Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The supercontinent cycle


Supercontinents signify self-organization in plate tectonics. Over the past ~2 billion years, three major supercontinents have been identified, with increasing age: Pangaea, Rodinia and Columbia. In a prototypal form, a cyclic pattern of continental assembly and breakup likely extends back to ~3 billion years ago, albeit on the smaller scale of Archaean supercratons, which, unlike global supercontinents, were tectonically segregated. In this Review, we discuss how the emergence of supercontinents provides a minimum age for the onset of the modern global plate tectonic network, whereas Archaean supercratons might reflect an earlier geodynamic and nascent tectonic regime. The assembly and breakup of Pangaea attests that the supercontinent cycle is intimately linked with whole-mantle convection. The supercontinent cycle is, consequently, interpreted as both an effect and a cause of mantle convection, emphasizing the importance of both top-down and bottom-up geodynamics, and the coupling between them. However, the nature of this coupling and how it has evolved remains controversial, resulting in contrasting models of supercontinent formation, which can be tested by quantitative geodynamic modelling and geochemical proxies. Specifically, which oceans close to create a supercontinent, and how such predictions are linked to mantle convection, are directions for future research.

Key points

  • The supercontinent cycle is an outcome of plate tectonics as a self-organizing system, where a supercontinent is both an effect and a cause of mantle convection, thus creating a feedback loop.

  • According to palaeogeography, three supercontinent cycles of assembly and breakup have occurred over the past 2 billion years (Gyr).

  • Before 2 Gyr ago, the occurrence of an older supercontinent is uncertain, and possibly only smaller and separated landmasses existed.

  • Geochemical proxies indicate secular change, suggesting tectonic evolution from non-cyclic to cyclic changes occurring ca. 2 Gyr ago, with the appearance of supercontinents.

  • For a better understanding of supercontinent dynamics, it is necessary to connect mantle convection and plate tectonics into one theory.

  • Both top-down (lithospheric) and bottom-up (mantle) tectonics control supercontinent dynamics, and it is critical to understand the coupling between them.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Supercontinents through time.
Fig. 2: Supercontinent Pangaea and mantle structure.
Fig. 3: Numerical modelling of long-wavelength mantle convection.
Fig. 4: Supercontinent time series.


  1. 1.

    Coltice, N., Gérault, M. & Ulvrová, M. A mantle convection perspective on global tectonics. Earth Sci. Rev. 165, 120–150 (2017). Explores how geodynamic models, based on observations such as kinematics, stress, deformation and rheology, that link mantle convection and plate tectonics can take into account self-organization.

    Article  Google Scholar 

  2. 2.

    Bercovici, D. The generation of plate tectonics from mantle convection. Earth Planet. Sci. Lett. 205, 107–121 (2003).

    Article  Google Scholar 

  3. 3.

    Stern, R. J. & Gerya, T. Earth evolution, emergence, and uniformitarianism. GSA Today (2020).

    Article  Google Scholar 

  4. 4.

    Alblowitz, R. The theory of emergence. Philos. Sci. 6, 1–16 (1939).

    Article  Google Scholar 

  5. 5.

    Worsley, T. R., Nance, R. D. & Moody, J. B. Tectonic cycles and the history of the Earth’s biogeochemical and paleoceanographic record. Paleoceanography 1, 233–263 (1986).

    Article  Google Scholar 

  6. 6.

    Worsley, T. R., Nance, R. D. & Moody, J. B. Global tectonics and eustasy for the past 2 billion years. Mar. Geol. 58, 373–400 (1984).

    Article  Google Scholar 

  7. 7.

    Nance, D., Worsley, T. R. & Moody, J. B. The supercontinent cycle. Sci. Am. 259, 72–79 (1988).

    Article  Google Scholar 

  8. 8.

    Nance, R. D., Worsley, T. R. & Moody, J. B. Post-Archean biogeochemical cycles and long-term episodicity in tectonic processes. Geology 14, 514–518 (1986).

    Article  Google Scholar 

  9. 9.

    Nance, R. D., Murphy, J. B. & Santosh, M. The supercontinent cycle: A retrospective essay. Gondwana Res. 25, 4–29 (2014).

    Article  Google Scholar 

  10. 10.

    Evans, D. A. D. Reconstructing pre-Pangean supercontinents. Geol. Soc. Am. Bull. 125, 1735–1751 (2013). Offers a review of the history of efforts to reconstruct pre-Pangaean supercontinents and shows the emerging consensus, and remaining uncertainties, of each of their reconstructions.

    Article  Google Scholar 

  11. 11.

    Valentine, J. W. & Moores, E. M. Plate-tectonic regulation of faunal diversity and sea level: A model. Nature 228, 657–659 (1970).

    Article  Google Scholar 

  12. 12.

    Zaffos, A., Finnegan, S. & Peters, S. E. Plate tectonic regulation of global marine animal diversity. Proc. Natl Acad. Sci. USA 114, 5653–5658 (2017).

    Article  Google Scholar 

  13. 13.

    Mitchell, R. N., Raub, T. D., Silva, S. C. & Kirschvink, J. L. Was the Cambrian explosion both an effect and an artifact of true polar wander? Am. J. Sci. 315, 945–957 (2015).

    Article  Google Scholar 

  14. 14.

    Allison, P. A. & Briggs, D. E. G. Paleolatitudinal sampling bias, Phanerozoic species diversity, and the end-Permian extinction. Geology 21, 65–68 (1993).

    Article  Google Scholar 

  15. 15.

    Wegener, A. The Origin of Continents and Oceans 4th edn (Dover, 1929).

  16. 16.

    Vine, F. J. & Matthews, D. H. Magnetic anomalies over oceanic ridges. Nature 199, 947–949 (1963).

    Article  Google Scholar 

  17. 17.

    Wilson, J. T. Evidence from islands on the spreading of ocean floors. Nature 197, 536–538 (1963).

    Article  Google Scholar 

  18. 18.

    Wilson, J. T. A new class of faults and their bearing on continental drift. Nature 207, 343–347 (1965).

    Article  Google Scholar 

  19. 19.

    Wilson, J. T. Did the Atlantic close and then re-open? Nature 211, 676–681 (1966).

    Article  Google Scholar 

  20. 20.

    Wilson, J. T. Hypothesis of Earth’s behaviour. Nature 198, 925–929 (1963).

    Article  Google Scholar 

  21. 21.

    McKenzie, D. P. & Parker, R. L. The North Pacific: an example of tectonics on a sphere. Nature 216, 1276–1280 (1967).

    Article  Google Scholar 

  22. 22.

    Morgan, J. Rises, trenches, great faults, and crustal blocks. J. Geophys. Res. 73, 1959–1982 (1968).

    Article  Google Scholar 

  23. 23.

    Wan, B. et al. Seismological evidence for the earliest global subduction network at 2 Ga. Sci. Adv. 6, eabc5491 (2020). Reports the first global-scale evidence for subduction using seismic images from multiple continents, arguing for the onset of the global plate tectonic network by ca. 2Ga.

    Article  Google Scholar 

  24. 24.

    Mitchell, R. N. et al. Plate tectonics before 2.0 Ga: Evidence from paleomagnetism of cratons within supercontinent Nuna. Am. J. Sci. 314, 878–894 (2014).

    Article  Google Scholar 

  25. 25.

    Stern, R. J. The evolution of plate tectonics. Philos. Trans. R. Soc. A 376, 20170406 (2018).

    Article  Google Scholar 

  26. 26.

    Brown, M., Johnson, T. & Gardiner, N. J. Plate tectonics and the Archean Earth. Annu. Rev. Earth Planet. Sci. 48, 291–320 (2020).

    Article  Google Scholar 

  27. 27.

    Guo, M. & Korenaga, J. Argon constraints on the early growth of felsic continental crust. Sci. Adv. 6, eaaz6234 (2020).

    Article  Google Scholar 

  28. 28.

    Rosas, J. C. & Korenaga, J. Rapid crustal growth and efficient crustal recycling in the early Earth: Implications for Hadean and Archean geodynamics. Earth Planet. Sci. Lett. 494, 42–49 (2018).

    Article  Google Scholar 

  29. 29.

    Windley, B. F., Kusky, T. M. & Polat, A. Onset of plate tectonics by the Eoarchean. Precambrian Res. 352, 105980 (2021).

    Article  Google Scholar 

  30. 30.

    El Dien, H. G., Doucet, L. S., Murphy, J. B. & Li, Z. X. Geochemical evidence for a widespread mantle re-enrichment 3.2 billion years ago: implications for global-scale plate tectonics. Sci. Rep. 10, 9461 (2020).

    Article  Google Scholar 

  31. 31.

    Hoffman, P. F. The break-up of Rodinia, birth of Gondwana, true polar wander and the snowball Earth. J. Afr. Earth Sci. 28, 17–33 (1999).

    Article  Google Scholar 

  32. 32.

    Meert, J. G. What’s in a name? The Columbia (Paleopangaea/Nuna) supercontinent. Gondwana Res. 21, 987–993 (2012).

    Article  Google Scholar 

  33. 33.

    Pastor-Galán, D. et al. Supercontinents: myths, mysteries, and milestones. Geol. Soc. Lond. Spec. Publ. 470, 39–64 (2018).

    Article  Google Scholar 

  34. 34.

    Ebinger, C. J. & Sleep, N. H. Cenozoic magmatism throughout east Africa resulting from impact of a single plume. Nature 395, 788–791 (1998).

    Article  Google Scholar 

  35. 35.

    van Hinsbergen, D. J. J. et al. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia. Proc. Natl Acad. Sci. USA 109, 7659–7664 (2012).

    Article  Google Scholar 

  36. 36.

    Evans, D. A. D., Li, Z.-X. & Murphy, J. B. Four-dimensional context of Earth’s supercontinents. Geol. Soc. Lond. Spec. Publ. 424, 1–14 (2016).

    Article  Google Scholar 

  37. 37.

    Mitchell, R. N. et al. Harmonic hierarchy of mantle and lithospheric convective cycles: Time series analysis of hafnium isotopes of zircon. Gondwana Res. 75, 239–248 (2019).

    Article  Google Scholar 

  38. 38.

    Gardiner, N. J., Kirkland, C. L. & van Kranendonk, M. The juvenile hafnium isotope signal as a record of supercontinent cycles. Sci. Rep. 6, 38503 (2016).

    Article  Google Scholar 

  39. 39.

    Kirscher, U. et al. Paleomagnetic constraints on the duration of the Australia-Laurentia connection in the core of the Nuna supercontinent. Geology 49, 174–179 (2021).

    Article  Google Scholar 

  40. 40.

    Irving, E. Paleomagnetism and Its Application to Geological and Geophysical Problems (Wiley, 1964).

  41. 41.

    van der Voo, R. Paleomagnetism of the Atlantic, Tethys, and Iapetus Oceans (Cambridge Univ. Press, 1993).

  42. 42.

    Murphy, J. B. & Nance, R. D. Supercontinent model for the contrasting character of Late Proterozoic orogenic belts. Geology 19, 469–472 (1991).

    Article  Google Scholar 

  43. 43.

    Murphy, J. B. & Nance, R. D. The Pangea conundrum. Geology 36, 703–706 (2008).

    Article  Google Scholar 

  44. 44.

    Matthews, K. J. et al. Global plate boundary evolution and kinematics since the late Paleozoic. Glob. Planet. Change 146, 226–250 (2016).

    Article  Google Scholar 

  45. 45.

    Torsvik, T. H. et al. Phanerozoic polar wander, palaeogeography and dynamics. Earth-Sci. Rev. 114, 325–368 (2012).

    Article  Google Scholar 

  46. 46.

    Irving, E. Drift of the major continental blocks since the Devonian. Nature 270, 304–309 (1977).

    Article  Google Scholar 

  47. 47.

    Du Toit, A. L. Our Wandering Continents (Oliver and Boyd, 1937).

  48. 48.

    Morel, P. & Irving, E. Paleomagnetism and the evolution of Pangea. J. Geophys. Res. 86, 1858–1872 (1981).

    Article  Google Scholar 

  49. 49.

    Tetley, M. G., Williams, S. E., Gurnis, M., Flament, N. & Müller, R. D. Constraining absolute plate motions since the Triassic. J. Geophys. Res. Solid Earth 124, 7231–7258 (2019).

    Article  Google Scholar 

  50. 50.

    Domeier, M. & Torsvik, T. Plate tectonics in the late Paleozoic. Geosci. Front. 5, 303–350 (2014).

    Article  Google Scholar 

  51. 51.

    Burke, K., Steinberger, B., Torsvik, T. & Smethurst, M. Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. Earth Planet. Sci. Lett. 265, 49–60 (2008).

    Article  Google Scholar 

  52. 52.

    Burke, K. & Torsvik, T. H. Derivation of large igneous provinces of the past 200 million years from long-term heterogeneities in the deep mantle. Earth Planet. Sci. Lett. 227, 531–538 (2004).

    Article  Google Scholar 

  53. 53.

    Torsvik, T. H., Burke, K., Steinberger, B., Webb, S. J. & Ashwal, L. D. Diamonds sampled by plumes from the core–mantle boundary. Nature 466, 352–355 (2010).

    Article  Google Scholar 

  54. 54.

    Torsvik, T. H., Smethurst, M. A., Burke, K. & Steinberger, B. Large igneous provinces generated from the margins of the large low-velocity provinces in the deep mantle. Geophys. J. Int. 167, 1447–1460 (2006).

    Article  Google Scholar 

  55. 55.

    Torsvik, T. H., Steinberger, B., Cocks, L. R. M. & Burke, K. Longitude: Linking Earth’s ancient surface to its deep interior. Earth Planet. Sci. Lett. 276, 273–282 (2008).

    Article  Google Scholar 

  56. 56.

    Torsvik, T. H. et al. Deep mantle structure as a reference frame for movements in and on the Earth. Proc. Natl Acad. Sci. USA 111, 8735–8740 (2014).

    Article  Google Scholar 

  57. 57.

    Doubrovine, P. V., Steinberger, B. & Torsvik, T. H. A failure to reject: Testing the correlation between large igneous provinces and deep mantle structures with EDF statistics. Geochem. Geophys. Geosystems 17, 1130–1163 (2016).

    Article  Google Scholar 

  58. 58.

    Conrad, C. P., Steinberger, B. & Torsvik, T. H. Stability of active mantle upwelling revealed by net characteristics of plate tectonics. Nature 498, 479–482 (2013). Shows how plate tectonic motions during the past 250Myr have been tightly coupled with degree 1 and degree 2 mantle flow, owing to basal tractions being nearly as strong as slab-pull forces.

    Article  Google Scholar 

  59. 59.

    Spencer, C. J. et al. Evidence for whole mantle convection driving Cordilleran tectonics. Geophys. Res. Lett. 46, 4239–4248 (2019).

    Article  Google Scholar 

  60. 60.

    Mitchell, R. N., Kilian, T. M. & Evans, D. A. D. Supercontinent cycles and the calculation of absolute palaeolongitude in deep time. Nature 482, 208–211 (2012). Provides the first geodynamic model of supercontinent formation, orthoversion, where a new supercontinent will form along the degree 2 subduction girdle ~90° away from its predecessor.

    Article  Google Scholar 

  61. 61.

    Chase, C. G. & Sprowl, D. R. The modern geoid and ancient plate boundaries. Earth Planet. Sci. Lett. 62, 314–320 (1983).

    Article  Google Scholar 

  62. 62.

    Hager, B. H. Subducted slabs and the geoid: constraints on mantle rheology and flow. J. Geophys. Res. Solid Earth 89, 6003–6015 (1984).

    Article  Google Scholar 

  63. 63.

    Steinberger, B. & Torsvik, T. H. Absolute plate motions and true polar wander in the absence of hotspot tracks. Nature 452, 620–623 (2008). Finds oscillatory total motions of all continents using apparent polar wander (APW), which can be interpreted as true polar wander (TPW) about a stable axis near the centre of supercontinent Pangaea.

    Article  Google Scholar 

  64. 64.

    Mitchell, R. N. True polar wander and supercontinent cycles: Implications for lithospheric elasticity and the triaxial Earth. Am. J. Sci. 314, 966–979 (2014).

    Article  Google Scholar 

  65. 65.

    Maloof, A. C. et al. Combined paleomagnetic, isotopic, and stratigraphic evidence for true polar wander from the Neoproterozoic Akademikerbreen Group, Svalbard, Norway. Geol. Soc. Am. Bull. 118, 1099–1124 (2006).

    Article  Google Scholar 

  66. 66.

    Kent, D. V., Kjarsgaard, B. A., Gee, J. S., Muttoni, G. & Heaman, L. M. Tracking the Late Jurassic apparent (or true) polar shift in U-Pb-dated kimberlites from cratonic North America (Superior Province of Canada). Geochem. Geophys. Geosystems 16, 983–994 (2015).

    Article  Google Scholar 

  67. 67.

    Fu, R. R. & Kent, D. V. Anomalous Late Jurassic motion of the Pacific Plate with implications for true polar wander. Earth Planet. Sci. Lett. 490, 20–30 (2018).

    Article  Google Scholar 

  68. 68.

    Fu, R. R., Kent, D. V., Hemming, S. R., Gutierrez, P. & Creveling, J. R. Testing the occurrence of Late Jurassic true polar wander using the La Negra volcanics of northern Chile. Earth Planet. Sci. Lett. 529, 115835 (2020).

    Article  Google Scholar 

  69. 69.

    Creveling, J. R., Mitrovica, J. X., Chan, N. H., Latychev, K. & Matsuyama, I. Mechanisms for oscillatory true polar wander. Nature 491, 244–248 (2012).

    Article  Google Scholar 

  70. 70.

    Evans, D. A. D. True polar wander, a supercontinental legacy. Earth Planet. Sci. Lett. 157, 1–8 (1998).

    Article  Google Scholar 

  71. 71.

    Evans, D. A. D. True polar wander and supercontinents. Tectonophysics 362, 303–320 (2003).

    Article  Google Scholar 

  72. 72.

    Su, W. & Dziewonski, A. M. Predominance of long-wavelength heterogeneity in the mantle. Nature 352, 121–126 (1991).

    Article  Google Scholar 

  73. 73.

    Zhang, N., Zhong, S., Leng, W. & Li, Z.-X. A model for the evolution of the Earth’s mantle structure since the Early Paleozoic. J. Geophys. Res. Solid Earth 115, B06401 (2010).

    Article  Google Scholar 

  74. 74.

    Zhong, S. J., Zhang, N., Li, Z. X. & Roberts, J. H. Supercontinent cycles, true polar wander, and very long-wavelength mantle convection. Earth Planet. Sci. Lett. 261, 551–564 (2007). Provides numerical modelling to link major modes of mantle convection (degrees 1 and 2) to supercontinent formation and TPW, with degree 1 downwelling facilitating supercontinent formation and degree 2 convection then resulting from circum-supercontinent downwelling.

    Article  Google Scholar 

  75. 75.

    Dziewonski, A. M., Lekic, V. & Romanowicz, B. Mantle anchor structure: An argument for bottom up tectonics. Earth Planet. Sci. Lett. 299, 69–79 (2010).

    Article  Google Scholar 

  76. 76.

    Li, Z.-X. & Zhong, S. Supercontinent–superplume coupling, true polar wander and plume mobility: Plate dominance in whole-mantle tectonics. Phys. Earth Planet. Inter. 176, 143–156 (2009).

    Article  Google Scholar 

  77. 77.

    Zhong, S. & Liu, X. The long-wavelength mantle structure and dynamics and implications for large-scale tectonics and volcanism in the Phanerzoic. Gondwana Res. 29, 83–104 (2016).

    Article  Google Scholar 

  78. 78.

    Mitchell, R. N., Wu, L., Murphy, J. B. & Li, Z. X. Trial by fire: Testing the paleolongitude of Pangea of competing reference frames with the African LLSVP. Geosci. Front. 11, 1253–1256 (2020).

    Article  Google Scholar 

  79. 79.

    Heron, P. J. & Lowman, J. P. The impact of Rayleigh number on assessing the significance of supercontinent insulation. J. Geophys. Res. Solid Earth 119, 711–733 (2014).

    Article  Google Scholar 

  80. 80.

    Phillips, B. R. & Coltice, N. Temperature beneath continents as a function of continental cover and convective wavelength. J. Geophys. Res. 115, B04408 (2010).

    Google Scholar 

  81. 81.

    Doucet, L. S. et al. Distinct formation history for deep-mantle domains reflected in geochemical differences. Nat. Geosci. 13, 511–515 (2020).

    Article  Google Scholar 

  82. 82.

    Doucet, L. S., Li, Z. X., Ernst, R. E., Kirscher, U. & Gamal El Diean, H. Coupled supercontinent–mantle plume events evidenced by oceanic plume record. Geology 48, 159–163 (2020).

    Article  Google Scholar 

  83. 83.

    Anderson, D. L. Hotspots, polar wander, Mesozoic convection and the geoid. Nature 297, 391–393 (1982).

    Article  Google Scholar 

  84. 84.

    Evans, D. A. D. Proposal with a ring of diamonds. Nature 466, 326–327 (2010).

    Article  Google Scholar 

  85. 85.

    Liu, X. & Zhong, S. The long-wavelength geoid from three-dimensional spherical models of thermal and thermochemical mantle convection. J. Geophys. Res. Solid Earth 120, 4572–4596 (2015).

    Article  Google Scholar 

  86. 86.

    Gurnis, M. Large-scale mantle convection and the aggregation and dispersal of supercontinents. Nature 332, 695–699 (1988).

    Article  Google Scholar 

  87. 87.

    Anderson, D. L. Superplumes or supercontinents? Geology 22, 39–42 (1994).

    Article  Google Scholar 

  88. 88.

    Torsvik, T. H. & Cocks, R. M. Earth History and Palaeogeography (Cambridge Univ. Press, 2016).

  89. 89.

    Berner, R. A. Phanerozoic atmospheric oxygen: New results using the GEOCARBSULF model. Am. J. Sci. 309, 603–606 (2009).

    Article  Google Scholar 

  90. 90.

    Kump, L. R. The rise of atmospheric oxygen. Nature 451, 277–278 (2008).

    Article  Google Scholar 

  91. 91.

    Mann, P., Gahagan, L. & Gordon, M. B. in Giant Oil and Gas Fields of the Decade 1990–1999 Vol. 78 (ed. Halbouty, M. T.) 15-105 (AAPG Memoir, 2003).

  92. 92.

    Campbell, I. H. & Allen, C. M. Formation of supercontinents linked to increases in atmospheric oxygen. Nat. Geosci. 1, 554–558 (2008).

    Article  Google Scholar 

  93. 93.

    Condie, K. C. Episodic continental growth and supercontinents: a mantle avalanche connection? Earth Planet. Sci. Lett. 163, 97–108 (1998).

    Article  Google Scholar 

  94. 94.

    Condie, K. C. The supercontinent cycle: Are there two patterns of cyclicity? J. Afr. Earth Sci. 35, 179–183 (2002).

    Article  Google Scholar 

  95. 95.

    Sutton, J. Long-term cycles in the evolution of the continents. Nature 198, 731–735 (1963).

    Article  Google Scholar 

  96. 96.

    Bradley, D. C. Secular trends in the geologic record and the supercontinent cycle. Earth Sci. Rev. 108, 16–33 (2011).

    Article  Google Scholar 

  97. 97.

    Li, Z. X. et al. Decoding Earth’s rhythms: Modulation of supercontinent cycles by longer superocean episodes. Precambrian Res. 323, 1–5 (2019).

    Article  Google Scholar 

  98. 98.

    Zhao, H. Q. et al. New geochronologic and paleomagnetic results from early Neoproterozoic mafic sills and late Mesoproterozoic to early Neoproterozoic successions in the eastern North China Craton, and implications for the reconstruction of Rodinia. GSA Bull. 132, 739–766 (2020).

    Article  Google Scholar 

  99. 99.

    Merdith, A. S. et al. A full-plate global reconstruction of the Neoproterozoic. Gondwana Res. 50, 84–134 (2017).

    Article  Google Scholar 

  100. 100.

    Evans, D. A. D. The palaeomagnetically viable, long-lived and all-inclusive Rodinia supercontinent reconstruction. Geol. Soc. Lond. Spec. Publ. 327, 371–404 (2009).

    Article  Google Scholar 

  101. 101.

    Li, Z. X. & Evans, D. A. D. Late Neoproterozoic 40° intraplate rotation within Australia allows for a tighter-fitting and longer-lasting Rodinia. Geology 39, 39–42 (2011).

    Article  Google Scholar 

  102. 102.

    Li, Z.-X. et al. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Res. 160, 179–210 (2008).

    Article  Google Scholar 

  103. 103.

    Li, Z. X., Evans, D. A. D. & Halverson, G. P. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland. Sediment. Geol. 294, 219–232 (2013).

    Article  Google Scholar 

  104. 104.

    Hoffman, P. F. Did the breakout of Laurentia turn Gondwanaland inside-out? Science 252, 1409–1412 (1991).

    Article  Google Scholar 

  105. 105.

    Hoffman, P. F. in Earth Structure: An Introduction to Structural Geology and Tectonics (eds van der Pluijm, B. A. & Marshak, S.) 459-464 (McGraw-Hill, 1997).

  106. 106.

    Evans, D. A. D. & Mitchell, R. N. Assembly and breakup of the core of Paleoproterozoic–Mesoproterozoic supercontinent Nuna. Geology 39, 443–446 (2011).

    Article  Google Scholar 

  107. 107.

    Zhang, S. et al. Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China. Earth Planet. Sci. Lett. 353-354, 145–155 (2012).

    Article  Google Scholar 

  108. 108.

    Kirscher, U. et al. Paleomagnetism of the Hart Dolerite (Kimberley, Western Australia) - A two-stage assembly of the supercontinent Nuna? Precambrian Res. 329, 170–181 (2019).

    Article  Google Scholar 

  109. 109.

    Mitchell, R. N., Kirscher, U., Kunzmann, M., Liu, Y. & Cox, G. M. Gulf of Nuna: Astrochronologic correlation of a Mesoproterozoic oceanic euxinic event. Geology 49, 25–29 (2021).

    Article  Google Scholar 

  110. 110.

    Wu, H., Zhang, S., Li, Z.-X., Li, H. & Dong, J. New paleomagnetic results from the Yangzhuang Formation of the Jixian System, North China, and tectonic implications. Chin. Sci. Bull. 50, 1483–1489 (2005).

    Article  Google Scholar 

  111. 111.

    Pisarevsky, S. A., Elming, S.-A., Pesonen, L. J. & Li, Z.-X. Mesoproterozoic paleogeography: Supercontinent and beyond. Precambrian Res. 244, 207–225 (2014).

    Article  Google Scholar 

  112. 112.

    Zhao, G., Cawood, P. A., Wilde, S. A. & Sun, M. Review of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth Sci. Rev. 59, 125–162 (2002).

    Article  Google Scholar 

  113. 113.

    Zhao, G. C., Sun, M., Wilde, S. A. & Li, S. Z. A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup. Earth-Sci. Rev. 67, 91–123 (2004).

    Article  Google Scholar 

  114. 114.

    Zhao, G., Li, S., Sun, M. & Wilde, S. A. Assembly, accretion, and break-up of the Palaeo-Mesoproterozoic Columbia supercontinent: record in the North China Craton revisited. Int. Geol. Rev. 53, 1331–1356 (2011).

    Article  Google Scholar 

  115. 115.

    Wang, C., Mitchell, R. N., Murphy, J. B., Peng, P. & Spencer, C. J. The role of megacontinents in the supercontinent cycle. Geology (2020). Establishes a megacontinent (for example, Gondwana) as an important geodynamic precursor to the later assembly of a supercontinent (for example, Pangaea).

    Article  Google Scholar 

  116. 116.

    Raub, T. D., Kirschvink, J. L. & Evans, D. in Treatise on Geophysics Vol. 5 565–589 (Elsevier Science, 2007).

  117. 117.

    Ernst, R. E. et al. Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic. Nat. Geosci. 9, 464–469 (2016).

    Article  Google Scholar 

  118. 118.

    Evans, D. A. D., Veselovsky, R. V., Petrov, P. Y., Shatsillo, A. V. & Pavlov, V. E. Paleomagnetism of Mesoproterozoic margins of the Anabar Shield: A hypothesized billion-year partnership of Siberia and northern Laurentia. Precambrian Res. 281, 639–655 (2016).

    Article  Google Scholar 

  119. 119.

    Pisarevsky, S. A., Natapov, L. M., Donskaya, T. V., Gladkochub, D. P. & Vernikovsky, V. A. Proterozoic Siberia: a promontory of Rodinia. Precambrian Res. 160, 66–76 (2008).

    Article  Google Scholar 

  120. 120.

    Cawood, P. A. et al. Deconstructing South China and consequences for reconstructing Nuna and Rodinia. Earth Sci. Rev. 204, 103169 (2020).

    Article  Google Scholar 

  121. 121.

    Spencer, C. J., Hawkesworth, C., Cawood, P. A. & Dhiume, B. Not all supercontinents are created equal: Gondwana-Rodinia case study. Geology 41, 795–798 (2013).

    Article  Google Scholar 

  122. 122.

    Liu, C., Knoll, A. H. & Hazen, R. M. Geochemical and mineralogical evidence that Rodinian assembly was unique. Nat. Commun. 8, 1950 (2017).

    Article  Google Scholar 

  123. 123.

    Leach, D. L. et al. Sediment-hosted lead-zinc deposits in Earth history. Econ. Geol. 105, 593–625 (2010).

    Article  Google Scholar 

  124. 124.

    Hoffman, P. F. et al. Snowball Earth climate dynamics and Cryogenian geology-geobiology. Sci. Adv. 3, e1600983 (2017).

    Article  Google Scholar 

  125. 125.

    Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag, D. P. A Neoproterozoic snowball Earth. Science 281, 1342–1346 (1998).

    Article  Google Scholar 

  126. 126.

