

    Google Scholar 

  125. 125.

    Willett, S. D. & Brandon, M. T. On steady states in mountain belts. Geology 30, 175–178 (2002).

    Google Scholar 

  126. 126.

    Willett, S. D., Schlunegger, F. & Picotti, V. Messinian climate change and erosional destruction of the central European Alps. Geology 34, 613–616 (2006).

    Google Scholar 

  127. 127.

    Whipple, K. X. The influence of climate on the tectonic evolution of mountain belts. Nat. Geosci. 2, 97–104 (2009).

    Google Scholar 

  128. 128.

    Champagnac, J.-D., Molnar, P., Sue, C. & Herman, F. Tectonics, climate, and mountain topography. J. Geophys. Res. Solid Earth 117, B02403 (2012).

    Google Scholar 

  129. 129.

    Hack, J. T. Dynamic equilibrium and landscape evolution. Theories Landf. Dev. 1, 87–102 (1975).

    Google Scholar 

  130. 130.

    Adams, J. Contemporary uplift and erosion of the Southern Alps, New Zealand. Geol. Soc. Am. Bull. 91, 1–114 (1980).

    Google Scholar 

  131. 131.

    Willett, S. D., Slingerland, R. & Hovius, N. Uplift, shortening, and steady state topography in active mountain belts. Am. J. Sci. 301, 455–485 (2001).

    Google Scholar 

  132. 132.

    Ward, D. J., Anderson, R. S. & Haeussler, P. J. Scaling the Teflon Peaks: Rock type and the generation of extreme relief in the glaciated western Alaska Range. J. Geophys. Res. Earth Surf. 117, F01031 (2012).

    Google Scholar 

  133. 133.

    Ahnert, F. Functional relationships between denudation, relief, and uplift in large, mid-latitude drainage basins. Am. J. Sci. 268, 243–263 (1970).

    Google Scholar 

  134. 134.

    Kirby, E. & Whipple, K. Quantifying differential rock-uplift rates via stream profile analysis. Geology 29, 415–418 (2001).

    Google Scholar 

  135. 135.

    Montgomery, D. R. & Brandon, M. T. Topographic controls on erosion rates in tectonically active mountain ranges. Earth Planet. Sci. Lett. 201, 481–489 (2002).

    Google Scholar 

  136. 136.

    Roe, G. H., Montgomery, D. R. & Hallet, B. Orographic precipitation and the relief of mountain ranges. J. Geophys. Res. Solid Earth 108, 2315 (2003).

    Google Scholar 

  137. 137.

    Wobus, C. et al. Tectonics from topography: Procedures, promise, and pitfalls. Spec. Pap. Geol. Soc. Am. 398, 55 (2006).

    Google Scholar 

  138. 138.

    Headley, R. M., Roe, G. & Hallet, B. Glacier longitudinal profiles in regions of active uplift. Earth Planet. Sci. Lett. 317, 354–362 (2012).

    Google Scholar 

  139. 139.

    Deal, E. & Prasicek, G. Analytical long-profile models of coupled glacial-fluvial networks. Earth Space Sci. Open Archive https://doi.org/10.1002/essoar.10503410.1 (2020).

    Article  Google Scholar 

  140. 140.

    Hutter, K. Theoretical Glaciology: Material Science of Ice and the Mechanics of Glaciers and Ice Sheets (Springer, 2017).

  141. 141.

    Oerlemans, J. Climate sensitivity of Franz Josef Glacier, New Zealand, as revealed by numerical modeling. Arct. Alp. Res. 29, 233–239 (1997).

    Google Scholar 

  142. 142.

    Gardner, T. W., Jorgensen, D. W., Shuman, C. & Lemieux, C. R. Geomorphic and tectonic process rates: Effects of measured time interval. Geology 15, 259–261 (1987).

    Google Scholar 

  143. 143.

    Heimsath, A. M., Dietrich, W. E., Nishiizumi, K. & Finkel, R. C. Stochastic processes of soil production and transport: Erosion rates, topographic variation and cosmogenic nuclides in the Oregon Coast Range. Earth Surf. Process. Landf. 26, 531–552 (2001).

    Google Scholar 

  144. 144.

    Kirchner, J. W. et al. Mountain erosion over 10 yr, 10 ky, and 10 my time scales. Geology 29, 591–594 (2001).

    Google Scholar 

  145. 145.

    Crave, A. & Davy, P. A stochastic “precipiton” model for simulating erosion/sedimentation dynamics. Comput. Geosci. 27, 815–827 (2001).

    Google Scholar 

  146. 146.

    Lague, D., Hovius, N. & Davy, P. Discharge, discharge variability, and the bedrock channel profile. J. Geophys. Res. Earth Surf. 110, F04006 (2005).

    Google Scholar 

  147. 147.

    DiBiase, R. A. & Whipple, K. X. The influence of erosion thresholds and runoff variability on the relationships among topography, climate, and erosion rate. J. Geophys. Res. Earth Surf. 116, F04036 (2011).

    Google Scholar 

  148. 148.

    Deal, E., Braun, J. & Botter, G. Understanding the role of rainfall and hydrology in determining fluvial erosion efficiency. J. Geophys. Res. Earth Surf. 123, 744–778 (2018).

    Google Scholar 

  149. 149.

    Pelletier, J. D. & Turcotte, D. L. Self-affine time series: II. Applications and models. Adv. Geophys. 40, 91–166 (1999).

    Google Scholar 

  150. 150.

    Cogez, A. et al. Constraints on the role of tectonic and climate on erosion revealed by two time series analysis of marine cores around New Zealand. Earth Planet. Sci. Lett. 410, 174–185 (2015).

    Google Scholar 

  151. 151.

    Zeitler, P. K., Johnson, N. M., Naeser, C. W. & Tahirkheli, R. A. Fission-track evidence for Quaternary uplift of the Nanga Parbat region, Pakistan. Nature 298, 255–257 (1982).

    Google Scholar 

  152. 152.

    Tippett, J. M. & Kamp, P. J. Fission track analysis of the late Cenozoic vertical kinematics of continental Pacific crust, South Island, New Zealand. J. Geophys. Res. Solid. Earth 98, 16119–16148 (1993).

    Google Scholar 

  153. 153.

    Farley, K., Rusmore, M. & Bogue, S. Post–10 Ma uplift and exhumation of the northern Coast Mountains, British Columbia. Geology 29, 99–102 (2001).

    Google Scholar 

  154. 154.

    Shuster, D. L., Ehlers, T. A., Rusmoren, M. E. & Farley, K. A. Rapid glacial erosion at 1.8 Ma revealed by 4He/3He thermochronometry. Science 310, 1668–1670 (2005).

    Google Scholar 

  155. 155.

    Berger, A. L. et al. Architecture, kinematics, and exhumation of a convergent orogenic wedge: A thermochronological investigation of tectonic–climatic interactions within the central St. Elias orogen, Alaska. Earth Planet. Sci. Lett. 270, 13–24 (2008).

    Google Scholar 

  156. 156.

    Berger, A. L. & Spotila, J. A. Denudation and deformation in a glaciated orogenic wedge: The St. Elias orogen, Alaska. Geology 36, 523–526 (2008).

    Google Scholar 

  157. 157.

    Berger, A. L. et al. Quaternary tectonic response to intensified glacial erosion in an orogenic wedge. Nat. Geosci. 1, 793–799 (2008).

    Google Scholar 

  158. 158.

    Vernon, A., van der Beek, P., Sinclair, H. & Rahn, M. Increase in late Neogene denudation of the European Alps confirmed by analysis of a fission-track thermochronology database. Earth Planet. Sci. Lett. 270, 316–329 (2008).

    Google Scholar 

  159. 159.

    Glotzbach, C., van der Beek, P. A. & Spiegel, C. Episodic exhumation and relief growth in the Mont Blanc massif, Western Alps from numerical modelling of thermochronology data. Earth Planet. Sci. Lett. 304, 417–430 (2011).

    Google Scholar 

  160. 160.

    Shuster, D. L., Cuffey, K. M., Sanders, J. W. & Balco, G. Thermochronometry reveals headward propagation of erosion in an alpine landscape. Science 332, 84–88 (2011).

    Google Scholar 

  161. 161.

    Valla, P. G., Shuster, D. L. & van der Beek, P. A. Significant increase in relief of the European Alps during mid-Pleistocene glaciations. Nat. Geosci. 4, 688–692 (2011).

    Google Scholar 

  162. 162.

    Valla, P. G. et al. Late Neogene exhumation and relief development of the Aar and Aiguilles Rouges massifs (Swiss Alps) from low-temperature thermochronology modeling and 4He/3He thermochronometry. J. Geophys. Res. Earth Surf. 117, F01004 (2012).

    Google Scholar 

  163. 163.

    Thiede, R. C. & Ehlers, T. A. Large spatial and temporal variations in Himalayan denudation. Earth Planet. Sci. Lett. 371, 278–293 (2013).

    Google Scholar 

  164. 164.

    Fox, M., Herman, F., Kissling, E. & Willett, S. D. Rapid exhumation in the Western Alps driven by slab detachment and glacial erosion. Geology 43, 379–382 (2015).

    Google Scholar 

  165. 165.

    Fox, M., Herman, F., Willett, S. D. & Schmid, S. M. The exhumation history of the European Alps inferred from linear inversion of thermochronometric data. Am. J. Sci. 316, 505–541 (2016).

    Google Scholar 

  166. 166.

    Margirier, A. et al. Time and mode of exhumation of the Cordillera Blanca batholith (Peruvian Andes). J. Geophys. Res. Solid Earth 121, 6235–6249 (2016).

    Google Scholar 

  167. 167.

    Michel, L., Ehlers, T. A., Glotzbach, C., Adams, B. A. & Stübner, K. Tectonic and glacial contributions to focused exhumation in the Olympic Mountains, Washington, USA. Geology 46, 491–494 (2018).

    Google Scholar 

  168. 168.

    Stalder, N. F. et al. The relationships between tectonics, climate and exhumation in the Central Andes (18–36°S): Evidence from low-temperature thermochronology. Earth Sci. Rev. 210, 103276 (2020).

    Google Scholar 

  169. 169.

    Willett, C. et al. Transient glacial incision in the Patagonian Andes from ~6 Ma to present. Sci. Adv. 6, eaay1641 (2020).

    Google Scholar 

  170. 170.

    Herman, F., Braun, J., Deal, E. & Prasicek, G. The response time of glacial erosion. J. Geophys. Res. Earth Surf. 123, 801–817 (2018).

    Google Scholar 

  171. 171.

    Huss, M. et al. Toward mountains without permanent snow and ice. Earths Future 5, 418–435 (2017).

    Google Scholar 

  172. 172.

    Zekollari, H., Fürst, J. J. & Huybrechts, P. Modelling the evolution of Vadret da Morteratsch, Switzerland, since the Little Ice Age and into the future. J. Glaciol. 60, 1155–1168 (2014).

    Google Scholar 

  173. 173.

    Zemp, M. et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 568, 382–386 (2019).

    Google Scholar 

  174. 174.

    Moon, T., Joughin, I., Smith, B. & Howat, I. 21st-century evolution of Greenland outlet glacier velocities. Science 336, 576–578 (2012).

    Google Scholar 

  175. 175.

    Catania, G. A., Stearns, L. A., Moon, T. A., Enderlin, E. M. & Jackson, R. H. Future evolution of Greenland’s marine-terminating outlet glaciers. J. Geophys. Res. Earth Surf. 125, e2018JF004873 (2020).

    Google Scholar 

  176. 176.

    Adhikari, S. & Marshall, S. Influence of high-order mechanics on simulation of glacier response to climate change: insights from Haig Glacier, Canadian Rocky Mountains. Cryosphere 7, 1527–1541 (2013).

    Google Scholar 

  177. 177.

    Hock, R. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate Ch. 2 (Intergovernmental Panel on Climate Change, 2019).

  178. 178.

    Dehecq, A. et al. Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia. Nat. Geosci. 12, 22–27 (2019).

    Google Scholar 

  179. 179.

    Stocker-Waldhuber, M., Fischer, A., Helfricht, K. & Kuhn, M. Long-term records of glacier surface velocities in the Ötztal Alps (Austria). Earth Syst. Sci. Data 11, 705–715 (2019).

    Google Scholar 

  180. 180.

    Rignot, E. & Kanagaratnam, P. Changes in the velocity structure of the Greenland Ice Sheet. Science 311, 986–990 (2006).

    Google Scholar 

  181. 181.

    Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A. & Lenaerts, J. T. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys.Res. Lett. 38, L05503 (2011).

    Google Scholar 

  182. 182.

    Enderlin, E. M. et al. An improved mass budget for the Greenland ice sheet. Geophys. Res. Lett. 41, 866–872 (2014).

    Google Scholar 

  183. 183.

    Lüthi, M. P. et al. A century of geometry and velocity evolution at Eqip Sermia, West Greenland. J. Glaciol. 62, 640–654 (2016).

    Google Scholar 

  184. 184.

    Goelzer, H. et al. The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6. Cryosphere 14, 3071–3096 (2020).

    Google Scholar 

  185. 185.

    Koppes, M. & Hallet, B. Erosion rates during rapid deglaciation in icy bay, alaska. J. Geophys. Res. Earth Surf. 111, F02023 (2006).

    Google Scholar 

  186. 186.

    Koppes, M., Hallet, B. & Anderson, J. Synchronous acceleration of ice loss and glacial erosion, Glaciar Marinelli, Chilean Tierra del Fuego. J. Glaciol. 55, 207–220 (2009).

    Google Scholar 

  187. 187.

    Koppes, M., Sylwester, R., Rivera, A. & Hallet, B. Variations in sediment yield over the advance and retreat of a calving glacier, Laguna San Rafael, North Patagonian Icefield. Quat. Res. 73, 84–95 (2010).

    Google Scholar 

  188. 188.

    Poinar, K. et al. Limits to future expansion of surface-melt-enhanced ice flow into the interior of western Greenland. Geophys. Res. Lett. 42, 1800–1807 (2015).

    Google Scholar 

  189. 189.

    Gagliardini, O. & Werder, M. A. Influence of increasing surface melt over decadal timescales on land-terminating Greenland-type outlet glaciers. J. Glaciol. 64, 700–710 (2018).

    Google Scholar 

  190. 190.

    Poinar, K., Dow, C. F. & Andrews, L. C. Long-term support of an active subglacial hydrologic system in Southeast Greenland by firn aquifers. Geophys. Res. Lett. 46, 4772–4781 (2019).

    Google Scholar 

  191. 191.

    St.-Pierre, K. S. et al. Contemporary limnology of the rapidly changing glacierized watershed of the world’s largest High Arctic lake. Sci. Rep. 9, 4447 (2019).

    Google Scholar 

  192. 192.

    Joughin, I., Smith, B. E. & Medley, B. Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science 344, 735–738 (2014).

    Google Scholar 

  193. 193.

    Carey, M. et al. Impacts of glacier recession and declining meltwater on mountain societies. Ann. Am. Assoc. Geograph. 107, 350–359 (2017).

    Google Scholar 

  194. 194.

    Anselmetti, F. S. et al. Effects of Alpine hydropower dams on particle transport and lacustrine sedimentation. Aquat. Sci. 69, 179–198 (2007).

    Google Scholar 

  195. 195.

    Felix, D., Albayrak, I., Abgottspon, A. & Boes, R. M. Optimization of hydropower plants with respect to fine sediment focusing on turbine switch-offs during floods. IOP Conf. Ser. Earth Environ. Sci. 49, 122011 (2016).

    Google Scholar 

  196. 196.

    Bogen, J. Glacial sediment production and development of hydro-electric power in glacierized areas. Ann. Glaciol. 13, 6–11 (1989).

    Google Scholar 

  197. 197.

    Bogen, J. & Bønsnes, T. E. Erosion and sediment transport in High Arctic rivers, Svalbard. Polar Res. 22, 175–189 (2003).

    Google Scholar 

  198. 198.

    Collins, D. N. in Hydrology in Mountainous Regions. I: Hydrological Measurements; the Water Cycle (eds Lang, H. & Musy, A.) 439–446 (IAHS, 1990).

  199. 199.

    Mizuyama, T., Oda, A., Laronne, J. B., Nonaka, M. & Matsuoka, M. Laboratory tests of a Japanese pipe geophone for continuous acoustic monitoring of coarse bedload. US Geol. Surv. Sci. Invest. Rep. 5091, 319–335 (2010).

    Google Scholar 

  200. 200.

    Bakker, M. et al. Field application and validation of a seismic bedload transport model. J. Geophys. Res. Earth Surf. 125, e2019JF005416 (2020).

    Google Scholar 

  201. 201.

    De Doncker, F., Herman, F. & Fox, M. Inversion of provenance data and sediment load into spatially varying erosion rates. Earth Surf. Process. Landf. 45, 3879–3901 (2020).

    Google Scholar 

  202. 202.

    Scherler, D., Leprince, S. & Strecker, M. R. Glacier-surface velocities in alpine terrain from optical satellite imagery — Accuracy improvement and quality assessment. Remote. Sens. Environ. 112, 3806–3819 (2008).

    Google Scholar 

  203. 203.

    Herman, F., Anderson, B. & Leprince, S. Mountain glacier velocity variation during a retreat/advance cycle quantified using sub-pixel analysis of ASTER images. J. Glaciol. 57, 197–207 (2011).

    Google Scholar 

  204. 204.

    MacAyeal, D. R. The basal stress distribution of Ice Stream E, Antarctica, inferred by control methods. J. Geophys. Res. Solid. Earth 97, 595–603 (1992).

    Google Scholar 

  205. 205.

    Truffer, M. The basal speed of valley glaciers: an inverse approach. J. Glaciol. 50, 236–242 (2004).

    Google Scholar 

  206. 206.

    Morlighem, M. et al. Spatial patterns of basal drag inferred using control methods from a full-Stokes and simpler models for Pine Island Glacier, West Antarctica. Geophys. Res. Lett. 37, L14502 (2010).

    Google Scholar 

  207. 207.

    Jay-Allemand, M., Gillet-Chaulet, F., Gagliardini, O. & Nodet, M. Investigating changes in basal conditions of Variegated Glacier prior to and during its 1982–1983 surge. Cryosphere 5, 659–672 (2011).

    Google Scholar 

  208. 208.

    Larour, E., Seroussi, H., Morlighem, M. & Rignot, E. Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM). J. Geophys.Res. Earth Surf. 117, F01022 (2012).

    Google Scholar 

  209. 209.

    Gillet-Chaulet, F. et al. Greenland ice sheet contribution to sea-level rise from a new-generation ice-sheet model. Cryosphere 6, 1561–1576 (2012).

    Google Scholar 

  210. 210.

    Mosbeux, C., Gillet-Chaulet, F. & Gagliardini, O. Comparison of adjoint and nudging methods to initialise ice sheet model basal conditions. Geosci. Model. Dev. 9, 2549–2562 (2016).

    Google Scholar 

  211. 211.

    Robl, J., Hergarten, S. & Prasicek, G. Glacial erosion promotes high mountains on thin crust. Earth Planet. Sci. Lett. 538, 116196 (2020).

    Google Scholar 

Download references

Acknowledgements

We thank G. Jouvet for providing his simulations for the Aletschgletscher, Switzerland, and J. Cuzzone for providing assistance with the Greenland Ice Sheet projections. We also thank the four anonymous reviewers for their constructive feedback.

Author information

Affiliations

Authors

Contributions

All the authors contributed equally to the paper.

Corresponding author

Correspondence to Frédéric Herman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks J. H. Tomkin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Ice sheets

Masses of ice that cover continental areas and are greater than 50,000 km2.

Outlet glaciers

Glaciers that follow valleys and originate from major ice sheets and ice caps.

Suspended sediment load

The part of the total sediment load that is maintained in suspension by turbulence in flowing water without contact with the stream bed.

Cosmogenic radionuclide dating

Estimating the time since rocks were exposed to cosmic rays by measuring the concentration of cosmogenic radionuclides that accumulate in rocks at the Earth surface.

Thermochronometry

A dating method to measure the apparent ages of rocks at the Earth surface and to interpret the exhumation rate in terms of the time taken for the rock to travel from a given closure temperature to the surface.

Bedrock erosion

Detachment of material from the glacier bed by abrasion or plucking.

Abrasion

The mechanical breakdown of rock surfaces caused by stress and motion at the contact point between a clast embedded in a glacier and the underlying bedrock.

Quarrying

The fracture of underlying rock due to glacial action and the entrainment of rock fragments that have been isolated by pre-existing bedrock cracks; also referred to as plucking.

Sediment transport

The transport by water of detached material or sediment on top, within and below the glacier.

Equilibrium line altitude

The elevation on a glacier where the accumulation and ablation of ice are in balance over a given time period (typically, one year).

Hypsometry

Hypsometry is the measurement of land elevation relative to mean sea level.

Alpine glaciers

Glaciers that form on the slopes of mountains; their ice dynamics are controlled by local slope variations.

Tidewater glaciers

Valley glaciers that terminate in the ocean and lose some of their mass by calving.

Bed load

The part of the total load that is transported along the bed.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Herman, F., De Doncker, F., Delaney, I. et al. The impact of glaciers on mountain erosion. Nat Rev Earth Environ 2, 422–435 (2021). https://doi.org/10.1038/s43017-021-00165-9

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing