Abstract
Initialized Earth System predictions are made by starting a numerical prediction model in a state as consistent as possible to observations and running it forward in time for up to 10 years. Skilful predictions at time slices from subseasonal to seasonal (S2S), seasonal to interannual (S2I) and seasonal to decadal (S2D) offer information useful for various stakeholders, ranging from agriculture to water resource management to human and infrastructure safety. In this Review, we examine the processes influencing predictability, and discuss estimates of skill across S2S, S2I and S2D timescales. There are encouraging signs that skilful predictions can be made: on S2S timescales, there has been some skill in predicting the Madden–Julian Oscillation and North Atlantic Oscillation; on S2I, in predicting the El Niño–Southern Oscillation; and on S2D, in predicting ocean and atmosphere variability in the North Atlantic region. However, challenges remain, and future work must prioritize reducing model error, more effectively communicating forecasts to users, and increasing process and mechanistic understanding that could enhance predictive skill and, in turn, confidence. As numerical models progress towards Earth System models, initialized predictions are expanding to include prediction of sea ice, air pollution, and terrestrial and ocean biochemistry that can bring clear benefit to society and various stakeholders.
Key points
-
Initialization methods vary greatly across different prediction timescales, creating difficulties for seamless prediction.
-
Model error and drift limit predictability across all timescales. Although higher resolution models show promise in reducing these errors, improvements in physical parameterizations are needed to improve predictability.
-
The effects of land processes, interactions across various ocean basins and the role of stratospheric processes in predictability are not well understood.
-
Predictability on seasonal to decadal timescales is largely associated with predictability of the major modes of variability in the atmosphere and the ocean.
-
Evolution of Earth System models will lead to predictability of more societal-relevant variables spanning multiple parts of the Earth System.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Meehl, G. A. et al. Decadal prediction. Bull. Am. Meteorol. Soc. 90, 1467–1486 (2009).
Meehl, G. A., Hu, A., Arblaster, J. M., Fasullo, J. & Trenberth, K. E. Externally forced and internally generated decadal climate variability associated with the Interdecadal Pacific Oscillation. J. Clim. 26, 7298–7310 (2013).
Hawkins, E. & Sutton, R. (2009). The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 90, 1095–1108 (2009).
Lehner, F. et al. Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth Syst. Dynam. 11, 491–508 (2020).
Vitart, F. & Robertson, A. W. The Sub-Seasonal to Seasonal Prediction Project (S2S) and the prediction of extreme events. npj Clim. Atmos. Sci. 1, 3 (2018).
Pegion, K. et al. The Subseasonal Experiment (SubX). Bull. Amer. Meteorol. Soc. 100, 2043–2060 (2019).
Kirtman, B. P. et al. The North American multimodel ensemble: phase-1 seasonal to interannual prediction; phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteorol. Soc. https://doi.org/10.1175/BAMS-D-12-00050.1 (2014).
Boer, G. J. et al. The Decadal Climate Prediction Project (DCPP) contribution to CMIP6. Geosci. Model Dev. 9, 3751–3777 (2016).
Palmer, T. N., Doblas-Reyes, F. J., Weisheimer, A. & Rodwell, J. J. Toward seamless prediction: calibration of climate change projections using seasonal forecasts. Bull. Amer. Meteorol. Soc. 89, 459–470 (2008).
Branstator, G. & Teng, H. Potential impact of initialization on decadal predictions as assessed for CMIP5 models. Geophy. Res. Lett. https://doi.org/10.1029/2012GL051974 (2012).
Barnett, T. et al. On the prediction of the El Niño of 1986–1987. Science 241, 192–196 (1988).
Kushnir, Y. et al. Towards operational predictions of the near-term climate. Nat. Clim. Chang. https://doi.org/10.1038/s41558-018-0359-7 (2019).
Lean, P. et al. Continuous data assimilation for global numerical weather prediction. Q J R Meteorol. Soc. https://doi.org/10.1002/qj.3917 (2020).
Sandery, P. A., O’Kane, T. J., Kitsios, V. & Sakov, P. Climate model state estimation using variants of EnKF coupled data assimilation. Mon. Weather Rev. 148, 2411–2431 (2020).
Johnson, C., Hoskins, B. J. & Nichols, N. K. A singular vector perspective of 4D-Var: filtering and interpolation. Q J R Meteorol. Soc. 131, 1–19 (2005).
Magnusson, L., Nycander, J. & Kallen, E. Flow-dependent versus flow-independent initial perturbations for ensemble prediction. Tellus A 61, 194–209 (2009).
Infanti, J. M. & Kirtman, B. P. Prediction and predictability of land and atmosphere initialized CCSM4 climate forecasts over North America. J. Geophys. Res. Atmos. 121, 12,690–12,701 (2016b).
Trenary, L., DelSole, T., Tippett, M. K. & Pegion, K. A new method for determining the optimal lagged ensemble. J. Adv. Model Earth Syst. 9, 291–306 (2017).
Kirtman, B. P. & Min, D. Multi-model ensemble ENSO prediction with CCSM and CFS. Mon. Weather Rev. https://doi.org/10.1175/2009MWR2672.1 (2009).
Yeager, S. G. et al. Predicting near-term changes in the earth system: a large ensemble of initialized decadal prediction simulations using the community earth system model. Bull. Am. Meteorol. Soc. 99, 1867–1886 (2018).
Smith, D. M. et al. Real-time multi-model decadal climate predictions. Clim. Dyn. 41, 2875–2888 (2013a).
MacLachlan, C. et al. Global Seasonal Forecast System version 5 (GloSea5): a high resolution seasonal forecast system. Q J R Meteorol Soc. https://doi.org/10.1002/qj.2396 (2014).
Muñoz-Sabater et al. Assimilation of SMOS brightness temperatures in the ECMWF integrated forecasting system. Q J R Meteorol Soc. https://doi.org/10.1002/qj.3577 (2019).
Drewitt, G., Berg, A. A., Merryfield, W. J. & Lee, W.-S. Effect of realistic soil moisture initialization on the Canadian CanCM3 seasonal forecast model. Atmos. Ocean 50, 466–474 (2012).
Polkova, I., Köhl, A. & Stammer Climate-mode initialization for decadal climate predictions. Clim. Dyn. 53, 7097–7111 (2019).
Smith, D. M., Eade, R. & Pohlmann, H. A comparison of full-field and anomaly initialization for seasonal to decadal climate prediction. Clim. Dyn. 41, 3325–3338 (2013).
Volpi, D., Guemas, V. & Doblas-Reyes, F. J. Comparison of full field and anomaly initialisation for decadal climate prediction: towards an optimal consistency between the ocean and sea-ice anomaly initialisation state. Clim. Dyn. 49, 1181–1195 (2017).
Penny, S. G., et al. Coupled data assimilation for integrated earth system analysis and prediction: goals, challenges and recommendations. Technical report (World Meteorological Organisation, 2017).
Williams, K. D. et al. The Met Office Global Coupled Model 2.0 (GC2) configuration. Geosci. Model Dev. 8, 1509–1524 (2015).
Becker, E. & Van Den Dool, H. Probabilistic seasonal forecasts in the North American multimodel ensemble: a baseline skill assessment. J. Clim. 29, 3015–3026 (2016).
Kadow, C. et al. Decadal climate predictions improved by ocean ensemble dispersion filtering. J. Adv. Model. Earth Syst. 9.2, 1138–1149 (2017).
Dobrynin, M. et al. Improved teleconnection-based dynamical seasonal predictions of boreal winter. Geophys. Res. Lett. 45, 3605–3614 (2018).
Smith, D. M. et al. North Atlantic climate far more predictable than models imply. Nature 583, 796–800 (2020).
Richter, J. H. et al. Subseasonal prediction with and without a well-represented stratosphere in CESM1. Weather and Forecasting, https://journals.ametsoc.org/view/journals/wefo/aop/WAF-D-20-0029.1/WAF-D-20-0029.1.xml (2020).
Scaife, A. A. et al. Skillful long-range prediction of European and North American winters. Geophys. Res. Lett. 41, 2514–2519 (2014).
Smith, D. M. et al. Robust skill of decadal climate predictions. npj Clim. Atmos. Sci. 2, 13 (2019).
Athanasiadis, P. J. et al. Decadal predictability of North Atlantic blocking and the NAO. NPJ Clim. Atmos. Sci. 3, 20 (2020).
Nie, Y. et al. Stratospheric initial conditions provide seasonal predictability of the North Atlantic and Arctic oscillations. Env. Res. Lett. 14, 3 (2019).
Capotondi, A. et al. Understanding ENSO diversity. Bull. Am. Meteorol. Soc. 96, 921–938 (2015).
Cobb, K. M. et al. Highly variable El Niño–Southern Oscillation throughout the Holocene. Science 339, 67–70 (2013).
Capotondi, A. & Sardeshmukh, P. D. Is El Niño really changing? Geophys. Res. Lett. https://doi.org/10.1002/2017GL074515 (2017).
Grothe, P. R. et al. Enhanced El Niño–Southern Oscillation variability in recent decades. Geophys. Res. Lett. https://doi.org/10.1029/2019GL083906 (2019).
Deser, C., Phillips, A. S. & Alexander, M. A. Twentieth century tropical sea surface temperature trends revisited. Geophys. Res. Lett. 37, L10701 (2010).
Meehl, G. A., Arblaster, J. M., Fasullo, J., Hu, A. & Trenberth, K. E. Model-based evidence of deep ocean heat uptake during surface temperature hiatus periods. Nat. Clim. Change 1, 360–364 (2011).
Mann, M. E. & Emanuel, K. A. Atlantic hurricane trends linked to climate change. Eos 87, 233–241 (2006).
Mann, M. E., Steinman, B. A. & Miller, S. K. On forced temperature changes, internal variability and the AMO. (“Frontier” article). Geophys. Res. Lett. 41, 3211–3219 (2014).
Mann, M. E. et al. Predictability of the recent slowdown and subsequent recovery of large-scale surface warming using statistical methods. Geophys. Res. Lett. 43, 3459–3467 (2016).
Steinman, B. A., Frankcombe, L. M., Mann, M. E., Miller, S. K. & England, M. H. Response to comment on “Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures”. Science 350, 1326 (2015).
Roemmich, D. & Gilson, J. The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Prog. Oceanogr. 82, 81–100 (2009).
Roemmich, D. et al. On the future of Argo: a global, full-depth, multi-disciplinary array. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00439 (2019).
Thompson, D. M., Cole, J. E., Shen, G. T., Tudhope, A. W. & Meehl, G. A. Early twentieth-century warming linked to tropical Pacific wind strength. Nat. Geosci. 8, 117–121 (2015).
Cook, E. R. et al. Megadroughts in North America: placing IPCC projections of hydroclimatic change in a long-term palaeoclimate context. J. Quat. Sci. 25, 48–61 (2010).
Emile-Geay, J., Cobb, K. M., Mann, M. E. & Wittenberg, A. T. Estimating central equatorial Pacific SST variability over the past millennium. Part II: reconstructions and implications. J. Clim. 26, 2329–2352 (2013).
Linsley, B. K., Wu, H. C., Dassié, E. P. & Schrag, D. P. Decadal changes in South Pacific sea surface temperatures and the relationship to the Pacific decadal oscillation and upper ocean heat content. Geophys. Res. Lett. 42, 2358–2366 (2015).
Buckley, B. M. et al. Interdecadal Pacific Oscillation reconstructed from trans-Pacific tree rings: 1350–2004 CE. Clim. Dyn. 53, 3181–3196 (2019).
Abram, N. J. et al. Palaeoclimate perspectives on the Indian Ocean dipole. Quat. Sci. Rev. https://doi.org/10.1016/j.quascirev.2020.106302 (2020).
Sanchez, S. C., Charles, C. D., Carriquiry, J. D. & Villaescusa, J. A. Two centuries of coherent decadal climate variability across the Pacific North American region. Geophys. Res. Lett. 43, 9208–9216 (2016).
Abram, N. J. et al. Coupling of Indo-Pacific climate variability over the last millennium. Nature 579, 385–392 (2020).
Konecky, B., Dee, S. G. & Noone, D. WaxPSM: a forward model of leaf wax hydrogen isotope ratios to bridge proxy and model estimates of past climate. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2018JG004708 (2019).
Neukom, R. et al. Consistent multi-decadal variability in global temperature reconstructions and simulations over the common era. Nat. Geosci. 12, 643 (2019).
McGregor, H. V. et al. Robust global ocean cooling trend for the pre-industrial common era. Nat. Geosci. 8, 671–677 (2015).
Tierney, J. E. et al. Tropical sea surface temperatures for the past four centuries reconstructed from coral archives. Paleoceanography 30, 226–252 (2015).
Goosse, H. et al. Reconstructing surface temperature changes over the past 600 years using climate model simulations with data assimilation. J. Geophys. Res. 115, D09108 (2010).
Hakim, G. J. et al. The last millennium climate reanalysis project: framework and first results. J. Geophys. Res. Atmos. 121, 6745–6764 (2016).
Steiger, N. J., Jason, E. S., Cook, E. R. & Cook, B. I. A reconstruction of global hydroclimate and dynamical variables over the common era. Sci. Data 5, 180086 (2018).
Evans, M. N., Tolwinski-Ward, S. E., Thompson, D. M. & Anchukaitis, K. J. Applications of proxy system modeling in high resolution paleoclimatology. Quat. Sci. Rev. 76, 16–28 (2013).
Dee, S. et al. PRYSM: an open-source framework for PRoxY system modeling, with applications to oxygen-isotope systems. J. Adv. Model. Earth Syst. 7, 1220–1247 (2015).
Becker, E., Dool, den, H. V. & Zhang, Q. Predictability and forecast skill in NMME. J. Clim. 27, 5891–5906 (2014).
Doblas-Reyes, F. J. et al. Initialized near-term regional climate change prediction. Nat. Commun. 4, 1715 (2013).
Meehl, G. A., Hu, A. & Teng, H. Initialized decadal prediction for transition to positive phase of the Interdecadal Pacific Oscillation. Nat. Commun. https://doi.org/10.1038/NCOMMS11718 (2016).
Kharin, V. V., Boer, G. J., Merryfield, W. J., Scinocca, J. F. & Lee, W.-S. Statistical adjustment of decadal predictions in a changing climate. Geophys. Res. Lett. 39, L19705 (2012).
Scaife, A. A. & Smith, D. A signal-to-noise paradox in climate science. npj Clim. Atmos. Sci. 1, 28 (2018).
Sévellec, F. & Drijfhout, S. S. The signal-to-noise paradox for interannual surface atmospheric temperature predictions. Geophys. Res. Lett. 46, 9031–9041 (2019).
Zhang, W. & Kirtman,, B. Estimates of decadal climate predictability from an interactive ensemble model. Geophys. Res. Letts. 46, 3387–3397 (2019).
Weisheimer, A. et al. How confident are predictability estimates of the winter North Atlantic oscillation? Quart. J. R. Meteorol. Soc. https://doi.org/10.1002/qj.3446 (2019).
Barnston, A. G., Tippett, M. K., L’Heureux, M. L., Li, S. & DeWitt, D. G. Skill of real-time seasonal ENSO model predictions during 2002–11: is our capability increasing? Bull. Am. Meteorol. Soc. 93, 631–651 (2012).
Robertson, A. W. & Vitart, F. (eds) Sub-seasonal to Seasonal Prediction (Elsevier, 2018).
Kim, H., Vitart, F. & Waliser, D. E. Prediction of the Madden–Julian Oscillation: a review. J. Clim. 31, 9425–9443 (2018).
Stan, C. et al. Review of tropical–extratropical teleconnections on intraseasonal time scales. Rev. Geophys. 55, 902–937 (2017).
Kim, H., Richter, J. H. & Martin, Z. Insignificant QBO–MJO prediction skill relationship in the SubX and S2S subseasonal reforecasts. J. Geophys. Res. Atmos. https://doi.org/10.1029/2019JD031416 (2019).
Lim, E.-P., Hendon, H. H. & Thompson, D. W. J. Seasonal evolution of stratosphere–troposphere coupling in the southern hemisphere and implications for the predictability of surface climate. J. Geophys. Res. Atmos. 123, 1–15 (2018).
Zheng, C., Chang, E. K. M., Kim, H., Zhang, M. & Wang, W. Subseasonal to seasonal prediction of wintertime northern hemisphere extratropical cyclone activity by S2S and NMME models. J. Geophys. Res. Atmos. https://doi.org/10.1029/2019JD031252 (2019).
DeFlorio, M. J. et al. Global evaluation of atmospheric river subseasonal prediction skill. Clim. Dyn. 52, 3039–3060 (2019).
Baggett, C. et al. Skillful subseasonal forecasts of weekly tornado and hail activity using the Madden–Julian Oscillation. J. Geophys. Res. Atmos. 123, 12,661–12,675 (2018).
Broennimann, S. Impact of El Niño–Southern Oscillation on European climate. Rev. Geophys. 45, RG3003 (2007).
Ambaum, P. & Hoskins, B. J. The NAO troposphere–stratosphere connection. J. Clim. 15, 1969–1978 (2002).
Kushnir, Y., Robinson, W. A., Chang, P. & Robertson, A. W. The physical basis for predicting Atlantic sector seasonal-to-interannual climate variability. J. Clim. 19, 5949–5970 (2006).
Riddle, E. E., Butler, A. H., Furtado, J. C., Cohen, J. L. & Kumar, A. CFSv2 ensemble prediction of the wintertime Arctic oscillation. Clim. Dyn. 41, 1099–1116 (2013).
Hendon, H. H., Thompson, D. W. J. & Wheeler, M. C. Australian rainfall and surface temperature variations associated with the southern hemisphere annular mode. J. Clim. 20, 2452–2467 (2007).
Marshall, A. G. et al. Intra-seasonal drivers of extreme heat over Australia in observations and POAMA-2. Clim. Dyn. 43, 1915–1937 (2014).
Seviour, W. J. M. et al. Skillful seasonal prediction of the southern annular mode and Antarctic ozone. J. Clim. 27, 7462–7474 (2014).
Lim, E.-P., Hendon, H. H. & Rashid, H. A. Seasonal predictability of the southern annular mode due to its association with ENSO. J. Clim. 26, 8037–8054 (2013).
Lim, E. et al. Australian hot and dry extremes induced by weakenings of the stratospheric polar vortex. Nat. Geosci. 12, 896–901 (2019).
Mariotti, A. et al. Windows of opportunity for skillful forecasts subseasonal to seasonal and beyond. Bull. Am. Meteorol. Soc. https://doi.org/10.1175/BAMS-D-18-0326.1 (2020).
Dirmeyer, P. A., Halder, S. & Bombardi, R. On the harvest of predictability from land states in a global forecast model. J. Geophys. Res. Atmos. 123, 13111–13127 (2018).
Koster, R. D. et al. Regions of strong coupling between soil moisture and precipitation. Science 305, 1138–1140 (2004).
Koster, R. D. et al. The second phase of the global land–atmosphere coupling experiment: soil moisture contributions to subseasonal forecast skill. J. Hydrometeor. 12, 805–822 (2011).
Seo, E. et al. Impact of soil moisture initialization on boreal summer subseasonal forecasts: mid-latitude surface air temperature and heat wave events. Clim. Dyn. https://doi.org/10.1007/s00382-018-4221-4 (2018).
Zampieri, L., Goessling, H. F. & Jung, T. Bright prospects for Arctic sea ice prediction on subseasonal time scales. Geophys. Res. Lett. 45, 9731–9738 (2018).
Zampieri, L., Goessling, H. F. & Jung, T. Predictability of Antarctic sea ice edge on subseasonal time scales. Geophys. Res. Lett. 46, 9719–9727 (2019).
Bushuk, M. et al. A mechanism for the Arctic sea ice spring predictability barrier. Geophys. Res. Lett. https://doi.org/10.1029/2020GL088335 (2020).
Kimmritz, M. et al. Impact of ocean and sea ice initialisation on seasonal prediction skill in the Arctic. JAMES https://doi.org/10.1029/2019MS001825 (2019).
Ono, J., Komuro, Y. & Tatebe, H. Impact of sea-ice thickness initialized in April on Arctic sea-ice extent predictability with the MIROC climate model. Ann. Glaciol. 61, 97–105 (2020).
Liu, J. et al. Towards reliable Arctic sea ice prediction using multivariate data assimilation. Sci. Bull. 64, 63–72 (2019).
Jung, T. et al. Advancing polar prediction capabilities on daily to seasonal time scales. Bull. Am. Meteorol. Soc. 97, 1631–1647 (2016).
Jung, T., Kasper, M. A., Semmler, T. & Serrar, S. Arctic influence on subseasonal midlatitude prediction. Geophys. Res. Lett. 41, 3676–3680 (2014).
Baldwin, M. P. et al. Stratospheric memory and skill of extended-range weather forecasts. Science 301, 636–640 (2003).
Butler, A. H., Polvani, L. M. & Deser, C. Separating the stratospheric and tropospheric pathways of El Nino–Southern Oscillation teleconnections. Environ. Res. Lett https://doi.org/10.1088/1748-9326/9/2/024014 (2014).
Sigmond, M. et al. Enhanced seasonal forecast skill following stratospheric sudden warmings. Nat. Geosci. 6, 98–102 (2013).
Scaife, A. A. et al. Seasonal winter forecasts and the stratosphere. Atmos. Sci. Lett https://doi.org/10.1002/asl.598 (2016).
Anstey, J. A. & Shepherd, T. G. High-latitude influence of the quasi-biennial oscillation (Review article). Quart. J. Roy. Meteorol. Soc. 140, 1–21 (2014).
Garfinkel, C. I. & Hartmann, D. L. Influence of the quasi-biennial oscillation on the North Pacific and El Niño teleconnections. J. Geophys. Res. 115, D20116 (2010).
Wang, J., Kim, H. -M. & Chang, E. K. M. Interannual modulation of northern hemisphere winter storm tracks by the QBO. Geophys. Res. Lett. 45, 2786–2794 (2018).
Yoo, C. & Son, S.-W. Modulation of the boreal wintertime Madden–Julian Oscillation by the stratospheric quasi-biennial oscillation. Geophys. Res. Lett. 43, 1392–1398 (2016).
Son, S.-W., Lim, Y., Yoo, C., Hendon, H. H. & Kim, J. Stratospheric control of Madden–Julian Oscillation. J. Clim. 30, 1909–1922 (2017).
Lim, Y. et al. Influence of the QBO on MJO prediction skill in the subseasonal-to-seasonal prediction models. Clim. Dyn. https://doi.org/10.1007/s00382-019-04719-y (2019).
Tompkins, A. M. et al. The climate-system historical forecast project: providing open access to seasonal forecast ensembles from centers around the globe. Bull. Am. Meteorol. Soc. 98(11), 2293–2301 (2017).
Acosta Navarro, J. C. et al. Link between autumnal Arctic sea ice and northern hemisphere winter forecast skill. Geophys. Res. Lett. 47, e2019GL086753 (2020).
Scaife, A. A. et al. Skill of tropical rainfall predictions in multiple seasonal forecast systems. Int. J. Climatol. https://doi.org/10.1002/joc.5855 (2018).
Hu, Z. et al. How much of monthly mean precipitation variability over global land is associated with SST anomalies? Clim. Dyn. 54, 701–712 (2020).
Kirtman, B. P. et al, in Climate Science for Serving Society: Research, Modelling and Prediction Priorities (eds Asrar, G. R. & Hurrell, J. W.) 205–235 (Springer, 2013).
Capotondi, A., Wittenberg, A. T., Kug, J.-S., Takahashi, K. & McPhaden, M. J., in El Niño Southern Oscillation in a Changing Climate (eds McPhaden, M., Santoso, A. & Cai, W.) 65–86 (AGU, 2020).
Vimont, D. J., Alexander, M. A. & Newman, M. Optimal growth of central and east Pacific ENSO events. Geophys. Res. Lett. 41, 4027–4034 (2014).
Zhang, H., Clement, A. & DiNezio The south Pacific meridional mode: a mechanism for ENSO-like variability. J. Clim. 27, 769–783 (2014).
Larson, S. & Kirtman, B. P. The Pacific meridional mode as a trigger for ENSO in a high-resolution coupled model. Geophys. Res. Lett. https://doi.org/10.1002/grl.50571 (2013).
Capotondi, A. & Sardeshmukh, P. D. Optimal precursors of different types of ENSO events. Geophys. Res. Lett. 42, 9952–9960 (2015).
Amaya, D. The Pacific meridional mode and ENSO: a review. Curr. Clim. Change Rep. https://doi.org/10.1007/s40641-019-00142-x (2019).
Larson, S. M. & Kirtman, B. P. Assessing Pacific Meridional Mode forecasts and its role as an ENSO precursor and predictor in the North American multi-model ensemble. J. Clim. 27, 7018–7032 (2014).
Ren, H. F.-F., Jin, B. & & Tian, A. A. Scaife distinct persistence barriers in two types of ENSO. Geophys. Res. Lett. 43, 10,973–10,979 (2016).
Infanti, J. M. & Kirtman, B. P. North American rainfall and temperature prediction response to the diversity of ENSO. Clim. Dyn. https://doi.org/10.1007/s00382-015-2749-0 (2016).
DiNezio, P. et al. A two-year forecast for a 60-80% chance of La Nina in 2017–2018. Geophys. Res. Lett. https://doi.org/10.1002/2017GL074904 (2017).
Freund, M. B. et al. Higher frequency of central Pacific El Niño events in recent decades relative to past centuries. Nat. Geosci. 12, 450–455 (2019).
McPhaden, M. J. Genesis and evolution of the 1997–98 El Niño. Science 283, 950–954 (1999).
Capotondi, A., Sardeshmukh, P. D. & Ricciardulli, L. The nature of the stochastic wind forcing of ENSO. J. Clim. 31, 8081–8099 (2018).
Tan, X. et al. A study of the effects of westerly wind bursts on ENSO based on CESM. Clim. Dyn. 54, 885–899 (2020).
Lopez, H. & WWBs, B. P. K. ENSO predictability, the spring barrier and extreme events. J. Geophys. Res. Atmos. 119, 10,114–10,138 (2014).
Ren, H. L. et al. Seasonal predictability of winter ENSO types in operational dynamical model predictions. Clim. Dyn. 52, 3869–3890 (2019).
Chang, P. et al. Climate fluctuations of tropical coupled systems: the role of ocean dynamics. J. Clim. 19, 5122–5174 (2006).
Lübbecke, J. F. & McPhaden, M. J. Symmetry of the Atlantic Niño mode. Geophys. Res. Lett. 44, 965–973 (2017).
Richter, I. et al. On the link between mean state biases and prediction skill in the tropics: an atmospheric perspective. Clim. Dyn. 50, 3355–3374 (2018).
Stockdale, T. N., Balmaseda, M. A. & Vidard, A. Tropical Atlantic SST prediction with coupled ocean–atmosphere GCMs. J. Clim. 19, 6047–6061 (2006).
Ding, H. et al. The impact of mean state errors on equatorial Atlantic interannual variability in a climate model. J. Geophys. Res. Oceans 120, 1133–1151 (2015).
Saji, N. H., Goswami, B. N., Vinayachandran, P. N. & Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 401, 360–363 (1999).
Krishnamurthy, V. & Kirtman, B. P. Variability of the Indian Ocean: relation to monsoon and ENSO. Q. J. R. Meteorol. Soc. 129, 1623–1646 (2003).
Wu, R., Kirtman, B. P. & Krishnamurthy, V. An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring. J. Geophys. Res. Atmos. https://doi.org/10.1029/2007JD009316 (2008).
Lu, B. et al. An extreme negative Indian Ocean dipole event in 2016: dynamics and predictability. Clim. Dyn. https://doi.org/10.1007/s00382-017-3908-2 (2017).
Shinoda, T. & Han, W. Influence of Indian Ocean dipole on atmospheric subseasonal variability. J. Clim. 18, 3891–3909 (2005).
Dunstone, N. et al. Skilful predictions of the winter North Atlantic Oscillation one year ahead. Nat. Geosci. 9, 809–814 (2016).
Dunstone, N. et al. Skilful seasonal predictions of summer European rainfall. Geophys. Res. Lett. 45, 3246–3254 (2018).
Paolino, D. A., Kinter, J. L., Kirtman, B. P., Min, D. & Straus, D. M. The impact of land surface and atmospheric initialization on seasonal forecasts with CCSM. J. Clim. 25, 1007–1021 (2011).
Dirmeyer, P. A. The role of the land surface background state in climate predictability. J. Hydrometeorol. 4, 599–610 (2003).
Prodhomme, C., Doblas-Reyes, F., Bellprat, O. & Dutra, E. Impact of land-surface initialization on sub-seasonal to seasonal forecasts over Europe. Clim. Dyn. 47, 919–935 (2016).
Ardilouze, C., Batté, L., Decharme, B. & Déqué, M. On the link between summer dry bias over the US Great Plains and seasonal temperature prediction skill in a dynamical forecast system. Weather Forecast. 34, 1161–1172 (2019).
Marshall, A. G. & Scaife, A. A. Improved predictability of stratospheric sudden warming events in an atmospheric general circulation model with enhanced stratospheric resolution. J. Geophys. Res. 115, D16114 (2010).
Boer, G. J. & Hamilton, K. QBO influence on extratropical predictive skill. Clim. Dyn. 31, 987–1000 (2008).
Marshall, A. G. & Scaife, A. A. Impact of the QBO on surface winter climate. J. Geophys. Res. 114, D18110 (2009).
Scaife, A. A. et al. Predictability of the Quasi-Biennial Oscillation and its northern winter teleconnection on seasonal to decadal timescales. Geophys. Res. Letts. 41, 1752–1758 (2014).
Doblas-Reyes, F. J., Hagedorn, R., Palmer, T. N. & Morcrette, J.-J. Impact of increasing greenhouse gas concentrations in seasonal ensemble forecasts. Geophys. Res. Lett. 33, L07708 (2006).
Solaraju-Murali, B., Caron, L.-P., González-Reviriego, N. & Doblas-Reyes, F. J. Multi-year prediction of European summer drought conditions for the agricultural sector. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ab5043 (2019).
Cassou, C. et al. Decadal climate variability and predictability: challenges and opportunities. Bull. Am. Meteorol. Soc. 99, 479–490 (2018).
Liu, Z. & Di Lorenzo, E. Mechanisms and predictability of Pacific decadal variability. Curr. Clim. Chang. Rep. 4, 128–144 (2018).
Power, S., Casey, T., Folland, C., Colman, A. & Mehta, V. Inter-decadal modulation of the impact of ENSO on Australia. Clim. Dyn. 15, 319–324 (1999).
Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 78, 1069–1079 (1997).
Newman, M. et al. The Pacific Decadal Oscillation, revisited. J. Clim. 29, 4399–4427 (2016).
Chiang, J. C. H. & Vimont, D. J. Analogous Pacific and Atlantic Meridional Modes of tropical atmosphere–ocean variability. J. Clim. 17, 4143–4158 (2004).
Di Lorenzo, E. et al. North Pacific Gyre Oscillation links ocean climate and ecosystem change. GRL 35, L08607 (2008).
Han, W. et al. Indian Ocean decadal variability: a review. Bull. Am. Meteor. Soc. 95, 1679–1703 (2014).
Han, W. et al. Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. Clim. Dyn. 43, 1357–1379 (2014).
Li, Y., Han, W., Wang, F., Zhang, L. & Duan, J. Vertical structure of the upper-Indian Ocean thermal variability. J. Clim. 33, 7233–7253 (2020).
Tozuka, T., Luo, J., Masson, S. & Yamagata, T. Decadal modulations of the Indian Ocean dipole in the SINTEX-F1 coupled GCM. J. Clim. 20, 2881–2894 (2007).
Feng, M. H. H. et al. Decadal increase in Ningaloo Niño since the late 1990s. Geophys. Res. Lett. 42, 104–112 (2015).
Ummenhofer, C. C., Biastoch, A. & Böning, C. W. Multi-decadal Indian Ocean variability linked to the Pacific and implications for preconditioning Indian Ocean Dipole events. J. Clim. 30, 1739–1751 (2017).
Lee, S.-K. et al. Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nat. Geosci 8, 445–450 (2015).
Nieves, V., Willis, J. K. & Patzert, W. C. Recent hiatus caused by decadal shift in Indo-Pacific heating. Science 349, 532–535 (2015).
Jin, X. et al. Distinct mechanisms of decadal subsurface heat content variations in the eastern and western Indian Ocean modulated by tropical Pacific SST. J. Clim. 31, 7751–7769 (2018).
Annamalai, H., Potemra, J., Murtugudde, R. & McCreary, J. P. Effect of preconditioning on the extreme climate events in the tropical Indian Ocean. J. Clim. 18, 3450–3469 (2005).
Henley, B. J. et al. Spatial and temporal agreement in climate model simulations of the Interdecadal Pacific Oscillation. Environ. Res. Lett. 12, 044011 (2017).
Fasullo, J. T., Phillips, A. S. & Deser, C. Evaluation of leading modes of climate variability in the CMIP archives. J. Clim. https://doi.org/10.1175/JCLI-D-19-1024.1 (2020).
Mann, M. E., Steinman, B. A. & Miller, S. K. Absence of internal multidecadal and interdecadal oscillations in climate model simulations. Nat. Commun. https://doi.org/10.1038/s41467-019-13823-w (2020).
Kosaka, Y. & Xie, S.-P. The tropical Pacific as a key pacemaker of the variable rates of global warming. Nat. Geosci. https://doi.org/10.1038/NGEO2770 (2016).
Tung, K.-K. & Chen,, X. Understanding the recent global surface warming slowdown: a review. Climate 6, 82 (2018).
England, M. H. et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Change 4, 222–227 (2014).
Meehl, G. A., Teng, H. & Arblaster, J. M. Climate model simulations of the observed early-2000s hiatus of global warming. Nat. Clim. Change 4, 898–902 (2014).
Fyfe, J. C. et al. Making sense of the early-2000s warming slowdown. Nat. Clim. Change 6, 224–228 (2016).
Xie, S.-P. & Kosaka,, Y. What caused the global surface warming hiatus of 1998–2013? Curr. Clim. Change Rep. 3, 128–140 (2017).
Seager, R. et al. Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Clim. Change. 9, 517–522 (2019).
Chen, X. & Tung, K.-K. Varying planetary heat sink led to global-warming slowdown and acceleration. Science 345, 897–903 (2014).
Santer, B. D. et al. Observed multivariable signals of late 20th and early 21st century volcanic activity. Geophys. Res. Lett. 42, 500–509 (2015).
Smith, D. M. et al. Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown. Nat. Clim. Chang. 6, 936 (2016).
Oudar, T., Kushner, P. J., Fyfe, J. & Sigmond, M. No impact of anthropogenic aerosols on early 21st century global temperature trends in a large initial-condition ensemble. Geophys. Res. Lett. 45, 9245–9252 (2018).
Guemas, V., Doblas-Reyes, F. J., Andreu-Burillo, I. & Asif, M. Retrospective prediction of the global warming slowdown in the past decade. Nat. Clim. Change 3, 649–653 (2013).
Bordbar, M. H. et al. Uncertainty in near-term global surface warming linked to tropical Pacific climate variability. Nat. Commun. 10, 1990 (2019).
Meehl, G. A., Chung, C. T. Y., Arblaster, J. M., Holland, M. M. & Bitz, C. M. Tropical decadal variability and the rate of Arctic sea ice retreat. Geophys. Res. Lett. https://doi.org/10.1029/2018GL079989 (2018).
Meehl, G. A., Arblaster, J. M., Bitz, C., Chung, C. T. Y. & Teng, H. Antarctic sea ice expansion between 2000–2014 driven by tropical Pacific decadal climate variability. Nat. Geosci https://doi.org/10.1038/NGEO2751 (2016).
Purich, A. et al. Tropical Pacific SST drivers of recent Antarctic sea ice trends. J. Clim. 29, 8931–8948 (2016).
Thoma, M., Greatbatch, R. J., Kadow, C. & Gerdes, R. Decadal hindcasts initialized using observed surface wind stress: evaluation and prediction out to 2024. Geophys. Res. Lett. 42, 6454–6461 (2015).
Meehl, G. A. et al. Recent sudden Antarctic sea ice retreat caused by connections to the tropics and sustained ocean changes around Antarctica. Nat. Commun. 10, 14 (2019).
Yin, J., Overpeck, J., Peyser, C. & Stouffer, R. Big jump of record warm global mean surface temperature in 2014–2016 related to unusually large oceanic heat releases. Geophys. Res. Lett. 45, 1069–1078 (2018).
Booth, B. B. B., Dunstone, N. J., Halloran, P. R., Andrews, T. & Bellouin, N. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484, 228 (2012).
Watanabe, M. & Tatebe, H. Reconciling roles of sulphate aerosol forcing and internal variability in Atlantic multidecadal climate changes. Clim. Dyn. 53, 4651–4665 (2019).
Hermanson, L. et al. Robust multiyear climate impacts of volcanic eruptions in decadal prediction systems. J. Geophys. Res. Atmos. https://doi.org/10.1029/2019JD031739 (2020).
Menary, M. B. & Scaife, A. A. Naturally forced multidecadal variability of the Atlantic meridional overturning circulation. Clim. Dyn. 42, 1347–1362 (2014).
Cai, W. et al. Pantropical climate interactions. Science 363, eaav4236 (2019).
Mechoso, R. (ed.) Interacting Climates of Ocean Basins: Observations, Mechanisms, Predictability, and Impacts (Cambridge Univ. Press, 2020).
Meehl, G. A. et al. Atlantic and Pacific tropics connected by mutually interactive decadal-timescale processes. Nat. Geosci. https://doi.org/10.1038/s41561-020-00669-x (2020).
Chikamoto, Y. et al. Skillful multi-year predictions of tropical trans-basin climate variability. Nat. Commun. 6, 6869 (2015).
Ruprich-Robert, Y. et al. Assessing the climate impacts of the observed Atlantic multidecadal variability using the GFDL CM2.1 and NCAR CESM1 global coupled models. J. Clim. 30, 2785–2810 (2017).
Levine, A. F. Z., McPhaden, M. J. & Frierson, D. M. W. The impact of the AMV on multidecadal ENSO variability. Geophys. Res. Lett. 44, 3877–3886 (2017).
Kumar, A., Bhaskar, J. & Wang, H. Attribution of SST variability in global oceans and the role of ENSO. Clim. Dyn. 43, 209–220 (2014).
Taschetto, A. S., Rodrigues, R. R., Meehl, G. A., McGregor, S. & England, M. H. How sensitive are the Pacific-North Atlantic teleconnections to the position and intensity of El Niño-related warming. Clim. Dyn. https://doi.org/10.1007/s00382-015-2679-x (2015).
Han, W. et al. Decadal variability of Indian and Pacific Walker Cells: do they co-vary on decadal timescales? J. Clim. 30, 8447–8468 (2017).
Han, W. et al. Multi-decadal trend and decadal variability of the regional sea level over the Indian Ocean since the 1960s: roles of climate modes and external forcing. Climate 6, 51 (2018).
Deepa, J. S. et al. The tropical Indian Ocean decadal sea level response to the Pacific decadal oscillation forcing. Clim. Dyn. 52, 5045 (2019).
Zhang, R. et al. A review of the role of the Atlantic meridional overturning circulation in Atlantic multidecadal variability and associated climate impacts. Rev. Geophys. 57, 316–375 (2019).
Li, X., Xie, S.-P., Gille, S. T. & Yoo, C. Atlantic-induced pan-tropical climate change over the past three decades. Nat. Clim. Change https://doi.org/10.1038/NCLIMATE2840 (2015).
Li, H., Ilyina, T., Müller, W. A. & Seinz, F. Decadal prediction of the North Atlantic CO2 uptake. Nat. Commun. 7, 11076 (2016).
Jin, D. & Kirtman, B. P. How the annual cycle affects the extratropical response to ENSO. J. Geophys. Res. 115, D06102 (2010).
Zhang, L., Han, W. & Sienz, F. Unraveling causes for the changing behavior of tropical Indian Ocean in the past few decades. J. Clim. 31, 2377–2388 (2018).
Thornton, H. et al. Skillful seasonal prediction of winter gas demand. Env. Res. Lett. 14, 024009 (2019).
Palin, E. J. et al. Skillful seasonal forecasts of winter disruption to the U.K. transport system. J. Appl. Meteor. Climatol. 55, 325–344 (2016).
Towler, E., Paimazumder, D. & Done, J. Toward application of decadal climate predictions. J. Appl. Meteorol. Climatol. 57, 555–568 (2018).
Vecchi, G. A. et al. On the seasonal forecasting of regional tropical cyclone activity. J. Clim. 27, 7994–8016 (2014).
Annan, J. D. et al. Parameter estimation in an atmospheric GCM using the ensemble Kalman filter. Nonlinear Processes Geophys. https://doi.org/10.5194/npg-12-363-2005 (2005).
Düben, P. D., Hugh McNamara, H. & Palmer, T. N. The use of imprecise processing to improve accuracy in weather & climate prediction. J. Comput. Phys. 271, 2–18 (2014).
Palmer, T. N., Peter Düben, P. & McNamara, H. Stochastic modelling and energy-efficient computing for weather and climate prediction. Phil. Trans. Roy. Soc. A https://doi.org/10.1098/rsta.2014.0118 (2014).
Ham, Y.-G., Kim, J.-H. & Luo, J.-J. Deep learning for multi-year ENSO forecasts. Nature https://doi.org/10.1038/s41586-019-1559-7 (2019).
Zhang, S. et al. Coupled data assimilation and parameter estimation in coupled ocean–atmosphere models: a review. Clim. Dyn. 54, 5127–5144 (2020).
Karspeck, A. R. et al. A global coupled ensemble data assimilation system using the community earth system model and the data assimilation research testbed. Q. J. R. Meteorol. Soc. 144, 2404–2430 (2018).
Mulholland, D., Laloyaux, P., Haines, K. & Balmaseda, M. Origin and impact of initialization shocks in coupled atmosphere–ocean forecasts. Monthly Weather. Rev. 143, 4631–4644 (2015).
Saha, S. et al. The NCEP climate forecast system reanalysis. Bull. Am. Meteorol. Soc. 91, 1015–1057 (2010).
Laloyaux, P. et al. A coupled data assimilation system for climate reanalysis. Q. J. R. Meteorol. Soc. 142, 65–78 (2016).
Herman, R. J. et al. The effects of anthropogenic and volcanic aerosols and greenhouse gases on twentieth century Sahel precipitation. Sci. Rep. 10, 12203 (2020).
Schurer, A., Hegerl, G., Mann, M. E. & Tett, S. F. B. Separating forced from chaotic climate variability over the past millennium. J. Clim. 26, 6954–6973 (2013).
Ault, T. R. et al. The continuum of hydroclimate variability in western North America during the last millennium. J. Clim. 26, 5863–5878 (2013).
Laepple, T. & Huybers, P. Global and regional variability in marine surface temperatures. Geophys. Res. Lett. 41, 2528–2534 (2014).
Loope, G., Thompson, D. M., Cole, J. E. & Overpeck, J. Is there a low-frequency bias in multiproxy reconstructions of Pacific SST variability? Quat. Sci. Rev. 246, 106530 (2020).
Frankignoul, C., Muller, P. & Zorita, E. A simple model of the decadal response of the ocean to stochastic wind forcing. J. Phys. Oceanogr. 27, 1533–1546 (1997).
Capotondi, A., Alexander, M. A. & Deser, C. Why are there Rossby wave maxima in the Pacific at 10S and 13N? J. Phys. Oceanogr. 33, 1549–1563 (2003).
Chikamoto, Y., Timmermann, A., Widlansky, M. J., M. A., & L. Multi-year predictability of climate, drought, and wildfire in southwestern North America. Sci. Rep. https://www.ncbi.nlm.nih.gov/pubmed/28747719 (2017).
Lovenduski, N. S., Bonan, G. B., Yeager, S. G., Lindsay, K. & Lombardozzi, D. L. High predictability of terrestrial carbon fluxes from an initialized decadal prediction system. Environ. Res. Lett. 14, 124074 (2019).
Sospedra-Alfonso, R., Merryfield, W. J. & Kharin, V. V. Representation of snow in the Canadian seasonal to interannual prediction system: part II. Potential predictability and hindcast skill. J. Hydrometeorol. 17, 2511–2535 (2016).
Kapnick, S. B. et al. Potential for western US seasonal snowpack prediction. Proc. Natl Acad. Sci. USA 115, 1180–1185 (2018).
Holbrook, N. J. et al. Keeping pace with marine heatwaves. Nat. Rev. Earth Environ. 1, 482–493 (2020).
Batté, L. et al. Summer predictions of Arctic sea ice edge in multi‑model seasonal re‑forecasts. Clim. Dyn. 54, 5013–5029 (2020).
Subramanian, A., Juricke, S., Dueben, P. & Palmer, T. A stochastic representation of subgrid uncertainty for dynamical core development. Bull. Am. Meteorol. Soc. 100, 1091–1101 (2019).
Penny, S. G. et al. Observational needs for improving ocean and coupled reanalysis, S2S prediction, and decadal prediction. Front. Mar. Sci https://doi.org/10.3389/fmars.2019.00391 (2019).
Lofverstrom et al. An efficient ice-sheet/Earth System model spin-up procedure for CESM2.1 and CISM2.1: description, evaluation, and broader applicability. JAMES https://doi.org/10.1029/2019MS001984 (2020).
Gettelman, A. et al. The Whole Atmosphere Community Climate Model version 6 (WACCM6). J. Geophys. Res. Atmos. https://doi.org/10.1029/2019JD030943 (2019).
Tommasi, D. C. et al. Managing living marine resources in a dynamic environment: the role of seasonal to decadal climate forecasts. Prog. Oceanogr. 152, 15–49 (2017).
Stock, C. A. et al. Seasonal sea surface temperature anomaly prediction for coastal ecosystems. Prog. Oceanogr. 137, 219–236 (2015).
Liu, G. et al. Predicting heat stress to inform reef management: NOAA Coral Reef Watch’s 4-month coral bleaching outlook. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00057 (2018).
Capotondi, A., Sardeshmukh, P. D., Di Lorenzo, E., Subramanian, A. & Miller, A. J. Predictability of US West Coast ocean temperatures is not solely due to ENSO. Sci. Rep. 9, 10993 (2019).
Wells, M. L. et al. Harmful algal blooms and climate change: learning from the past and present to forecast the future. Harmful Algae 49, 68–93 (2015).
Séférian, R. et al. Multiyear predictability of tropical marine productivity. Proc. Natl Acad. Sci. USA 111, 11646–11651 (2014).
Park, J.-Y., Stock, C. A., Dunne, J. P., Yang, X. & Rosati, A. Seasonal to multiannual marine ecosystem prediction with a global Earth System model. Science 365, 284–288 (2019).
Krumhardt, K. M. et al. Potential predictability of net primary production in the ocean. Glob. Biogeochem. Cycles 34, e2020GB006531 (2020).
Siedlecki, S. A. et al. Experiments with seasonal forecasts of ocean conditions for the northern region of the California Current upwelling system. Sci. Rep. 6, 1–18 (2016).
Brady, R. X., Lovenduski, N. S., Yeager, S. G., Long, M. C. & Lindsay, K. Skillful multiyear predictions of ocean acidification in the California Current System. Nat. Commun. 11, 2166 (2020).
Séférian, R., Berthet, S. & Chevallier, M. Assessing the decadal predictability of land and ocean carbon uptake. Geophys. Res. Lett. 45, 2455–2466 (2018).
Lovenduski, N. S., Yeager, S. G., Lindsay, K. & Long, M. C. Predicting near-term variability in ocean carbon uptake. Earth Syst. Dyn. 10, 45–57 (2019).
Li, H., Ilyina, T., Müller, W. A. & Landschützer, P. Predicting the variable ocean carbon sink. Sci. Adv. https://doi.org/10.1126/sciadv.aav6471 (2019).
Bett, P. E. et al. Skillful seasonal prediction of key carbon cycle components: NPP and fire risk. Environ. Res. Commun. 2, 055002 (2020).
Park, J.-Y., Dunne, J. P. & Stock, C. A. Ocean chlorophyll as a precursor of ENSO: an earth system modeling study. Geophys. Res. Lett. https://doi.org/10.1002/2017GL076077 (2018).
Capotondi, A. et al. Observational needs supporting marine ecosystem modeling and forecasting: from the global ocean to regional and coastal systems. Front. Mar. Sci. 6, 623 (2019).
Fennel, K. et al. Advancing marine biogeochemical and ecosystem reanalyses and forecasts as tools for monitoring and managing ecosystem health. Front. Mar. Sci. 6, 89 (2019).
Weisheimer, A. & Palmer, T. N. On the reliability of seasonal climate forecasts. J. R. Soc. Interface https://doi.org/10.1098/rsif.2013.1162 (2014).
National Academies of Sciences, Engineering and Medicine. Next Generation Earth System Prediction: Strategies for Subseasonal to Seasonal Forecasts 1–351 (National Academies Press, 2017).
National Research Council. Assessment of Intraseasonal to Interannual Climate Prediction and Predictability 1–193 (National Academies Press, 2010).
Mehta, V. Natural Decadal Climate Variability: Phenomena, Mechanisms, and Predictability 1-374 (CRC Press, 2020).
GISTEMP Team, 2020: GISS Surface Temperature Analysis (GISTEMP), version 4. NASA Goddard Institute for Space Studies Dataset accessed 2021-02-25 at https://data.giss.nasa.gov/gistemp/ (2020).
Lenssen, N. J. L. et al. Improvements in the GISTEMP Uncertainty Model. J. Geophys. Res. Atmos. 124, 6307–6326 (2019).
Acknowledgements
The foundations of this Review emerged from a workshop held by the National Academies of Sciences, Engineering and Medicine in 2015 at Woods Hole, MA, USA, and the authors gratefully acknowledge support from A. Purcell and N. Huddleston. G.A.M., J.H.R. and N.R. were supported in part by the Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program of the US Department of Energy’s Office of Biological & Environmental Research (BER) via National Science Foundation IA 1844590, and by the National Center for Atmospheric Research (NCAR), which is a major facility sponsored by the National Science Foundation (NSF) under Cooperative Agreement No. 1852977. M.H.E. acknowledges support from the Australian Research Council (Grant CE170100023). H.T. was partly supported by DOE/BER RGMA HiLAT-RASM. M.E.M. was supported by a grant from the NSF Paleoclimate Program #1748097. F.D.-R. and M.G.D. were supported by the H2020 EUCP project under Grant agreement no. 776613, and M.G.D also by the Ramón y Cajal 2017 grant reference RYC-2017-22964. A.C. acknowledges support from the National Oceanic and Atmospheric Administration (NOAA) Climate Program Office’s Modeling Analysis, Prediction and Projections (MAPP) Program and from the NOAA Climate Program Office’s Climate Variability and Predictability (CVP) Program. A.C.S. acknowledges support from the NOAA Climate Variability and Predictability Program (Award NA18OAR4310405) and NOAA-MAPP (NA17OAR4310106). N.S.L. is grateful for support from the NSF (OCE-1752724). D.T. acknowledges support from the NCAR Advanced Study Program and NSF (OCE-1931242). S.C.S was supported by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) Postdoctoral Fellowship. A.A.S. and D.S were supported by the Met Office Hadley Centre Climate Programme funded by the Department for Business, Energy & Industrial Strategy (BEIS) and Department for Environment, Food and Rural Affairs (Defra) and by the European Commission Horizon 2020 EUCP project (GA 776613).
Author information
Authors and Affiliations
Contributions
H.T. suggested the original concept. G.A.M. led the overall conceptual design and coordinated the writing. J.H.R. and H.T. made major contributions to the conceptual design and organization. J.H.R. generated Fig. 1a. H.T. generated Fig. 4. All authors discussed the concepts presented and contributed to the writing.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Earth & Environment thanks Debra Hudson, Constantin Ardilouze, Terrence O’Kane and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
APCC climate predictions: https://www.apcc21.org/
Copernicus Climate Change Service: https://www.copernicus.eu/en
North American Multi-model Ensemble: https://www.cpc.ncep.noaa.gov/products/NMME/
Supplementary information
Rights and permissions
About this article
Cite this article
Meehl, G.A., Richter, J.H., Teng, H. et al. Initialized Earth System prediction from subseasonal to decadal timescales. Nat Rev Earth Environ 2, 340–357 (2021). https://doi.org/10.1038/s43017-021-00155-x
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s43017-021-00155-x
This article is cited by
-
The climate variability trio: stochastic fluctuations, El Niño, and the seasonal cycle
Geoscience Letters (2023)
-
Pantropical Indo-Atlantic temperature gradient modulates multi-decadal AMOC variability in models and observations
npj Climate and Atmospheric Science (2023)
-
Reduced Southern Ocean warming enhances global skill and signal-to-noise in an eddy-resolving decadal prediction system
npj Climate and Atmospheric Science (2023)
-
Increased exposure of coastal cities to sea-level rise due to internal climate variability
Nature Climate Change (2023)
-
Seamless Prediction in China: A Review
Advances in Atmospheric Sciences (2023)