    Kirschvink, J. L. in The Proterozoic Biosphere: A Multidisciplinary Study (eds Schopf, J. W. & Klein, C.) 51-52 (Cambridge Univ. Press, 1992).

  127. 127.

    Evans, D. A. D. Stratigraphic, geochronological, and paleomagnetic constraints upon the Neoproterozoic climate paradox. Am. J. Sci. 300, 347–433 (2000).

    Article  Google Scholar 

  128. 128.

    Keller, C. B. et al. Neoproterozoic glacial origin of the great unconformity. Proc. Natl Acad. Sci. USA 116, 1136–1145 (2019).

    Article  Google Scholar 

  129. 129.

    Mitchell, R. N. et al. Hit or miss: Glacial incisions of snowball Earth. Terra Nova 31, 381–389 (2019).

    Google Scholar 

  130. 130.

    Gernon, T. M., Hincks, T. K., Tyrell, T., Rohling, E. J. & Palmer, M. R. Snowball Earth ocean chemistry driven by extensive ridge volcanism during Rodinia breakup. Nat. Geosci. 9, 242–248 (2016).

    Article  Google Scholar 

  131. 131.

    Bowring, S. A. & Grotzinger, J. P. Implications of new chronostratigraphy for tectonic evolution of Wopmay Orogen, northwest Canadian Shield. Am. J. Sci. 292, 1–20 (1992).

    Article  Google Scholar 

  132. 132.

    Hoffman, P. F. The origin of Laurentia: Rae Craton as the backstop for proto-Laurentian amalgamation by slab suction. Geosci. Can. 41, 313–320 (2014).

    Article  Google Scholar 

  133. 133.

    Pourteau, A. et al. 1.6 Ga crustal thickening along the final Nuna suture. Geology 46, 959–962 (2018).

    Article  Google Scholar 

  134. 134.

    Hoffman, P. F. Speculations on Laurentia’s first gigayear (2.0 to 1.0 Ga). Geology 17, 135–138 (1989).

    Article  Google Scholar 

  135. 135.

    Li, Z. X. et al. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambrian Res. 122, 85–109 (2003).

    Article  Google Scholar 

  136. 136.

    Li, Z. X., Li, X. H., Kinny, P. D. & Wang, J. The breakup of Rodinia: did it start with a mantle plume beneath South China? Earth Planet. Sci. Lett. 173, 171–181 (1999).

    Article  Google Scholar 

  137. 137.

    Mitchell, R. N., Hoffman, P. F. & Evans, D. A. D. Coronation loop resurrected: Oscillatory apparent polar wander of Orosirian (2.05–1.8 Ga) paleomagnetic poles from Slave craton. Precambrian Res. 179, 121–134 (2010).

    Article  Google Scholar 

  138. 138.

    Mitchell, R. N. et al. Sutton hotspot: Resolving Ediacaran-Cambrian Tectonics and true polar wander for Laurentia. Am. J. Sci. 311, 651–663 (2011).

    Article  Google Scholar 

  139. 139.

    Li, Z.-X., Evans, D. A. D. & Zhang, S. A 90 degrees spin on Rodinia: possible causal links between the Neoproterozoic supercontinent, superplume, true polar wander and low-latitude glaciation. Earth Planet. Sci. Lett. 220, 409–421 (2004).

    Article  Google Scholar 

  140. 140.

    Jing, X. et al. A pan-latitudinal Rodinia in the Tonian true polar wander frame. Earth Planet. Sci. Lett. 530, 115880 (2020).

    Article  Google Scholar 

  141. 141.

    Swanson-Hysell, N. L. et al. Constraints on Neoproterozoic paleogeography and Paleozoic orogenesis from paleomagnetic records of the Bitter Springs Formation, Amadeus Basin, central Australia. Am. J. Sci. 312, 817–884 (2012).

    Article  Google Scholar 

  142. 142.

    Dhuime, B., Hawkesworth, C. J., Cawood, P. A. & Storey, C. D. A change in the geodynamics of continental growth 3 billion years ago. Science 334, 1334–1336 (2012).

    Article  Google Scholar 

  143. 143.

    Hawkesworth, C. J., Cawood, P. A. & Dhiume, B. Rates of generation and growth of the continental crust. Geosci. Front. 10, 165–173 (2019).

    Article  Google Scholar 

  144. 144.

    Korenaga, J. Crustal evolution and mantle dynamics through Earth history. Philos. Trans. A 376, 20170408 (2018).

    Article  Google Scholar 

  145. 145.

    Cox, G. M., Lyons, T. W., Mitchell, R. N., Hasterok, D. & Gard, M. Linking the rise of atmospheric oxygen to growth in the continental phosphorus inventory. Earth Planet. Sci. Lett. 489, 28–36 (2018).

    Article  Google Scholar 

  146. 146.

    Blichert-Toft, J. & Albarde, F. Short-lived chemical heterogeneities in the Archean mantle with implications for mantle convection. Science 263, 1593–1596 (1994).

    Article  Google Scholar 

  147. 147.

    Williams, H., Hoffman, P. F., Lewry, J. F., Monger, J. W. H. & Rivers, T. Anatomy of North America: thematic geologic portrayals of the continent. Tectonophysics 187, 117–134 (1991).

    Article  Google Scholar 

  148. 148.

    Salminen, J., Oliveira, E., Piispa, E., Smirnov, A. & Trindade, R. Revisiting the paleomagnetism of the Neoarchean Uauá mafic dyke swarm, Brazil: Implications for Archean supercratons. Precambrian Res. 329, 108–123 (2019).

    Article  Google Scholar 

  149. 149.

    Pisarevsky, S. A., De Waele, B., Jones, S., Soderlund, U. & Ernst, R. E. Paleomagnetism and U–Pb age of the 2.4 Ga Erayinia mafic dykes in the south-western Yilgarn, Western Australia: Paleogeographic and geodynamic implications. Precambrian Res. 259, 222–231 (2015).

    Article  Google Scholar 

  150. 150.

    Ernst, R. E. & Bleeker, W. Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada from 2.5 Ga to present. Can. J. Earth Sci. 47, 695–739 (2010).

    Article  Google Scholar 

  151. 151.

    Bleeker, W. & Ernst, R. E. in Dyke Swarms - Time Markers of Crustal Evolution (eds Hanski, E., Mertanen, S., Ramo, T., & Vuollo, J. I.) 3-26 (Taylor & Francis Group, 2006).

  152. 152.

    Bleeker, W. The late Archean record: a puzzle in ca. 35 pieces. Lithos 71, 99–134 (2003). Proposes that small and segregated Archaean supercratons existed instead of one unified supercontinent based on highly diachronous tectonomagmatic events.

    Article  Google Scholar 

  153. 153.

    Windley, B. F. Crustal development in the Precambrian. Philos. Trans. R. Soc. Lond. A 273, 321–341 (1973).

    Article  Google Scholar 

  154. 154.

    Cawood, P. et al. Geological archive of the onset of plate tectonics. Philos. Trans. A Math. Phys. Eng. Sci. 376, 20170405 (2018).

    Google Scholar 

  155. 155.

    Gumsley, A. P. et al. Timing and tempo of the great oxidation event. Proc. Natl Acad. Sci. USA 114, 1811–1816 (2017). Offers a combined geologic and palaeomagnetic reconstruction of supercraton Superia and its context in low-latitude glaciation and the Great Oxidation Event.

    Article  Google Scholar 

  156. 156.

    Roscoe, S. M. & Card, K. D. The reappearance of the Huronian in Wyoming: rifting and drifting of ancient continents. Can. J. Earth Sci. 30, 2475–2480 (1993).

    Article  Google Scholar 

  157. 157.

    Kilian, T. M., Bleeker, W., Chamberlain, K. R., Evans, D. A. D. & Cousens, B. L. Palaeomagnetism, geochronology and geochemistry of the Palaeoproterozoic Rabbit Creek and Powder River dyke swarms: implications for Wyoming in supercraton Superia. Geol. Soc. Lond. Spec. Publ. 424, 15–45 (2016).

    Article  Google Scholar 

  158. 158.

    Liu, Y. et al. Archean geodynamics: Ephemeral supercontinents or long-lived supercratons. Geology (2021). Finds palaeomagnetic evidence that argues strongly in favour of segregated Archaean supercratons instead of one unified supercontinent.

    Article  Google Scholar 

  159. 159.

    De Kock, M. O., Evans, D. A. D. & Beukes, N. J. Validating the existence of Vaalbara in the Neoarchean. Precambrian Res. 174, 145–154 (2009).

    Article  Google Scholar 

  160. 160.

    Evans, M. E. & Muxworthy, A. R. Vaalbara palaeomagnetism. Can. J. Earth Sci. 56, 912–916 (2019).

    Article  Google Scholar 

  161. 161.

    de Wit, M. J. et al. Formation of an Archaean continent. Nature 357, 553–562 (1992).

    Article  Google Scholar 

  162. 162.

    van Hunen, J. & Moyen, J.-F. Archean subduction: fact or fiction? Annu. Rev. Earth Planet. Sci. 40, 195–219 (2012).

    Article  Google Scholar 

  163. 163.

    Moyen, J.-F. & Laurent, O. Archaean tectonic systems: A view from igneous rocks. Lithos 302–303, 99–125 (2018).

    Article  Google Scholar 

  164. 164.

    Rolf, T., Coltice, N. & Tackley, P. J. Linking continental drift, plate tectonics and the thermal state of the Earth’s mantle. Earth Planet. Sci. Lett. 351–352, 134–146 (2012).

    Article  Google Scholar 

  165. 165.

    Zhang, N., Zhong, S. J. & McNamara, A. K. Supercontinent formation from stochastic collision and mantle convection models. Gondwana Res. 15, 267–275 (2009).

    Article  Google Scholar 

  166. 166.

    Yoshida, M. Mantle convection with longest-wavelength thermal heterogeneity in a 3-D spherical model: Degree one or two? Geophys. Res. Lett. 35, L23302 (2008).

    Article  Google Scholar 

  167. 167.

    Grigne, C., Labrosse, S. & Tackley, P. J. Convective heat transfer as a function of wavelength: Implications for the cooling of the Earth. J. Geophys. Res. 110, B03409 (2005).

    Article  Google Scholar 

  168. 168.

    Lenardic, A., Richards, M. A. & Busse, F. H. Depth-dependent rheology and the horizontal length scale of mantle convection. J. Geophys. Res. 111, B07404 (2006).

    Article  Google Scholar 

  169. 169.

    Biggin, A. J. et al. Palaeomagnetic field intensity variations suggest mesoproterozoic inner-core nucleation. Nature 526, 245–248 (2015).

    Article  Google Scholar 

  170. 170.

    Bono, R. K., Tarduno, J. A., Nimmo, F. & Cottrell, R. D. Young inner core inferred from Ediacaran ultra-low geomagnetic field intensity. Nat. Geosci. 12, 143–147 (2019).

    Article  Google Scholar 

  171. 171.

    Bunge, H. P., Richards, M. A. & Baumgardner, J. R. Effect of depth-dependent viscosity on the planform of mantle convection. Nature 379, 436–438 (1996).

    Article  Google Scholar 

  172. 172.

    Evans, D. A. Pannotia under prosecution. Geol. Soc. Lond. Spec. Publ. 503, 63–81 (2020).

    Google Scholar 

  173. 173.

    Murphy, J. B. et al. Pannotia: in defence of its existence and geodynamic significance. Geol. Soc. Lond. Spec. Publ. 503, 13–39 (2021).

    Article  Google Scholar 

  174. 174.

    Yoshida, M. Formation of a future supercontinent through plate motion-driven flow coupled with mantle downwelling flow. Geology 44, 755–758 (2016).

    Article  Google Scholar 

  175. 175.

    Yoshida, M. & Santosh, M. Future supercontinent assembled in the northern hemisphere. Terra Nova 23, 333–338 (2011).

    Article  Google Scholar 

  176. 176.

    Replumaz, A., Karasn, H., van der Hilst, R., Besse, J. & Tapponnier, P. 4-D evolution of SE Asia’s mantle from geological reconstructions and seismic tomography. Earth Planet. Sci. Lett. 221, 103–115 (2004).

    Article  Google Scholar 

  177. 177.

    Coltice, N., Phillips, B. R., Bertrand, H., Ricard, Y. & Rey, P. Global warming of the mantle at the origin of flood basalts over supercontinents. Geology 35, 391–394 (2007).

    Article  Google Scholar 

  178. 178.

    Müller, R. D., Sdrolias, M., Gaina, C. & Roest, W. R. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem. Geophys. Geosystems 9, Q04006 (2008).

    Article  Google Scholar 

  179. 179.

    Zhang, N., Dang, Z., Huang, C. & Li, Z. X. The dominant driving force for supercontinent breakup: Plume push or subduction retreat? Geosci. Front. 9, 997–1007 (2018).

    Article  Google Scholar 

  180. 180.

    Buiter, S. J. H. & Torsvik, T. H. A review of Wilson Cycle plate margins: A role for mantle plumes in continental break-up along sutures? Gondwana Res. 26, 627–653 (2014).

    Article  Google Scholar 

  181. 181.

    Dang, Z. et al. Weak orogenic lithosphere guides the pattern of plume-triggered supercontinent break-up. Commun. Earth Environ. 1, 51 (2020).

    Article  Google Scholar 

  182. 182.

    Brune, S., Popov, A. A. & Sobolev, S. V. Quantifying the thermo-mechanical impact of plume arrival on continental break-up. Tectonophysics 604, 51–59 (2013).

    Article  Google Scholar 

  183. 183.

    Koptev, A., Calais, E., Burov, E., Leroy, S. & Gerya, T. Dual continental rift systems generated by plume–lithosphere interaction. Nat. Geosci. 8, 388–392 (2015).

    Article  Google Scholar 

  184. 184.

    Bercovici, D. & Long, M. D. Slab rollback instability and supercontinent dispersal. Geophys. Res. Lett. 41, 6659–6666 (2014).

    Article  Google Scholar 

  185. 185.

    Huang, C. et al. Modeling the inception of supercontinent breakup: stress state and the importance of orogens. Geochem. Geophys. Geosystems 20, 4830–4848 (2019).

    Article  Google Scholar 

  186. 186.

    Hartnady, C. J. H. About turn for supercontinents. Nature 352, 476–478 (1991).

    Article  Google Scholar 

  187. 187.

    Hartnady, C. J. H. Supercontinents and geotectonic megacycles. Precambrian Research Unit, Department of Geology, University of Cape Town, Information Circular No. 1 Part 2, 6–16 (1991).

    Google Scholar 

  188. 188.

    Veevers, J. J., Walter, M. R. & Scheibner, E. Neoproterozoic tectonics of Australia-Antarctica and Laurentia and the 560 Ma birth of the Pacific Ocean reflect the 400 m.y. Pangean supercycle. J. Geol. 105, 225–242 (1997).

    Article  Google Scholar 

  189. 189.

    Silver, P. G. & Behn, M. D. Intermittent plate tectonics? Science 319, 85–88 (2008).

    Article  Google Scholar 

  190. 190.

    Murphy, J. B. & Nance, R. D. Do supercontinents introvert or extrovert? Sm-Nd isotope evidence. Geology 31, 873–876 (2003).

    Article  Google Scholar 

  191. 191.

    Collins, W. J., Belousova, E. A., Kemp, A. I. S. & Murphy, J. B. Two contrasting Phanerozoic orogenic systems revealed by hafnium isotope data. Nat. Geosci. 4, 333–337 (2011).

    Article  Google Scholar 

  192. 192.

    Murphy, J. B. & Nance, R. D. Speculations on the mechanisms for the formation and breakup of supercontinents. Geosci. Front. 4, 185–194 (2013).

    Article  Google Scholar 

  193. 193.

    Bradley, D. C. Passive margins through earth history. Earth Sci. Rev. 91, 1–26 (2008).

    Article  Google Scholar 

  194. 194.

    Condie, K. C. & Aster, R. C. Episodic zircon age spectra of orogenic granitoids: the supercontinent connection and continental growth. Precambrian Res. 180, 227–236 (2010).

    Article  Google Scholar 

  195. 195.

    El Dien, H. G., Doucet, L. S. & Li, Z. X. Global geochemical fingerprinting of plume intensity suggests coupling with the supercontinent cycle. Nat. Commun. 10, 5270 (2019).

    Article  Google Scholar 

  196. 196.

    Spencer, C. J., Roberts, N. M. W. & Santosh, M. Growth, destruction, and preservation of Earth’s continental crust. Earth Sci. Rev. 172, 87–106 (2017).

    Article  Google Scholar 

  197. 197.

    Valley, J. W. et al. 4.4 billion years of crustal maturation: Oxygen isotope ratios of magmatic zircon. Contrib. Mineral. Petrol. 150, 561–580 (2005).

    Article  Google Scholar 

  198. 198.

    Spencer, C. J. et al. Paleoproterozoic increase in zircon δ18O driven by rapid emergence of continental crust. Geochem. Cosmochem. Acta 257, 16–25 (2019).

    Article  Google Scholar 

  199. 199.

    Jensen, G. Closed-form estimation of multiple change-point models. PeerJ PrePrints (2013).

    Article  Google Scholar 

  200. 200.

    Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52–58 (2012).

    Article  Google Scholar 

  201. 201.

    Lenardic, A. The diversity of tectonic modes and thoughts about transitions between them. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376, 20170416 (2018).

    Article  Google Scholar 

  202. 202.

    Bauer, A. M. et al. Hafnium isotopes in zircons document the gradual onset of mobile-lid tectonics. Geochem. Perspect. Lett. 14, 1–6 (2020).

    Article  Google Scholar 

  203. 203.

    Spencer, C. J., Murphy, J. B., Kirkland, C. L., Liu, Y. & Mitchell, R. N. A Palaeoproterozoic tectono-magmatic lull as a potential trigger for the supercontinent cycle. Nat. Geosci. 11, 97–101 (2018). Finds widespread and diverse evidence for a tectonomagmatic lull at ca. 2.3Ga that played a critical role in triggering initiation of the subsequent modern age of supercontinents.

    Article  Google Scholar 

  204. 204.

    McNamara, A. K. & Zhong, S. Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437, 1136–1139 (2005).

    Article  Google Scholar 

  205. 205.

    Davaille, A. & Romanowicz, B. Deflating the LLSVPs: Bundles of mantle thermochemical plumes rather than thick stagnant “piles”. Tectonics 39, e2020TC006265 (2020).

    Article  Google Scholar 

  206. 206.

    Labrosse, S., Hernlund, J. W. & Coltice, N. A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature 450, 866–869 (2007).

    Article  Google Scholar 

  207. 207.

    Boyet, M. & Carlson, R. W. 142Nd evidence for early (>4.53 Ga) global differentiation of the silicate Earth. Science 309, 576–581 (2005).

    Article  Google Scholar 

  208. 208.

    Upadhyay, D., Scherer, E. E. & Mezger, K. 142Nd evidence for an enriched Hadean reservoir in cratonic roots. Nature 459, 1118–1121 (2009).

    Article  Google Scholar 

  209. 209.

    Roth, A. S. G., Scherer, E. E., Maden, C., Mezger, K. & Bourdon, B. Revisiting the 142Nd deficits in the 1.48 Ga Khariar alkaline rocks, India. Chem. Geol. 386, 238–248 (2014).

    Article  Google Scholar 

  210. 210.

    Rizo, H. et al. Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts. Science 352, 809–812 (2016).

    Article  Google Scholar 

  211. 211.

    Mundl, A. et al. Tungsten-182 heterogeneity in modern ocean island basalts. Science 356, 66–69 (2017).

    Article  Google Scholar 

  212. 212.

    Ballmer, M. D., Houser, C., Hernlund, J. W., Wentzcovitch, R. M. & Hirose, K. Persistence of strong silica-enriched domains in the Earth’s lower mantle. Nat. Geosci. 10, 236–240 (2017).

    Article  Google Scholar 

  213. 213.

    Horan, M. F. et al. Tracking Hadean processes in modern basalts with 142-Neodymium. Earth Planet. Sci. Lett. 484, 184–191 (2018).

    Article  Google Scholar 

  214. 214.

    Rizo, H., Boyet, M., Blichert-Toft, J. & Rosing, M. T. Early mantle dynamics inferred from 142Nd variations in Archean rocks from southwest Greenland. Earth Planet. Sci. Lett. 377–378, 324–335 (2013).

    Article  Google Scholar 

  215. 215.

    Hyung, E. & Jacobsen, S. B. The 142Nd/144Nd variations in mantle-derived rocks provide constraints on the stirring rate of the mantle from the Hadean to the present. Proc. Natl Acad. Sci. USA 117, 14738–14744 (2020).

    Article  Google Scholar 

  216. 216.

    Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).

    Article  Google Scholar 

  217. 217.

    Bindeman, I. N. et al. Rapid emergence of subaerial landmasses and onset of a modern hydrologic cycle 2.5 billion years ago. Nature 557, 545–548 (2018).

    Article  Google Scholar 

  218. 218.

    Nicoli, G., Moyen, J.-F. & Stevens, G. Diversity of burial rates in convergent settings decreased as Earth aged. Sci. Rep. 6, 26359 (2016).

    Article  Google Scholar 

  219. 219.

    Knoll, A. H. & Nowak, M. A. The timetable of evolution. Sci. Adv. 3, e1603076 (2017).

    Article  Google Scholar 

  220. 220.

    Hazen, R. M. et al. Mineral evolution. Am. Mineral. 93, 1693–1720 (2008).

    Article  Google Scholar 

  221. 221.

    Lepot, K. et al. Iron minerals within specific microfossil morphospecies of the 1.88 Ga Gunflint Formation. Nat. Commun. 8, 14890 (2017).

    Article  Google Scholar 

  222. 222.

    Eriksson, K. A. & Simpson, E. L. Controls on spatial and temporal distribution of Precambrian eolianites. Sediment. Geol. 120, 275–294 (1998).

    Article  Google Scholar 

  223. 223.

    Rodriguez-López, J. P., Clemmensen, L. B., Lancaster, N., Mountney, N. P. & Veiga, G. D. Archean to recent aeolian sand systems and their sedimentary record: Current understanding and future prospects. Sedimentology 61, 1487–1534 (2014).

    Article  Google Scholar 

  224. 224.

    Merdith, A. S., Williams, S. E., Brune, S., Collins, A. S. & Müller, R. D. Rift and plate boundary evolution across two supercontinent cycles. Glob. Planet. Change 173, 1–14 (2019).

    Article  Google Scholar 

  225. 225.

    Zhang, N. & Zhong, S. Heat fluxes at the Earth’s surface and core–mantle boundary since Pangea formation and their implications for the geomagnetic superchrons. Earth Planet. Sci. Lett. 306, 205–216 (2011).

    Article  Google Scholar 

  226. 226.

    Zhang, S.-H., Zhao, Y., Li, X.-H., Ernst, R. E. & Yang, Z.-Y. The 1.33–1.30 Ga Yanliao large igneous province in the North China Craton: Implications for reconstruction of the Nuna (Columbia) supercontinent, and specifically with the North Australian Craton. Earth Planet. Sci. Lett. 465, 112–125 (2017).

    Article  Google Scholar 

  227. 227.

    Domeier, M. & Torsvik, T. H. Full-plate modelling in pre-Jurassic time. Geol. Mag. 152, 261–280 (2019).

    Article  Google Scholar 

  228. 228.

    Rogers, J. J. W. & Santosh, M. Configuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Res. 5, 5–22 (2002).

    Article  Google Scholar 

  229. 229.

    Evans, D. A. D. Proterozoic low orbital obliquity and axial-dipolar geomagnetic field from evaporite palaeolatitudes. Nature 444, 51–55 (2006).

    Article  Google Scholar 

  230. 230.

    Panzik, J. & Evans, D. A. Assessing the GAD hypothesis with paleomagnetic data from large dike swarms. Earth Planet. Sci. Lett. 406, 134–141 (2014).

    Article  Google Scholar 

  231. 231.

    Evans, D. A. D. & Pisarevsky, S. in When Did Plate Tectonics Begin on Planet Earth?: Geological Society of America Special Paper 440 (eds Condie, K. C. & Pease, V.) 249-263 (Geological Society of America, 2008).

  232. 232.

    Bercovici, D., Tackley, P. J. & Ricard, Y. in Treatise on Geophysics 2nd edn Vol. 7 Mantle Dynamics (ed. Bercovici, D.) (Elsevier, 2015).

  233. 233.

    Korenaga, J. Urey ratio and the structure and evolution of Earth’s mantle. Rev. Geophysics 46, RG2007 (2008).

    Article  Google Scholar 

  234. 234.

    Steinberger, B. & Torsvik, T. H. Toward an explanation for the present and past locations of the poles. Geochem. Geophys. Geosystems 11, Q06W06 (2010).

    Article  Google Scholar 

  235. 235.

    Steinberger, B., Schmeling, H. & Marquart, G. Large-scale lithospheric stress field and topography induced by global mantle circulation. Earth Planet. Sci. Lett. 186, 75–91 (2001).

    Article  Google Scholar 

  236. 236.

    Herzberg, C., Condie, K. C. & Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010).

    Article  Google Scholar 

  237. 237.

    Keller, C. B. & Schoene, B. Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago. Nature 485, 490–493 (2012).

    Article  Google Scholar 

  238. 238.

    McLennan, S. M. in Geochemistry and Mineralogy of Rare Earth Elements. Reviews in Mineralogy Vol. 21 (eds Lipin, B. R. & McKay, G. A.) 169-200 (Mineralogical Society of America, 1989).

  239. 239.

    Johnson, T. E., Brown, M., Kaus, B. J. P. & VanTongeren, J. A. Delamination and recycling of Archaean crust caused by gravitational instabilities. Nat. Geosci. 7, 47–52 (2013).

    Article  Google Scholar 

  240. 240.

    Johnson, T. E., Brown, M., Gardiner, N. J., Kirkland, C. L. & Smithies, R. H. Earth’s first stable continents did not form by subduction. Nature 543, 239–242 (2017).

    Article  Google Scholar 

  241. 241.

    Shirey, S. B. & Richardson, S. H. Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science 333, 434–436 (2011).

    Article  Google Scholar 

Download references


Support for this work came from the National Natural Science Foundation of China (grants 41888101 and 41890833 to R.N.M. and 41976066 to N.Z.), the Key Research Program of the Institute of Geology and Geophysics, Chinese Academy of Sciences (grant IGGCAS-201905 to R.N.M.), the Academy of Finland (grant 288277 to J.S.), the Centre of Excellence project 223272 through the Research Council of Norway and the innovation pool of the Helmholtz Association through the ‘Advanced Earth System Modelling Capacity (ESM)’ activity (B.S.), and the Australian Research Council (grant FL150100133 to Z.-X.L.). This is a contribution to International Geoscience Programme (IGCP) 648.

Author information




R.N.M. conceived the idea. N.Z. and B.S. conducted numerical modelling. J.S., Y.L. and Z.-X.L. made palaeogeographic reconstructions. C.J.S. conducted geochemical analyses. J.B.M. coordinated the presentation of the various sections. All authors contributed to the manuscript preparation, interpretation, discussion and writing, led by R.N.M.

Corresponding authors

Correspondence to Ross N. Mitchell or Nan Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks T. Kusky, K. Condie and A. Merdith for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information


Large igneous provinces

Extremely large (>105 km2 areal extent, >105 km3 volume) magmatic events of intrusives (sills, dykes) and extrusives (lava flows, tephras) often attributed to mantle plumes.

Mantle plumes

Buoyant hot mantle material that rises from the core–mantle boundary, owing to basal heating of the mantle by the core.

Large low shear-wave velocity provinces

Two low-seismic velocity structures in the lower mantle covering one fifth of the core-mantle boundary and up to several hundred km tall.

True polar wander

Rotation of solid Earth (mantle and crust) about the liquid outer core to align Earth’s maximum moment of inertia with the spin axis; also known as planetary reorientation.

Degree 1 mantle flow

One hemisphere of mantle upwelling and one hemisphere of mantle downwelling.

Degree 2 mantle flow

Two antipodal mantle upwellings bisected by a meridional girdle of mantle downwelling as the most likely degree 2 configuration for Earth’s mantle.


Model of supercontinent formation by closure of orthogonal seas (Arctic and Caribbean seas and either the Indian Ocean or the Scotia Sea) ~90° away from the centre of the previous supercontinent.

Subduction girdle

Circum-supercontinent subduction coupled with degree 2 mantle downwelling, for example, the present-day ‘Ring of Fire’ of circum-Pacific subduction zones.


Geodynamic precursor to supercontinent formation that is large (~70% the size of its supercontinent) and early (assembly ~200 Myr before supercontinent amalgamation).

Apparent polar wander

Palaeomagnetically measured motion of a continent relative to Earth’s time-averaged magnetic pole, and results from a combination of both plate motion and true polar wander.


Study of rocks containing magnetic minerals that preserve the orientation of the magnetic field and constrain the position of the continent with respect to the North Pole at that age.

Geocentric axial dipole

Earth’s magnetic field is dominated by a dipole at the surface that aligns with the spin axis when averaged over 1,000–10,000 years.

Geologic piercing points

Geologic correlations used to test palaeogeographic reconstructions, including orogenic sutures, conjugate rift margins, and magmatic intrusions and dyke swarms.

Magmatic barcodes

Record of short-lived magmatic events on a continent or a craton that can be compared with those of different fragments to test ancient palaeogeographic reconstructions.


Assembly of Archaean cratons, where the landmasses were likely in small and segregated clusters, which form an alternative hypothesis to an Archaean supercontinent.


Model of supercontinent formation by closure of the internal (Atlantic-like) ocean.


Model of supercontinent formation by closure of the external (Pacific-like) ocean.

Continental freeboard

Mean height of the continental crust relative to mean sea level; also referred to as continental emergence when positive in sign.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mitchell, R.N., Zhang, N., Salminen, J. et al. The supercontinent cycle. Nat Rev Earth Environ 2, 358–374 (2021).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing