Abstract
Glaciers and ice sheets erode mountains and produce vast quantities of sediments that are delivered to rivers and oceans, impacting global sediment and biogeochemical balances. Therefore, understanding how the production of sediments by glacial erosion has evolved in the past, and will evolve in a changing climate, is increasingly important. In this Review, we examine the processes that control the magnitude and timing of glacial erosion of mountains, and how models can be used to reconstruct processes during the development of mountains. Field observations reveal the important role of sliding on the erosion rate, which provide an empirical basis to explain the glacial buzzsaw and the impact of late Cenozoic cooling on erosion rates. Glacial erosion is also expected to evolve in the context of anthropogenic climate warming, as both glacier sliding and the input of meltwater related to thinning and retreat of ice will change, with large effects on downstream ecosystems and global biogeochemical cycles. Thus, the mechanics and impacts of glaciers on sediment production warrant more research, especially in regions experiencing rapid warming. Above all, there is a need for better monitoring of how erosion rates changed over the last decades and will evolve in the future.
Key points
-
Glacial erosion is primarily a result of glacial bedrock erosion through abrasion and plucking, and their interaction with subglacial hydrology.
-
Observations suggest a simple relationship between sliding and glacial erosion, which can be used to make predictions about glacial erosion in mountainous environments.
-
Models can be used to estimate the impact of climate on mountain development, and including the impact of Quaternary glaciations on the erosion rates and the glacial buzzsaw hypothesis.
-
The cryosphere and, in turn, glacial erosion are being altered. Therefore, the mechanics and impacts of glaciers on sediment production deserve more attention in regions experiencing rapid warming.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18o records. Paleoceanography 20, PA1003 (2005).
Ehlers, J., Gibbard, P. & Hughes, P. in Past Glacial Environments 2nd edn (eds Menzies, J. & van der Meer, J.) 77–101 (Elsevier, 2018).
Jaeger, J. M. & Koppes, M. N. The role of the cryosphere in source-to-sink systems. Earth Sci. Rev. 153, 43–76 (2016).
Molnar, P. & England, P. Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? Nature 346, 29–34 (1990).
Molnar, P. Late Cenozoic increase in accumulation rates of terrestrial sediment: How might climate change have affected erosion rates? Annu. Rev. Earth Planet. Sci. 32, 67–89 (2004).
Herman, F. et al. Worldwide acceleration of mountain erosion under a cooling climate. Nature 504, 423–426 (2013).
Fyke, J., Sergienko, O., Löfverström, M., Price, S. & Lenaerts, J. T. An overview of interactions and feedbacks between ice sheets and the Earth system. Rev. Geophys. 56, 361–408 (2018).
Sternai, P. et al. Magmatic forcing of Cenozoic climate? J. Geophys. Res. Solid Earth 125, e2018JB016460 (2020).
Collins, D. N. Seasonal development of subglacial drainage and suspended sediment delivery to melt waters beneath an Alpine glacier. Ann. Glaciol. 13, 45–50 (1989).
Einsele, G. & Hinderer, M. Terrestrial sediment yield and the lifetimes of reservoirs, lakes, and larger basins. Geol. Rundsch. 86, 288–310 (1997).
Hallet, B., Hunter, L. & Bogen, J. Rates of erosion and sediment evacuation by glaciers: A review of field data and their implications. Glob. Planet. Change 12, 213–235 (1996).
Koppes, M. N. & Montgomery, D. R. The relative efficacy of fluvial and glacial erosion over modern to orogenic timescales. Nat. Geosci. 2, 644–647 (2009).
Cuffey, K. et al. Entrainment at cold glacier beds. Geology 28, 351–354 (2000).
Fabel, D. et al. Landscape preservation under Fennoscandian ice sheets determined from in situ produced 10Be and 26Al. Earth Planet. Sci. Lett. 201, 397–406 (2002).
Harbor, J. et al. Cosmogenic nuclide evidence for minimal erosion across two subglacial sliding boundaries of the late glacial Fennoscandian ice sheet. Geomorphology 75, 90–99 (2006).
Stroeven, A. et al. Slow, patchy landscape evolution in northern Sweden despite repeated ice-sheet glaciation. Spec. Pap. Geol. Soc. Am. 398, 387 (2006).
Thomson, S. N., Reiners, P. W., Hemming, S. R. & Gehrels, G. E. The contribution of glacial erosion to shaping the hidden landscape of East Antarctica. Nat. Geosci. 6, 203–207 (2013).
Cooper, M., Michaelides, K., Siegert, M. & Bamber, J. Paleofluvial landscape inheritance for Jakobshavn Isbræ catchment, Greenland. Geophys. Res. Lett. 43, 6350–6357 (2016).
Andrews, J. T. & Syvitski, J. in Material Fluxes on the Surface of the Earth 99–115 (The National Academies Press, 1994).
Jamieson, S. S., Sugden, D. E. & Hulton, N. R. The evolution of the subglacial landscape of Antarctica. Earth Planet. Sci. Lett. 293, 1–27 (2010).
Cowton, T., Nienow, P., Bartholomew, I., Sole, A. & Mair, D. Rapid erosion beneath the Greenland ice sheet. Geology 40, 343–346 (2012).
Bendixen, M. et al. Delta progradation in Greenland driven by increasing glacial mass loss. Nature 550, 101–104 (2017).
Young, N. E., Briner, J. P., Maurer, J. & Schaefer, J. M. 10bBe measurements in bedrock constrain erosion beneath the Greenland Ice Sheet margin. Geophys. Res. Lett. 43, 11–708 (2016).
Overeem, I. et al. Substantial export of suspended sediment to the global oceans from glacial erosion in Greenland. Nat. Geosci. 10, 859–863 (2017).
Hawkings, J. R. et al. Ice sheets as a missing source of silica to the polar oceans. Nat. Commun. 8, 14198 (2017).
Wadham, J. L. et al. Ice sheets matter for the global carbon cycle. Nat. Commun. 10, 3567 (2019).
Peizhen, Z., Molnar, P. & Downs, W. R. Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. Nature 410, 891–897 (2001).
Herman, F. & Champagnac, J.-D. Plio-Pleistocene increase of erosion rates in mountain belts in response to climate change. Terra Nova 28, 2–10 (2016).
Brozović, N., Burbank, D. W. & Meigs, A. J. Climatic limits on landscape development in the northwestern Himalaya. Science 276, 571–574 (1997).
Spotila, J. A., Buscher, J. T., Meigs, A. J. & Reiners, P. W. Long-term glacial erosion of active mountain belts: Example of the Chugach–St. Elias Range, Alaska. Geology 32, 501–504 (2004).
Mitchell, S. G. & Montgomery, D. R. Influence of a glacial buzzsaw on the height and morphology of the Cascade Range in central Washington State, USA. Quat. Res. 65, 96–107 (2006).
Egholm, D., Nielsen, S., Pedersen, V. K. & Lesemann, J.-E. Glacial effects limiting mountain height. Nature 460, 884–887 (2009).
Pedersen, V. K., Egholm, D. & Nielsen, S. Alpine glacial topography and the rate of rock column uplift: a global perspective. Geomorphology 122, 129–139 (2010).
Prasicek, G., Herman, F., Robl, J. & Braun, J. Glacial steady state topography controlled by the coupled influence of tectonics and climate. J. Geophys. Res. Earth Surf. 123, 1344–1362 (2018).
Prasicek, G., Hergarten, S., Deal, E., Herman, F. & Robl, J. A glacial buzzsaw effect generated by efficient erosion of temperate glaciers in a steady state model. Earth Planet. Sci. Lett. 543, 116350 (2020).
Thomson, S. N. et al. Glaciation as a destructive and constructive control on mountain building. Nature 467, 313–317 (2010).
Willenbring, J. K. & von Blanckenburg, F. Long-term stability of global erosion rates and weathering during late-Cenozoic cooling. Nature 465, 211–214 (2010).
Champagnac, J.-D., Valla, P. G. & Herman, F. Late-Cenozoic relief evolution under evolving climate: A review. Tectonophysics 614, 44–65 (2014).
Herman, F. & Brandon, M. Mid-latitude glacial erosion hotspot related to equatorial shifts in southern Westerlies. Geology 43, 987–990 (2015).
Ganti, V. et al. Time scale bias in erosion rates of glaciated landscapes. Sci. Adv. 2, e1600204 (2016).
Schildgen, T. F., van der Beek, P. A., Sinclair, H. D. & Thiede, R. C. Spatial correlation bias in late-Cenozoic erosion histories derived from thermochronology. Nature 559, 89–93 (2018).
Willenbring, J. K. & Jerolmack, D. J. The null hypothesis: globally steady rates of erosion, weathering fluxes and shelf sediment accumulation during Late Cenozoic mountain uplift and glaciation. Terra Nova 28, 11–18 (2016).
Willett, S. D. et al. Bias and error in modelling thermochronometric data: Resolving a potential increase in Plio-Pleistocene erosion rate. Earth Surf. Dyn. Discuss. https://doi.org/10.5194/esurf-2020-59 (2020).
Dielforder, A., Hetzel, R. & Oncken, O. Megathrust shear force controls mountain height at convergent plate margins. Nature 582, 225–229 (2020).
Mariotti, A. et al. Nonlinear forcing of climate on mountain denudation during glaciations. Nat. Geosci. 14, 16–22 (2021).
Beaud, F., Flowers, G. E. & Venditti, J. G. Modeling sediment transport in ice-walled subglacial channels and its implications for esker formation and proglacial sediment yields. J. Geophys. Res. Earth Surf. 123, 3206–3227 (2018).
Alley, R., Cuffey, K. & Zoet, L. Glacial erosion: status and outlook. Ann. Glaciol. 60, 1–13 (2019).
Williams, H. B. & Koppes, M. N. A comparison of glacial and paraglacial denudation responses to rapid glacial retreat. Ann. Glaciol. 60, 151–164 (2019).
Hallet, B. A theoretical model of glacial abrasion. J. Glaciol. 23, 39–50 (1979).
Boulton, G. S. Processes of glacier erosion on different substrata. J. Glaciol. 23, 15–38 (1979).
Hallet, B. Glacial quarrying: A simple theoretical model. Ann. Glaciol. 22, 1–8 (1996).
Iverson, N. R. A theory of glacial quarrying for landscape evolution models. Geology 40, 679–682 (2012).
Ugelvig, S. V., Egholm, D. L. & Iverson, N. R. Glacial landscape evolution by subglacial quarrying: A multiscale computational approach. J. Geophys. Res. Earth Surf. 121, 2042–2068 (2016).
Cohen, D., Hooyer, T. S., Iverson, N. R., Thomason, J. F. & Jackson, M. Role of transient water pressure in quarrying: A subglacial experiment using acoustic emissions. J. Geophys. Res. Earth Surf. 111, F03006 (2006).
Alley, R. B. et al. How glaciers entrain and transport basal sediment: physical constraints. Quat. Sci. Rev. 16, 1017–1038 (1997).
Delaney, I., Werder, M. A. & Farinotti, D. A numerical model for fluvial transport of subglacial sediment. J. Geophys. Res. Earth Surf. 124, 2197–2223 (2019).
Beaud, F., Flowers, G. E. & Pimentel, S. Seasonal-scale abrasion and quarrying patterns from a two-dimensional ice-flow model coupled to distributed and channelized subglacial drainage. Geomorphology 219, 176–191 (2014).
Beaud, F., Flowers, G. E. & Venditti, J. G. Efficacy of bedrock erosion by subglacial water flow. Earth Surf. Dyn. 4, 125–145 (2016).
Beaud, F., Venditti, J. G., Flowers, G. E. & Koppes, M. Excavation of subglacial bedrock channels by seasonal meltwater flow. Earth Surf. Process. Landf. 43, 1960–1972 (2018).
Herman, F., Beaud, F., Champagnac, J.-D., Lemieux, J.-M. & Sternai, P. Glacial hydrology and erosion patterns: a mechanism for carving glacial valleys. Earth Planet. Sci. Lett. 310, 498–508 (2011).
Ugelvig, S., Egholm, D., Anderson, R. & Iverson, N. R. Glacial erosion driven by variations in meltwater drainage. J. Geophys. Res. Earth Surf. 123, 2863–2877 (2018).
Iverson, N. R. Laboratory simulations of glacial abrasion: comparison with theory. J. Glaciol. 36, 304–314 (1990).
Iverson, N. R. Potential effects of subglacial water-pressure fluctuations on quarrying. J. Glaciol. 37, 27–36 (1991).
Hildes, D. H., Clarke, G. K., Flowers, G. E. & Marshall, S. J. Subglacial erosion and englacial sediment transport modelled for North American ice sheets. Quat. Sci. Rev. 23, 409–430 (2004).
Zoet, L., Alley, R. B., Anandakrishnan, S. & Christianson, K. Accelerated subglacial erosion in response to stick-slip motion. Geology 41, 159–162 (2013).
Hallet, B. Glacial abrasion and sliding: their dependence on the debris concentration in basal ice. Ann. Glaciol. 2, 23–28 (1981).
Jahns, R. H. Sheet structure in granites: its origin and use as a measure of glacial erosion in New England. J. Geol. 51, 71–98 (1943).
Drewry, D. J. Glacial Geologic Processes (Edward Arnold, 1986).
Briner, J. P. & Swanson, T. W. Using inherited cosmogenic 36Cl to constrain glacial erosion rates of the Cordilleran ice sheet. Geology 26, 3–6 (1998).
Iverson, N. R. in Modern and Past Glacial Environments (ed. Menzies, J.) 131–145 (Elsevier, 2002).
Loso, M. G., Anderson, R. S. & Anderson, S. P. Post–Little Ice Age record of coarse and fine clastic sedimentation in an Alaskan proglacial lake. Geology 32, 1065–1068 (2004).
Woodard, J., Zoet, L., Iverson, N. R. & Helanow, C. Linking bedrock discontinuities to glacial quarrying. Ann. Glaciol. 60, 66–72 (2019).
Harbor, J. M., Hallet, B. & Raymond, C. F. A numerical model of landform development by glacial erosion. Nature 333, 347–349 (1988).
Harbor, J. M. Numerical modeling of the development of U-shaped valleys by glacial erosion. Geol. Soc. Am. Bull. 104, 1364–1375 (1992).
Braun, J., Zwartz, D. & Tomkin, J. H. A new surface-processes model combining glacial and fluvial erosion. Ann. Glaciol. 28, 282–290 (1999).
MacGregor, K., Anderson, R., Anderson, S. & Waddington, E. Numerical simulations of glacial-valley longitudinal profile evolution. Geology 28, 1031–1034 (2000).
Tomkin, J. H. & Braun, J. The influence of alpine glaciation on the relief of tectonically active mountain belts. Am. J. Sci. 302, 169–190 (2002).
Anderson, R. S., Molnar, P. & Kessler, M. A. Features of glacial valley profiles simply explained. J. Geophys. Res. Earth Surf. 111, F01004 (2006).
Herman, F. & Braun, J. Evolution of the glacial landscape of the Southern Alps of New Zealand: Insights from a glacial erosion model. J. Geophys. Res. Earth Surf. 113, F02009 (2008).
Kessler, M. A., Anderson, R. S. & Briner, J. P. Fjord insertion into continental margins driven by topographic steering of ice. Nat. Geosci. 1, 365–369 (2008).
Egholm, D., Pedersen, V. K., Knudsen, M. F. & Larsen, N. K. Coupling the flow of ice, water, and sediment in a glacial landscape evolution model. Geomorphology 141, 47–66 (2012).
Tomkin, J. H. Numerically simulating alpine landscapes: the geomorphologic consequences of incorporating glacial erosion in surface process models. Geomorphology 103, 180–188 (2009).
Jamieson, S. S., Hulton, N. R. & Hagdorn, M. Modelling landscape evolution under ice sheets. Geomorphology 97, 91–108 (2008).
Sternai, P., Herman, F., Valla, P. G. & Champagnac, J.-D. Spatial and temporal variations of glacial erosion in the Rhône valley (Swiss Alps): Insights from numerical modeling. Earth Planet. Sci. Lett. 368, 119–131 (2013).
Pedersen, V. K., Huismans, R. S., Herman, F. & Egholm, D. L. Controls of initial topography on temporal and spatial patterns of glacial erosion. Geomorphology 223, 96–116 (2014).
Humphrey, N. F. & Raymond, C. Hydrology, erosion and sediment production in a surging glacier: Variegated Glacier, Alaska, 1982–83. J. Glaciol. 40, 539–552 (1994).
Riihimaki, C. A., MacGregor, K. R., Anderson, R. S., Anderson, S. P. & Loso, M. G. Sediment evacuation and glacial erosion rates at a small alpine glacier. J. Geophys. Res. Earth Surf. 110, F03003 (2005).
Herman, F. et al. Erosion by an Alpine glacier. Science 350, 193–195 (2015).
Koppes, M. et al. Observed latitudinal variations in erosion as a function of glacier dynamics. Nature 526, 100–103 (2015).
Cook, S. J., Swift, D. A., Kirkbride, M. P., Knight, P. G. & Waller, R. I. The empirical basis for modelling glacial erosion rates. Nat. Commun. 11, 759 (2020).
Cuffey, K. M. & Paterson, W. S. B. The Physics of Glaciers 4th edn (Academic Press, 2010).
Limpert, E., Stahel, W. A. & Abbt, M. Log-normal distributions across the sciences: keys and clues: on the charms of statistics, and how mechanical models resembling gambling machines offer a link to a handy way to characterize log-normal distributions, which can provide deeper insight into variability and probability — normal or log-normal: that is the question. BioScience 51, 341–352 (2001).
Alley, R. B., Lawson, D., Larson, G., Evenson, E. & Baker, G. Stabilizing feedbacks in glacier-bed erosion. Nature 424, 758–760 (2003).
Cook, S. J. & Swift, D. A. Subglacial basins: Their origin and importance in glacial systems and landscapes. Earth Sci. Rev. 115, 332–372 (2012).
Werder, M. A., Hewitt, I. J., Schoof, C. G. & Flowers, G. E. Modeling channelized and distributed subglacial drainage in two dimensions. J. Geophys. Res. Earth Surf. 118, 2140–2158 (2013).
Delaney, I. & Adhikari, S. Increased subglacial sediment discharge in a warming climate: Consideration of ice dynamics, glacial erosion, and fluvial sediment transport. Geophys. Res. Lett. 47, e2019GL085672 (2020).
Griffiths, T. in Proceedings, Eighth General Assembly and Seventeenth International Congress 331–336 (International Geographical Union, 1952).
Yanites, B. J. & Ehlers, T. A. Global climate and tectonic controls on the denudation of glaciated mountains. Earth Planet. Sci. Lett. 325, 63–75 (2012).
Lai, J. & Anders, A. M. Tectonic controls on rates and spatial patterns of glacial erosion through geothermal heat flux. Earth Planet. Sci. Lett. 543, 116348 (2020).
Walder, J. S. & Fowler, A. Channelized subglacial drainage over a deformable bed. J. Glaciol. 40, 3–15 (1994).
Ng, F. S. Canals under sediment-based ice sheets. Ann. Glaciol. 30, 146–152 (2000).
Creyts, T. T., Clarke, G. K. & Church, M. Evolution of subglacial overdeepenings in response to sediment redistribution and glaciohydraulic supercooling. J. Geophys. Res. Earth Surf. 118, 423–446 (2013).
Kasmalkar, I., Mantelli, E. & Suckale, J. Spatial heterogeneity in subglacial drainage driven by till erosion. Proc. R. Soc. A 475, 20190259 (2019).
Brinkerhoff, D., Truffer, M. & Aschwanden, A. Sediment transport drives tidewater glacier periodicity. Nat. Commun. 8, 90 (2017).
Iken, A. & Bindschadler, R. A. Combined measurements of subglacial water pressure and surface velocity of Findelengletscher, Switzerland: conclusions about drainage system and sliding mechanism. J. Glaciol. 32, 101–119 (1986).
Irarrazaval, I. et al. Bayesian inference of subglacial channel structures from water pressure and tracer-transit time data: A numerical study based on a 2-D geostatistical modeling approach. J. Geophys. Res. Earth Surf. 124, 1625–1644 (2019).
Harper, J. T., Humphrey, N. F. & Greenwood, M. C. Basal conditions and glacier motion during the winter/spring transition, Worthington Glacier, Alaska, U.S.A. J. Glaciol. 48, 42–50 (2002).
Willis, I. C., Richards, K. S. & Sharp, M. J. Links between proglacial stream suspended sediment dynamics, glacier hydrology and glacier motion at Midtdalsbreen, Norway. Hydrol. Process. 10, 629–648 (1996).
Delaney, I., Bauder, A., Werder, M. A. & Farinotti, D. Regional and annual variability in subglacial sediment transport by water for two glaciers in the Swiss Alps. Front. Earth Sci. 6, 175 (2018).
Swift, D. A., Nienow, P. W. & Hoey, T. B. Basal sediment evacuation by subglacial meltwater: suspended sediment transport from Haut Glacier d’Arolla, Switzerland. Earth Surf. Process. Landf. 30, 867–883 (2005).
Gimbert, F., Tsai, V. C., Amundson, J. M., Bartholomaus, T. C. & Walter, J. I. Subseasonal changes observed in subglacial channel pressure, size, and sediment transport. Geophys. Res. Lett. 43, 3786–3794 (2016).
Fenn, C. in Glacio-Fluvial sediment transfer: an alpine perspective (eds Gurnell, A. M. & Clarke, M. J.) (Wiley, 1987).
Boulton, G. On the origin and transport of englacial debris in Svalbard glaciers. J. Glaciol. 9, 213–229 (1970).
Dowdeswell, J. A. The distribution and character of sediments in a tidewater glacier, southern Baffin Island, NWT, Canada. Arct. Alp. Res. 18, 45–56 (1986).
Hewitt, I. J. & Creyts, T. T. A model for the formation of eskers. Geophys. Res. Lett. 46, 6673–6680 (2019).
Broecker, W. S. & Denton, G. H. The role of ocean-atmosphere reorganizations in glacial cycles. Quat. Sci. Rev. 9, 305–341 (1990).
Anders, A. M., Mitchell, S. G. & Tomkin, J. H. Cirques, peaks, and precipitation patterns in the Swiss Alps: Connections among climate, glacial erosion, and topography. Geology 38, 239–242 (2010).
Sternai, P., Herman, F., Fox, M. R. & Castelltort, S. Hypsometric analysis to identify spatially variable glacial erosion. J. Geophys. Res. Earth Surf. 116, F03001 (2011).
Agassiz, L. Études Sur Les Glaciers (Cambridge Univ. Press, 2012).
Penck, A. Glacial features in the surface of the Alps. J. Geol. 13, 1–19 (1905).
Davis, W. M. The geographical cycle. Geograph. J. 14, 481–504 (1899).
Penck, W. Die Morphologische Analyse (Morphological Analysis of Landforms) (Springer, 1924).
Whipple, K. X., Kirby, E. & Brocklehurst, S. H. Geomorphic limits to climate-induced increases in topographic relief. Nature 401, 39–43 (1999).
Willett, S. D. Orogeny and orography: The effects of erosion on the structure of mountain belts. J. Geophys. Res. Solid Earth 104, 28957–28981 (1999).
Willett, S. D. & Brandon, M. T. On steady states in mountain belts. Geology 30, 175–178 (2002).
Willett, S. D., Schlunegger, F. & Picotti, V. Messinian climate change and erosional destruction of the central European Alps. Geology 34, 613–616 (2006).
Whipple, K. X. The influence of climate on the tectonic evolution of mountain belts. Nat. Geosci. 2, 97–104 (2009).
Champagnac, J.-D., Molnar, P., Sue, C. & Herman, F. Tectonics, climate, and mountain topography. J. Geophys. Res. Solid Earth 117, B02403 (2012).
Hack, J. T. Dynamic equilibrium and landscape evolution. Theories Landf. Dev. 1, 87–102 (1975).
Adams, J. Contemporary uplift and erosion of the Southern Alps, New Zealand. Geol. Soc. Am. Bull. 91, 1–114 (1980).
Willett, S. D., Slingerland, R. & Hovius, N. Uplift, shortening, and steady state topography in active mountain belts. Am. J. Sci. 301, 455–485 (2001).
Ward, D. J., Anderson, R. S. & Haeussler, P. J. Scaling the Teflon Peaks: Rock type and the generation of extreme relief in the glaciated western Alaska Range. J. Geophys. Res. Earth Surf. 117, F01031 (2012).
Ahnert, F. Functional relationships between denudation, relief, and uplift in large, mid-latitude drainage basins. Am. J. Sci. 268, 243–263 (1970).
Kirby, E. & Whipple, K. Quantifying differential rock-uplift rates via stream profile analysis. Geology 29, 415–418 (2001).
Montgomery, D. R. & Brandon, M. T. Topographic controls on erosion rates in tectonically active mountain ranges. Earth Planet. Sci. Lett. 201, 481–489 (2002).
Roe, G. H., Montgomery, D. R. & Hallet, B. Orographic precipitation and the relief of mountain ranges. J. Geophys. Res. Solid Earth 108, 2315 (2003).
Wobus, C. et al. Tectonics from topography: Procedures, promise, and pitfalls. Spec. Pap. Geol. Soc. Am. 398, 55 (2006).
Headley, R. M., Roe, G. & Hallet, B. Glacier longitudinal profiles in regions of active uplift. Earth Planet. Sci. Lett. 317, 354–362 (2012).
Deal, E. & Prasicek, G. Analytical long-profile models of coupled glacial-fluvial networks. Earth Space Sci. Open Archive https://doi.org/10.1002/essoar.10503410.1 (2020).
Hutter, K. Theoretical Glaciology: Material Science of Ice and the Mechanics of Glaciers and Ice Sheets (Springer, 2017).
Oerlemans, J. Climate sensitivity of Franz Josef Glacier, New Zealand, as revealed by numerical modeling. Arct. Alp. Res. 29, 233–239 (1997).
Gardner, T. W., Jorgensen, D. W., Shuman, C. & Lemieux, C. R. Geomorphic and tectonic process rates: Effects of measured time interval. Geology 15, 259–261 (1987).
Heimsath, A. M., Dietrich, W. E., Nishiizumi, K. & Finkel, R. C. Stochastic processes of soil production and transport: Erosion rates, topographic variation and cosmogenic nuclides in the Oregon Coast Range. Earth Surf. Process. Landf. 26, 531–552 (2001).
Kirchner, J. W. et al. Mountain erosion over 10 yr, 10 ky, and 10 my time scales. Geology 29, 591–594 (2001).
Crave, A. & Davy, P. A stochastic “precipiton” model for simulating erosion/sedimentation dynamics. Comput. Geosci. 27, 815–827 (2001).
Lague, D., Hovius, N. & Davy, P. Discharge, discharge variability, and the bedrock channel profile. J. Geophys. Res. Earth Surf. 110, F04006 (2005).
DiBiase, R. A. & Whipple, K. X. The influence of erosion thresholds and runoff variability on the relationships among topography, climate, and erosion rate. J. Geophys. Res. Earth Surf. 116, F04036 (2011).
Deal, E., Braun, J. & Botter, G. Understanding the role of rainfall and hydrology in determining fluvial erosion efficiency. J. Geophys. Res. Earth Surf. 123, 744–778 (2018).
Pelletier, J. D. & Turcotte, D. L. Self-affine time series: II. Applications and models. Adv. Geophys. 40, 91–166 (1999).
Cogez, A. et al. Constraints on the role of tectonic and climate on erosion revealed by two time series analysis of marine cores around New Zealand. Earth Planet. Sci. Lett. 410, 174–185 (2015).
Zeitler, P. K., Johnson, N. M., Naeser, C. W. & Tahirkheli, R. A. Fission-track evidence for Quaternary uplift of the Nanga Parbat region, Pakistan. Nature 298, 255–257 (1982).
Tippett, J. M. & Kamp, P. J. Fission track analysis of the late Cenozoic vertical kinematics of continental Pacific crust, South Island, New Zealand. J. Geophys. Res. Solid. Earth 98, 16119–16148 (1993).
Farley, K., Rusmore, M. & Bogue, S. Post–10 Ma uplift and exhumation of the northern Coast Mountains, British Columbia. Geology 29, 99–102 (2001).
Shuster, D. L., Ehlers, T. A., Rusmoren, M. E. & Farley, K. A. Rapid glacial erosion at 1.8 Ma revealed by 4He/3He thermochronometry. Science 310, 1668–1670 (2005).
Berger, A. L. et al. Architecture, kinematics, and exhumation of a convergent orogenic wedge: A thermochronological investigation of tectonic–climatic interactions within the central St. Elias orogen, Alaska. Earth Planet. Sci. Lett. 270, 13–24 (2008).
Berger, A. L. & Spotila, J. A. Denudation and deformation in a glaciated orogenic wedge: The St. Elias orogen, Alaska. Geology 36, 523–526 (2008).
Berger, A. L. et al. Quaternary tectonic response to intensified glacial erosion in an orogenic wedge. Nat. Geosci. 1, 793–799 (2008).
Vernon, A., van der Beek, P., Sinclair, H. & Rahn, M. Increase in late Neogene denudation of the European Alps confirmed by analysis of a fission-track thermochronology database. Earth Planet. Sci. Lett. 270, 316–329 (2008).
Glotzbach, C., van der Beek, P. A. & Spiegel, C. Episodic exhumation and relief growth in the Mont Blanc massif, Western Alps from numerical modelling of thermochronology data. Earth Planet. Sci. Lett. 304, 417–430 (2011).
Shuster, D. L., Cuffey, K. M., Sanders, J. W. & Balco, G. Thermochronometry reveals headward propagation of erosion in an alpine landscape. Science 332, 84–88 (2011).
Valla, P. G., Shuster, D. L. & van der Beek, P. A. Significant increase in relief of the European Alps during mid-Pleistocene glaciations. Nat. Geosci. 4, 688–692 (2011).
Valla, P. G. et al. Late Neogene exhumation and relief development of the Aar and Aiguilles Rouges massifs (Swiss Alps) from low-temperature thermochronology modeling and 4He/3He thermochronometry. J. Geophys. Res. Earth Surf. 117, F01004 (2012).
Thiede, R. C. & Ehlers, T. A. Large spatial and temporal variations in Himalayan denudation. Earth Planet. Sci. Lett. 371, 278–293 (2013).
Fox, M., Herman, F., Kissling, E. & Willett, S. D. Rapid exhumation in the Western Alps driven by slab detachment and glacial erosion. Geology 43, 379–382 (2015).
Fox, M., Herman, F., Willett, S. D. & Schmid, S. M. The exhumation history of the European Alps inferred from linear inversion of thermochronometric data. Am. J. Sci. 316, 505–541 (2016).
Margirier, A. et al. Time and mode of exhumation of the Cordillera Blanca batholith (Peruvian Andes). J. Geophys. Res. Solid Earth 121, 6235–6249 (2016).
Michel, L., Ehlers, T. A., Glotzbach, C., Adams, B. A. & Stübner, K. Tectonic and glacial contributions to focused exhumation in the Olympic Mountains, Washington, USA. Geology 46, 491–494 (2018).
Stalder, N. F. et al. The relationships between tectonics, climate and exhumation in the Central Andes (18–36°S): Evidence from low-temperature thermochronology. Earth Sci. Rev. 210, 103276 (2020).
Willett, C. et al. Transient glacial incision in the Patagonian Andes from ~6 Ma to present. Sci. Adv. 6, eaay1641 (2020).
Herman, F., Braun, J., Deal, E. & Prasicek, G. The response time of glacial erosion. J. Geophys. Res. Earth Surf. 123, 801–817 (2018).
Huss, M. et al. Toward mountains without permanent snow and ice. Earths Future 5, 418–435 (2017).
Zekollari, H., Fürst, J. J. & Huybrechts, P. Modelling the evolution of Vadret da Morteratsch, Switzerland, since the Little Ice Age and into the future. J. Glaciol. 60, 1155–1168 (2014).
Zemp, M. et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 568, 382–386 (2019).
Moon, T., Joughin, I., Smith, B. & Howat, I. 21st-century evolution of Greenland outlet glacier velocities. Science 336, 576–578 (2012).
Catania, G. A., Stearns, L. A., Moon, T. A., Enderlin, E. M. & Jackson, R. H. Future evolution of Greenland’s marine-terminating outlet glaciers. J. Geophys. Res. Earth Surf. 125, e2018JF004873 (2020).
Adhikari, S. & Marshall, S. Influence of high-order mechanics on simulation of glacier response to climate change: insights from Haig Glacier, Canadian Rocky Mountains. Cryosphere 7, 1527–1541 (2013).
Hock, R. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate Ch. 2 (Intergovernmental Panel on Climate Change, 2019).
Dehecq, A. et al. Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia. Nat. Geosci. 12, 22–27 (2019).
Stocker-Waldhuber, M., Fischer, A., Helfricht, K. & Kuhn, M. Long-term records of glacier surface velocities in the Ötztal Alps (Austria). Earth Syst. Sci. Data 11, 705–715 (2019).
Rignot, E. & Kanagaratnam, P. Changes in the velocity structure of the Greenland Ice Sheet. Science 311, 986–990 (2006).
Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A. & Lenaerts, J. T. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys.Res. Lett. 38, L05503 (2011).
Enderlin, E. M. et al. An improved mass budget for the Greenland ice sheet. Geophys. Res. Lett. 41, 866–872 (2014).
Lüthi, M. P. et al. A century of geometry and velocity evolution at Eqip Sermia, West Greenland. J. Glaciol. 62, 640–654 (2016).
Goelzer, H. et al. The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6. Cryosphere 14, 3071–3096 (2020).
Koppes, M. & Hallet, B. Erosion rates during rapid deglaciation in icy bay, alaska. J. Geophys. Res. Earth Surf. 111, F02023 (2006).
Koppes, M., Hallet, B. & Anderson, J. Synchronous acceleration of ice loss and glacial erosion, Glaciar Marinelli, Chilean Tierra del Fuego. J. Glaciol. 55, 207–220 (2009).
Koppes, M., Sylwester, R., Rivera, A. & Hallet, B. Variations in sediment yield over the advance and retreat of a calving glacier, Laguna San Rafael, North Patagonian Icefield. Quat. Res. 73, 84–95 (2010).
Poinar, K. et al. Limits to future expansion of surface-melt-enhanced ice flow into the interior of western Greenland. Geophys. Res. Lett. 42, 1800–1807 (2015).
Gagliardini, O. & Werder, M. A. Influence of increasing surface melt over decadal timescales on land-terminating Greenland-type outlet glaciers. J. Glaciol. 64, 700–710 (2018).
Poinar, K., Dow, C. F. & Andrews, L. C. Long-term support of an active subglacial hydrologic system in Southeast Greenland by firn aquifers. Geophys. Res. Lett. 46, 4772–4781 (2019).
St.-Pierre, K. S. et al. Contemporary limnology of the rapidly changing glacierized watershed of the world’s largest High Arctic lake. Sci. Rep. 9, 4447 (2019).
Joughin, I., Smith, B. E. & Medley, B. Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science 344, 735–738 (2014).
Carey, M. et al. Impacts of glacier recession and declining meltwater on mountain societies. Ann. Am. Assoc. Geograph. 107, 350–359 (2017).
Anselmetti, F. S. et al. Effects of Alpine hydropower dams on particle transport and lacustrine sedimentation. Aquat. Sci. 69, 179–198 (2007).
Felix, D., Albayrak, I., Abgottspon, A. & Boes, R. M. Optimization of hydropower plants with respect to fine sediment focusing on turbine switch-offs during floods. IOP Conf. Ser. Earth Environ. Sci. 49, 122011 (2016).
Bogen, J. Glacial sediment production and development of hydro-electric power in glacierized areas. Ann. Glaciol. 13, 6–11 (1989).
Bogen, J. & Bønsnes, T. E. Erosion and sediment transport in High Arctic rivers, Svalbard. Polar Res. 22, 175–189 (2003).
Collins, D. N. in Hydrology in Mountainous Regions. I: Hydrological Measurements; the Water Cycle (eds Lang, H. & Musy, A.) 439–446 (IAHS, 1990).
Mizuyama, T., Oda, A., Laronne, J. B., Nonaka, M. & Matsuoka, M. Laboratory tests of a Japanese pipe geophone for continuous acoustic monitoring of coarse bedload. US Geol. Surv. Sci. Invest. Rep. 5091, 319–335 (2010).
Bakker, M. et al. Field application and validation of a seismic bedload transport model. J. Geophys. Res. Earth Surf. 125, e2019JF005416 (2020).
De Doncker, F., Herman, F. & Fox, M. Inversion of provenance data and sediment load into spatially varying erosion rates. Earth Surf. Process. Landf. 45, 3879–3901 (2020).
Scherler, D., Leprince, S. & Strecker, M. R. Glacier-surface velocities in alpine terrain from optical satellite imagery — Accuracy improvement and quality assessment. Remote. Sens. Environ. 112, 3806–3819 (2008).
Herman, F., Anderson, B. & Leprince, S. Mountain glacier velocity variation during a retreat/advance cycle quantified using sub-pixel analysis of ASTER images. J. Glaciol. 57, 197–207 (2011).
MacAyeal, D. R. The basal stress distribution of Ice Stream E, Antarctica, inferred by control methods. J. Geophys. Res. Solid. Earth 97, 595–603 (1992).
Truffer, M. The basal speed of valley glaciers: an inverse approach. J. Glaciol. 50, 236–242 (2004).
Morlighem, M. et al. Spatial patterns of basal drag inferred using control methods from a full-Stokes and simpler models for Pine Island Glacier, West Antarctica. Geophys. Res. Lett. 37, L14502 (2010).
Jay-Allemand, M., Gillet-Chaulet, F., Gagliardini, O. & Nodet, M. Investigating changes in basal conditions of Variegated Glacier prior to and during its 1982–1983 surge. Cryosphere 5, 659–672 (2011).
Larour, E., Seroussi, H., Morlighem, M. & Rignot, E. Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM). J. Geophys.Res. Earth Surf. 117, F01022 (2012).
Gillet-Chaulet, F. et al. Greenland ice sheet contribution to sea-level rise from a new-generation ice-sheet model. Cryosphere 6, 1561–1576 (2012).
Mosbeux, C., Gillet-Chaulet, F. & Gagliardini, O. Comparison of adjoint and nudging methods to initialise ice sheet model basal conditions. Geosci. Model. Dev. 9, 2549–2562 (2016).
Robl, J., Hergarten, S. & Prasicek, G. Glacial erosion promotes high mountains on thin crust. Earth Planet. Sci. Lett. 538, 116196 (2020).
Acknowledgements
We thank G. Jouvet for providing his simulations for the Aletschgletscher, Switzerland, and J. Cuzzone for providing assistance with the Greenland Ice Sheet projections. We also thank the four anonymous reviewers for their constructive feedback.
Author information
Authors and Affiliations
Contributions
All the authors contributed equally to the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Earth & Environment thanks J. H. Tomkin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Ice sheets
-
Masses of ice that cover continental areas and are greater than 50,000 km2.
- Outlet glaciers
-
Glaciers that follow valleys and originate from major ice sheets and ice caps.
- Suspended sediment load
-
The part of the total sediment load that is maintained in suspension by turbulence in flowing water without contact with the stream bed.
- Cosmogenic radionuclide dating
-
Estimating the time since rocks were exposed to cosmic rays by measuring the concentration of cosmogenic radionuclides that accumulate in rocks at the Earth surface.
- Thermochronometry
-
A dating method to measure the apparent ages of rocks at the Earth surface and to interpret the exhumation rate in terms of the time taken for the rock to travel from a given closure temperature to the surface.
- Bedrock erosion
-
Detachment of material from the glacier bed by abrasion or plucking.
- Abrasion
-
The mechanical breakdown of rock surfaces caused by stress and motion at the contact point between a clast embedded in a glacier and the underlying bedrock.
- Quarrying
-
The fracture of underlying rock due to glacial action and the entrainment of rock fragments that have been isolated by pre-existing bedrock cracks; also referred to as plucking.
- Sediment transport
-
The transport by water of detached material or sediment on top, within and below the glacier.
- Equilibrium line altitude
-
The elevation on a glacier where the accumulation and ablation of ice are in balance over a given time period (typically, one year).
- Hypsometry
-
Hypsometry is the measurement of land elevation relative to mean sea level.
- Alpine glaciers
-
Glaciers that form on the slopes of mountains; their ice dynamics are controlled by local slope variations.
- Tidewater glaciers
-
Valley glaciers that terminate in the ocean and lose some of their mass by calving.
- Bed load
-
The part of the total load that is transported along the bed.
Rights and permissions
About this article
Cite this article
Herman, F., De Doncker, F., Delaney, I. et al. The impact of glaciers on mountain erosion. Nat Rev Earth Environ 2, 422–435 (2021). https://doi.org/10.1038/s43017-021-00165-9
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s43017-021-00165-9
This article is cited by
-
Recent intensified erosion and massive sediment deposition in Tibetan Plateau rivers
Nature Communications (2024)
-
Drainage divide migration and implications for climate and biodiversity
Nature Reviews Earth & Environment (2024)
-
Developmental characteristics of an inverted trapezoidal glacial valley and its influencing factors in the Geladandong snowy mountain
Journal of Earth System Science (2024)
-
Integrating DEM and field data to unravel the impact of bedrock topography on Late Quaternary ice flows: A case study of the Lake Mistassini area, Canada
Journal of Earth System Science (2024)
-
Formation-evolutionary mechanism of large debris flow in semi-arid region, the northeastern Tibetan Plateau
Landslides (2024)