Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Submarine groundwater discharge impacts on coastal nutrient biogeochemistry

Abstract

Submarine groundwater discharge (SGD) links terrestrial and marine systems, but has often been overlooked in coastal nutrient budgets because it is difficult to quantify. In this Review, we examine SGD nutrient fluxes in over 200 locations globally, explain their impact on biogeochemistry and discuss broader management implications. SGD nutrient fluxes exceed river inputs in ~60% of study sites, with median total SGD fluxes of 6.0 mmol m−2 per day for dissolved inorganic nitrogen, 0.1 mmol m−2 per day for dissolved inorganic phosphorus and 6.5 mmol m−2 per day for dissolved silicate. SGD nitrogen input (mostly in the form of ammonium and dissolved organic nitrogen) often mitigates nitrogen limitation in coastal waters, since SGD tends to have high nitrogen concentrations relative to phosphorus (76% of studies showed N:P values above the Redfield ratio). It is notable that most investigations do not distinguish saline and fresh SGD, although they have different properties. Saline SGD is a ubiquitous, diffuse pathway releasing mostly recycled nutrients to global coastal waters, whereas fresh SGD is occasionally a local, point source of new nutrients. SGD-derived nutrient fluxes must be considered in water quality management plans, as these inputs can promote eutrophication if not properly managed.

Key points

  • Submarine groundwater discharge (SGD) is an essential component of biogeochemical budgets. Fresh SGD is a source of new nutrients, whereas saline SGD often releases recycled nutrients from sediments.

  • SGD-derived nitrogen fluxes exceeded river inputs in ~60% of the reviewed cases and usually counteracted nitrogen limitation in coastal waters due to high N:P exceeding the Redfield ratio.

  • Positive impacts of SGD on coastal ecosystems include enhanced coral calcification, primary productivity, fisheries, denitrification and pollutant attenuation.

  • Negative impacts of SGD include eutrophication, algal blooms, deoxygenation and localized ocean acidification, depending on site-specific conditions.

  • Considering SGD is crucial to reach the United Nations Sustainable Development Goals pollution targets. The US Supreme Court decision to consider SGD under the Clean Water Act represents a positive policy change, signalling broader appreciation of SGD impacts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The nitrogen cycle in sandy, muddy and rocky coastal aquifers.
Fig. 2: SGD rates from study cases reviewed here.
Fig. 3: SGD-derived DIN, DIP and DSi fluxes based on different spatial scales and ecosystem types.
Fig. 4: Nutrient limitation and speciation in SGD versus rivers.
Fig. 5: River and SGD-derived nutrient inputs to the ocean.
Fig. 6: The biological impacts of SGD.

Similar content being viewed by others

References

  1. Howarth, R. W. Coastal nitrogen pollution: A review of sources and trends globally and regionally. Harmful Algae 8, 14–20 (2008).

    Article  Google Scholar 

  2. Van Meter, K. J., Van Cappellen, P. & Basu, N. B. Legacy nitrogen may prevent achievement of water quality goals in the Gulf of Mexico. Science 360, 427–430 (2018). Revealed how the legacy of nitrogen pollution in soils will eventually reach the coastal ocean, even after sources are controlled.

    Article  Google Scholar 

  3. HELCOM. First version of the ‘State of the Baltic Sea’ report–June 2017. HELCOM http://stateofthebalticsea.helcom.fi (2017).

  4. Ilnicki, P. Emissions of nitrogen and phosphorus into rivers from agricultural land‒selected controversial issues. J. Water Land Dev. 23, 31–39 (2014).

    Article  Google Scholar 

  5. Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).

    Article  Google Scholar 

  6. Conley, D. J. et al. Hypoxia is increasing in the coastal zone of the Baltic Sea. Environ. Sci. Technol. 45, 6777–6783 (2011).

    Article  Google Scholar 

  7. Carstensen, J., Andersen, J. H., Gustafsson, B. G. & Conley, D. J. Deoxygenation of the Baltic Sea during the last century. Proc. Natl Acad. Sci. USA 111, 5628–5633 (2014).

    Article  Google Scholar 

  8. Johannes, R. E. The ecological significance of the submarine groundwater discharge. Mar. Ecol. Prog. Ser. 3, 365–373 (1980). Pioneering regional-scale demonstration of the importance of SGD-derived nutrient fluxes in Australia.

    Article  Google Scholar 

  9. Johannes, R. E. & Hearn, C. J. The effect of submarine groundwater discharge on nutrient and salinity regimes in a coastal lagoon off Perth, Western Australia. Estuar. Coast. Shelf Sci. 21, 789–800 (1985).

    Article  Google Scholar 

  10. Liu, J., Du, J., Wu, Y. & Liu, S. Nutrient input through submarine groundwater discharge in two major Chinese estuaries: the Pearl River Estuary and the Changjiang River Estuary. Estuar. Coast. Shelf Sci. 203, 17–28 (2018).

    Article  Google Scholar 

  11. Charette, M. A. & Buesseler, K. O. Submarine groundwater discharge of nutrients and copper to an urban subestuary of Chesapeake Bay (Elizabeth River). Limnol. Oceanogr. 49, 376–385 (2004).

    Article  Google Scholar 

  12. Paytan, A. et al. Submarine groundwater discharge: An important source of new inorganic nitrogen to coral reef ecosystems. Limnol. Oceanogr. 51, 343–348 (2006).

    Article  Google Scholar 

  13. McMahon, A. & Santos, I. R. Nitrogen enrichment and speciation in a coral reef lagoon driven by groundwater inputs of bird guano. J. Geophys. Res. Oceans 122, 7218–7236 (2017).

    Article  Google Scholar 

  14. Oehler, T. et al. Nutrient dynamics in submarine groundwater discharge through a coral reef (western Lombok, Indonesia). Limnol. Oceanogr. 64, 2646–2661 (2019).

    Article  Google Scholar 

  15. Lee, Y.-W., Hwang, D.-W., Kim, G., Lee, W.-C. & Oh, H.-T. Nutrient inputs from submarine groundwater discharge (SGD) in Masan Bay, an embayment surrounded by heavily industrialized cities, Korea. Sci. Total Environ. 407, 3181–3188 (2009).

    Article  Google Scholar 

  16. Rodellas, V. et al. Submarine groundwater discharge as a source of nutrients and trace metals in a Mediterranean bay (Palma Beach, Balearic Islands). Mar. Chem. 160, 56–66 (2014).

    Article  Google Scholar 

  17. Liefer, J. D., MacIntyre, H. L., Su, N. & Burnett, W. C. Seasonal alternation between groundwater discharge and benthic coupling as nutrient sources in a shallow coastal lagoon. Estuar. Coasts 37, 925–940 (2014).

    Article  Google Scholar 

  18. Gleeson, J., Santos, I. R., Maher, D. T. & Golsby-Smith, L. Groundwater–surface water exchange in a mangrove tidal creek: Evidence from natural geochemical tracers and implications for nutrient budgets. Mar. Chem. 156, 27–37 (2013).

    Article  Google Scholar 

  19. Tait, D. R., Maher, D. T., Sanders, C. J. & Santos, I. R. Radium-derived porewater exchange and dissolved N and P fluxes in mangroves. Geochim. Cosmochim. Acta 200, 295–309 (2017).

    Article  Google Scholar 

  20. Wilson, A. & Morris, J. The influence of tidal forcing on groundwater flow and nutrient exchange in a salt marsh-dominated estuary. Biogeochemistry 108, 27–38 (2012).

    Article  Google Scholar 

  21. Tobias, C. R., Macko, S. A., Anderson, I. C., Canuel, E. A. & Harvey, J. W. Tracking the fate of a high concentration groundwater nitrate plume through a fringing marsh: A combined groundwater tracer and in situ isotope enrichment study. Limnol. Oceanogr. 46, 1977–1989 (2001).

    Article  Google Scholar 

  22. Moore, W. S., Blanton, J. O. & Joye, S. B. Estimates of flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina. J. Geophys. Res. 111, C09006 (2006).

    Google Scholar 

  23. Smith, C. G. & Swarzenski, P. W. An investigation of submarine groundwater—borne nutrient fluxes to the west Florida shelf and recurrent harmful algal blooms. Limnol. Oceanogr. 57, 471–485 (2012).

    Article  Google Scholar 

  24. Wang, X., Baskaran, M., Su, K. & Du, J. The important role of submarine groundwater discharge (SGD) to derive nutrient fluxes into River dominated Ocean Margins – The East China Sea. Mar. Chem. 204, 121–132 (2018).

    Article  Google Scholar 

  25. Niencheski, L. F. H., Windom, H. L., Moore, W. S. & Jahnke, R. A. Submarine groundwater discharge of nutrients to the ocean along a coastal lagoon barrier, Southern Brazil. Mar. Chem. 106, 546–561 (2007).

    Article  Google Scholar 

  26. Cho, H. M. et al. Radium tracing nutrient inputs through submarine groundwater discharge in the global ocean. Sci. Rep. 8, 2439 (2018). A global estimate of total SGD-derived nutrient fluxes into the ocean.

    Article  Google Scholar 

  27. Sawyer, A. H., David, C. H. & Famiglietti, J. S. Continental patterns of submarine groundwater discharge reveal coastal vulnerabilities. Science 353, 705–707 (2016). Continental-scale modelling revealing hotspots of fresh SGD and nutrient inputs in the United States.

    Article  Google Scholar 

  28. Taniguchi, M. et al. Submarine groundwater discharge: updates on its measurement techniques, geophysical drivers, magnitudes, and effects. Front. Environ. Sci. 7, 141 (2019).

    Article  Google Scholar 

  29. Burnett, W., Bokuniewicz, H., Huettel, M., Moore, W. S. & Taniguchi, M. Groundwater and pore water inputs to the coastal zone. Biogeochemistry 66, 3–33 (2003). Established the modern definition of SGD and reviewed progress in the field.

    Article  Google Scholar 

  30. Moore, W. S. The effect of submarine groundwater discharge on the ocean. Annu. Rev. Mar. Sci. 2, 59–88 (2010).

    Article  Google Scholar 

  31. Bratton, J. F. The three scales of submarine groundwater flow and discharge across passive continental margins. J. Geol. 118, 565–575 (2010). Discussed the scales of SGD and implications of sea-level rise.

    Article  Google Scholar 

  32. Taniguchi, M., Burnett, W., Cable, J. E. & Turner, J. V. Investigation of submarine groundwater discharge. Hydrol. Process. 16, 2115–2129 (2002). Early compilation of study cases estimating SGD rates.

    Article  Google Scholar 

  33. Burnett, W. C. et al. Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci. Total Environ. 367, 498–543 (2006).

    Article  Google Scholar 

  34. Robinson, C. E. et al. Groundwater dynamics in subterranean estuaries of coastal unconfined aquifers: Controls on submarine groundwater discharge and chemical inputs to the ocean. Adv. Water Resour. 115, 315–331 (2018). A summary of global experiments comparing methods that have become the essential tools to quantify SGD.

    Article  Google Scholar 

  35. Santos, I. R., Burnett, W. C., Chanton, J., Dimova, N. & Peterson, R. Land or ocean?: Assessing the driving forces of submarine groundwater discharge at a coastal site in the Gulf of Mexico. J. Geophys. Res. 114, C04012 (2009).

    Google Scholar 

  36. Post, V. E. A. et al. Offshore fresh groundwater reserves as a global phenomenon. Nature 504, 71–78 (2013). Described SGD beyond the continental shelf with implications for global offshore water resource use and management.

    Article  Google Scholar 

  37. Sanford, W. E. & Pope, J. P. Quantifying groundwater’s role in delaying improvements to Chesapeake Bay water quality. Environ. Sci. Technol. 47, 13330–13338 (2013).

    Article  Google Scholar 

  38. Moore, W. S. Large groundwater inputs to coastal environments revealed by 226Ra enrichments. Nature 380, 612–614 (1996). First large-scale quantification of SGD in the coastal ocean using radium-226, inspiring a generation of SGD researchers.

    Article  Google Scholar 

  39. Burnett, W. C., Kim, G. & Lane-Smith, D. A continuous monitor for assessment of 222Rn in the coastal ocean. J. Radioanal. Nucl. Chem. 249, 167–172 (2001).

    Article  Google Scholar 

  40. Cable, J. E., Bugna, G. C., Burnett, W. & Chanton, J. P. Application of 222Rn and CH4 for assessment of groundwater discharge to the coastal ocean. Limnol. Oceanogr. 41, 1347–1353 (1996).

    Article  Google Scholar 

  41. Michael, H. A., Lubetsky, J. S. & Harvey, C. F. Characterizing submarine groundwater discharge: A seepage meter study in Waquoit Bay, Massachusetts. Geophys. Res. Lett. 30, 1297 (2003).

    Article  Google Scholar 

  42. Oberdorfer, J. A. Hydrogeologic modeling of submarine groundwater discharge: Comparison to other quantitative methods. Biogeochemistry 66, 159–169 (2003).

    Article  Google Scholar 

  43. Evans, T. B., White, S. M. & Wilson, A. M. Coastal groundwater flow at the nearshore and embayment scales: a field and modeling study. Water Resour. Res. 56, e2019WR026445 (2020).

    Article  Google Scholar 

  44. Russoniello, C. J., Heiss, J. W. & Michael, H. A. Variability in benthic exchange rate, depth, and residence time beneath a shallow coastal estuary. J. Geophys. Res. Oceans 123, 1860–1876 (2018).

    Article  Google Scholar 

  45. Swarzenski, P. W. et al. Combined time-series resistivity and geochemical tracer techniques to examine submarine groundwater discharge at Dor Beach, Israel. Geophys. Res. Lett. 33, L24405 (2006).

    Article  Google Scholar 

  46. Dimova, N. T., Swarzenski, P. W., Dulaiova, H. & Glenn, C. R. Utilizing multichannel electrical resistivity methods to examine the dynamics of the fresh water–seawater interface in two Hawaiian groundwater systems. J. Geophys. Res. Oceans 117, C02012 (2012).

    Article  Google Scholar 

  47. Johnson, A. G., Glenn, C. R., Burnett, W. C., Peterson, R. N. & Lucey, P. G. Aerial infrared imaging reveals large nutrient-rich groundwater inputs to the ocean. Geophys. Res. Lett. 35, L15606 (2008).

    Article  Google Scholar 

  48. Wilson, J. & Rocha, C. Regional scale assessment of submarine groundwater discharge in Ireland combining medium resolution satellite imagery and geochemical tracing techniques. Remote Sens. Environ. 119, 21–34 (2012).

    Article  Google Scholar 

  49. Weinstein, Y. et al. What is the role of fresh groundwater and recirculated seawater in conveying nutrients to the coastal ocean? Environ. Sci. Technol. 45, 5195–5200 (2011).

    Article  Google Scholar 

  50. Sadat-Noori, M., Santos, I. R., Tait, D. R. & Maher, D. T. Fresh meteoric versus recirculated saline groundwater nutrient inputs into a subtropical estuary. Sci. Total Environ. 566–567, 1440–1453 (2016).

    Article  Google Scholar 

  51. Rodellas, V. et al. Groundwater-driven nutrient inputs to coastal lagoons: The relevance of lagoon water recirculation as a conveyor of dissolved nutrients. Sci. Total Environ. 642, 764–780 (2018).

    Article  Google Scholar 

  52. Wilson, A. M. Fresh and saline groundwater discharge to the ocean: A regional perspective. Water Resour. Res. 41, W0216 (2005).

    Article  Google Scholar 

  53. Correa, R. E. et al. Submarine groundwater discharge and associated nutrient and carbon inputs into Sydney Harbour (Australia). J. Hydrol. 580, 124262 (2020).

    Article  Google Scholar 

  54. Call, M. et al. High pore-water derived CO2 and CH4 emissions from a macro-tidal mangrove creek in the Amazon region. Geochim. Cosmochim. Acta 247, 106–120 (2019).

    Article  Google Scholar 

  55. Seidel, M. et al. Biogeochemistry of dissolved organic matter in an anoxic intertidal creek bank. Geochim. Cosmochim. Acta 140, 418–434 (2014).

    Article  Google Scholar 

  56. Wilson, A. M., Evans, T. B., Moore, W. S., Schutte, C. A. & Joye, S. B. What time scales are important for monitoring tidally influenced submarine groundwater discharge? Insights from a salt marsh. Water Resour. Res. 51, 4198–4207 (2015).

    Article  Google Scholar 

  57. Wilson, A. M. The occurrence and chemical implications of geothermal convection of seawater in continental shelves. Geophys. Res. Lett. 30, 2127 (2003).

    Article  Google Scholar 

  58. Moore, W. S. A reevaluation of submarine groundwater discharge along the southeastern coast of North America. Glob. Biogeochem. Cycles 24, GB4005 (2010).

    Article  Google Scholar 

  59. Gonneea, M. E. & Charette, M. A. Hydrologic controls on nutrient cycling in an unconfined coastal aquifer. Environ. Sci. Technol. 48, 14178–14185 (2014).

    Article  Google Scholar 

  60. Santos, I. R. et al. Extended time series measurements of submarine groundwater discharge tracers (222Rn and CH4) at a coastal site in Florida. Mar. Chem. 113, 137–147 (2009).

    Article  Google Scholar 

  61. Rodellas, V. et al. Temporal variations in porewater fluxes to a coastal lagoon driven by wind waves and changes in lagoon water depths. J. Hydrol. 581, 124363 (2020).

    Article  Google Scholar 

  62. Moore, W. S. & Wilson, A. M. Advective flow through the upper continental shelf driven by storms, buoyancy, and submarine groundwater discharge. Earth Planet. Sci. Lett. 235, 564–576 (2005).

    Article  Google Scholar 

  63. Santos, I. R., Cook, P. L. M., Rogers, L., de Weys, J. & Eyre, B. D. The “salt wedge pump”: Convection-driven pore-water exchange as a source of dissolved organic and inorganic carbon and nitrogen to an estuary. Limnol. Oceanogr. 57, 1415–1426 (2012).

    Article  Google Scholar 

  64. Gonneea, M. E., Mulligan, A. E. & Charette, M. A. Climate-driven sea level anomalies modulate coastal groundwater dynamics and discharge. Geophys. Res. Lett. 40, 2701–2706 (2013).

    Article  Google Scholar 

  65. George, C. et al. A new mechanism for submarine groundwater discharge from continental shelves. Water Resour. Res. 56, e2019WR026866 (2020).

    Article  Google Scholar 

  66. Luijendijk, E., Gleeson, T. & Moosdorf, N. Fresh groundwater discharge insignificant for the world’s oceans but important for coastal ecosystems. Nat. Commun. 11, 1260 (2020). A global modelling effort to estimate fresh SGD, identifying regional hotspots.

    Article  Google Scholar 

  67. Zhou, Y., Sawyer, A. H., David, C. H. & Famiglietti, J. S. Fresh submarine groundwater discharge to the near-global coast. Geophys. Res. Lett. 46, 5855–5863 (2019).

    Article  Google Scholar 

  68. Kwon, E. Y. et al. Global estimate of submarine groundwater discharge based on an observationally constrained radium isotope model. Geophys. Res. Lett. 41, 8438–8444 (2014). Estimates global SGD rates based on radium isotopes.

    Article  Google Scholar 

  69. Moosdorf, N., Stieglitz, T., Waska, H., Dürr, H. H. & Hartmann, J. Submarine groundwater discharge from tropical islands: a review. Grundwasser 20, 53–67 (2015).

    Article  Google Scholar 

  70. Zhou, Y., Befus, K. M., Sawyer, A. H. & David, C. H. Opportunities and challenges in computing fresh groundwater discharge to continental coastlines: a multimodel comparison for the United States Gulf and Atlantic Coasts. Water Resour. Res. 54, 8363–8380 (2018).

    Article  Google Scholar 

  71. Kim, G., Lee, K. K., Park, K. S., Hwang, D. W. & Yang, H. S. Large submarine groundwater discharge (SGD) from a volcanic island. Geophys. Res. Lett. 30, 2098 (2003).

    Article  Google Scholar 

  72. Chen, X. et al. Karstic submarine groundwater discharge into the Mediterranean: Radon-based nutrient fluxes in an anchialine cave and a basin-wide upscaling. Geochim. Cosmochim. Acta 268, 467–484 (2020).

    Article  Google Scholar 

  73. Garcia-Solsona, E. et al. An assessment of karstic submarine groundwater and associated nutrient discharge to a Mediterranean coastal area (Balearic Islands, Spain) using radium isotopes. Biogeochemistry 97, 211–229 (2010).

    Article  Google Scholar 

  74. Abbott, B. W. et al. Human domination of the global water cycle absent from depictions and perceptions. Nat. Geosci. 12, 533–540 (2019).

    Article  Google Scholar 

  75. Rodellas, V. et al. Conceptual uncertainties in groundwater and porewater fluxes estimated by radon and radium mass balances. Limnol. Oceanogr. https://doi.org/10.1002/lno.11678 (2021).

    Article  Google Scholar 

  76. Sadat-Noori, M., Santos, I. R., Sanders, C. J., Sanders, L. M. & Maher, D. T. Groundwater discharge into an estuary using spatially distributed radon time series and radium isotopes. J. Hydrol. 528, 703–719 (2015).

    Article  Google Scholar 

  77. Sadat-Noori, M., Santos, I. R., Tait, D. R., Reading, M. J. & Sanders, C. J. High porewater exchange in a mangrove-dominated estuary revealed from short-lived radium isotopes. J. Hydrol. 553, 188–198 (2017).

    Article  Google Scholar 

  78. Weinstein, Y. et al. Role of aquifer heterogeneity in fresh groundwater discharge and seawater recycling: An example from the Carmel coast, Israel. J. Geophys. Res. 112, C12016 (2007).

    Article  Google Scholar 

  79. Tamborski, J. et al. A comparison between water circulation and terrestrially-driven dissolved silica fluxes to the Mediterranean Sea traced using radium isotopes. Geochim. Cosmochim. Acta 238, 496–515 (2018).

    Article  Google Scholar 

  80. Li, L., Barry, D. A., Stagnitti, F. & Parlange, J. Y. Submarine groundwater discharge and associated chemical input to a coastal sea. Water Resour. Res. 35, 3253–3259 (1999).

    Article  Google Scholar 

  81. Lopez, C. V., Murgulet, D. & Santos, I. R. Radioactive and stable isotope measurements reveal saline submarine groundwater discharge in a semiarid estuary. J. Hydrol. 590, 125395 (2020).

    Article  Google Scholar 

  82. Beck, M. et al. The drivers of biogeochemistry in beach ecosystems: A cross-shore transect from the dunes to the low-water line. Mar. Chem. 190, 35–50 (2017).

    Article  Google Scholar 

  83. Billerbeck, M. et al. Surficial and deep pore water circulation governs spatial and temporal scales of nutrient recycling in intertidal sand flat sediment. Mar. Ecol. Prog. Ser. 326, 61–76 (2006).

    Article  Google Scholar 

  84. Santos, I. R. et al. Porewater exchange as a driver of carbon dynamics across a terrestrial-marine transect: Insights from coupled 222Rn and pCO2 observations in the German Wadden Sea. Mar. Chem. 171, 10–20 (2015).

    Article  Google Scholar 

  85. Charbonnier, C., Anschutz, P., Poirier, D., Bujan, S. & Lecroart, P. Aerobic respiration in a high-energy sandy beach. Mar. Chem. 155, 10–21 (2013).

    Article  Google Scholar 

  86. Andrisoa, A., Stieglitz, T. C., Rodellas, V. & Raimbault, P. Primary production in coastal lagoons supported by groundwater discharge and porewater fluxes inferred from nitrogen and carbon isotope signatures. Mar. Chem. 210, 48–60 (2019).

    Article  Google Scholar 

  87. Charette, M. A. & Sholkovitz, E. R. Oxidative precipitation of groundwater-derived ferrous iron in the subterranean estuary of a coastal bay. Geophys. Res. Lett. 29, 85-1–85-4 (2002).

    Article  Google Scholar 

  88. Spiteri, C., Regnier, P., Slomp, C. P. & Charette, M. A. pH-Dependent iron oxide precipitation in a subterranean estuary. J. Geochem. Explor. 88, 399–403 (2006).

    Article  Google Scholar 

  89. Spiteri, C., Slomp, C. P., Tuncay, K. & Meile, C. Modeling biogeochemical processes in subterranean estuaries: Effect of flow dynamics and redox conditions on submarine groundwater discharge of nutrients. Water Resour. Res. 44, W02430 (2008).

    Google Scholar 

  90. Erler, D. V. et al. Nitrogen transformations within a tropical subterranean estuary. Mar. Chem. 164, 38–47 (2014).

    Article  Google Scholar 

  91. Wadnerkar, P. D. et al. Significant nitrate attenuation in a mangrove-fringed estuary during a flood-chase experiment. Environ. Pollut. 253, 1000–1008 (2019).

    Article  Google Scholar 

  92. Bernard, R. J. et al. Benthic nutrient fluxes and limited denitrification in a sub-tropical groundwater-influenced coastal lagoon. Mar. Ecol. Prog. Ser. 504, 13–26 (2014).

    Article  Google Scholar 

  93. Cuthbert, M. O. et al. Global patterns and dynamics of climate–groundwater interactions. Nat. Clim. Change 9, 137–141 (2019).

    Article  Google Scholar 

  94. Robinson, C., Gibbes, B. & Li, L. Driving mechanisms for groundwater flow and salt transport in a subterranean estuary. Geophys. Res. Lett. 33, L03402 (2006).

    Article  Google Scholar 

  95. Robinson, C., Gibbes, B., Carey, H. & Li, L. Salt-freshwater dynamics in a subterranean estuary over a spring-neap tidal cycle. J. Geophys. Res. Oceans 112, C09007 (2007).

    Article  Google Scholar 

  96. Robinson, C., Li, L. & Prommer, H. Tide-induced recirculation across the aquifer-ocean interface. Water Resour. Res. 43, W07428 (2007).

    Article  Google Scholar 

  97. Xin, P. et al. Memory of past random wave conditions in submarine groundwater discharge. Geophys. Res. Lett. 41, 2401–2410 (2014).

    Article  Google Scholar 

  98. Michael, H. A. et al. Geologic influence on groundwater salinity drives large seawater circulation through the continental shelf. Geophys. Res. Lett. 43, 10,782–10,791 (2016).

    Article  Google Scholar 

  99. Xin, P., Jin, G. Q., Li, L. & Barry, D. A. Effects of crab burrows on pore water flows in salt marshes. Adv. Water Resour. 32, 439–449 (2009).

    Article  Google Scholar 

  100. Xin, P., Yuan, L. R., Li, L. & Barry, D. A. Tidally driven multiscale pore water flow in a creek-marsh system. Water Resour. Res. 47, W07534 (2011).

    Article  Google Scholar 

  101. Xiao, K. et al. Large CO2 release and tidal flushing in salt marsh crab burrows reduce the potential for blue carbon sequestration. Limnol. Oceanogr. 66, 14–29 (2021).

    Article  Google Scholar 

  102. Stieglitz, T., Clark, J. F. & Hancock, G. J. The mangrove pump: The tidal flushing of animal burrows in a tropical mangrove forest determined from radionuclide budgets. Geochim. Cosmochim. Acta 102, 12–22 (2013).

    Article  Google Scholar 

  103. Peterson, R. N., Burnett, W. C., Glenn, C. R. & Johnson, A. J. Quantification of point-source groundwater discharges to the ocean from the shoreline of the Big Island, Hawaii. Limnol. Oceanogr. 54, 890–904 (2009).

    Article  Google Scholar 

  104. Dimova, N. T., Burnett, W. C. & Speer, K. A natural tracer investigation of the hydrological regime of Spring Creek Springs, the largest submarine spring system in Florida. Cont. Shelf Res. 31, 731–738 (2011).

    Article  Google Scholar 

  105. Haitjema, H. M. & Mitchell-Bruker, S. Are water tables a subdued replica of the topography? Groundwater 43, 781–786 (2005).

    Google Scholar 

  106. Michael, H. A., Russoniello, C. J. & Byron, L. A. Global assessment of vulnerability to sea-level rise in topography-limited and recharge-limited coastal groundwater systems. Water Resour. Res. 49, 2228–2240 (2013).

    Article  Google Scholar 

  107. Zhang, Y., Li, L., Erler, D. V., Santos, I. & Lockington, D. Effects of alongshore morphology on groundwater flow and solute transport in a nearshore aquifer. Water Resour. Res. 52, 990–1008 (2016).

    Article  Google Scholar 

  108. Zhang, Y., Li, L., Erler, D. V., Santos, I. & Lockington, D. Effects of beach slope breaks on nearshore groundwater dynamics. Hydrol. Process. 31, 2530–2540 (2017).

    Article  Google Scholar 

  109. Xin, P., Kong, J., Li, L. & Barry, D. A. Effects of soil stratigraphy on pore-water flow in a creek-marsh system. J. Hydrol. 475, 175–187 (2012).

    Article  Google Scholar 

  110. Krest, J. M., Moore, W. S. & Gardner, L. R. Marsh nutrient export supplied by groundwater discharge: Evidence from radium measurements. Glob. Biogeochem. Cycles 14, 167–176 (2000).

    Article  Google Scholar 

  111. Chambers, R. M. & Odum, W. E. Porewater oxidation, dissolved phosphate and the iron curtain. Biogeochemistry 10, 37–52 (1990).

    Article  Google Scholar 

  112. Santos, I. R., Burnett, W. C., Dittmar, T., Suryaputra, I. G. N. A. & Chanton, J. Tidal pumping drives nutrient and dissolved organic matter dynamics in a Gulf of Mexico subterranean estuary. Geochim. Cosmochim. Acta 73, 1325–1339 (2009).

    Article  Google Scholar 

  113. Reckhardt, A. et al. Cycling of redox-sensitive elements in a sandy subterranean estuary of the southern North Sea. Mar. Chem. 188, 6–17 (2017).

    Article  Google Scholar 

  114. Tovar-Sánchez, A. et al. Contribution of groundwater discharge to the coastal dissolved nutrients and trace metal concentrations in Majorca Island: karstic vs detrital systems. Environ. Sci. Technol. 48, 11819–11827 (2014).

    Article  Google Scholar 

  115. Montiel, D. et al. Assessing submarine groundwater discharge (SGD) and nitrate fluxes in highly heterogeneous coastal karst aquifers: Challenges and solutions. J. Hydrol. 557, 222–242 (2018).

    Article  Google Scholar 

  116. Kroeger, K. D., Swarzenski, P. W., Greenwood, W. J. & Reich, C. Submarine groundwater discharge to Tampa Bay: Nutrient fluxes and biogeochemistry of the coastal aquifer. Mar. Chem. 104, 85–97 (2007).

    Article  Google Scholar 

  117. Montiel, D. et al. Natural groundwater nutrient fluxes exceed anthropogenic inputs in an ecologically impacted estuary: lessons learned from Mobile Bay, Alabama. Biogeochemistry 145, 1–33 (2019).

    Article  Google Scholar 

  118. Santos, I. R., Eyre, B. D. & Huettel, M. The driving forces of porewater and groundwater flow in permeable coastal sediments: A review. Estuar. Coast. Shelf Sci. 98, 1–15 (2012).

    Article  Google Scholar 

  119. Prieto, C. & Destouni, G. Is submarine groundwater discharge predictable? Geophys. Res. Lett. 38, L01402 (2011).

    Article  Google Scholar 

  120. Mulligan, A. E. & Charette, M. A. Intercomparison of submarine groundwater discharge estimates from a sandy unconfined aquifer. J. Hydrol. 327, 411–425 (2006).

    Article  Google Scholar 

  121. Lecher, A. L. Groundwater discharge in the arctic: a review of studies and implications for biogeochemistry. Hydrology 4, 41 (2017).

    Article  Google Scholar 

  122. Oberdorfer, J. A., Charette, M., Allen, M., Martin, J. B. & Cable, J. E. Hydrogeology and geochemistry of near-shore submarine groundwater discharge at Flamengo Bay, Ubatuba, Brazil. Estuar. Coast. Shelf Sci. 76, 457–465 (2008).

    Article  Google Scholar 

  123. El-Gamal, A. A., Peterson, R. N. & Burnett, W. C. Detecting freshwater inputs via groundwater discharge to Marina Lagoon, Mediterranean Coast, Egypt. Estuaries Coasts 35, 1486–1499 (2012).

    Article  Google Scholar 

  124. Petermann, E. et al. Coupling end-member mixing analysis and isotope mass balancing (222-Rn) for differentiation of fresh and recirculated submarine groundwater discharge into Knysna Estuary, South Africa. J. Geophys. Res. Oceans 123, 952–970 (2018).

    Article  Google Scholar 

  125. Rahman, S., Tamborski, J. J., Charette, M. A. & Cochran, J. K. Dissolved silica in the subterranean estuary and the impact of submarine groundwater discharge on the global marine silica budget. Mar. Chem. 208, 29–42 (2019).

    Article  Google Scholar 

  126. Rodellas, V., Garcia-Orellana, J., Masqué, P., Feldman, M. & Weinstein, Y. Submarine groundwater discharge as a major source of nutrients to the Mediterranean Sea. Proc. Natl Acad. Sci. USA 112, 3926–3930 (2015). A large-scale investigation revealing that SGD-derived nutrient fluxes exceed river inputs in the Mediterranean.

    Article  Google Scholar 

  127. Richardson, C. M., Dulai, H. & Whittier, R. B. Sources and spatial variability of groundwater-delivered nutrients in Maunalua Bay, O‘ahu, Hawai’i. J. Hydrol. Reg. Stud. 11, 178–193 (2017).

    Article  Google Scholar 

  128. Portnoy, J. W., Nowicki, B. L., Roman, C. T. & Urish, D. W. The discharge of nitrate-contaminated groundwater from developed shoreline to marsh-fringed estuary. Water Resour. Res. 34, 3095–3104 (1998).

    Article  Google Scholar 

  129. Wang, G. et al. Net subterranean estuarine export fluxes of dissolved inorganic C, N, P, Si, and total alkalinity into the Jiulong River estuary, China. Geochim. Cosmochim. Acta 149, 103–114 (2015).

    Article  Google Scholar 

  130. Valiela, I. et al. Transport of groundwater-borne nutrients from watersheds and their effects on coastal waters. Biogeochemistry 10, 177–197 (1990). Early demonstration that SGD is a key factor in coastal nutrient budgets.

    Article  Google Scholar 

  131. Charette, M. A. & Sholkovitz, E. R. Trace element cycling in a subterranean estuary: Part 2. Geochemistry of the pore water. Geochim. Cosmochim. Acta 70, 811–826 (2006).

    Article  Google Scholar 

  132. Porubsky, W. P., Weston, N. B., Moore, W. S., Ruppel, C. & Joye, S. B. Dynamics of submarine groundwater discharge and associated fluxes of dissolved nutrients, carbon, and trace gases to the coastal zone (Okatee River estuary, South Carolina). Geochim. Cosmochim. Acta 131, 81–97 (2014).

    Article  Google Scholar 

  133. Blanco, A. C. et al. Estimation of nearshore groundwater discharge and its potential effects on a fringing coral reef. Mar. Pollut. Bull. 62, 770–785 (2011).

    Article  Google Scholar 

  134. Santos, I. R., Erler, D., Tait, D. & Eyre, B. D. Breathing of a coral cay: Tracing tidally driven seawater recirculation in permeable coral reef sediments. J. Geophys. Res. 115, C12010 (2010).

    Google Scholar 

  135. Kim, G., Ryu, J. W., Yang, H. S. & Yun, S. T. Submarine groundwater discharge (SGD) into the Yellow Sea revealed by Ra-228 and Ra-226 isotopes: Implications for global silicate fluxes. Earth Planet. Sci. Lett. 237, 156–166 (2005).

    Article  Google Scholar 

  136. Moore, W. S. The subterranean estuary: a reaction zone of groundwater and sea water. Mar. Chem. 65, 111–126 (1999). Defines the subterranean estuary as the mixing zone between fresh groundwater and recirculated seawater.

    Article  Google Scholar 

  137. Duque, C., Michael, H. A. & Wilson, A. M. The subterranean estuary: technical term, simple analogy, or source of confusion? Water Resour. Res. 56, e2019WR026554 (2020).

    Article  Google Scholar 

  138. Rocha, C. et al. A place for subterranean estuaries in the coastal zone. Estuar. Coast. Shelf Sci. 250, 107167 (2021).

    Article  Google Scholar 

  139. Chen, X., Ye, Q., Sanders, C. J., Du, J. & Zhang, J. Bacterial-derived nutrient and carbon source-sink behaviors in a sandy beach subterranean estuary. Mar. Pollut. Bull. 160, 111570 (2020).

    Article  Google Scholar 

  140. Wong, W. W., Applegate, A., Poh, S. C. & Cook, P. L. M. Biogeochemical attenuation of nitrate in a sandy subterranean estuary: Insights from two stable isotope approaches. Limnol. Oceanogr. 65, 3098–3113 (2020).

    Article  Google Scholar 

  141. Santos, I. R., Bryan, K. R., Pilditch, C. A. & Tait, D. R. Influence of porewater exchange on nutrient dynamics in two New Zealand estuarine intertidal flats. Mar. Chem. 167, 57–70 (2014).

    Article  Google Scholar 

  142. Sawyer, A. H. et al. Stratigraphic controls on fluid and solute fluxes across the sediment — water interface of an estuary. Limnol. Oceanogr. 59, 997–1010 (2014).

    Article  Google Scholar 

  143. Stewart, B. T., Bryan, K. R., Pilditch, C. A. & Santos, I. R. Submarine groundwater discharge estimates using radium isotopes and related nutrient inputs into Tauranga Harbour (New Zealand). Estuar. Coasts 41, 384–403 (2018).

    Article  Google Scholar 

  144. Wadnerkar, P. D. et al. Contrasting radium-derived groundwater exchange and nutrient lateral fluxes in a natural mangrove versus an artificial canal. Estuar. Coasts 44, 123–136 (2021).

    Article  Google Scholar 

  145. Slomp, C. P. & Van Cappellen, P. Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. J. Hydrol. 295, 64–86 (2004). A compilation of early SGD studies and conceptual insight into the drivers of nitrogen and phosphorus in coastal groundwater.

    Article  Google Scholar 

  146. Santos, I. R. et al. Nutrient biogeochemistry in a Gulf of Mexico subterranean estuary and groundwater-derived fluxes to the coastal ocean. Limnol. Oceanogr. 53, 705–718 (2008).

    Article  Google Scholar 

  147. Makings, U., Santos, I. R., Maher, D. T., Golsby-Smith, L. & Eyre, B. D. Importance of budgets for estimating the input of groundwater-derived nutrients to an eutrophic tidal river and estuary. Estuar. Coast. Shelf Sci. 143, 65–76 (2014).

    Article  Google Scholar 

  148. Kroeger, K. D. & Charette, M. A. Nitrogen biogeochemistry of submarine groundwater discharge. Limnol. Oceanogr. 53, 1025–1039 (2008).

    Article  Google Scholar 

  149. Glud, R. N. Oxygen dynamics of marine sediments. Mar. Biol. Res. 4, 243–289 (2008).

    Article  Google Scholar 

  150. Kristensen, E. & Kostka, J. E. in Interactions Between Macro- and Microorganisms in Marine Sediments (eds Kristensen, E., Haese, R. R. & Kostka, J. E.) 125-157 (Wiley, 2005).

  151. Bertics, V. J. et al. Burrowing deeper into benthic nitrogen cycling: the impact of bioturbation on nitrogen fixation coupled to sulfate reduction. Mar. Ecol. Prog. Ser. 409, 1–15 (2010).

    Article  Google Scholar 

  152. Rao, A. M. F. & Charette, M. A. Benthic nitrogen fixation in an eutrophic estuary affected by groundwater discharge. J. Coast. Res. 28, 477–485 (2012).

    Article  Google Scholar 

  153. Adyasari, D., Hassenrück, C., Montiel, D. & Dimova, N. Microbial community composition across a coastal hydrological system affected by submarine groundwater discharge (SGD). PLoS ONE 15, e0235235 (2020).

    Article  Google Scholar 

  154. Decleyre, H., Heylen, K., Van Colen, C. & Willems, A. Dissimilatory nitrogen reduction in intertidal sediments of a temperate estuary: small scale heterogeneity and novel nitrate-to-ammonium reducers. Front. Microbiol. 6, 1124 (2015).

    Article  Google Scholar 

  155. Zheng, Y. et al. Tidal pumping facilitates dissimilatory nitrate reduction in intertidal marshes. Sci. Rep. 6, 21338 (2016).

    Article  Google Scholar 

  156. Santos, I. R., Eyre, B. D. & Glud, R. N. Influence of porewater advection on denitrification in carbonate sands: Evidence from repacked sediment column experiments. Geochim. Cosmochim. Acta 96, 247–258 (2012).

    Article  Google Scholar 

  157. Erler, D. V., Santos, I. R. & Eyre, B. D. Inorganic nitrogen transformations within permeable carbonate sands. Cont. Shelf Res. 77, 69–80 (2014).

    Article  Google Scholar 

  158. Gihring, T. M., Canion, A., Riggs, A., Huettel, M. & Kostka, J. E. Denitrification in shallow, sublittoral Gulf of Mexico permeable sediments. Limnol. Oceanogr. 55, 43–54 (2010).

    Article  Google Scholar 

  159. Null, K. A. et al. Composition and fluxes of submarine groundwater along the Caribbean coast of the Yucatan Peninsula. Cont. Shelf Res. 77, 38–50 (2014).

    Article  Google Scholar 

  160. Knee, K. L., Street, J. H., Grossman, E. E., Boehm, A. B. & Paytan, A. Nutrient inputs to the coastal ocean from submarine groundwater discharge in a groundwater-dominated system: Relation to land use (Kona coast, Hawaii, USA). Limnol. Oceanogr. 55, 1105–1122 (2010).

    Article  Google Scholar 

  161. Ptacnik, R., Andersen, T. & Tamminen, T. Performance of the Redfield ratio and a family of nutrient limitation indicators as thresholds for phytoplankton N vs. P limitation. Ecosystems 13, 1201–1214 (2010).

    Article  Google Scholar 

  162. Seitzinger, S. et al. Denitrification across landscapes and waterscapes: a synthesis. Ecol. Appl. 16, 2064–2090 (2006).

    Article  Google Scholar 

  163. Howarth, R. W. & Marino, R. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnol. Oceanogr. 51, 364–376 (2006).

    Article  Google Scholar 

  164. Kristiansen, S. & Hoell, E. E. The importance of silicon for marine production. Hydrobiologia 484, 21–31 (2002).

    Article  Google Scholar 

  165. Spiteri, C., Slomp, C. P., Regnier, P., Meile, C. & Van Cappellen, P. Modelling the geochemical fate and transport of wastewater-derived phosphorus in contrasting groundwater systems. J. Contam. Hydrol. 92, 87–108 (2007).

    Article  Google Scholar 

  166. Cable, J. E., Corbett, D. & Walsh, M. M. Phosphate uptake in coastal limestone aquifers: A fresh look at wastewater management. Limnol. Oceanogr. Bull. 11, 29–32 (2002).

    Article  Google Scholar 

  167. Charette, M. A., Sholkovitz, E. R. & Hansel, C. M. Trace element cycling in a subterranean estuary: Part 1. Geochemistry of the permeable sediments. Geochim. Cosmochim. Acta 69, 2095–2109 (2005).

    Article  Google Scholar 

  168. Roy, M., Martin, J. B., Cherrier, J., Cable, J. E. & Smith, C. G. Influence of sea level rise on iron diagenesis in an east Florida subterranean estuary. Geochim. Cosmochim. Acta 74, 5560–5573 (2010).

    Article  Google Scholar 

  169. Puckett, L. J., Tesoriero, A. J. & Dubrovsky, N. M. Nitrogen contamination of surficial aquifers — A growing legacy. Environ. Sci. Technol. 45, 839–844 (2011).

    Article  Google Scholar 

  170. Hansen, B., Thorling, L., Schullehner, J., Termansen, M. & Dalgaard, T. Groundwater nitrate response to sustainable nitrogen management. Sci. Rep. 7, 8566 (2017). Revealed an overall decrease of regional groundwater nitrate concentrations after implementation of agricultural nitrogen management.

    Article  Google Scholar 

  171. Sutton, M. A. et al. The European Nitrogen Assessment: Sources, Effects and Policy Perspectives (Cambridge Univ. Press, 2011).

  172. Zhang, Y. et al. Submarine groundwater discharge drives coastal water quality and nutrient budgets at small and large scales. Geochim. Cosmochim. Acta 290, 201–215 (2020).

    Article  Google Scholar 

  173. Viaroli, P. et al. Space and time variations of watershed N and P budgets and their relationships with reactive N and P loadings in a heavily impacted river basin (Po river, Northern Italy). Sci. Total Environ. 639, 1574–1587 (2018).

    Article  Google Scholar 

  174. Dai, Z., Du, J., Zhang, X., Su, N. & Li, J. Variation of riverine material loads and environmental consequences on the Changjiang (Yangtze) Estuary in recent decades (1955–2008). Environ. Sci. Technol. 45, 223–227 (2011).

    Article  Google Scholar 

  175. Chen, X., Wang, J., Cukrov, N. & Du, J. Porewater-derived nutrient fluxes in a coastal aquifer (Shengsi Island, China) and its implication. Estuar. Coast. Shelf Sci. 218, 204–211 (2019).

    Article  Google Scholar 

  176. Kroeger, K. D., Cole, M. L. & Valiela, I. Groundwater-transported dissolved organic nitrogen exports from coastal watersheds. Limnol. Oceanogr. 51, 2248–2261 (2006).

    Article  Google Scholar 

  177. Andersen, M. S. et al. Discharge of nitrate-containing groundwater into a coastal marine environment. J. Hydrol. 336, 98–114 (2007).

    Article  Google Scholar 

  178. Knee, K. L., Layton, B. A., Street, J. H., Boehm, A. B. & Paytan, A. Sources of nutrients and fecal indicator bacteria to nearshore waters on the north shore of Kaua’i (Hawai’i, USA). Estuar. Coasts 31, 607–622 (2008).

    Article  Google Scholar 

  179. Kim, T.-H., Kwon, E., Kim, I., Lee, S.-A. & Kim, G. Dissolved organic matter in the subterranean estuary of a volcanic island, Jeju: Importance of dissolved organic nitrogen fluxes to the ocean. J. Sea Res. 78, 18–24 (2013).

    Article  Google Scholar 

  180. Sipler, R. E. & Bronk, D. A. in Biogeochemistry of Marine Dissolved Organic Matter 2nd edn (eds Hansell, D. A. & Carlson, C. A.) 127-232 (Academic, 2015).

  181. Bowen, J. L. et al. A review of land–sea coupling by groundwater discharge of nitrogen to New England estuaries: Mechanisms and effects. Appl. Geochem. 22, 175–191 (2007).

    Article  Google Scholar 

  182. Santos, I. R., de Weys, J., Tait, D. R. & Eyre, B. D. The contribution of groundwater discharge to nutrient exports from a coastal catchment: post-flood seepage increases estuarine N/P ratios. Estuar. Coasts 36, 56–73 (2013).

    Article  Google Scholar 

  183. Wang, X. et al. Submarine groundwater discharge as an important nutrient source influencing nutrient structure in coastal water of Daya Bay, China. Geochim. Cosmochim. Acta 225, 52–65 (2018).

    Article  Google Scholar 

  184. Fekete, B. M., Vörösmarty, C. J. & Grabs, W. High-resolution fields of global runoff combining observed river discharge and simulated water balances. Glob. Biogeochem. Cycles 16, 15-1–15-10 (2002).

    Article  Google Scholar 

  185. Seitzinger, S. P. et al. Global river nutrient export: A scenario analysis of past and future trends. Glob. Biogeochem. Cycles 24, GB0A08 (2010).

    Article  Google Scholar 

  186. Tréguer, P. J. & Rocha, C. L. D. L. The world ocean silica cycle. Annu. Rev. Mar. Sci. 5, 477–501 (2013).

    Article  Google Scholar 

  187. Beusen, A. H. W., Bouwman, A. F., Van Beek, L. P. H., Mogollón, J. M. & Middelburg, J. J. Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum. Biogeosciences 13, 2441–2451 (2016).

    Article  Google Scholar 

  188. Boyer, E. W. et al. Riverine nitrogen export from the continents to the coasts. Glob. Biogeochem. Cycles 20, GB1S91 (2006).

    Article  Google Scholar 

  189. Harrison, J. A., Caraco, N. & Seitzinger, S. P. Global patterns and sources of dissolved organic matter export to the coastal zone: Results from a spatially explicit, global model. Glob. Biogeochem. Cycles 19, GB4S04 (2005).

    Google Scholar 

  190. Seitzinger, S. P., Harrison, J. A., Dumont, E., Beusen, A. H. W. & Bouwman, A. F. Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: An overview of Global Nutrient Export from Watersheds (NEWS) models and their application. Glob. Biogeochem. Cycles 19, GB4S01 (2005).

    Article  Google Scholar 

  191. Kwon, H. K., Kang, H., Oh, Y. H., Park, S. R. & Kim, G. Green tide development associated with submarine groundwater discharge in a coastal harbor, Jeju, Korea. Sci. Rep. 7, 6325 (2017).

    Article  Google Scholar 

  192. Young, C., Tamborski, J. & Bokuniewicz, H. Embayment scale assessment of submarine groundwater discharge nutrient loading and associated land use. Estuar. Coast. Shelf Sci. 158, 20–30 (2015).

    Article  Google Scholar 

  193. Beusen, A. H. W., Slomp, C. P. & Bouwman, A. F. Global land–ocean linkage: direct inputs of nitrogen to coastal waters via submarine groundwater discharge. Environ. Res. Lett. 8, 034035 (2013).

    Article  Google Scholar 

  194. Adyasari, D., Oehler, T., Afiati, N. & Moosdorf, N. Groundwater nutrient inputs into an urbanized tropical estuary system in Indonesia. Sci. Total Environ. 627, 1066–1079 (2018).

    Article  Google Scholar 

  195. Trezzi, G. et al. Submarine groundwater discharge: a significant source of dissolved trace metals to the North Western Mediterranean Sea. Mar. Chem. 186, 90–100 (2016).

    Article  Google Scholar 

  196. Michael, H. A., Mulligan, A. E. & Harvey, C. F. Seasonal oscillations in water exchange between aquifers and the coastal ocean. Nature 436, 1145–1148 (2005). Landmark modelling investigation demonstrating a new, widespread mechanism for saline SGD.

    Article  Google Scholar 

  197. Smith, C. G., Cable, J. E., Martin, J. B. & Roy, M. Evaluating the source and seasonality of submarine groundwater discharge using a radon-222 pore water transport model. Earth Planet. Sci. Lett. 273, 312–322 (2008).

    Article  Google Scholar 

  198. Boyer, E. W. & Howarth, R. W. in Nitrogen in the Marine Environment (eds Capone, D., Bronk, D., Mulholland, M. & Carpenter, E.) 1565-1587 (Elsevier, 2008).

  199. Rabalais, N. N. et al. Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7, 585–619 (2010).

    Article  Google Scholar 

  200. Valiela, I., Bowen, J. L. & Kroeger, K. D. Assessment of models for estimation of land-derived nitrogen loads to estuaries. Appl. Geochem. 19, 935–953 (2002).

    Article  Google Scholar 

  201. Green, P. A. et al. Pre-industrial and contemporary fluxes of nitrogen through rivers: a global assessment based on typology. Biogeochemistry 68, 71–105 (2004).

    Article  Google Scholar 

  202. Tait, D. R. et al. The influence of groundwater inputs and age on nutrient dynamics in a coral reef lagoon. Mar. Chem. 166, 36–47 (2014).

    Article  Google Scholar 

  203. McDonough, L. et al. Changes in global groundwater organic carbon driven by climate change and urbanization. Nat. Commun. 11, 1279 (2020). Revealed that groundwater quality will decrease with climate and land-use change.

    Article  Google Scholar 

  204. Lecher, A. & Mackey, K. Synthesizing the effects of submarine groundwater discharge on marine biota. Hydrology 5, 60 (2018). The first review of biological effects of SGD in multiple coastal ecosystems.

    Article  Google Scholar 

  205. Waska, H. & Kim, G. Differences in microphytobenthos and macrofaunal abundances associated with groundwater discharge in the intertidal zone. Mar. Ecol. Prog. Ser. 407, 159–172 (2010).

    Article  Google Scholar 

  206. Taylor, G. T., Gobler, C. J. & Sañudo-Wilhelmy, S. A. Speciation and concentrations of dissolved nitrogen as determinants of brown tide Aureococcus anophagefferens bloom initiation. Mar. Ecol. Prog. Ser. 312, 67–83 (2006).

    Article  Google Scholar 

  207. Hwang, D. W., Lee, Y. W. & Kim, G. Large submarine groundwater discharge and benthic eutrophication in Bangdu Bay on volcanic Jeju Island, Korea. Limnol. Oceanogr. 50, 1393–1403 (2005).

    Article  Google Scholar 

  208. Lecher, A. L., Mackey, K. R. M. & Paytan, A. River and submarine groundwater discharge effects on diatom phytoplankton abundance in the Gulf of Alaska. Hydrology 4, 61 (2017).

    Article  Google Scholar 

  209. Adolf, J. E., Burns, J., Walker, J. K. & Gamiao, S. Near shore distributions of phytoplankton and bacteria in relation to submarine groundwater discharge-fed fishponds, Kona coast, Hawai’i, USA. Estuar. Coast. Shelf Sci. 219, 341–353 (2019).

    Article  Google Scholar 

  210. Lee, Y. W. & Kim, G. Linking groundwater-borne nutrients and dinoflagellate red-tide outbreaks in the southern sea of Korea using a Ra tracer. Estuar. Coast. Shelf Sci. 71, 309–317 (2007).

    Article  Google Scholar 

  211. Lee, Y. W., Kim, G., Lim, W. A. & Hwang, D. W. A relationship between submarine groundwater-borne nutrients traced by Ra isotopes and the intensity of dinoflagellate red-tides occurring in the southern sea of Korea. Limnol. Oceanogr. 55, 1–10 (2010).

    Article  Google Scholar 

  212. Cho, H.-M., Kim, G. & Shin, K.-H. Tracing nitrogen sources fueling coastal green tides off a volcanic island using radon and nitrogen isotopic tracers. Sci. Total Environ. 665, 913–919 (2019).

    Article  Google Scholar 

  213. Hu, C., Muller-Karger, F. E. & Swarzenski, P. W. Hurricanes, submarine groundwater discharge, and Florida’s red tides. Geophys. Res. Lett. 33, L11601 (2006).

    Article  Google Scholar 

  214. Sugimoto, R. et al. Phytoplankton primary productivity around submarine groundwater discharge in nearshore coasts. Mar. Ecol. Prog. Ser. 563, 25–33 (2017).

    Article  Google Scholar 

  215. Amato, D. W., Bishop, J. M., Glenn, C. R., Dulai, H. & Smith, C. M. Impact of submarine groundwater discharge on marine water quality and reef biota of Maui. PLoS ONE 11, e0165825 (2016).

    Article  Google Scholar 

  216. Peterson, B. J., Stubler, A. D., Wall, C. C. & Gobler, C. J. Nitrogen-rich groundwater intrusion affects productivity, but not herbivory, of the tropical seagrass Thalassia testudinum. Aquat. Biol. 15, 1–9 (2012).

    Article  Google Scholar 

  217. Darnell, K. M. & Dunton, K. H. Plasticity in turtle grass (Thalassia testudinum) flower production as a response to porewater nitrogen availability. Aquat. Botany 138, 100–106 (2017).

    Article  Google Scholar 

  218. Short, F. T. & Burdick, D. M. Quantifying eelgrass habitat loss in relation to housing development and nitrogen loading in Waquoit Bay, Massachusetts. Estuaries 19, 730–739 (1996).

    Article  Google Scholar 

  219. McManus, J. W. & Polsenberg, J. F. Coral–algal phase shifts on coral reefs: Ecological and environmental aspects. Prog. Oceanogr. 60, 263–279 (2004).

    Article  Google Scholar 

  220. Davis, K. L., McMahon, A., Kelaher, B., Shaw, E. & Santos, I. R. Fifty years of sporadic coral reef calcification estimates at One Tree Island, Great Barrier Reef: Is it enough to imply long term trends? Front. Mar. Sci. 6, 282 (2019).

    Article  Google Scholar 

  221. Chauvin, A., Denis, V. & Cuet, P. Is the response of coral calcification to seawater acidification related to nutrient loading? Coral Reefs 30, 911 (2011).

    Article  Google Scholar 

  222. Prouty, N. G. et al. Carbonate system parameters of an algal-dominated reef along West Maui. Biogeosciences 15, 2467–2480 (2018).

    Article  Google Scholar 

  223. Crook, E. D., Cohen, A. L., Rebolledo-Vieyra, M., Hernandez, L. & Paytan, A. Reduced calcification and lack of acclimatization by coral colonies growing in areas of persistent natural acidification. Proc. Natl Acad. Sci. USA 110, 11044–11049 (2013).

    Article  Google Scholar 

  224. Oberle, F. K. J. et al. Physicochemical controls on zones of higher coral stress where black band disease occurs at Mākua Reef, Kaua’i, Hawai’i. Front. Mar. Sci. 6, 552 (2019).

    Article  Google Scholar 

  225. Richardson, C. M., Dulai, H., Popp, B. N., Ruttenberg, K. & Fackrell, J. K. Submarine groundwater discharge drives biogeochemistry in two Hawaiian reefs. Limnol. Oceanogr. 62, S348–S363 (2017).

    Article  Google Scholar 

  226. Andrisoa, A., Lartaud, F., Rodellas, V., Neveu, I. & Stieglitz, T. C. Enhanced growth rates of the Mediterranean mussel in a coastal lagoon driven by groundwater inflow. Front. Mar. Sci. 6, 753 (2019).

    Article  Google Scholar 

  227. Spalt, N., Murgulet, D. & Abdulla, H. Spatial variation and availability of nutrients at an oyster reef in relation to submarine groundwater discharge. Sci. Total Environ. 710, 136283 (2020).

    Article  Google Scholar 

  228. Chen, X. et al. Submarine groundwater-borne nutrients in a tropical bay (Maowei Sea, China) and their impacts on the oyster aquaculture. Geochem. Geophys. Geosyst. 19, 932–951 (2018).

    Article  Google Scholar 

  229. Fujita, K. et al. Increase in fish production through bottom-up trophic linkage in coastal waters induced by nutrients supplied via submarine groundwater. Front. Environ. Sci. 7, 82 (2019).

    Article  Google Scholar 

  230. Starke, C., Ekau, W. & Moosdorf, N. Enhanced productivity and fish abundance at a submarine spring in a coastal lagoon on Tahiti, French Polynesia. Front. Mar. Sci. 6, 809 (2020).

    Article  Google Scholar 

  231. Pisternick, T. et al. Submarine groundwater springs are characterized by distinct fish communities. Mar. Ecol. 41, e12610 (2020).

    Article  Google Scholar 

  232. Moosdorf, N. & Oehler, T. Societal use of fresh submarine groundwater discharge: An overlooked water resource. Earth Sci. Rev. 171, 338–348 (2017).

    Article  Google Scholar 

  233. Troccoli-Ghinaglia, L., Herrera-Silveira, J. A., Comín, F. A. & Díaz-Ramos, J. R. Phytoplankton community variations in tropical coastal area affected where submarine groundwater occurs. Cont. Shelf Res. 30, 2082–2091 (2010).

    Article  Google Scholar 

  234. Utsunomiya, T. et al. Higher species richness and abundance of fish and benthic invertebrates around submarine groundwater discharge in Obama Bay, Japan. J. Hydrol. Reg. Stud. 11, 139–146 (2017).

    Article  Google Scholar 

  235. Migné, A., Ouisse, V., Hubas, C. & Davoult, D. Freshwater seepages and ephemeral macroalgae proliferation in an intertidal bay: II. Effect on benthic biomass and metabolism. Estuar. Coast. Shelf Sci. 92, 161–168 (2011).

    Article  Google Scholar 

  236. Valiela, I. et al. Couplings of watersheds and coastal waters: Sources and consequences of nutrient enrichment in Waquoit Bay, Massachusetts. Estuaries 15, 443–457 (1992).

    Article  Google Scholar 

  237. Peterson, R. N. et al. A new perspective on coastal hypoxia: The role of saline groundwater. Mar. Chem. 179, 1–11 (2016).

    Article  Google Scholar 

  238. Lilkendey, J. et al. Fresh submarine groundwater discharge augments growth in a reef fish. Front. Mar. Sci. 6, 613 (2019).

    Article  Google Scholar 

  239. Stewart, B. T., Santos, I. R., Tait, D., Macklin, P. A. & Maher, D. T. Submarine groundwater discharge and associated fluxes of alkalinity and dissolved carbon into Moreton Bay (Australia) estimated via radium isotopes. Mar. Chem. 174, 1–12 (2015).

    Article  Google Scholar 

  240. Liu, Y. et al. Inorganic carbon and alkalinity biogeochemistry and fluxes in an intertidal beach aquifer: implications for ocean acidification. J. Hydrol. 595, 126036 (2021).

    Article  Google Scholar 

  241. Santos, I. R., Maher, D. T., Larkin, R., Webb, J. R. & Sanders, C. J. Carbon outwelling and outgassing vs. burial in an estuarine tidal creek surrounded by mangrove and saltmarsh wetlands. Limnol. Oceanogr. 64, 996–1013 (2019).

    Article  Google Scholar 

  242. Sippo, J. Z. et al. Carbon outwelling across the shelf following a massive mangrove dieback in Australia: Insights from radium isotopes. Geochim. Cosmochim. Acta 253, 142–158 (2019).

    Article  Google Scholar 

  243. Cyronak, T., Santos, I. R., Erler, D. V. & Eyre, B. D. Groundwater and porewater as major sources of alkalinity to a fringing coral reef lagoon (Muri Lagoon, Cook Islands). Biogeosciences 10, 2467–2480 (2013).

    Article  Google Scholar 

  244. Lee, J. & Kim, G. Dependence of coastal water pH increases on submarine groundwater discharge off a volcanic island. Estuar. Coast. Shelf Sci. 163, 15–21 (2015).

    Article  Google Scholar 

  245. Davis, K., Santos, I. R., Perkins, A. K., Webb, J. R. & Gleeson, J. Altered groundwater discharge and associated carbon fluxes in a wetland-drained coastal canal. Estuar. Coast. Shelf Sci. 235, 106567 (2020).

    Article  Google Scholar 

  246. O’Reilly, C., Santos, I. R., Cyronak, T., McMahon, A. & Maher, D. T. Nitrous oxide and methane dynamics in a coral reef lagoon driven by pore water exchange: Insights from automated high-frequency observations. Geophys. Res. Lett. 42, 2885–2892 (2015).

    Article  Google Scholar 

  247. de Weys, J., Santos, I. R. & Eyre, B. D. Linking groundwater discharge to severe estuarine acidification during a flood in a modified wetland. Environ. Sci. Technol. 45, 3310–3316 (2011).

    Article  Google Scholar 

  248. Jeffrey, L. C., Maher, D. T., Santos, I. R., McMahon, A. & Tait, D. R. Groundwater, acid and carbon dioxide dynamics along a coastal wetland, lake and estuary continuum. Estuar. Coasts 39, 1325–1344 (2016).

    Article  Google Scholar 

  249. Santos, I. R. et al. Assessing the recharge of a coastal aquifer using physical observations, tritium, groundwater chemistry and modelling. Sci. Total Environ. 580, 367–379 (2017).

    Article  Google Scholar 

  250. Post, V. E. A., Eichholz, M. & Brentführer, R. Groundwater Management in Coastal Zones (Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), 2018).

  251. Ferreira, J. G. et al. Overview of eutrophication indicators to assess environmental status within the European Marine Strategy Framework Directive. Estuar. Coast. Shelf Sci. 93, 117–131 (2011).

    Article  Google Scholar 

  252. EU. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy (Official Journal of the European Communities, 2000).

  253. EU. Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive) (Official Journal of the European Union, 2008).

  254. Glenn, C. R. et al. Lahaina groundwater tracer study–Lahaina, Maui, Hawaii, 502 pp (Univ. Hawaii at Mana, 2013).

  255. Cornwall, W. ‘Hydrologists should be happy.’ Big Supreme Court ruling bolsters groundwater science. Science https://doi.org/10.1126/science.abc4292 (2020).

    Article  Google Scholar 

  256. Strain, D. Groundwater discharge of wastewater contaminants across the land-sea interface: Law, policy, and science research aimed to improve coastal management (Stanford Woods Institute for the Environment, 2020).

  257. Boehm, A. B., Shellenbarger, G. G. & Paytan, A. Groundwater discharge:  potential association with fecal indicator bacteria in the surf zone. Environ. Sci. Technol. 38, 3558–3566 (2004).

    Article  Google Scholar 

  258. Gilli, E. Deep speleological salt contamination in Mediterranean karst aquifers: perspectives for water supply. Environ. Earth Sci. 74, 101–113 (2015).

    Article  Google Scholar 

  259. Ishida, S., Tsuchihara, T., Yoshimoto, S. & Imaizumi, M. Sustainable use of groundwater with underground dams. Jpn. Agric. Res. Q. 45, 51–61 (2011).

    Article  Google Scholar 

  260. Macklin, P. A., Maher, D. T. & Santos, I. R. Estuarine canal estate waters: Hotspots of CO2 outgassing driven by enhanced groundwater discharge? Mar. Chem. 167, 82–92 (2014).

    Article  Google Scholar 

  261. Senal, M. I. S. et al. Nutrient inputs from submarine groundwater discharge on the Santiago reef flat, Bolinao, Northwestern Philippines. Mar. Pollut. Bull. 63, 195–200 (2011).

    Article  Google Scholar 

  262. Guillotreau, P., Campling, L. & Robinson, J. Vulnerability of small island fishery economies to climate and institutional changes. Curr. Opin. Environ. Sust. 4, 287–291 (2012).

    Article  Google Scholar 

  263. Bishop, R. E. et al. ‘Anchialine’ redefined as a subterranean estuary in a crevicular or cavernous geological setting. J. Crust. Biol. 35, 511–514 (2015).

    Article  Google Scholar 

  264. Chen, X. et al. Submarine groundwater discharge-derived carbon fluxes in mangroves: an important component of blue carbon budgets? J. Geophys. Res. Oceans 123, 6962–6979 (2018).

    Article  Google Scholar 

  265. Rabalais, N. N., Turner, R. E., Díaz, R. J. & Justić, D. Global change and eutrophication of coastal waters. ICES J. Mar. Sci. 66, 1528–1537 (2009).

    Article  Google Scholar 

  266. Heiss, J. W., Post, V. E. A., Laattoe, T., Russoniello, C. J. & Michael, H. A. Physical controls on biogeochemical processes in intertidal zones of beach aquifers. Water Resour. Res. 53, 9225–9244 (2017).

    Article  Google Scholar 

  267. Bokuniewicz, H., Buddemeier, R., Maxwell, B. & Smith, C. The typological approach to submarine groundwater discharge (SGD). Biogeochemistry 66, 145–158 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

This Review was initiated with support from the Australian Research Council (FT170100327) and concluded with support from the Swedish Research Council to I.R.S. H.-M.C. was supported by the National Research Foundation of Korea (2020R1F1A1071423) and Inha University Research Grant (2020). X.C. acknowledges the National Natural Science Foundation of China (42006152). N.D. was supported by a University of Alabama sabbatical fellowship. V.R. acknowledges the Beatriu de Pinós postdoctoral programme of the Catalan Government (2017-BP-00334). H.L. acknowledges the National Natural Science Foundation of China (41972260, 41430641). R.S. acknowledges the Japan Society for the Promotion of Science (18KK0428). S.B. was supported by the Swedish Research Council Formas (2017-01513). A.H.S. acknowledges the National Science Foundation (NSF EAR-1752995).

Author information

Authors and Affiliations

Authors

Contributions

I.R.S. conceived the paper with input from all authors and wrote several passages. X.C. did most of the data compilation with support from all authors. A.L.L. and R.S. wrote most of the biological implications section. A.H.S. wrote about scales of SGD and made global maps. N.D. wrote about methods of SGD. N.M. and H.L. wrote most of the societal implications section. V.R. and J.T. wrote some of the river versus SGD and global distribution sections. H.-M.C. wrote some of the nitrogen speciation section. M.-C.H. and L.L. performed some of the data analysis. S.B. wrote about nitrogen cycling. All authors edited the manuscript and contributed to general discussions and literature reviews.

Corresponding author

Correspondence to Isaac R. Santos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks A. Wilson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Submarine groundwater discharge

The flow of water through continental margins from the seabed to the coastal ocean, with length scales of metres to kilometres, regardless of fluid composition or driving force.

Permeability

A measure of the ability of unconsolidated rocks and sediments to allow groundwater flow.

Hydraulic heads

Vertical and horizontal pressure gradients driving groundwater flow.

Biogenic silica

Mineral containing silicon often produced by plankton (such as diatoms and radiolarians) and often well preserved during sedimentation and burial.

Denitrification

Microbial process in the nitrogen cycle that converts nitrate to nitrogen gas that flows to the atmosphere.

Karst

Landscape formed by carbonate rocks often weathered by dissolution and with abundant conduits for fast groundwater flow.

Unconfined aquifers

Surficial aquifers situated above a low-permeability layer of sediment or rock, and with the upper water layer at atmospheric pressure.

Oxidation-reduction potential

Measure of the tendency of a chemical species to acquire electrons, to be reduced or to lose electrons, or to be oxidized.

Subterranean estuaries

The locations in coastal aquifers where there is mixing between fresh groundwater and seawater, and chemical reactions modify the composition of submarine groundwater discharge.

Nitrogen fixation

Microbial process that leads to the conversion of nitrogen gas into ammonia/ammonium.

Dissimilatory nitrate reduction to ammonium

Microbial process in the nitrogen cycle that converts fixed nitrogen from nitrate to ammonium.

Diatom

Microscopic algae (unicellular and non-flagellate) with a characteristic wall made up of silica and are one of the most important groups of planktonic marine microalgae.

Dinoflagellates

Group of microscopic algae (mostly unicellular and flagellate) representing one of the most important groups of both marine and freshwater phytoplankton.

Evapotranspiration

The quantity of water that moves to the atmosphere from the plants and soil; describes the joint effect of transpiration, through the plants, and evaporation, directly from the soil.

Microphytobenthos

Living organisms, such as unicellular eukaryotic algae (mainly diatoms) and cyanobacteria, growing in the upper layers of illuminated aquatic sediments.

Cyanobacteria

Ubiquitous phylum of single-celled bacteria that carry out photosynthesis.

Macrophytes

Large aquatic plants and multicellular algae widespread in marine, brackish and freshwater environments, which are referred to as macrophytes to distinguish from unicellular algae (phytoplankton).

Acid sulfate soils

Naturally occurring soils usually found in coastal wetlands with a high content of iron sulfide minerals, such as pyrite; when disturbed by dredging or drainage, the soils come into contact with oxygen, oxidizing pyrite and releasing sulfuric acid (H2SO4).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, I.R., Chen, X., Lecher, A.L. et al. Submarine groundwater discharge impacts on coastal nutrient biogeochemistry. Nat Rev Earth Environ 2, 307–323 (2021). https://doi.org/10.1038/s43017-021-00152-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-021-00152-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing